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Abstract: This paper develops and validates a new fully automated procedure for shoreline delin-
eation from high-resolution multispectral satellite images. The model is based on a new water–land
index, the Direct Difference Water Index (DDWI). A new technique based on the buffer overlay
method is also presented to determine the shoreline changes from different satellite images and
obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery
from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were
collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The
model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and
detected the shoreline accurately, with a >99% success rate. The model out-performed other existing
shoreline detection algorithms based on different water indices and clustering techniques. The resolu-
tion shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its
high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution
datasets to refine models of beaches worldwide.

Keywords: shoreline detection; shoreline evolution; shoreline timeseries; water index; LiDAR

1. Introduction

Coastal areas are some of the most densely populated areas in the world, with average
population densities three times higher than the average world density [1]. Most of
the world’s megacities are located in the low-level coastal areas [2], and migration to
coastal areas continues [2]. However, coastal areas are also increasingly exposed to many
hazards that are enhanced by sea level rises, such as flooding, shoreline erosion, and
coastal storms [3], all of which can cause dramatic changes to the shoreline position, in
turn threatening infrastructure and communities. The ability to detect and quantify these
changes is essential for the development and refinement of models that can predict such
shoreline changes, in turn guiding the design and management of coastal areas that are
more resilient to ever-increasing coastal hazards.

Remote-sensing approaches have long been utilized to determine shoreline positions,
allowing for the accurate mapping of shorelines over large geographical areas. Shoreline
mapping was first carried out using aircraft-derived black and white photographs, but
many types of aerial imagery, ranging from black and white images to hyperspectral images,
can be used to quantify the shoreline location once the images are georeferenced [4,5]. In
addition to aerial imagery, other remote-sensing modalities, e.g., airborne LiDAR, can be
used for shoreline detection. LiDAR technology, in terms of performance, size, and cost,
has seen tremendous developments over the last two decades [6–10]. In related recent
work, we presented a LiDAR-equipped unmanned aerial vehicle (UAV) that was utilized
for high-resolution shoreline and beach topography quantification for Lake Michigan [8,9].
However, the drawback of UAV- and aircraft-derived imagery for use in shoreline mapping
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is their high instrumentation and logistical costs as well as their coverage limitation, which
can preclude their application and limit the temporal frequency of image acquisition.

The remote sensing of shorelines using multispectral satellite imagery is becoming
increasingly common with improvements in imagery resolution, acquisition frequencies,
and availability. Shoreline detection from multispectral imagery has been carried out
with imagery derived from a wide range of satellites, including Landsat [11–14], Sentinel
2 [11,15,16], IKONOS [17], Worldview 2 [18], and Planetscope [14,19].

A key step in shoreline detection from multispectral imagery is the combination of
multiple spectral bands to create an index that distinguishes land from water following
the assignment of a threshold value. Numerous indices have been developed and refined,
including the Normalized Difference Water Index (NDWI), Normalized Difference Vegeta-
tion Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Coastal Water
Index (CWI), Tasseled Cap Wetness (TCW), Coal Mine Index (CMI), and Automated Water
Extraction Index (AWEI) Table 1. The main purpose of these indices is to increase the con-
trast between the water and the land pixels in the image. Furthermore, new mathematical
methods, indices or a combination of several indices have been examined to increase the
contrast between the water and the land to improve the shoreline detection [12,13,18,20].
The appropriate index for an application depends largely on the spectral bands that are
available from the satellite imagery. Many indices were developed specifically for the
available bands in the Landsat images (e.g., CWI, TWC, CMI, AWEI), which limits their
applications. However, other indices, such as the NDWI and NDVI, can be applied to any
satellite with RGB and near-infrared (NIR) bands, and that is why they are the most widely
used indices. Many of these indices were developed as normalized indices in the hope of
finding a constant thresholding value between the water and the land pixels. However, this
turned out to be inapplicable or not good for accurate prediction of the shorelines [14,21,22].

Table 1. Different water indices.

Index Name Definition Applicable Satellites References

Normalized Difference Water Index NDWI = G−NIR
NIR+G

Landsat, Sentinel, Planetscope,
RapidEye [12,13,23]

Normalized Difference Vegetation
Index NDVI = NIR−R

NIR+R
Landsat, Sentinel, Planetscope,

RapidEye [24]

Modified Normalized Difference Water
Index MNDWI = G−SWIR1

G+SWIR1 Landsat, Sentinel [14,15]

Coastal Water Index CWI = Max(SWIR2)∗B
Max(B)∗SWIR2

Landsat [25]

Tasseled Cap Wetness
TCW = 0.1509 ρ1 + 0.1973ρ2+

0.3279ρ3 + 0.3406ρ4 − 0.7112ρ5−
0.4572ρ7 ∗

Landsat [13]

Coal Mine Index CMI = SWIR1−SWIR2
SWIR1+SWIR2 Landsat [12]

Automated Water Extraction Index

AWEInsh = 4(ρ2 − ρ5)− (0.25ρ4+
2.75ρ7) ∗

AWEIsh = ρ1 + 2.5ρ2 − 1.5(ρ4 + ρ5)
−0.25ρ7 ∗

Landsat [19,20]

* ρ1, ρ2, ρ3, . . . indicates the number of the band in Landsat image.

A second key step in shoreline detection from multispectral imagery is the application
of an automated or semi-automated technique to delineate the shoreline from an image
in the classifier index (NDWI, etc.). Unsupervised classification techniques (e.g., K-means,
mean shift, and Otsu) are the most common methods for shoreline delineation and were
used by many researchers [11,12,15,17,25]. However, since these classifiers are centroid–
based, they are greatly affected by the outliers [26,27]. Therefore, the optimum thresholding
values obtained from these methods do not have to be the best values to distinguish
between the water and the land. This will be further illustrated in Sections 4 and 5. Another
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equally common method is using a constant threshold after applying one or more of the
water indices, or after applying some operations to the image’s bands [16,19,23,24,28].
Nevertheless, it was found to be impossible to obtain the constant thresholding that is
applicable to different beaches’ imageries from different satellites, with different topologies,
and seasons [14,21]. Some other models [15,29] use supervised classifiers (supported vector
machine (SVM), maximum likelihood (ML), and neural networks (NN)). However, to make
a robust supervised classifier that can work for different satellite missions and different
beach topologies, many images from different satellites and environments are needed to
train the classifier. Therefore, since the current efforts are motivated by the lack of data for
shoreline positions, a comprehensive supervised shoreline delineator cannot be achieved.

Despite the extensive refinement of shoreline detection algorithms, challenges still
exist in their widespread application. This is particularly true as satellite imagery becomes
more widely available [30]. The present work was motivated by the failure of multiple
existing algorithms when applied to multispectral images, from several different satellites,
of the Lake Michigan shoreline, for reasons detailed later in the manuscript. In brief, it was
found that there is no robust adaptive method that can be used to determine the threshold
between the water and the land pixels, which, in turn, results in wrong or inaccurate
detection of the shoreline position.

In this paper, we present and directly validate, using a newly-developed LiDAR
system, a novel method for the automated detection of shorelines from multispectral
imagery. The model is able to quantify the shoreline advancing and retreating between
two input satellite images for the same place. The model is applied to satellite imagery of
the Lake Michigan (USA) shoreline, which has seen extensive erosion between 2013 and
present in response to high water levels [8].

2. Improved Procedure for Fully Automated Shoreline Detection from
Multispectral Imagery

In this section, an improved method is presented for the fully automated detection of
the shoreline position from multispectral imagery. This method introduces a new index
to distinguish land from water and an automated procedure for the determination of a
threshold value. The detection algorithm flow chart is shown in Figure 1. The shoreline
detection algorithm was coded in MATLAB [31] and is available from the authors.

As input data, the model utilizes the green and the NIR band images. The first step
is the application of a 2D median filter with a 3 × 3 stencil size to reduce the noise in the
green and NIR images. The model then calculates the direct (non-normalized) difference
water index (DDWI) as the difference between the Green and NIR bands Figure 1c:

DDWI = Green – NIR (1)

The direct difference water index is introduced here in lieu of numerous normalized
indices used in previous studies Table 1 because it was seen to heighten the contrast between
the magnitude of water and land pixel values, in turn allowing for the straightforward,
automated determination of an image-specific index threshold that distinguishes water
from land.

To determine an image-specific value of the DDWI threshold, the DDWI probability
density function (pdf) for the image is calculated and then smoothed with an adaptive
normal kernel, as in Figure 1d,e. As highlighted by [11,14], the probability density functions
of existing normalized indices generally have bimodal distributions. This is also the case
for the DDWI used in this study. However, DDWI has a higher intensity for water than
that of the other indices. Moreover, unlike the other indexes mentioned by reference [14],
the DDWI has been found to have always one main peak for the water, which indicates
the ability of index to classify water pixels as a class. The threshold value is selected as
the minimum value between the two peaks in the DDWI distribution, and this is found
to provide a very robust, image-specific threshold value to separate water and land in
the DDWI image. Additionally, to improve the reliability of the automated threshold
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determination, a hundred-class frequency distribution of the pixel values of the DDWI
image is used to avoid the local peaks in the original probability distribution. We further
discuss this improvement in the Section 4 of the paper.

Once the DDWI threshold value is determined, it is applied to the DDWI image to
create a binary image, Figure 1f. Then, the model fills gaps such as small water bodies
and misclassified pixels in the water and the land masks by using open, close, and fill
mathematical morphologic operations [25,28]. At that point, if successful, the model will
have two separate solid masks for the water and the land. The model will then calculate the
boundary of the water mask and remove the edges of the image, if any, from that boundary.
The resultant boundary is the shoreline detected from this image.
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Figure 1. Shoreline detection algorithm using the direct difference water index (DDWI). Algorithm
steps are described in detail in the text.

Shoreline Movement Quantification

A new method for the quantification of shoreline movement is also presented here.
The traditional technique for calculating shoreline movement is the tracking of the shoreline
position along shore-perpendicular transects (e.g., [15,32]). However, the results of transect-
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based methods depend on the choice of transects (spacing and orientation), which, in turn,
can lead to method-dependent results associated with shoreline change studies.

The new shoreline movement technique presented here is based on the buffer-overlay
method proposed by [33] as an accuracy measure for linear features. This method has the
advantage of being fully automated, resulting in its consistent application between shoreline
studies. The shoreline evolution algorithm was developed and coded in Matlab [31]. Figure 2
provides a graphical overview of the new shoreline movement quantification technique.
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Figure 2. Shoreline evolution calculation steps using the buffer overlay method. Shown are: (a) ref-
erence (white) and target (red) shorelines; (b,c) buffers shoreward and landward of the reference
shoreline, respectively; (d) calculated shoreline change with areas of shoreline advancement (green)
and retreat (red).
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The algorithm defines the first shoreline as a reference. Then, seaward and landward
buffers are created within specific increments from the reference shoreline. Consequently,
the number of pixels of the target shoreline that intersect the buffers are counted. Since the
shoreline is composed of pixels from the input satellite image, the buffer increment must
be a multiple of the pixel size. After including all the pixels in the second shoreline, the
differences between the number of pixels in each buffer are calculated. Finally, the number
of pixels in each class is converted to distance by multiplying by the effective pixel size.
Since the shoreline can move in a horizontal or diagonal direction, the effective pixel size is
taken as the average of the horizontal and the diagonal distance of the pixel.

As a result, the model produces a distribution for the different values of movements in
the shoreline small segments (each segment is one pixel size). Moreover, the model returns
a timeseries of the average shoreline movements for all the images.

3. Methods
3.1. Study Areas

The primary study location for this work is the Indiana coastline of Lake Michigan
(USA) Figure 3. Lake Michigan is considered the third largest Great Lake by area and the
second largest by volume [34]. Lake Michigan is not influenced by tides, and experiences
the largest wind waves in the fall and winter [35]. The southern part of Lake Michigan
along the Indiana coastline has recently experienced widespread erosion and shoreline
damage in response to the nearly 2 m water level increase between 2013 and 2020 [8].
The coastline examined here is primarily sandy beaches backed by vegetated dunes, and
includes the Indiana Dunes National Park. Validation of the shoreline detection method
with in situ data was based on LiDAR surveys carried out on beaches in Beverly Shores and
Dune Acres (described in this section). This coastline can experience large storm-generated
waves during fall and winter, with significant wave heights of 5–6 m [36]. The application
of the shoreline detection method to historical imagery was conducted on the Jeorse Park
Beach, a 1.6 km-long closed littoral cell located east of Burns Harbor Figure 3.
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3.2. LiDAR Shoreline Surveys

Shoreline surveys were carried out with a newly developed, LiDAR-equipped back-
pack Mobile Mapping System (Backpack MMS) Figure 4. The Backpack MMS comprises a
Velodyne VLP-16 Hi-Res LiDAR and a Sony α7R II 43.6 MP full-frame camera with a 35 mm
lens. A Novatel SPAN-CPT GNSS/INS is used for direct georeferencing of the LiDAR
and camera. Table 2. LiDAR manufacturer specifications for Backpack and UAV MMS.
provides the manufacturer specifications for the LiDAR unit onboard the Backpack [37].
The Novatel SPAN-CPT GNSS/INS provides a post-processing accuracy of 2–5 cm for
position, 0.025◦ for roll/pitch angles, and 0.080◦ for heading angle [38]. To reconstruct
accurate point clouds from the backpack LiDAR, a rigorous system calibration is required
to estimate the mounting parameters—lever arm and boresight angles—relating onboard
LiDAR sensors with the GNSS/INS unit. In this study, the Backpack MMS was calibrated
using the approach proposed by Ravi et al. [39]. The expected accuracy of the point cloud
was estimated based on the individual sensor specifications using the LiDAR Error Propa-
gation Calculator developed by Habib et al. [40]. The calculator suggests an accuracy of
±3 cm at a range of 50 m for the Backpack MMS.
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Figure 4. Backpack LiDAR unit components (right) and during shoreline data acquisition (left).

Walking shoreline surveys with the Backpack MMS were carried out on 1 June 2020,
where a total of 4.4 km of the beach was surveyed. As long as there are no obstructions to
the GNSS signal, the accuracy of the point cloud derived from Backpack LiDAR is expected
to be in the range of 3–5 cm (this considers the accuracy of the GNSS/INS position and
orientation system, LiDAR ranges, and system calibration). For shoreline surveys, this level
of accuracy can easily be attained. The long range of the LiDAR sensor enabled the mapping
of a wide extent across the shoreline, from the land–water intersection to vegetated areas on
the landward side. Nonetheless, to ensure that the acquired point data were dense, a data
acquisition configuration was designed to cover the shoreline from two tracks separated by
a wide lateral distance, well under LiDAR’s maximum range (one close to the shoreline
and the other near the vegetated area on the landward side). Other than scanning various
surface features at a high point density, this data acquisition configuration served to verify
the alignment of point clouds from the two tracks, thus validating the system calibration
and georeferencing accuracy. Moreover, this double track configuration allows for the
acquisition of imagery on both sides of the shoreline (i.e., facing water and inland). In other
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words, since the camera is mounted on the left side of the Backpack, forward and backward
tracks along the shoreline would ensure the coverage of both sides by the captured imagery.
A sketch of the track configuration of the Backpack system along a hypothetical shoreline
is shown in Figure 5.

Table 2. LiDAR manufacturer specifications for Backpack and UAV MMS.

Backpack MMS

Velodyne VLP-16 Hi-Res
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The shoreline position was extracted from the Backpack MMS LiDAR point cloud as the
lakeward extent of valid points from the LiDAR point cloud. The obtained shoreline position
was validated using the georeferenced RGB images. The datapoints associated with floating
objects in the water (buoys and boats) were manually removed from the point cloud.
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3.3. Satellite Imagery

In this paper, recent satellite images from Planetscope, RapidEye, Sentinel 2, and
Landsat 8 were used to develop and test the automated shoreline detection algorithm. A
summary of the satellite specifications used in this study is shown in Table 3. The images
were manually downloaded from the Planet Explorer website (https://www.planet.com/
explorer/ (accessed on 30 October 2021)). The website can be used to download commercial
imageries (Planetscope, RapidEye) as well as publicly available images (Landsat 8 and
sentinel 2). Images with extensive cloud cover and/or clarity problems were discarded;
cloud cover obscured approximately 70% of available images. Additionally, images from
winter months when the shoreline was covered in ice were not used.

Table 3. Specifications of satellite imagery used in the present study.

Satellite Pixel Resolution
(m)

Number
of Bands

Images
Downloaded

Average
Revisit Time

(Days)
Date

Availability

Planetscope 3 4 131 1 2016—present

RapidEye 5 5 2 5.5 2009–2020

Sentinel 2 10 (RGB, NIR) 13 1 5 2015—present

Landsat 8 30 (RGB, NIR) 9 1 16 2013—present

3.4. Test 1—Comparison with LiDAR Surveys

For direct comparison with the LiDAR shoreline surveys, the new shoreline detection
algorithm was applied to Planetscope, Sentinel 2, and Landsat 8 images of the 4.4-km-long
section of the Indiana shoreline of Lake Michigan that was surveyed in Table 4. All three
satellite images were acquired within two days of the LiDAR survey. The waves and the
water level conditions during and between the image and the LiDAR surveys are shown in
Table 4, which shows that the period of time including the image acquisitions and LiDAR
survey had consistent water levels and very small waves. The water level change between
the survey and the images was less than 0.04 m, as recorded at the Calumet Harbor, with
the IL water level gauge located approximately 30 km from the survey location (NOAA
Gauge 9087044, [41]). Assuming an average waterline slope of 1:12, as inferred from LiDAR
observations [8], this change in the water level would result in a passive horizontal change
in the shoreline location of 45 cm, which is substantially less than the imagery pixel resolu-
tions Table 4. Additionally, the significant wave heights between LiDAR data collection
and the satellite image acquisition were less than 0.1 m [42], which should generate a
maximum vertical runup (Ru2%) of approximately 0.12 m following standard estimation
techniques [43]. This run-up would generate a change in the shoreline location equal to
1.4 m, which is also less than the pixel resolution of the Planetscope image (3 m). Thus,
while the LiDAR survey and the satellite image acquisitions were not exactly synchronous,
the difference in the horizontal shoreline positions for the two estimates should be substan-
tially less than the imagery resolution, indicating that, in general, the observed differences
between the LiDAR-detected shoreline and the image-derived shoreline can be attributed
to failures in the shoreline detection methodology.

3.5. Test 2—Comparison with Other Shoreline Detection Algorithms

To test the ability of the algorithm to work in an automated fashion on many images,
satellite images were downloaded for the location of Jeorse Park Beach (IN), a small
1.6-km-long Lake Michigan beach located west of the LiDAR survey Figure 3 This beach
was chosen because it is a challenging shoreline to detect due to the presence of numerous
shoreline-parallel visual features, as seen in Figure 3. With littoral barriers on both sides, it
is considered a close littoral cell [44]. Overall, 132 Planetscope and Rapideye images were
downloaded for Jeorse Park beach for image acquisition dates between August 2018 and
September 2021. The new shoreline detection algorithm was applied to these images and
compared to different existing combinations of different water indexes and thresholding

https://www.planet.com/explorer/
https://www.planet.com/explorer/
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techniques Table 1. The resultant shorelines that were derived from all detection algorithms
were then subjected to a visual screening in which the digitized shorelines were qualitatively
evaluated relative to the shorelines seen on the images used for the shoreline digitization.
The resulting comparison was categorized into three categories: accurate detection; good
but not perfect detection; and failed detection.

Table 4. Water level and wave conditions occurring during satellite image acquisition and LiDAR
surveys. Times listed are Eastern Standard Time.

Shoreline
Source Date Water Level

(m) (IGLD)
Wave Height

(m)
Pixel

Resolution

LiDAR 10:00–16:00, 1 June 2021 177.02 0.04 N/A

Planetscope 16:02, 3 June 2021 176.983 0.08 3 m

Sentinel-2 16:51, 30 May 2021 176.988 0.21 10 m

Landsat-8 16:28, 30 May 2021 177.059 0.23 30 m

4. Results
4.1. Validation of Shoreline Detection Algorithm

Two types of tests were applied to the shoreline detection procedure. The first test
was a direct comparison between the LiDAR-derived shoreline positions and the shoreline
detected from the satellite imagery acquired within several days of the LiDAR surveys.
This allows for a direct quantification of the error between the actual and the detected
shorelines. The second test is the blind application of the shoreline detection algorithm to a
large number of images for a common location.

4.1.1. Test 1—Comparison with LiDAR Surveys

The shorelines extracted from the detection algorithm and from the Planetscope image
are plotted with the LiDAR-derived shoreline in Figure 6. The satellite-derived shoreline
and the LiDAR shoreline have very good visual agreement, and the previously described
buffer-overlay method found that 51% of the LIDAR points fall within the same pixel of
the extracted shoreline from the Planetscope satellite image, and more than 99% of the
points fall within a buffer of 1 pixel shoreward or landward, as shown in Table 5. Thus, the
average error of the shoreline extracted from the Planetscope image is 1.48 m, which is less
than the pixel resolution of the image.

Table 5. Error quantification of the shoreline extracted from the Planetscope image, Sentinel 2 and
Landsat 8.

Planetscope Image

Pixel center to center distance (m) 0–1.5 1.5–4.5 4.5–7.5
Number of Pixels 478 442 9

Sentinel 2 Image

Pixel center to center distance (m) 0–5 5–15 15–25
Number of Pixels 290 168 0

Landsat 8 Image

Pixel center to center distance (m) 0–15 15–45 45–75
Number of Pixels 91 91 0
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Figure 6. Detected shoreline from the Planetscope image and the true shoreline from the LiDAR data
(The background image is the Planetscope image used to digitize the shoreline).

The errors from the shorelines extracted from the coarser-resolution Sentinel 2 and
Landsat 8 images are shown in Table 5, with shorelines plotted in Figures 7 and 8. All
the LiDAR points fall within a buffer of 1 pixel, either shoreward or landward, with the
majority of the points falling within the same pixel. The average errors for the shorelines
extracted from the Sentinel 2 and Landsat 8 images were 3.7 m and 15 m, respectively, less
than the pixel size of their corresponding images (10 m and 30 m, respectively).
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Figure 8. Detected shoreline from the Landsat 8 image and the true shoreline from the LiDAR data
(The background image is the Landsat-8 image used to digitize the shoreline).

4.1.2. Test 2—Comparison with Other Shoreline Detection Methods

The results of the large-scale test (132 images) comparing the new shoreline detection
method with existing methods are shown in Figure 9. Of the 132 tested images, the DDWI-
based detection algorithm produced accurate shoreline detection for 122 images, with
good detection for nine images and failed detection for one image. In contrast, the OTSU
and K-Means techniques failed to detect the shoreline using the NDWI index for 52 and
50 images, respectively. The K-means technique with RGB images was unable to detect the
shoreline for any images, which is not surprising given the shoreline section used for the
test Figure 10, which has numerous features that confound a clear distinction between land
and water. When applied to the NDWI and NIR images, it can be seen that the proposed
simpler thresholding technique works substantially better than the more complex OTSU
and K-Means techniques.
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Figure 9. Qualitative comparison of the new shoreline detection method (“Proposed Model (DDWI)”)
with other shoreline detection strategies and water indices.
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Figure 10. Sample of the detected shoreline from the images, shorelines are shown in yellow.
(a,b) were classified as accurate; (c,d) were classified as good; (e,f) were classified as failed.

4.2. Shoreline Evolution Module Results

The shoreline evolution technique was applied to the shorelines detected for the
large-scale test to calculate the shoreline change over the imaging period (August 2018–
September 2021). The model considered the first shoreline, 1 August 2018, as the reference
shoreline. Changes along the shoreline were averaged over the entire beach at each time
and the resulting timeseries is shown in Figure 11. The shoreline position is seen to change
in response to changing water levels and storms, with the general shoreline movement
mirroring the water level variation. This is generally consistent with a simple inundation
model where the change in the shoreline position ∆y can be calculated as ∆y = −tan(α) ∗∆s
with tan(α) = 1/20 corresponding to the average slope of the beach face and ∆s the change
in the water level. Using this concept, the shoreline retreats when water levels increase and
advances when water levels decrease.
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Figure 11. Average shoreline movement and water level timeseries for Jeorse Park Beach, IN. Water
levels in (b) are relative to the International Great Lakes Datum (IGLD). Gaps in the shoreline movement
timeseries (a) during winter months correspond to periods where the shoreline is covered in ice.

5. Discussion

The results show the ability of the proposed fully automated shoreline detection
method to accurately and reliably delineate shorelines using multispectral imagery. The
method was tested with success on several satellites, including Planetscope, Rapideye,
Sentinel 2, and Landsat 8. The accuracy of the technique was validated to subpixel accuracy
using direct shoreline surveys carried out with a novel, backpack-based LiDAR system.
The detection algorithm was also applied to 132 high-resolution multispectral images, and
comparisons of the detection shoreline with existing techniques showed that the technique
was more accurate than these techniques.

There are several key improvements associated with the new shoreline detection
algorithm that leads to improved accuracy and reliability. First, the method relies on a new
non-normalized index, the direct difference water index (DDWI = Green − NIR). Relative
to other existing water indices—both normalized and non-normalized—the DDWI index
heightens the contrast between land and water pixels. Perhaps most importantly, the
DDWI shows a clear, significantly narrower minimum in its probability density function
in comparison to other indices Figure 12. In contrast to the most commonly applied
water indices, the DDWI is not normalized, which precludes the a priori designation of a
land-water threshold value that can be applied to an entire set of images (this can be an
advantage of normalized indices). However, the narrow minimum value in the DDWI pdf
can readily be found for each image, resulting in a robust image-specific threshold that can
be used to classify land and water pixels.

Regarding the application of the more sophisticated Otsu and K-Means clustering
techniques to the DDWI images, it was found that the simple technique of selecting the
DDWI value corresponding to the minimum of its probability density function produced
more accurate shoreline detection. Thus, it was determined that the complexity of the
Otsu and K-Means clustering techniques was not warranted if the DDWI index is used.
Additionally, if the NDWI or NIR indices are used instead of the proposed DDWI, the simple
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procedure of determining the threshold value as the minimum of the probability density
function was found to be more reliable and accurate than the more complex Otsu and K-
Means techniques as well Figure 9. This is because these techniques can be greatly affected
by the outliers, which can shift the detected threshold away from a suitable value [26,27].
As such, the simple probability density function thresholding procedure may be applied as
an improvement to existing shoreline detection algorithms based on other indices, offering
a simpler alternative.
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The new shoreline detection algorithm, applied to newly available high temporal and
spatial resolution imagery, allows for unprecedented measurement of shoreline movement
in response to changing water levels and storms. The Jeorse Park Beach shoreline position
time series shown in Figure 11 is unique in terms of its fine temporal resolution and
spatial accuracy, capable of resolving shoreline changes resulting from both seasonal
water level fluctuations and individual storms. This dataset, and others derived from this
method in the future, will allow for improved shoreline position modeling by providing
important calibration and validation data at high temporal and spatial resolutions. The
fully automated nature of the detection algorithm makes it ideally suited for high numbers
of images with varying image intensities and conditions.

Beyond the Great Lakes, the shoreline detection technique shows promise for pro-
ducing similar high-frequency, high-accuracy shoreline position timeseries with newly
available multispectral imagery. Additional large-scale tests carried out on ocean shorelines
with a range of shoreline types (rocky, sandy, and artificial) using both high-resolution and
large-scale multispectral imagery (not shown) showed similar success in shoreline delin-
eation for calm conditions, with some errors for shorelines with strong wave-breaking in the
surf zone (whitecapping), a common difficulty for shoreline detection algorithms [15,23].
The model also fails with imagery with large amounts of cloud cover. Further tests are
needed to determine the suitability of the algorithm for other coastal environments where
the effects of wave-breaking, wave run-up, and different coastal geologies are present.

The use of a Backpack system in coastal applications has several advantages. As an
active sensor, LiDAR can scan poorly lit, hard-to-reach shoreline features such as caves
and sinkholes. On the other hand, satellite imagery cannot scan these features. While it
is possible to generate image-based 3D surface models, intricate subsurface features are
difficult to resolve through distant aerial/spaceborne imagery.
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• Using LiDAR, it is possible to delineate the actual shoreline (land–water intersection).
In areas where a clear distinction cannot be established, imagery can be used to verify
the ground condition.

• The point density of a Backpack-based LiDAR is very high compared to UAV-based
point clouds due to the proximity of the former to the surface. However, this comes at
the price of an increased data acquisition time in the case of the Backpack system.

• The use of a Backpack-based LiDAR system may not require extensive regulatory
approval, unlike vehicle-based or unmanned aerial platforms (as in Indiana dunes).
More specifically, the Backpack system can be used regardless of the nature/restrictions
of the airspace at the vicinity of shorelines.

• Unlike UAVs, Backpack-based LiDAR can be used in less favorable weather conditions.
Additionally, it does not have any requirements for a clear takeoff/landing site, as in
the case of UAV systems.

A backpack-based mapping system can thus be a valuable tool to assess coastal
conditions together with other established state-of-art technologies.

Additionally, a new technique to quantify shoreline movement, based on the buffer
overlay method, was developed and tested on the detected shorelines. When used with
digitized shorelines, the buffer-overlay method allows for the unambiguous quantification
of the shoreline evolution timeseries, without the need to manually define cross-shore
transects. The choice of the transects can be problematic especially with curved shorelines,
and the application of the new method for shoreline movement quantification may lead to
more consistency between shoreline movement studies.

6. Conclusions

In this paper, a new, fully automated model was developed to extract the shoreline
position from multispectral satellite images. The main advantage of the model is its
ability to automatically determine the needed threshold for different images using a novel
technique and a modified water index, the “direct difference water index” (DDWI = NIR −
Green). The model was applied to Planetscope, Rapideye, Sentinel 2, and Landsat 8 satellite
images. The accuracy of the shoreline model was directly validated using LiDAR data
collected with a novel backpack-based system that surveyed the Lake Michigan shoreline.
The model was able to detect the shoreline from the different satellite images with subpixel
accuracy. Additionally, the shoreline detection model was applied to 132 high-resolution
multispectral images and qualitatively compared with other shoreline detection algorithms.
The comparison showed that the model consistently and reliably detected the shoreline,
with a success rate exceeding 99%, which exceeded all other existing models. Moreover, the
shoreline detection model is supplemented with a transect-free shoreline evolution module
that is able to compare different shoreline positions and construct a shoreline change
timeseries. The Lake Michigan time series resulting from the new shoreline detection
method’s application provides an unprecedented satellite-based quantification of shoreline
movements on timescales that were previously unresolved by shoreline detection methods
for the Great Lakes.

It is hoped that the Lake Michigan dataset produced here, and other similar high-
resolution shoreline timeseries produced by the new shoreline detection method and its
improvements, will aid in the refinement of shoreline evolution models capable of resolving
storm-scale and seasonal-scale effects. Better shoreline evolution models, in turn, may help
coastal communities make informed decisions that improve coastal resilience.
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