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Abstract: Population growth, climate change, and the worldwide COVID-19 pandemic are imposing
increasing pressure on global agricultural production. The challenge of increasing crop yield while
ensuring sustainable development of environmentally friendly agriculture is a common issue through-
out the world. Autonomous systems, sensing technologies, and artificial intelligence offer great
opportunities to tackle this issue. In precision agriculture (PA), non-destructive and non-invasive
remote and proximal sensing methods have been widely used to observe crops in visible and invisible
spectra. Nowadays, the integration of high-performance imagery sensors (e.g., RGB, multispec-
tral, hyperspectral, thermal, and SAR) and unmanned mobile platforms (e.g., satellites, UAVs, and
terrestrial agricultural robots) are yielding a huge number of high-resolution farmland images, in
which rich crop information is compressed. However, this has been accompanied by challenges,
i.e., ways to swiftly and efficiently making full use of these images, and then, to perform fine crop
management based on information-supported decision making. In the past few years, deep learning
(DL) has shown great potential to reshape many industries because of its powerful capabilities of
feature learning from massive datasets, and the agriculture industry is no exception. More and more
agricultural scientists are paying attention to applications of deep learning in image-based farmland
observations, such as land mapping, crop classification, biotic/abiotic stress monitoring, and yield
prediction. To provide an update on these studies, we conducted a comprehensive investigation
with a special emphasis on deep learning in multiscale agricultural remote and proximal sensing.
Specifically, the applications of convolutional neural network-based supervised learning (CNN-SL),
transfer learning (TL), and few-shot learning (FSL) in crop sensing at land, field, canopy, and leaf
scales are the focus of this review. We hope that this work can act as a reference for the global
agricultural community regarding DL in PA and can inspire deeper and broader research to promote
the evolution of modern agriculture.

Keywords: precision agriculture; deep learning; convolutional neural networks; transfer learning;
few-shot learning; remote sensing; proximal sensing

1. Introduction

The Food and Agriculture Organization (FAO) of the United Nations has projected
that the world’s growing population will reach nine billion people and global food pro-
duction will need to almost double between 2005 and 2050 [1]. However, climate change is
contributing to an increasing frequency of extreme weather conditions that are disastrous
for worldwide agriculture [2,3]. Unfortunately, the arrival of the COVID-19 pandemic at
the end of 2019 has created more uncertainties and risks to global food security [4]. The use
of technical means to deal with these ever-increasing challenges has become an important
research direction in the agricultural community.
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Over the past few decades, significant achievements in sensing technologies, wire-
less communication, autonomous systems, and artificial intelligence have been made by
research efforts from all over the world [5,6]. This is good news for agriculture because
these technological developments are significant to the promotion of sustainable agricul-
tural development. Currently, agricultural scientists are dedicated to evolving traditional
agriculture into data-driven precision agriculture (PA), with the main goal being to apply
the right treatment in the right place at the right time while taking the spatiotemporal
variabilities of farmland into account [7]. Farmland information acquisition and processing
are two indispensable prerequisites for PA. In terms of farmland information acquisition,
high-performance sensors, such as RGB, multispectral, hyperspectral, thermal, and SAR
cameras have been used to observe physical and physiological changes in plants in both
visible and invisible light [8]. In recent years, the agriculture sector has witnessed a consid-
erable increase in civilian satellites, unmanned aerial vehicles (UAVs), and autonomous
field robots [9–11]. Aerial or terrestrial platforms in conjunction with high-performance
sensors are yielding tremendous amounts of farmland images with various temporal, spa-
tial, and spectral resolutions. More importantly, these images contain a lot of meaningful
information that is expected to help farmers to schedule sowing, track the growth status of
their crops, monitor pests and diseases, control weeds, and predict yield [12]. However,
rapid and accurate extraction of the most valuable information from large amounts of im-
agery data that have been collected under various conditions is becoming an increasingly
rigorous challenge that is being faced by agricultural scientists as well as rural farming
communities [13].

Along with the flourish of image processing, computer vision, and artificial intelli-
gence, there has been significant progress made toward learning-based feature extraction
strategies [14–16]. The most popular techniques used for analyzing images include machine
learning (ML) (K-means and support vector machine (SVM), artificial neural networks
(ANN), amongst others), linear polarizations, wavelet-based filtering, and regression analy-
sis. Moreover, deep learning (DL) [17], which is used to extract hierarchical features from
images, has unlocked fresh prospects for interpretating enormous amounts of data and has
percolated into data analytics in agriculture [18–20]. Within the context of PA, agricultural
scientists have shown great interests in transferring the successful advancements of DL
that have been made in non-agricultural applications to agricultural applications [21–23].
This is motivated by the intuitive judgment that a deeper understanding and consecutive
tracking of farmland information is conducive to more scientific decision making and
management. For instance, in plant stress monitoring, DL-enhanced image classification,
detection, segmentation, and tracking is essential to understand “what” and “where”
pathogen–insect–plant interactions are, “how” plant stresses occur, distribute, and develop,
and “when” human intervention is needed.

Several studies have been conducted that have surveyed DL applications in PA. One
of the most cited works is a review study conducted by Kamilaris, A. and Prenafeta-Boldú,
F.X. (2018) [18]. This review covered 40 research efforts that employed DL and discussed a
wide range of topics, including architectures, frameworks, algorithms, datasets, metrics,
applications, challenges, limitations, and perspectives. Although this work was relatively
broad, it demonstrated the required elements and outlined the baseline framework of
agricultural DL. Singh, A. and colleagues outlined some machine learning (ML) appli-
cations and their deep learning subtypes for image-based high-throughput plant stress
phenotyping [12,21,22]. They compared the advantages and disadvantages of ML and
DL in high-throughput stress phenotyping and introduced some concepts that simplified
transition to practice, such as transfer learning (TL) and active learning (AL). Additionally,
they also surveyed relevant works at multiple scales, such as leaf scale stress phenotyping,
plant canopy and small-plot stress phenotyping, and field scale foliar stress phenotyping.
Specifically focused on DL-based weed stress detection, Hasan, A. S. M. M. et al. performed
a comprehensive survey of 70 works related to automatic detection and classification
of weeds in crops and elaborated existing deep learning techniques from five aspects,
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namely data acquisition, dataset preparation, detection approaches, learning methods, and
DL architectures [24]. This work concluded that supervised learning based on labeled
datasets was commonly used and that relatively high accuracy was achieved with limited
experiment setup. Nowadays, data have become the primary prerequisite for various
DL applications in PA. In 2020, Lu, Y. and Yong, S. investigated publicly available image
datasets for computer vision tasks in PA [25]. A total of 34 image datasets were identified
and classified into three categories: 15 datasets for weed control, 10 datasets for fruit
detection, and 9 datasets for other applications. For each dataset, key information was
summarized such as number of images, image acquisition method, image type, image
size, image resolution, image processing method, and application purpose. However,
it is worth mentioning that the quantity, diversity, complexity, and quality of currently
available datasets are not sufficient to support the widespread promotion of deep learning
in agriculture. Agricultural scientists have proposed some other strategies, such as transfer
learning (TL) [26] and few-shot learning (FSL) [27], to reduce the dependence of deep
learning models on datasets. For example, TL has been successfully used for weed and
disease identification [28–30], and FSL has been shown to be helpful for plant disease
classification and recognition [31–33].

Over the past few years, deep learning has been widely deployed in various agricul-
tural applications for identification, classification, detection, quantification, and prediction.
Specifically, as shown in Figure 1, DL can be used for disease and pest identification and
quantification at the leaf scale; for plant-weed classification and identification at the canopy
scale; and for abiotic stress assessment, plant growth and nutrient status monitoring, and
yield prediction at the field scale; while at the land scale, DL can be implemented for
land cover mapping and crop discrimination. There is no doubt that previous studies
have made significant contributions to DL in PA by discussing relevant applications, key
achievements, potential challenges, and future perspectives. Nevertheless, none of the
studies have focused on DL applications in multiscale agricultural sensing throughout the
entire crop growth cycle.
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Motivated by the rapid development of precision agriculture and deep learning, in this
work, we have conducted a comprehensive review on the applications of DL for multiscale
agricultural remote/proximal sensing. The term “deep learning”, as it is used in this work,
is particularly limited to agricultural image processing techniques that are based on deep
neural networks, such as classification, recognition, and segmentation. The term “precision
agriculture” specifically refers to the acquisition, analysis, and decision making related to
the farmland where crops are cultivated. Plant stresses, such as weeds, diseases, and pests,
specifically target those stresses that can be detected by the electromagnetic spectrum. The
most significant contributions of this work are highlighted as follows:

(i). According to learning strategies, we broadly classified the DL frameworks that are
commonly used in PA into three categories, i.e., CNN-based supervised learning
(CNN-SL), transfer learning (TL), and few-shot learning (FSL).

(ii). We conducted a comprehensive review of typical studies on the application of CNN-
SL, TL, and FSL, at the leaf, canopy, field, and land scales of agricultural sensing.

(iii). We elaborated the limitations that impede the application of DL in PA, discussed the
current challenges, and we proposed our perspectives for future research.

In the most popular scientific databases, such as IEEE Xplore, ScienceDirect, Web of
Science, and Google Scholar, we used keywords such as “precision agriculture”, “deep
learning”, and “remote sensing” to acquire relevant journal articles and conference papers.
Then, these materials were carefully studied and classified to form this review. The remain-
der of the paper is organized as follows: in Sections 2–4, we focus on the use of CNN-SL,
TL, and FSL in PA, respectively, and specifically, in Section 2, CNN-SL-based deep learning
in PA at the leaf, canopy, field, and land scales is discussed in detail; in Section 5, we discuss
the challenges and opportunities for DL in PA; and finally, in Section 6, we summarize the
findings of the previous sections and deliver some final remarks.

2. CNN-Based Supervised Learning (CNN-SL) in PA

The state-of-the-art convolutional neural network-based supervised learning (CNN-
SL) is the most popular framework among deep learning models applied in precision
agriculture, as it can quickly and accurately extract the most effective characterization
information from various features (color, shape, texture, size, spectral, venation, etc.) at
different levels without human expertise [34,35]. One of the most significant features of
CNN-SL is that it relies on sufficient datasets with annotated labels. Intensive dataset
collection and manual labeling are common practices for DL-based applications in PA. With
contributions from the agricultural research community, many purpose-specific datasets
have been built and shared publicly. Meanwhile, some state-of-the-art CNN models have
been introduced in PA for farmland observation and management at multiple scales.

2.1. Leaf Scale: Disease and Pest Identification and Quantification

Early diagnosis and the instant control of plant diseases and pests is extremely impor-
tant for reducing yield loss. However, speedy identification of biotic stresses and accurate
quantification of threatening severity is a significant challenge, given their individual dif-
ferences and spatial-temporal diversity [36,37]. The use of CNN-SL for developing low
cost, general purpose, automatic, and accurate plant disease and pest classification and
quantification algorithms has been explored extensively in recent years [38–40].

PlantVillage [41], an openly accessible dataset released in 2015, has contributed to
many DL-based agricultural studies. It contains 54,309 images of leaves of healthy and
diseased plants. For each plant, a leaf was picked and then placed on a paper sheet that
offered a clear background. Subsequently, from four to seven images were collected at a
standard point by a digital camera (Sony DSC-Rx100/13, 20.2 megapixels, automatic mode)
under natural light. All the images were labeled by plant pathology experts. Aiming to
develop a smartphone-assisted plant disease diagnosis system, Mohanty, S.P. et al. (2016)
trained two well-known deep convolutional neural networks, AlexNet and GoogLeNet,
to identify 14 crop species and 26 diseases in PlantVillage; GoogLeNet achieved the top
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accuracy of 99.35%. However, when tested in two other validation datasets (IPM and Bing),
the overall accuracy reduced substantially, to just over 31%, which means the model’s
generalization ability was not as good as expected [42]. Ferentinos, K.P. (2018) trained
and assessed five basic CNN architectures to identify plant diseases by using an extended
version of PlantVillage, which contained 87,848 images captured in laboratory conditions
and also in cultivation fields [43]. Amongst the other CNN architectures, the VGGNet
achieved the highest success rate of 99.53% in the testing set. However, due to the limited
classes of plants and diseases in this dataset, it was still quite far from being a generic
approach that could be deployed in real conditions. Inspired by the above two works,
Lee, S.H. et al. (2020) compared the performance of different learning strategies based on
two pretraining tasks and three representative network architectures (VGG16, InceptionV3,
and GoogLeNet) and proved, once again, that the VGG16 model generalized better to
unseen data [44]. They discovered a new phenomenon, i.e., networks trained using the
crop–disease pair may not always focus on disease regions, but instead, focus on crop-
specific characteristics so that the generalization of the model may be limited. Therefore,
instead of using the crop–disease pair, they presented a more intuitive method that focused
on diseases independently, and indicated that it was more effective, particularly, when
distinguishing diseases from crops that were not included in the training set.

Picon, A. et al. (2019) created a new dataset for massive multicrop plant disease
classification [45,46]. This dataset comprised a total number of 121,955 images captured by
cell phone in real field conditions during consecutive growing seasons, and covered almost
equally distributed disease stages (initial stages, early stages, medium stages, and advanced
stages each account for a quarter) of 17 fungal diseases on 5 crops. The images were all
taken with an appropriate focus, in flash mode off configuration of the camera. After
being segmented by a fully convolutional DenseNet network, each image was cropped
to the region surrounding the main leaf. They also proposed a novel crop-conditional
classification method that seamlessly incorporated additional contextual metadata (such as
crop identification, weather conditions, and geographical location) onto a ResNet50-based
convolutional neural network. Comparative experiments demonstrated that this crop
conditional CNN architecture obtained richer and more robustly shared visual features and
yielded an average balance accuracy of 98%.

Although convolutional neural networks are usually used for object classification and
detection in 2D RGB images, their principles can also be extended to feature extraction
in 3D images that contain high-resolution spectral and spatial information in invisible
wavelengths [47,48]. To identify charcoal rot disease in soybean stems, Nagasubramanian,
K. et al. (2019) established a 3D dataset containing 111 hyperspectral images of size
500 × 1600 × 240 (height × length × spectral frequency) and deployed a supervised 3D
deep convolutional neural network to learn the spatial-temporal features [49]. Images of
healthy and infected soybean stems at 3, 6, 9, 12, and 15 days after infection were captured
by a Pika XC hyperspectral line imaging scanner set in a laboratory. Each image had a
2.5 nm spectral resolution in 240 wavebands over a spectral range of 400–1000 nm. Data
augmentation by extracting data patches was used to address the problem of insufficient
datasets. Ultimately, the training, validation, and test dataset consisted of 1090, 194, and
539 images (64 × 64 × 240), respectively. The results demonstrated that their model
achieved a classification accuracy of 95.73%. However, authors also made it clear that
enormous computing power was needed to interpret high dimensional 3D dataset.

Obviously, if a disease can be identified but the severity cannot be quantitatively
analyzed, then, the requirements of precision agriculture are far from being achieved.
Focused on the quantification of leaf spot disease severity in sugar beet, Ozguven, M.
M. et al. (2019) updated a Faster R-CNN model by changing the parameters of CNN
architecture and developed a new scale that was able to classify the disease severity as
healthy, mild, severe, or mild and severe mixed [50]. The authors claimed that this work
achieved an accuracy of 95.48% for disease detection and classification in 155 sugar beet
leaf images. To assess the disease severity of powdery mildew on cucumber leaves, a
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DL-based pixel-wise semantic segmentation model was implemented by Lin, K. et al.
(2019) [51]. It is worth pointing out that the study used only 50 images captured by the
laboratory phenotyping platform. Therefore, although the model achieved an average pixel
accuracy of 96.08%, its performance in real field remains to be verified. For the automatic
quantification of Northern Leaf Blight (NLB) disease in field maize, Garg, K. et al. (2021)
defined the Severity Index (SI) to represent the disease severity ratio and proposed an
end-to-end deep learning framework, called Cascaded MRCNN [52]. The dataset contained
7669 field maize images that had been taken, during the summer of 2017, by mounting a
camera on a DJI Matrice 600 UAV. The UAV was flown at a height of 6 m and a forward
speed of 1 m/s, and images were captured with nadir view every 2 s. The diseased regions
were manually labeled with the help of a VGG Image Annotator. The experimental results
on a field maize dataset with NLB disease showed a correlation between the predicted and
ground truth SI of 73%.

Additionally, CNN-SL represents a promising solution for crop pest detection. Many
researchers are committed to truly applying deep learning detection methods to actual
farmland environments. However, field pest detection and recognition has encountered
significant challenges considering the complexity of the farmland environment, leaf overlap
occlusion, tiny but diverse pest characteristics, etc. Li, Y. et al. (2020) put forward a DL-
based crop pest recognition framework that was able to categorize 10 common crop pests
in natural scenes [53]; they collected 5629 RGB images by downloading images from search
engines and performing field shooting. By applying offline data augmentation methods,
such as rotation, mirroring, noise addition, and zooming, the number of images in the
original dataset was increased to 14,475. In this study, the performances of five different
CNN models (VGG-16, VGG-19, ResNet50, ResNet152, and GoogLeNet) were investigated.
The test results indicated that GoogLeNet performed better than other models in terms
of accuracy, model complexity, and robustness. In Cheng, X. et al. (2017), a deep residual
learning agricultural pest identification approach that achieved a classification accuracy of
98.67% for 10 crop pest classes under a complex farmland background was proposed [54].
Towards the high-accuracy detection and recognition of multiple species of pest within the
field at a large scale, Wang, F. et al. (2020) introduced a task-specific in-field pest dataset
named In-Field Pest in Food Crop (IPEC) and a novel two-stage DL-based pest detection
approach called DeepPest [55]. They collected 17,192 pest images in IPEC, in 2017 and
2018, by Chinese research with a Sony CX-10 CCD camera whose parameters were set
to 4 mm focal length with an aperture of f/3.3. For the process of labeling data, first,
human experts were employed to label a few images for training a multiscale context-aware
information representation method, and then the trained model was used to automatically
label more pest images. DeepPest has two stages. The first stage takes multiscale contextual
information as prior knowledge and constructs a context-aware attention network for crop
classification. The second stage uses a multiprojection pest detection model to generate
the super-resolved feature. Experimental results on their own dataset have shown that
DeepPest outperformed state-of-the-art object detection methods in pest detection within
real field situations.

2.2. Canopy Scale: Plant and Weed Classification, Identification, and Positioning

The automatic and accurate awareness of specific species, growth status, distribution
density, and spatial location of field plants (including crops and weeds) are the precondi-
tions for agricultural robots to perform successive crop monitoring and specific manage-
ment [56–59]. CNN-SL can be used to classify and locate individuals within a single plant
species, and it can also be used to discriminate crops and weeds between species [60].

Dyrmann, M. et al. (2016) constructed a deep convolutional neural network to perform
a fine-grained separation of seedlings in their respective species [61]. A total of 10,413 im-
ages (128 × 128) containing 22 weed and crop species at early growth stages were collected
by laboratory camera and handheld mobile phones in fields to train the network. All
images were photographed vertically towards the ground. Data augmentation was also
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applied in this work. By rotating and mirroring the original training data, 50,864 training
samples were obtained. The test results indicated that the average classification accuracy
of this network was 86.2%. Although the accuracy and robustness of this network was
not outstanding from the current point of view, this work verified the feasibility of neural
network applications in the agricultural field and provided a reference for subsequent work.
Lottes, P. and his colleagues made significant contributions to the literature on the vision-
based classification of plants and weeds [62]. Recently, they also presented great interest in
applying deep learning in precision agriculture. For instance, in studies by Lottes, P. et al.
(2020 and 2018), a fully convolutional network (FCN) was proposed to estimate plant or
weed stem position and to perform pixel-wise crop-weed-soil semantic segmentation. In
this study, for data acquisition and deployment, a BoniRob agricultural robot with a four-
channel JAI AD-130 GE camera mounted under a shaded area and pointed downwards on
the field approximately 70–85 cm. All the images (1296 × 966) were collected in artificial
light setup inside the shaded area from different fields located in different cities in different
countries with a frequency of 1 Hz, while the robot was moving over the field with a speed
of approximately 0.3 m/s. Experiments proved that this approach could be effectively
generalized to unknown field scenes despite dynamic changes in environmental conditions.
Additionally, this work also increased stem detection accuracy and improved semantic
segmentation performance [63,64]. In an attempt to classify weed and crop species through
the use of convolutional neural networks, several specific network architectures have been
proposed. For example, Chavan, T. R. and Nandedkar, A. V. (2018) developed AgroAVNET,
a convolutional neural network derived from AlexNet and VGGNet, to identify different
plant species of crops and weeds [65]. A publicly available dataset that contained a total
of 407 images of 12 species of plants was used to evaluate the proposed method. The
authors claimed that AgroAVNET outperformed AlexNet and VGGNET both in terms
of average accuracy and in terms of training efficiency. Moreover, to improve weed and
crop recognition accuracy with small amounts of labeled data in challenging field environ-
ments, Jiang, H. et al. (2020) constructed a semisupervised graph convolutional network
(GCN) called GCN-ResNet-101 [66]. Four datasets, namely corn, lettuce, radish, and mixed
weed were used, of which corn and lettuce were established by the authors. A total of
6000 weed and corn images (800 × 600) in corn dataset were taken, in 2016, using a Canon
PowerShot SX600 HS camera vertically facing the ground in the natural field; 500 lettuce
seedling images and 300 weed images were acquired from a 30 cm height. This novel
approach outperformed conventional CNN models (AlexNet, VGG16, and ResNet-101)
by achieving 97.80%, 99.37%, 98.93%, and 96.51% recognition accuracies on four different
datasets, respectively.

Weeds are among the major factors that could harm crop yield [67]. Weed iden-
tification is one of the most promising domains where deep learning can significantly
outperform conventional manual inspection approaches and handcrafted feature-based
machining learning methods. From 2017 to 2018, Olsen, A. et al. built DeepWeeds, a
dataset consisting of 17,509 annotated images of eight weed species from the Australian
rangelands. To accelerate the image collection process, they developed a datalogger sys-
tem, named WeedLogger. At a working distance of 1 m, this optical system provided
a 4 px per mm resolution. Thereafter, a baseline for weed classification on the dataset
using two deep learning models (Inception-v3 and ResNet-50), which achieved average
classification accuracies of 95.1% and 95.7%, respectively, was also presented [68]. With
the DeepWeeds dataset, Hu, K. et al. (2020) proposed a novel graph-based deep learning
architecture, namely Graph Weeds Net (GWN), to classify multiple types of weeds from
RGB images. The weighted average precision of the proposed GWN was improved from
95.7% to 97.4% for ResNet-50 [69]. Another dataset was created by dos Santos Ferreira,
A. et al. (2017), i.e., the Grass-Broadleaf, which consisted of 400 images (4000 × 3000) of
soil, soybean, and weeds [70]. A UAV (DJI Phantom 3 Professional) companioned with
a Sony EXMOR 1/2.3”pointing in the nadir direction was deployed to capture images,
at an average altitude of 4 m above ground level, between eight and ten in the morning,
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at least once a week, during December 2015 and March 2016. Using the super pixel seg-
mentation algorithm SLIC, 15,336 images (3249 of soil, 7376 of soybean, 3520 of grass, and
1191 of broadleaf weeds) were segmented from the original dataset through the Pynovisão
software. Next, they compared the capability of convolutional neural networks to detect
weeds in soybean crops with three traditional classifiers. The test results demonstrated that
their work achieved accuracy above 98% in the detection of broadleaf and grass weeds.
The abovementioned architectures can be classified into supervised deep neural networks,
as they rely on time-consuming manual data labeling. In addition, dos Santos Ferreira,
A. et al. (2019) were interested in unsupervised deep learning applications for weed dis-
crimination [71]. With the above two datasets (Grass-Broadleaf and DeepWeeds), they
evaluated the performance of two unsupervised deep clustering algorithms and proposed
an approach where semi-automatic data labeling was used to generated annotations. As a
result, their method achieved 97% accuracy in grass and broadleaf discrimination, while
reducing the number of manual annotations by 100 times. However, semi-supervised
learning and unsupervised learning in agriculture are not covered in our review.

2.3. Field Scale: Abiotic Stress Assessment, Growth Monitoring, and Yield Prediction

Apart from crop/weed classification and disease/pest identification, CNN-based su-
pervised learning has also reshaped PA in other ways, such as crop abiotic stress assessment,
plant growth and nutrient deficit monitoring, and yield prediction.

The occurrence of several abiotic stresses (water, salinity, or heat) is lethal to crops [72].
Some symptoms of plant response under abiotic stress can be presented in images both in
visible and invisible wavebands. Consequently, the combination of remote/proximal sens-
ing technologies and deep learning can play an important role in detecting the occurrence
and in assessing the severity of abiotic stress [73]. For instance, Chandel, N. S. et al. (2020)
trained three different CNN-SL models, namely AlexNet, GoogLeNet, and Inception V3,
without modifications to classify the images between water stressed and unstressed [74].
The dataset used in this work was composed of 1200 RGB images (2500 × 2611) of each crop
(maize, okra, and soybean). All these images were captured at different stages of growth
during the seasons of 2018–2020 under natural illumination conditions at 12:00 using a
Canon SX170 IS digital camera (maximum resolution of 16 megapixel, 1/2.3-inch CCD
sensor, Canon DIGIC 4 image processor with 28 mm wide-angle lens having 1–1/3200 s
shutter speed, 1600 maximum ISO sensitivity, and f/3.5–f/5.9 aperture). The camera was
stabilized by a tripod at different distances, keeping the angle between the camera lens
and the crop axis at 45 ± 5◦. The authors claimed that GoogLeNet outperformed the other
two models with accuracies of 98.3, 97.5, and 94.1% for identifying stress or non-stress
on the three crops, respectively. Moreover, to obtain high-throughput plant salt-stress
phenotyping, Feng, X. et al. (2020) introduced deep learning and hyperspectral imaging
into okra salinity stress assessment [75]. The 3D hypercubes data (672 × n × 512) was
collected in a dark room by a linear hyperspectral scanner which was mounted 24 cm
above the okra canopy. Plant phenotypes of 13 okra genotypes after 2 and 7 days of salt
treatment were investigated from March to May 2018 over a period of 67 days. Specifically,
a deep learning model was used to segment both whole plant and individual leaves from
the background. This approach achieved an IoU of 0.94 for plant segmentation and a
symmetric best dice score of 85.4 for leaf segmentation.

Plant growth stages and nutrient status monitoring play an important role in the
management schedule and in yield prediction [76,77]. Currently, the most common means
still rely on expert visual inspection or laboratory-based chemical analysis, which is labor-
intensive and time-consuming, but also impractical within the field in large-scale conditions.
Machine learning-based image processing techniques offer a promising opportunity for
continuous monitoring of plant growth stages and nutrient status at the field level during
the whole life cycle of a crop [78]. For example, Rasti, S. et al. (2020) investigated the
performance of three different machine learning approaches (CNN model, VGG19-based
transfer learning, and SVM) for estimating wheat and barley growth stages with their
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customized dataset [79]. Over two consecutive years (2018 and 2019), the authors used
a cell phone and a DJI Osmo+ camera to record high-quality videos at a height of 2 m
in two postures, vertically downward looking at the field and at 45◦ declination from
the horizon; 138,000 images of 12 wheat growth stages and 11 barley growth stages were
extracted from video recordings with a minimum of 120 ms. The experimental results
showed that CNN-based models outperformed conventional SVM classifiers, and further,
VGG19-based transfer learning achieved the highest accuracy for two crops and reduced
training time as well. Since convolutional neural networks are expert in spatial feature
extraction, while long short-term memory networks are suitable for bridging temporal
dependencies between sequential features, Abdalla, A. et al. (2020) developed a hybrid
framework by concatenating a convolutional neural network with long short-term memory
(CNN-LSTM) for oilseed rape nutrient diagnosis [80]. In terms of their dataset, a tripod-
mounted Canon camera (PowerShot SX720 HS) was used to collect RGB images at 1.2 m
above the ground surface facing downward under sunny and partly cloudy conditions in
the morning hours (8:30–12:00) local time. During 2017/2018, 700 images were collected
at each of three growth stages, while during 2018/2019, 1500 images were collected at
each of four growth stages. Therefore, this dataset was comprised of 8100 sequential
infield images of the crops at different growth stages. As compared with high-dimensional
handcrafted features, the feature extraction performance of five well-known CNN-SL
models, VGG16, AlexNet, ResNet18, Inception3, and ResNet101 were investigated. All
these networks were pretrained on the ImageNet. Then the Pretrained CNNs were fine-
tuned on this dataset to learn features that are fed to the LSTM. This study suggested that
Inceptionv3-LSTM secured the highest overall classification accuracy of 95% when using
a cross-dataset validation and maintained a relatively great generalization capability to
differentiate the symptoms of different nutrient levels. This study provides a baseline to
launch vision-guided mobile platforms for real-time plant monitoring for improving crop
production. Additionally, DL-based remote sensing can provide strong support for the
accurate and continuous assessment of plant lodging. In a study by Zhang, D. et al. (2020),
a new method integrating transfer learning and the DeepLab3+ network was proposed
to estimate and further predict wheat lodging at different growth stages with RGB and
multispectral images [81].

Maximum crop yield at minimum cost with a healthy ecosystem is one of the main
goals of PA [82]. Deep learning, including CNN and RNN, is a powerful tool that can be
used to make a timely prediction of crop yield from RGB or spectral images [83,84]. Aiming
to develop a mobile device friendly automated system for cotton yield prediction, Tedesco-
Oliveira, D. et al. (2020) investigated the performance of three detection algorithms, namely
Faster R-CNN, SSD, and SSDLITE [85]. The comparative results showed that SSD achieved
the lowest mean percentage errors of 8.84%. Instead of comparing the performances of
various well-known deep learning models, Nevavuori, P. et al. (2019) built a CNN-based
model for wheat and barley yield prediction using RGB images and NDVI images and
focused on investigating the influence of network architectures and parameters on the
final prediction accuracy [86]. Multispectral data were collected by a UAV-borne (Airinov
Solo 3DR) multispectral camera (Parrot’s SEQUIOA) during the growing season of 2017.
The resolution of the UAV data was 0.3125 m. A Pix4DMapper was deployed to stitch all
geolocated images in individual spectral bands acquired on a single day to form complete
orthomosaic images of RGB and NDVI. The results indicated that the proposed CNN
architecture performed better with RGB data than the NDVI data, and with the optimal
configuration, this model could predict within-field yield with a mean absolute percentage
error of 8.8% based only on RGB images in the early growth stages. Additionally, Chu, Z.
et al. (2020) revealed their end-to-end model which fused two back-propagation neural
networks (BPNNs) and an independently recurrent neural network (IndRNN), called the
BBI model, to predict summer and winter rice yields with the fusion of deep spatial and
temporal features from the area and time series meteorology data [87]. The experimental
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results demonstrated that the BBI model converged quickly and achieved the best prediction
performance for both summer and winter rice yields.

2.4. Land Scale: Land Cover Mapping

With the advent of spaceborne remote sensing technologies, satellite imagery has been
widely used in agriculture. Thanks to public and private sector investments, the spatial
resolution, temporal frequency, and spectral availability of satellite imagery have increased
substantially [9]. However, fully understanding sense of these valuable images and turning
them into practice guidance for agricultural production is a challenging topic within the
agricultural community. Some researchers have shown great interest in introducing state-
of-the-art deep learning into satellite-based farmland mapping, crop classification, yield
prediction, and so on [88–90].

Papadomanolaki, M. et al. evaluated the performance of certain state-of-the-art deep
learning models and their ability to classify multispectral remote sensing data. As com-
pared with deep belief networks, the autoencoders and semi-supervised frameworks of
the AlexNet and VGG models delivered a classification accuracy of over 99% [91]. With
the rapid advances in network architectures, more deep layers and useful tricks have been
added to benchmark frameworks to eliminate the effects of overfitting and to promote
classification accuracy. Sagan, V. et al. conducted a study that directly utilized raw multi-
spectral and temporal satellite (WorldView-3 and PlanetScope) imagery for soybean and
corn yield prediction [92]. In this work, satellite-borne and UAV-borne remote sensing
imagery was collected in 2017. Specifically, 4 sets of cloud-free WorldView-3 imagery and
25 sets of cloud-free PlanetScope imagery were downloaded. Additionally, a lightweight
UAV (DJI Mavic Pro) with a flight height of 30 m and front/side overlap of 85%, was
deployed to collect visual imagery. High-resolution UAV imagery can also be used to
accurately geolocate each harvest plot on satellite imagery. An end-to-end deep learning
approach using 2D and 3D ResNet architectures was proposed. This study proved that
the direct imagery-based deep learning model yielded competitive results, and both 2D
and 3D ResNet models were capable of explaining nearly 90% of the variance observed in
field-scale yield. Meng, S. Y. et al. pointed out that the acquisition of multitemporal satellite
imagery was difficult and was even impossible in some specific regions during cloudy
seasons. Therefore, they paid special attention to DL-based large-area crop mapping using
one-shot hyperspectral spaceborne imagery. The hyperspectral imagery data employed in
this study were collected by the OHS-2A satellite, which covers 150 × 150 km with a spatial
resolution of 10 m and contains 256 bands with a spectral resolution of 2.5 nm, ranging
from 400 to 1000 nm. The training and test samples, in areas of interest (AOI) 1, num-
bered 1635 and 1306 pixels, respectively. The AOI 2 training and test samples numbered
9889 and 10,269 pixels, respectively. Three types of CNN models, 1D CNN, 2D CNN, and
3D CNN were introduced to extract the spatial distribution features. As a result, the 3D
CNN model achieved the best performance in terms of classification accuracy. Additionally,
as compared with the mono-temporal or multitemporal MSI-based crop mapping, the
classification accuracy when using hyperspectral satellite images was found to be higher
than 94% [93].

It is worth mentioning that the quality of the images obtained from spectral cameras,
including RGB, multispectral, and hyperspectral cameras, are sensitive to weather condi-
tions. Synthetic aperture radar (SAR) imagery has become an essential complementary
technique for agricultural remote sensing, given its unique characteristics, such as all-time
and all-weather sensing [94,95]. However, the backscatter noise of the radar makes the
interpretation of SAR imagery quite difficult. To deal with this problem, some DL-based
frameworks have been proposed for object detection in SAR images [96,97]. For exam-
ple, Zhang, T. W. et al. introduced a deep learning framework called Deep SAR-Net to
determine the surfaces and objects with an average overall accuracy of 92.94 ±1.05 [97]. To
further improve upon the representation ability of DL models, the concept of multi-sensor
information fusion is introduced into deep learning. [98]. Specifically, the fusion of SAR
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and optical imagery can contribute to better spatial and spectral information extraction [99].
For instance, Adrian, J. et al. investigated deep learning and machine learning-based crop
type mapping by fusing multitemporal Sentinel-1 SAR and Sentinel-2 optical data [100].
Eight SAR (136 × 312 × 10) images and eight (136 × 312 × 10) optical images were used
to generate eight SAR/optical fused images. To improve the training performance, each
fused image was broken into 100 pixel patches (40 × 40 × 10). The mapping accuracies
of 2D U-Net, 3D U-Net, SegNet, and Random Forest were evaluated by this dataset. The
test results demonstrated that the fusion of multitemporal SAR and optical data yielded
higher crop type mapping accuracy as compared with standalone multitemporal SAR or
optical data, and 3D outperformed other methods as the corresponding accuracy reached
0.941. Due to the specific characteristics of optical and SAR sensors, it is challenging to
model the relationship between the SAR and optical data. To solve this problem, Zhao, W.
Z. et al. extended the conventional CNN-RNN to build a Multi CNN Sequence to Sequence
(MCNN-Seq) model [101]. In this study, 31 Sentinel-1 SAR images and 73 Sentinel-2 optical
images were collected from 5 January 2018 to 27 December 2018 and from 1 January 2018
to 27 December 2018, respectively. Trained by these data, the MCNN-Seq model could be
used to predict optical time series using SAR data when the optical data was missing.

Given the coarse resolution and revisit period of satellite imagery, multitemporal,
large-volume, and high-quality datasets are difficult to obtain, which impedes the ap-
plication of deep learning in satellite-borne remote sensing. Consequently, DL-based
satellite-borne remote sensing is mainly used for macroscopic observations at the field
scale, such as land cover mapping, crop-background discrimination, and crop type clas-
sification [102,103]. This information is useful for large-scale yield prediction and nature
disaster assessment; however, when it comes to small-scale detailed observations on crop
growth, it is usually insufficient.

3. Transfer Learning (TL) in PA

The most significant limitation for the application of deep learning in precision agri-
culture is the lack of datasets [30]. Despite the fact that few public datasets consisting
of specific plants have been created by agricultural communities, when the variability of
environmental conditions and the biodiversity of agricultural ecosystems are taken into
consideration, there are far from enough to relieve the data dependency of the supervised
learning algorithms [25,37]. Transfer learning (TL) in the context of machine learning is
a technique that aims to transfer the knowledge gained from source tasks, where large
amounts of labeled datasets are available, to a new or similar target task in which training
data are scarce [26]. TL can provide a better, cheaper, and faster solution to the issue of
limited training data availability, especially, when the source and target domains have great
similarities [22].

Based on our knowledge, we can broadly categorize TL into the following four strate-
gies: (1) the pretrained architecture and parameters can be directly transferred into new
tasks without additional retraining, (2) later layers of the neural network can be fine-tuned
with an unseen dataset while freezing the other layers, (3) the entire model is fine-tuned
with a new dataset when it is abundant enough, (4) the architecture and weights of pre-
trained models can be fine-tuned simultaneously. Two factors that specifically influence
the transferability and suitability of the TL approach are the capacity of the dataset in
the target domain and the similarity between the source and target tasks [21]. Generally,
the more similar the new task is to the original task and the larger the new dataset, the
higher the training speed and detection accuracy of transfer learning are. In PA, TL with
pretrained backbones has been applied in plant identification, weed segmentation, dis-
ease detection, etc. In order to alleviate dependence on manpower, time, and expertise in
deep neural network-based plant species identification, Kaya, A. et al. (2019) analyzed
the effect of four different TL strategies (instance-transfer, feature-representation-transfer,
parameter-transfer, and relational-knowledge-transfer) for plant species classification with
four public datasets (Flavia, Swedish Leaf datasets, UCI Leaf dataset, and PlantVillage
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dataset) [104]. This work proved that TL could provide important benefits for automated
plant identification. In addition, TL was successfully utilized to locate plant centers with
limited ground truth data by Cai, E. et al. (2020). They also concluded that TL was not
effective if the distribution of the source domain was significantly divergent from the
target domain [105]. Many well-known pretrained models, such as AlexNet, VGGNet,
and GoogLeNet, can be incorporated into TL as backbones. Aimed at weed identification
through transfer learning, Espejo-Garcia, B. et al. (2020) fine-tuned some state-of-the-art
deep neural networks (Xception, Inception-Resnet, VGGNets, MobileNet, and DenseNet)
and replaced the end fully connected network with other machine learning classifiers (logis-
tic regression, support vector machines, and gradient boosting). A dataset that contained
504 RGB images of crops and weeds was established by taking images, weekly in May
and June 2019 from 8:00 to 10:00, with a Nikon D700 camera at an approximate height
of 1 m, at three different farms. Moreover, during all the image acquisition sessions, the
illumination conditions were characterized as clear. The evaluation experiments revealed
that the combination of fine-tuned DenseNet and SVM obtained a promising performance,
with an F1 score of 99.29%, which proved their hypothesis that a specific combination
of fine-tuning and classifier replacement may outperform fine-tuning only [28,106]. To
determine if it was possible to transfer the knowledge of a network trained on a given
crop to another crop type, and then to reduce the retraining time and efforts, Bosilj, P. et al.
(2020) investigated the pixel-wise classification performance of an encoder-decoder CNN
model that had been trained on three different datasets by means of TL. Three datasets, i.e.,
Sugar Beets 2016, Carrots 2017, and Onions 2017, were used. Specifically, Sugar Beet 2016
contained 283 images (1296 × 966) collected by the BoniRob agricultural robot with a JAI
130-GE camera in R, G, B, and NIR bands under controlled lighting conditions. Carrots
2017 covered 20 RGB and NIR images (2464 × 2056) captured by two Teledyne DALSA
Genie Nano cameras at a spatial resolution of 2.5 px/mm. Onions 2017 included 20 images
with the same acquisition setup as Carrots 2017. This study found that transfer learning
between crop types was not only helpful for the semantic segmentation of crops versus
weeds, but also had the potential to reduce the training time up to 80% [107]. Concentrated
on the semantic segmentation of oilseed rape in a field with high weed pressure, Abdalla,
A. et al. (2019) evaluated three different TL methods using a VGG16-based encoder model
and compared the differences in their performances with the deeper version of the VGG19
network. A tripod stabilized near-surface portable digital camera with focal length of 4 mm,
ISO speed of 90, sensor size of 6.18 × 4.65 mm, aperture of 3.43 mm, and angle of view
of 53.3◦, was employed to capture images at a height of 1.2 m from the ground. A total
of 400 RGB images (3888 × 5184) of oilseed rape crops along with their corresponding
pixel-level annotations labeled by MATLAB 2018a Toolbox imageLabeler were used in
this study, and random left/right reflection and random X/Y translation of −/+10 pixels
were used as data augmentation techniques. The highest accuracy of 96% was achieved
by the VGG16-based encoder, in which the fine-tuned model was only used for feature
extraction and where the segmentation was performed using shallow machine learning
classifiers [108]. In a similar work, Suh, H. K. et al. (2018) evaluated three different TL
procedures for the classification of sugar beet and volunteer potato and assessed their
performances amongst six CNN-based network architectures [109]. Apart from crop-weed
classification, TL has also been used for crop disease detection. For instance, Chen, J. et al.
(2020) proposed a novel convolutional neural network called INC-VGGN, which was de-
veloped by combining the VGGNet architecture with Inception modules and deployed the
transfer learning strategy during the training process; 500 diseased rice and 466 diseased
maize images captured under natural illumination intensities and clutter field background
conditions were used in this study. All these images were adjusted to 224 × 224 pixels for
training the deep leaning model. The results demonstrated that the proposed model was
able to achieve an average accuracy of 92.00% for the classification of rice disease [29].
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4. Few-Shot Learning (FSL) in PA

Although TL algorithms can reduce the dependence on datasets, large datasets with
reliable annotations are still required. Instead of blindly expanding the capacity of a dataset,
a novel deep learning method, namely one-shot or few-shot learning [27,110], has been
proposed by mimicking human-level concept learning [111]. The most significant feature
of FSL is “learning-to-learn” which means only a few labeled examples are needed to learn
new concepts [112]. Over the past few years, many FSL-based models and algorithms have
been extended to PA and have achieved great success.

Based on Siamese networks [113], Argüeso, D. et al. (2020) designed a few-shot
learning (FSL) approach for plant disease classification in which three training architectures
(a baseline fine-tunning Inception V3 network, a Siamese network with two subnets and
contrastive loss, and a Siamese network with three subnets and triplet loss) with transfer
learning were used [31]. One of the most significant results of this work was that when
using the Siamese network with triplet loss and as few as 80 images per class, the accuracy
was 90.0%, whereas when all 4421 training samples (six classes) from the target source
were used by the baseline fine-tunning network, the accuracy was 94.0%. This means
that FSL could reduce the training dataset size by 89.1% while only incurring a 4% loss in
accuracy. This study preliminarily verified the feasibility of developing plant species and
disease classification algorithms using very few labeled training data. In order to improve
the deficiency in existing crop pest datasets, Li, Y. et al. (2020) introduced a few-shot
learning method for the recognition of cotton pests [114]. The basic framework of the
prototypical network was trained with triplet loss to extract embeddings. Two datasets
were engaged in evaluating the effectiveness and feasibility of the few-shot model. The first
dataset that contained 50 classes (10 samples for each class) of cotton pests was collected
from the National Bureau of Agricultural Insect Resources (NBAIR). The other was a
dataset with the natural scenes. The Euclidean distance was used in the following few-shot
recognition workflow. In addition to accuracy performance, this work also concentrated
on the flexibility and utility of the proposed approach, which were more important for the
deployment of an embedded system. The testing accuracy exceeding 95% and a running
speed that reached two frames per second on the embedded terminal made it more practical
for use in a DL-based cotton pests recognition model in agricultural applications.

Another approach to improve the performance of FSL is the augmentation of the
dataset by generating pseudo samples. In a study by Zhong, F. et al. (2020), a generative
model using conditional adversarial autoencoders (CAAE) for the zero- and few-shot
recognition of Citrus aurantium L. diseases was introduced. The authors built a dataset
enveloping 1160 images of 9 types of Citrus aurantium L. diseases to evaluate the perfor-
mance of proposed model. CAAE was used to enhance the dataset by generating synthetic
samples. Extensive experiments indicated that this model performed well in recognizing
Citrus aurantium L. diseases with only a few or even zero training samples [32]. Hu, G.
et al. (2019) presented a low-shot learning method for the identification of tea leaf diseases.
In this study, a conditional deep convolutional generative adversarial network (C-DCGAN)
was employed to augment training samples, and the SVM classifier was used to segment
disease spots from raw images. Thereafter, a deep learning network, VGG16, was trained by
the augmented dataset. As a result, an average identification accuracy of 90% was achieved
by combining traditional machine learning methods and deep learning methods [115].

As compared with RGB images, multispectral and hyperspectral images contain more
subtle spectral-spatial agricultural information. However, the collection and annotation of
abundant high-dimensional spectral images are still a bottleneck for supervised learning.
To address this challenge, Liu, B., Gao, K., and their colleagues transferred deep few-shot
learning (DFSL) technology into hyperspectral image classification where annotations have
been scarce. For example, in 2019, they proposed a DFSL model to tackle the problem
of small sample size [116]. In this work, a deep residual 3D CNN (D-Res-3-D CNN) was
used to parameterize the metric space (Euclidean distance), and then to extract the spectral-
spatial features. Later, in 2020, they added a relation network [117] and meta-learning [118]
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in DFSL to improve the model’s generalization ability and classification accuracy [119].
Although their study was not specific to the agricultural domain, it demonstrated the
effectiveness of DFSL in hyperspectral image classification.

5. Discussion

Climate change, population growth, population aging, and the COVID-19 pandemic
have posed significant threats to global agricultural development and food security [1,2,4].
Agricultural communities are committed to boosting food production and mitigating the
risk of the global food crisis by introducing cutting-edge technologies, such as genomes,
robots, and artificial intelligence into precision agriculture. Specifically, sensing technolo-
gies and autonomous systems are accelerating the digitalization of modern agriculture [5,6].
In this process, digital images with various modalities are becoming the most common
type of data. Agricultural informatization can help farmers to observe farmland more
comprehensively, and then carry out specific management. With the prevalence of satellite-
borne remote sensing, aerial remote/proximal sensing, and field-robot-borne proximal
sensing in agriculture, the volume of collected images has exploded. A critical issue is a
method to quickly extract the most valuable details from these images. Traditionally, expert
knowledge and profound experience are required to decode this information. However, it
is time-consuming and labor-intensive and is usually prone to subjectivity. Over the past
few years, we have witnessed significant advancements in deep learning, which has shown
powerful capabilities of processing large amounts of images [17]. In precision agriculture,
deep learning is playing an increasing role in addressing practical problems, such as crop
identification, crop-weed classification, and stress monitoring [17,20,21,24]. In this section,
we try to discuss the current situations, challenges, and suggestions regarding DL in PA
from the following three aspects: datasets, deep learning algorithms and neural networks,
and computational capacity.

5.1. Datasets

High-volume and high-quality agricultural datasets are the prerequisite for the deploy-
ment of DL in PA. Recently, Lu, Y. and Young, S. carried out a survey that discussed publicly
available datasets for agricultural computer vision tasks [25]. This work covered a total of
34 datasets, in which 15 were for weed control, 10 were for fruit detection, and 9 were for
miscellaneous applications. Each dataset was tailored for a specific task, and there were
differences in the number of images, image types, image formats, and image sizes of differ-
ent datasets. Some of these datasets were specially constructed for DL-based agricultural
analytics. In our review, we briefly introduced the details of collection methods for datasets
used in some representative studies. Among these datasets, some were collected under
laboratory conditions [41,49,51,65], some were captured in the field [45,52,63,66,70,79], and
others were established by combining these two methods [43,50,53]. Figure 2 shows some
publicly available datasets for agriculture sensing at the leaf or canopy scale. CWFI, a
benchmark dataset that consisted of 60 images (1296 × 966) of crops and weeds with anno-
tations was proposed by Haug, S. and Ostemann, J. [120], These images were collected with
an autonomous field robot in a carrot farmland. Although relatively small, it did stimulate
subsequent research on crop/weed discrimination based on computer vision technology.
PlantVillage, a popular dataset with 54,309 images (256 × 256) of healthy and diseased
plants, was released in 2015 [41]. These images involved 14 crop species, 17 fungal diseases,
4 bacterial diseases, 2 mold diseases, 2 viral diseases, and 1 mite-induced disease. It is worth
mentioning that an important limitation of this dataset was that the background was not
an actual farmland scene but instead, was an ideal laboratory environment. Nevertheless,
it has been widely used as a benchmark in DL-based disease diagnostics. Carrot Weed
is a high-resolution (3264 × 2488) dataset for weed detection [121]. The dataset consists
of 39 RGB images that were captured by cell phones from approximate heights of 1 m
under natural variable light conditions. Pixel-level annotations for the crop, weed, and
soil background are available. Wiesner-Hanks, T. et al. constructed an image dataset for
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phenotyping Northern Leaf Blight (NLB) in maize fields [122]. It comprised 18,222 maize
plant images with more than 100,000 NLB lesions. With the help of this dataset, the authors
realized millimeter-level plant disease detection through deep learning [123]. DeepWeeds,
a multiclass weed species image dataset for deep learning-based classification and agricul-
tural robotic-based weed control, was proposed by Olsen et al. [68]. This publicly available
dataset covers 17,509 in situ RGB images (256 × 256) of 8 weed species that are native to
Australia. Recently, Liu et al. published the large-scale benchmark plant disease dataset
271 (PDD271) with 220,592 plant leaf images belonging to 271 plant disease categories for
plant disease recognition [124]. The whole data construction process took about 2 years.
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(a) CWFI (60 images) [120]. (b) PlantVillage (54,309 images) [39]. (c) Carrot-Weed (39 images) [121].
(d) MaizeDisease (18,222 images) [122]. (e) DeepWeeds (17,509 images) [68]. (f) PDD 217 (220,592 im-
ages) [124].

In addition to these close-range datasets, some large-area datasets of orthophotos
have also appeared. For example, as shown in Figure 3, Chiu, M. T. et al. proposed
Agriculture-Vision, a large aerial image database for agricultural pattern analysis [125];
94,986 high-quality images with 4 channels (NIR, R, G, and B) captured from 3432 farmland
samples were generated by cropping annotations with a window size of 512 × 512 pixels.
This dataset was used for a pilot study of aerial agricultural semantic segmentation. Su,
J. et al. proposed a multispectral (B, R, G, RedEdge, and NIR) and RGB dataset (1600) by
slicing image tiles [256,256] from UAV-based orthomosaic imagery [126].
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Based on the above analysis, we found some issues to be aware of:

(i). Most datasets are built for specific tasks and are not general.
(ii). The volume of the dataset is generally small, and only a small part can reach the

volume of tens of thousands of images.
(iii). The background of the images is usually simple, especially for datasets collected in a

laboratory setting. This leads to insufficient generalization ability of deep learning in
unstructured and complex farmland environments.

(iv). Each dataset differs from the others in terms of camera configurations, employed
platforms, collection periods, ground sampling resolutions, imagery types, and so on.
This results in insufficient adaptability of the dataset across different tasks.

(v). In some datasets, images from different classes are imbalanced, which can lead to
biased accuracy.

(vi). Most datasets have varying degrees of temporal and spatial limitations, which means
that images in datasets only contain information about short-term local regions.

(vii). Vertically downward is the most common method, which lacks the representation of
multiple angles of the same target.

(viii).Handheld cameras, terrestrial agricultural robots, and UAVs are the most common
platforms for collecting farm imagery, however, their combination is rarely used.

Generally, the larger the volume of the dataset, the higher the quality, the less likely it is
for overfitting to occur during deep learning network training, and the higher the accuracy.
However, considering the complexity of farmland environments, the heterogeneity of crops,
diseases, pests, and weeds, as well as the diversity of information collection equipment,
these datasets are far from what is actually needed, both in quantity and quality. Nowadays,
the collection, preprocessing, and annotation of a high-quality dataset requires extensive
labor, as well as financial and time inputs which makes it difficult or even impossible
to construct a general dataset that is robust for multiple similar agricultural tasks rather
than a single one. To deal with this issue, we provide some suggestions for agricultural
dataset acquisition:

(i). Collection methods. In order to ensure the generalization ability and robustness of
deep learning algorithms in unstructured and complex farmland environments, if
possible, images should be collected in real farmlands, rather than in controllable
laboratory environments. Before image acquisition, there should be detailed plans
for the observation object, acquisition location, acquisition period, acquisition time,
acquisition equipment, camera parameters, etc., and efforts should be made to keep
these consistent throughout the entire dataset construction process. Complex back-
grounds, natural lighting, observation angles, perspective conditions, etc. should also
be taken into consideration, and these should be as close to the real application sce-
nario as possible. Combining high-performance cameras with mobile platforms such
as handheld devices, field robots, and UAVs to collect high-quality images at multiple
spatial and time scales is necessary for the construction of future agricultural datasets.
For example, multiple acquisition platforms can be used to collect information on the
same observation object at multiple spatial scales and perspectives at the same time.
In addition, soil, climate, and environmental information should also be accurately
recorded during image acquisition, as this information has the potential to further
improve model performance.

(ii). Raw data processing. The selection, classification, preprocessing, and labeling of raw
images should be done under the guidance of experienced agricultural scientists or
farmers. It is worth noting that the data balance between different categories should
be given special attention when constructing a dataset. Some data augmentation
methods can be used to further increase the size of a dataset. For example, a dataset
can be augmented by filtering images from existing public datasets that are similar
to the target task. Some conventional data augmentation methods such as rotation,
mirroring, scaling, and adding noise, are also effective for augmenting datasets. In
addition, pseudo samples generated by artificial intelligence methods are also effective
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in situations where it is difficult to construct large-scale datasets. Usually, limited by
the neural network model and computing resources, the original image needs to be
cropped or scaled to a specific size before it can be used as the input of the network.
During this process, the integrity of the image details should be maintained as much
as possible.

(iii). Temporal resolution. Throughout an entire crop growth cycle, the farmland environ-
ment changes significantly, and the information of the same growth stage in different
planting seasons is not consistent. Therefore, the temporal resolution of the dataset
also needs attention. Some datasets have taken the changes of physical morphology
and physiological properties of crops and weeds during various growth stages into
account. Meanwhile, the acquisition period of some datasets spanned a few consecu-
tive seasons. Further refining the temporal resolution of the dataset acquisition period
is very important to improve the robustness of the deep learning model algorithm.

(iv). Spatial and spectral resolution. Image diversity plays a critical role in increasing
spatial and spectral resolutions of the dataset. RGB cameras, the most common
sensors, can yield high spatial resolution images with visible spectrum bands. RGB
images contain rich features of color, texture, and profile that are essential for DL-
based classification, detection, segmentation, and tracking. However, the quality of
RGB images is very sensitive to light and can only present information in the visible
spectrum. Recently, multispectral and thermal imagery has been playing an increasing
role in agricultural sensing, since the information underlying in invisible spectrum
significantly helps with the detection of early crop deficits. Satellite-borne SAR and
optical images have also been broadly used for large-scale farmland mapping. RGB,
spectral, thermal, and SAR cameras provide rich images at various spatial and spectral
resolutions. We suggest that future datasets should be constructed with a combination
of multiple types of cameras to compensate for the resolution limitations of a single
type of sensor.

(v). Sharing and maintenance. We found that datasets built by different teams for the same
target task vary widely. In order to improve the generality and utilization efficiency
of datasets, cross-regional multilateral cooperation among different research teams
is needed. For example, the species of rice, weeds, and diseases vary in different
countries and regions. If the collection and sharing methods of datasets can achieve
some kind of consensus and cooperation among multiple research teams, the volume
and quality of the corresponding datasets will be greatly improved. In addition,
the maintenance and supplementation of datasets is also related to the long-term
sustainability of scientific research. Although some researchers publicly shared their
datasets at the time of paper publication, parts of the datasets had either been lost over
time or become obsolete due to poor maintenance, which hindered further research.

5.2. Deep Learning Algorithms and Neural Networks

Another factor that limits the accuracy and speed of agricultural information interpre-
tation is the DL algorithm and network architecture. Following the timeline, Table 1 lists
some representative studies that are related to DL applications throughout the whole crop
growth cycle, such as land mapping, biotic/abiotic stress identification, classification and
quantification, and yield prediction. The applications of DL in PA have developed rapidly
since 2016. Among the many published scientific papers, a variety of state-of-the-art DL
frameworks and algorithms, such as AlexNet, VGG, SegNet, ResNet, Inception, U-Net,
and Mask RCNN, have been proposed for agricultural image classification, detection,
and segmentation.
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Table 1. Examples of DL applications in PA following the timeline.

Categories Scale Application Dataset Network Architecture Performance Year Refs

CNN-SL Leaf Disease detection PlantVillage AlexNet, GoogLeNet CA, 99.35% 2016 [42]

CNN-SL Canopy Plant species classification 22 Weed and crop species Customized CA, 33–98% 2016 [61]

CNN-SL Canopy Weed detection Grass-Broadleaf AlexNet CA, 98% 2017 [70]

CNN-SL Leaf Disease detection PlantVillage AlexNet, AlexNetOWTBn,
GoogLeNet, Overfeat, VGG SR, 99.53% 2018 [43]

CNN-SL Canopy Joint stem detection and
crop/weed classification Sugar beet and dicot weeds FCN architecture

Stem-seg-S
mAP, 85.4% (stem detection)

69.7% (segmentation)
2018
2020 [63,64]

CNN-SL Canopy Crop/weed classification Plant seedlings dataset
(3 crops and 9 weeds) AgroAVNET CA, 98.23% 2018 [65]

TL Canopy Crop/weed classification Sugar beet
and volunteer potato

AlexNet, VGG-19, GoogLeNet,
ResNet-50, ResNet-101,

Inception-v3.
Highest CA, 96% (VGG-19) 2018 [109]

CNN-SL Leaf Disease classification 17 Diseases on 5 crops ResNet50 variants BA, 98% 2019 [45]

CNN-SL Leaf Disease identification Charcoal rot disease 3D DCNN CA, 95.73% 2019 [49]

CNN-SL Leaf Disease severity detection Sugar beet leaf images Updated Faster R-CNN CA, 95.48% 2019 [50]

CNN-SL Canopy Weed specie classification DeepWeeds Inception-v3 and ResNet-50 Highest CA, 95.7% 2019 [68]

CNN-SL Field Wheat and barley yield
prediction RGB and NDVI images Customized Lowest MAPE, 8.8 2019 [86]

TL Leaf Plant
classification

Flavia, Swedish Leaf, UCI
Leaf, PlantVillage AlexNet/VGG-16 with LSTM Highest CA, 99.11%

(Swedish Leaf) 2019 [104]

TL Canopy Crop/weed semantic
segmentation Oilseed rape images VGG-based encoder Highest CA, 96% 2019 [108]

FSL Leaf Disease identification Tea leaf’s disease images C-DCGAN-VGG16 Average identification
accuracy, 90% 2019 [116]

CNN-SL Leaf Pest recognition 10 Common species of
crop pest

VGG-16, VGG-19, ResNet50,
ResNet152, GoogLeNet CA, 96.67% 2020 [53]

CNN-SL Leaf Pest detection and
recognition

In-field Pest in Food
Crop (IPFC) DeepPest mAP, 74.3% 2020 [55]
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Table 1. Cont.

Categories Scale Application Dataset Network Architecture Performance Year Refs

CNN-SL Canopy Weed and crop recognition Four different weed datasets GCN-ResNet-101 Highest CA, 99.37% 2020 [66]

CNN-SL Canopy Weed recognition DeepWeeds Graph Weeds Net (GWN) Top-1 accuracy: 98.1% 2020 [69]

CNN-SL Field Water stress identification Maize, okra, and
soybean (1200)

AlexNet, GoogLeNet,
Inception V3

CA (GoogLeNet), 98.30,
97.50, 94.16% 2020 [74]

CNN-SL Field Salt-stress phenotyping Okra hyperspectral images Encoder-Decoder
IoU, 0.94 (plant
segmentation)

BD, 85.4 (leaf segmentation)
2020 [75]

CNN-SL Field Growth stage estimation Wheat and barley images 5-layer ConvNet, VGG19
Accuracy, 91.1–94.2%

(ConvNet),
99.7–100% (VGG19)

2020 [79]

CNN-SL Field Nutrient Status Diagnosis Oilseed rape RGB images CNN-LSTM Highest CA, 95%
(Inceptionv3-LSTM) 2020 [80]

CNN-SL Field Wheat lodging extraction RGB, multispectral images TL and Deeplab v3+

Highest DC, 0.90 (early
maturity with RGB) and 0.93

(early maturity with
multispectral)

2020 [81]

CNN-SL Field Cotton yield predication RGB images Faster R-CNN, SSD, SSDLITE Mean errors of 17.86% 2020 [85]

CNN-SL Land Crop monitoring Satellite SAR and
optical images MCNN-Seq Highest R2, 0.9824 2020 [101]

TL Canopy Plant Center Localization Maize orthomosaic images ResNet encoder modified U-Net Precision, 84.3%; Recall,
98.8%; F1 Score, 91.0% 2020 [105]

TL Canopy Crop/weed identification Two crops and two weeds Xception, Inception-Resnet,
VGNets, MobileNet, DenseNet F1 Score, 99.29% 2020 [106]

TL Canopy Crop/weed semantic
segmentation

Sugar Beets 2016, Carrots
2017, Onions 2017 SegNet Training times reduced 80% 2020 [107]

TL Leaf Plant disease identification Rice/maize plant images INC-VGGN Average accuracy, 92% 2020 [29]

FSL Leaf Plant disease classification PlantVillage Inception V3-Siamese network
Accuracy above 90% and

89.1% reduction in
training data

2020 [31]
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Table 1. Cont.

Categories Scale Application Dataset Network Architecture Performance Year Refs

FSL Leaf Pest recognition Two Cotton dataset CNN- prototypical network Testing accuracy,
95.4% and 96.2% 2020 [114]

FSL Leaf Disease recognition Citrus aurantium L.
diseases images CAAE Harmonic mean

accuracy of 53.4% 2020 [32]

FSL Leaf Pest classification PlantVillage Shallow CNN Varies under
different conditions 2021 [33]

CNN-SL Leaf Disease severity
quantification NLB-infected maize images Cascaded MRCNN Correlation 73%,

efficiency of 5 fps 2021 [52]

CNN-SL Land Yield predication Satellite multispectral images 2D and 3D ResNet Nearly 90% 2021 [92]

CNN-SL Land Crop mapping Satellite hyperspectral images 1D/2D/3D CNN More than 94% (3D CNN) 2021 [93]

CNN-SL Land Land mapping SAR images Deep SAR-Net Accuracy, 92.94 ± 1.05 2021 [98]

CNN-SL Land Crop mapping SAR and optical images 3D U-Net Overall accuracy, 0.941 2021 [100]

Abbreviations: CNN-SL, convolutional neural network-based supervised learning; TL, transfer learning; FSL, few-shot learning; CA, classification accuracy; SR, success rate; BA,
balanced accuracy; MSE, mean square error; mAP, mean average precision; IoU, intersection over union; BD, best dice; DC, dice coefficients; MAPE, mean absolute percentage error.
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However, some issues and limitations need to be pointed out:

(i). We found that most of the DL-based methods applied in PA only used simple al-
gorithms and network structures. The main reason is that the combination of deep
learning and precision agriculture is still in its infancy. Another reason for this
phenomenon is the isolation of interdisciplinary knowledge between agricultural
scientists and computer scientists.

(ii). Although many of the deep learning algorithms listed in Table 1 achieved an accuracy
of more than 90%, it should be made clear that these results are limited to specific
datasets. When the trained models are deployed to other datasets or a real farmland
environment, the accuracy and speed of these networks are usually lower than the
benchmarks. The main reason for this is that the volume, quality, and complexity of
agricultural datasets are still quite different from actual farmland environments.

(iii). Some novel strategies, such as transfer learning [104–109], few-shot
learning [31,32,114,115], graph convolutional networks (GCN) [66], generative adver-
sarial networks (GAN) [127], and semi-supervised learning [128] have been proposed
to reduce the dependency of DL models on the agricultural datasets. However, their
performance has not been fully released.

Recently, in a small number of studies, deep learning algorithms and neural network
architectures have been improved and optimized for the characteristics of agricultural
applications. For example, some research has focused on the optimization of inputs of
DL models. Su, J. et al. formulated the monitoring and quantifying yellow rust as a su-
pervised pixelwise multiclass classification problem and introduced U-Net to classify the
ruse, healthy, and backgrounds in wheat fields [126]. Data input optimization was the
highlight of this work. Benefiting from the rich spectral information collected by multi-
spectral and RGB cameras, they used spectral-spatial information from various spectral
bands and generated vegetation index as the U-Net input instead of the commonly used
RGB images. They claimed that the introduction of the RedEdge and NIR bands could
improve segmentation performance over visible RGB images. A similar work was con-
ducted by Maimaitijiang, M. et al. in 2020 [129]. In this study, UAV-based multimodal
data fusion using RGB, multispectral, and thermal sensors to predict soybean yield were
comprehensively investigated. According to different information fusion strategies, they
proposed two deep neural network structures, called DNN-F1 and DNN-F2, respectively.
DNN-F1 refers to input-level feature fusion, and DNN-F2 refers to intermediated-level
feature fusion. The results also indicated that DNN-based multimodal data fusion im-
proved model accuracy. Other studies have focused on improving DL algorithms and
frameworks. Sa, I. et al. presented WeedNet and WeedMap, the modified versions of the
SegNet architecture, for the large-scale dense semantic segmentation of weeds with aerial
images [130,131]. Specifically, they replaced the origin encoder with a modified VGG16
architecture and amended the decoder accordingly. In order to balance the accuracy and
speed of deep learning algorithms, Jiao, L. et al. designed an anchor-free convolutional
neural network (AF-RCNN) for multiclass agricultural pest detection [132].

To advance the application of deep learning in precision agriculture, we recommend:

(i). More extensive optimization of deep learning algorithms and neural networks based
on the agricultural characteristics that are needed. Research has demonstrated the
effectiveness of some biomimetic mechanisms, such as visual attention mechanism
and long short-term memory mechanism, in image processing. Therefore, they should
also be introduced into model optimization for agricultural applications.

(ii). As the spatial, temporal, and spectral resolution of the dataset increases, there is a
strong need for neural networks that can take data cubes as input.

(iii). Efforts in this area should not be limited to only data-driven deep learning. Meta-
learning, which means learning-to-learn, is also a research direction. It has been
proven that transfer learning, few-shot learning, and semi-supervised learning have
great potential to relieve dependency on datasets, especially in situations where
datasets are difficult to obtain. However, they inevitably cause a decrease in accuracy.
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In some cases, this is acceptable and in others it is not. Therefore, more efforts
should be made to address this contradiction or find a trade-off between dataset
and performance.

(iv). More attention should be given to semi-supervised learning. For example, the re-
cently emerged GCN is a successful semi-supervised learning approach in which a
large amount of unlabeled data can be leveraged with typically a small amount of
labeled data.

(v). Interdisciplinarity is a necessary way to break down the intellectual segregation
between agricultural scientists and computer scientists. The close communication
and cooperation between the two parties is of great significance for deepening the
application of deep learning in precision agriculture.

5.3. Computational Capacity

Another bottleneck that limits the deployment of DL in PA is computational capacity.
With an increase in the number of datasets and the deepening of deep learning neural
networks, model training requires more and more computing resources. The performance
improvement of the central processing unit (CPU) and the graphics processing unit (GPU) is
a very important accelerator for the widespread popularity of deep learning. Additionally,
Cloud computing services, such as the Google Cloud Platform, which are provided by
commercial companies, have accelerated the development of DL. However, due to strict
computation capacity requirements, the current DL in PA is usually offline, which means
that the collection and analysis of farmland images is asynchronous. This does not comply
with the principle of PA, which aims to carry out detection and treatment synchronously.
For example, UAVs have been widely used for agricultural information collection and
agrichemical spraying. Additionally, UAV-based spraying relies on a prescription generated
by data analysis of farmland information. Limited by the computing power of an airborne
processor, the acquisition of farmland information based on deep learning cannot be
performed in the air in real time. Consequently, it is difficult for present agricultural UAVs to
carry out precision treatment by running DL-based agri-analytics onboard. Fortunately, this
issue has attracted some attention from companies. For instance, some embedded systems,
such as Jetson TX2 and AGX Xavier, have been developed specifically for autonomous
robots by NVIDIA (https://www.nvidia.cn/autonomous-machines/embedded-systems/
accessed on 10 December 2021). More high-performance, low-power, and lightweight
processors may be available in the future.

6. Conclusions

Precision agriculture aims to increase crop yield while reducing or at least maintaining
resource inputs by introducing cutting-edge technology. Deep learning has great potential
to advance the evolution of precision agriculture. This work paid special attention to the
application of deep learning in precision agriculture. Specifically, our main focus was
on three kinds of deep learning methods, namely CNN-SL, TL, and FSL. From a spatial
perspective, we defined four scales, the leaf scale, canopy scale, field scale, and land scale.
Some studies that have discussed their application in multiscale agricultural sensing were
reviewed. Challenges and opportunities for DL in PA were discussed. We hope that this
work will attract the attention of agricultural communities and that it will promote more
relevant research involving DL in PA.
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