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Abstract: The intelligent detection of objects in remote sensing images has gradually become a
research hotspot for experts from various countries, among which optical remote sensing images are
considered to be the most important because of the rich feature information, such as the shape, texture
and color, that they contain. Optical remote sensing image target detection is an important method
for accomplishing tasks, such as land use, urban planning, traffic guidance, military monitoring
and maritime rescue. In this paper, a multi stages feature pyramid network, namely the Multi-stage
Feature Enhancement Pyramid Network (Multi-stage FEPN), is proposed, which can effectively
solve the problems of blurring of small-scale targets and large scale variations of targets detected
in optical remote sensing images. The Content-Aware Feature Up-Sampling (CAFUS) and Feature
Enhancement Module (FEM) used in the network can perfectly solve the problem of fusion of
adjacent-stages feature maps. Compared with several representative frameworks, the Multi-stage
FEPN performs better in a range of common detection metrics, such as model accuracy and detection
accuracy. The mAP reaches 0.9124, and the top-1 detection accuracy reaches 0.921 on NWPU VHR-10.
The results demonstrate that Multi-stage FEPN provides a new solution for the intelligent detection
of targets in optical remote sensing images.

Keywords: Multi-stage Feature Enhancement Pyramid Network; Content-Aware Feature Up-Sampling;
feature enhancement module; optical remote sensing images; object detection

1. Introduction

In recent years, with the development of earth observation technology, object detection
of remote sensing images has gradually become a research hotspot. Remote sensing
images can be divided into aerial images and satellite images, and the acquisition of
images is usually done by shooting, scanning or microwave radar. Optical remote sensing
images are remote sensing images captured by cameras in the visible wavelength range
(0.38–0.76 microns), which are extremely rich in shape, texture and color information and
constitute the most prevalent types of remote sensing images.

Optical remote sensing image target detection uses specially designed algorithms to
find and mark targets of interest (hills, lakes, grounds, buildings, vehicles, aircraft, ships
etc.) in images and is an important tool for accomplishing tasks, such as land use, urban
planning, traffic diversion, military monitoring and maritime rescue, and is of paramount
importance in the field of remote sensing image processing [1–3].

Early optical remote sensing image target detection algorithms used the manual design
of features. Despite the widely varying designs of algorithms, at a macro level the ideas
are broadly the same: First, to determine the candidate region; Secondly, to detect the
features that are designed manually according to the characteristics of the target; Thirdly, a
classifier is normally used to classify the category of the target to be detected [4–9]. Stankov
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improved the hit-or-miss transform (HMT) and proposed Percentage Occupancy HMT
(POHMT) for detecting building locations and invoking vegetation masks to eliminate
irrelevant factors [4].

Leninisha et al. proposed a geometric active deformation model based on width and
color for extracting a road network from remotely sensed images with minimum human
interference. However, the model is inadequate for the detection of complex urban roads [5].
Focusing on the shadows cast by buildings, Ok proposed a shadow post-processing method
that uses a probabilistic landscape approach to model the directional spatial relationship
between buildings and their shadows, which, in turn, automatically detects building targets
in ultra-high resolution multispectral images [6].

Du et al. effectively used a robust anomaly degree measure to improve separability
between anomalous pixels and other background pixels. They first distinguished the
target from the background using popular features and then used metric learning methods
to obtain a robust anomaly degree measure [7]. However, these algorithms have many
drawbacks.

For instance, determining candidate regions generally requires setting sliding win-
dows on the image, and most of the generated candidate regions are not the final desired
regions, resulting in a large number of redundant calculations and high time complex-
ity. Manually designed features are mainly based on the visual information of the target,
and the features are easy to understand but poorly expressed, while the robustness and
adaptability of the features are low, making them difficult to adopt in various scenarios.

In addition, unlike common optical images taken on the ground, optical remote
sensing images are generally taken from high altitudes, and the quality of the images is
easily affected by the environment, climate and light. At the same time, due to the long
shooting distance, the scale of the target in the optical remote sensing image varies greatly,
and the contour and texture information are not as good as in common optical images, as
shown in Figure 1. With the continuous innovation of remote sensing technology, remote
sensing images have a higher resolution and larger scale, and the information contained in
the images is richer. In this case, earlier detection algorithms will be more complicated in
design, and the detection effect cannot meet the actual demand.

Remote Sens. 2022, 14, x FOR PEER REVIEW 2 of 23 
 

 

a classifier is normally used to classify the category of the target to be detected [4–9]. 
Stankov improved the hit-or-miss transform (HMT) and proposed Percentage Occupancy 
HMT (POHMT) for detecting building locations and invoking vegetation masks to elimi-
nate irrelevant factors [4].  

Leninisha et al. proposed a geometric active deformation model based on width and 
color for extracting a road network from remotely sensed images with minimum human 
interference. However, the model is inadequate for the detection of complex urban roads 
[5]. Focusing on the shadows cast by buildings, Ok proposed a shadow post-processing 
method that uses a probabilistic landscape approach to model the directional spatial rela-
tionship between buildings and their shadows, which, in turn, automatically detects 
building targets in ultra-high resolution multispectral images [6]. 

Du et al. effectively used a robust anomaly degree measure to improve separability 
between anomalous pixels and other background pixels. They first distinguished the tar-
get from the background using popular features and then used metric learning methods 
to obtain a robust anomaly degree measure [7]. However, these algorithms have many 
drawbacks. 

For instance, determining candidate regions generally requires setting sliding win-
dows on the image, and most of the generated candidate regions are not the final desired 
regions, resulting in a large number of redundant calculations and high time complexity. 
Manually designed features are mainly based on the visual information of the target, and 
the features are easy to understand but poorly expressed, while the robustness and adapt-
ability of the features are low, making them difficult to adopt in various scenarios. 

In addition, unlike common optical images taken on the ground, optical remote sens-
ing images are generally taken from high altitudes, and the quality of the images is easily 
affected by the environment, climate and light. At the same time, due to the long shooting 
distance, the scale of the target in the optical remote sensing image varies greatly, and the 
contour and texture information are not as good as in common optical images, as shown 
in Figure 1. With the continuous innovation of remote sensing technology, remote sensing 
images have a higher resolution and larger scale, and the information contained in the 
images is richer. In this case, earlier detection algorithms will be more complicated in de-
sign, and the detection effect cannot meet the actual demand. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 1. Visual differences between common optical images and optical remote sensing images. 
The first row is natural images, where the targets in (a,b) are vehicles and the targets in (c,d) are 
aircrafts. The second row is optical remote sensing images, where the targets in (e,f) are vehicles 
and the targets in (g,h) are aircrafts. 

In 2006, Hinton proposed a solution to the problem of gradient disappearance during 
the training of deep neural networks, and since then, deep neural networks have gradu-
ally gained recognition. Deep neural networks can extract deeper abstract features, that 
are not intuitively understood but have more powerful semantic representations and dis-
criminative properties. Once proposed, deep neural networks dramatically improved the 
detection accuracy of multi-category targets in images and have received wide attention. 

Figure 1. Visual differences between common optical images and optical remote sensing images.
The first row is natural images, where the targets in (a,b) are vehicles and the targets in (c,d) are
aircrafts. The second row is optical remote sensing images, where the targets in (e,f) are vehicles and
the targets in (g,h) are aircrafts.

In 2006, Hinton proposed a solution to the problem of gradient disappearance during
the training of deep neural networks, and since then, deep neural networks have gradually
gained recognition. Deep neural networks can extract deeper abstract features, that are not
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intuitively understood but have more powerful semantic representations and discriminative
properties. Once proposed, deep neural networks dramatically improved the detection
accuracy of multi-category targets in images and have received wide attention.

After more than a decade of development, deep neural networks have gradually
matured, and many high-level network design solutions have emerged, becoming the
mainstream algorithm for solving object detection problems [10–20]. Among these methods,
Faster-RCNN [10] provides a new idea to accomplish the task of multi-category target
detection for images on an efficient and high accuracy basis. Like other deep neural
networks, Faster-RCNN uses convolutional and pooling layers for the down-sampling and
computation of feature maps, but instead of Selective Search (SS), Faster-RCNN introduces
the ‘Anchor’ approach for generating proposals and proposes a novel Region Proposal
Network (RPN).

The RPN reduces the generation speed of proposal to 10 ms, and thus can focus
the training time on feature extraction and classification, which reduces the training cost
and improves the detection accuracy. However, the Faster-RCNN contains two networks,
making it difficult to meet the requirement of real-time detection. YOLO [11] was proposed
to solve the problem of real-time detection with the ability to divide the extracted high-stage
feature map into S× S cells directly, and perform bounding box regression for each cell.
YOLO is more efficient than Faster-RCNN, which contains only one network.

SSD [12] combines the “Anchor” of Faster-RCNN and the “Cell” of YOLO, using
convolutional layers to extract multi-stage features, generating proposals of different sizes
and proportions on each convolutional layer for training using the Prior Box algorithm
and finally eliminating the redundant boxes using the Non-Maximum Suppression (NMS)
algorithm. Compared with Faster-RCNN and YOLO, SSD edges ahead in terms of detection
accuracy and detection efficiency.

In contrast to the manual feature design approach, deep neural networks directly
integrate identifying candidate regions, learning effective features and feature classifiers
to achieve end-to-end detection. Deep learning learns features with stronger semantic
characterization ability, driven by large amounts of image data, with greatly improved
performance, while avoiding the redundant computation of a large number of windows
during the forward propagation of the neural network and improving the detection speed.

The above methods have achieved remarkable results in the task of detecting multi-
category targets in images, but they are oriented to common optical images, and the effect
of detection in optical remote sensing images is not ideal. As can be seen from Figure 1,
optical remote sensing images do not contain as rich of feature information as common
optical images, while the scale variation range is large, and there are too many small scale
targets. Therefore, how to design special algorithms adapted to the target detection in
optical remote sensing images is an urgent problem for experts in this field.

After several years of unremitting efforts, experts around the world have designed
a large number of improved algorithms to effectively improve the performance of object
detection in the field of optical remote sensing images [21–32]. Cheng et al. added a
rotation-invariant layer to the convolutional neural network and proposed a novel rotation-
invariant convolutional neural network (RICNN) model. The model achieves rotation
invariance by optimizing a new objective function for training, by imposing regularization
constraints, and by specifying that the feature representations of the training samples before
and after rotation must be mapped to each other [21].

Han et al. found that the proposal generation network and feature classification
network of the Faster-RCNN are two separate parts, which are not efficient in training and
detection. They compared the acquisition method and annotation method of optical remote
sensing images and common optical images and proposed that the annotation of optical
remote sensing images is costly. Therefore, to address these problems, Han improved the
Faster-RCNN and proposed an efficient and robust integrated geospatial target detection
framework named R-P-Faster-RCNN.
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R-P-Faster-RCNN shares features in the proposal generation phase and target de-
tection phase and achieves the integration of both, thus improving the network training
and detection efficiency. The model uses common optical images for pre-training and
optical remote sensing images for fine-tuning during training, thus, solving the problem of
expensive optical remote sensing image annotation [22]. Ren et al. argued that the building
blocks of standard convolutional neural networks have a fixed geometric structure and are,
therefore, limited in geometric transformations.

To eliminate this effect, Ren integrated a deformable convolutional module in the
Faster-RCNN. This module is capable of unsupervised learning of the augmented spatial
sampling locations in the module. In addition, they generated a single high-level feature
map with fine resolution on which predictions can be made using top-down and skip
connections. Ren et al. named this Def. Faster-RCNN, and the network shows more
significant results on the SORSI and HRRS datasets [23].

Xu et al. proposed a deformable region-based fully convolutional network (Def. R-
FCN) to remove the obvious limitation of convolutional neural networks for modeling
geometric changes of remote-sensing targets. For training, Xu et al. first pre-trained using
natural images and subsequently fine-tuned using ultra-high resolution remotely sensed
images. To compensate for the increased number of lines, such as false region suggestions,
an aspect-ratio-constrained non maximum suppression (arcNMS) was designed [24].

Li et al. proposed a rotation-insensitive and context-augmented object detection net-
work (RICADet) to solve the problem of rotation change sensitivity and blurred appearance
in remote sensing images. The network contains an improved region suggestion network
and a local context feature fusion network to solve the above two types of problems, respec-
tively, and a comprehensive evaluation on a publicly available ten object detection datasets
demonstrates the effectiveness of the network [25].

Guo et al. proposed a multi-scale convolutional neural network (Multi-Scale CNN)
to accomplish geospatial object detection in high-resolution satellite images. The network
consists of a multi-scale object suggestion network and a multi-scale target detection
network, where high-quality proposals are proposed by the multi-scale object suggestion
network, and the proposals are trained using the multi-scale target detection network to
generate a good target detector [26].

The above networks are indeed effective for optical remote sensing images; however,
there is still much room for improvement in detection accuracy. In particular, they are not
ideal for the detection of blurred small-scale targets in optical remote sensing images. In
order to further improve the detection accuracy of optical remote sensing image targets,
this paper proposes a Multi-stage Feature Enhancement Pyramid Network (Multi-stage
FEPN).

This network can generate multi-stage feature maps and effectively fuse adjacent
high-stage feature maps with low-stage feature maps to enrich the feature information
contained in the feature maps. At the same time, the Multi-stage FEPN introduces a feature
enhancement module to highlight useful features and improve the target classification
accuracy and localization precision.

We detail the structure and the highlighted design parts of Multi-stage FEPN as well
as the datasets and evaluation metrics chosen for this paper in Section 2. In Section 3,
we use a unified dataset to compare the above introduced Faster-RCNN [10], YOLO [11],
SSD [12], RICNN [21], R-P-Faster-RCNN [22], Def. Faster-RCNN [23], Def. R-FCN [24],
RICADet [25], Multi-Scale CNN [26] and the Multi-stage FEPN proposed in this paper to
demonstrate that Multi-stage FEPN works better than other networks in optical remote
sensing image target detection tasks.

2. Materials and Methods
2.1. Network Architecture

We propose a novel deep convolutional neural network with reference to the design
idea of FPN [33]. In the feature map generation stage, as in the FPN, we use a combination
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of bottom-to-top branch, up-to-down branch and lateral connection branch to complete
the process. The bottom-to-top branch uses the ResNet-101 network to extract multi-stage
feature maps group {C1, C2, C3, C4, C5}.

In the up-to-down branch, we first max-pool C5 to obtain P6, then use the Content-
Aware Feature Up-Sampling (CAFUS) algorithm to up-sample P6 to the scale of C5, use
convolution on C5 to change the number of channels, and finally fuse P6 and C5 to obtain
P5. Similarly, we obtain P4, P3 and P2 and combine them with P5 to obtain the feature
pyramid {P2, P3, P4, P5}. In order to further enhance the representation ability of the feature
maps, we introduce a Feature Enhancement Module (FEM) to modify the features and
finally obtain more optimized feature maps group {F2, F3, F4, F5}.

After obtaining the feature map sets, we generate proposals using RPN and fix the
proposals into unique scales using RoI Align. We use two fully connected layer branches to
compute the category scores and location regression parameters of the modified proposals
to finally complete the classification and localization of the targets. To reduce the complexity
of training, an adaptive mapping of the generated proposals onto feature maps is performed
to calculate the training losses and adjust the network parameters according to the scales of
the labeled boxes. The structure of the network proposed in this paper is shown in Figure 2.
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branch, the blue dashed box represents the up-to-down branch, and the yellow dashed box represents
lateral connection branch. Finally, the feature maps in red box form the feature maps group {F2, F3,
F4, F5}.

2.2. Content-Aware Feature Up-Sampling

In the process of feature pyramid generation, the fusion of feature maps of adjacent
stages is a problem that needs to be focused on. The feature maps at different stages have
different scales, and each feature map expresses different feature information. Therefore, it
is extremely important to design an effective feature map up-sampling and fusion algorithm.
Traditional feature pyramid networks mainly use interpolation [34] for up-sampling higher-
stage feature maps, including nearest neighbor interpolation, bilinear interpolation and
bicubic interpolation.

Interpolation is a purely mathematical algorithm that only calculates the new pixels
after up-sampling based on the pixel positions and does not fully utilize the semantic
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information of the image. At the same time, the perceptual field of the interpolation
method is usually small and the computed image can be distorted, while increasing the
perceptual field can lead to a significant increase in computational cost. Therefore, the
use of interpolation to upsample higher-stage feature maps can only solve the problem of
different scales, and the noise introduced in the process will weaken the representation
ability of the feature maps to a certain extent.

In addition to the interpolation method, current image up-sampling algorithms include
deconvolution [35] and dynamic filters [36]. The deconvolution method can improve the
above problems to some extent by learning the kernel parameters through convolutional
networks without considering the pixel positions. However, this method does not consider
local semantics and uses the same convolutional kernel for each local region, which still
cannot effectively restore local feature information, and the computational effort grows
exponentially when the convolutional kernel design is too large. The dynamic filtering
method designs a convolutional kernel for each position of the image, which is conceivably
too large a number of parameters for practical applications.

Content-Aware ReAssembly of Features (CARAFE) [37] is a learnable image up-
sampling algorithm based on the input content, which divides the feature map up-sampling
into two parts, i.e., up-sampling kernel prediction and feature reassembly. Experiments
show that CARAFE has a large perceptual field, and the model is light enough to retain the
feature information of the input better. CARAFE will also enhance the feature semantics to
an extent. In this paper, we design a new image up-sampling algorithm, named Content-
Aware Feature Up-Sampling, as shown in Figure 3.
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Figure 3. The structure of CAFUS. We chose a prediction kernel size of 5 × 5 and an up-sampling
ratio of 2; therefore, the number of channels of the encoded feature map is 2 × 2 × 5 × 5 = 100.
As for the choice of the number of compressed channels, we found that increasing the number of
compressed channels does not have a significant improvement on the algorithm effect.

Unlike CARAFE, the feature modification kernel of CAFUS is predicted from the input
image but does not act directly on the input. Instead, it is applied to the input image after
interpolation. CAFUS can make up for the shortcomings of the interpolation method by
introducing learnable parameters to fine-tune the interpolated image and maximize the
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retention of the semantic information of the higher-stage feature map. At the same time,
CAFUS has a simple structure and does not introduce overly many learning parameters,
thus, ensuring the training efficiency.

2.3. Feature Enhance Module

Although CAFUS is able to preserve the detail information inside the image during
the up-sampling of higher-stage feature maps and enhance the representation ability of
the feature maps, the fusion of adjacent-stages feature maps only uses the convolutional
“summing” method to fuse multi-channels information. In order to solve this problem, this
paper proposes a feature weighting algorithm to further enhance the feature information,
i.e., the Feature Enhance Module. The algorithm principle of the FEM is shown in Figure 4.
The FEM assigns weights to the feature maps from two directions, thus, enhancing the
useful features.
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Figure 4. Details of the Feature Enhance Module. Feature spatial enhance (FSE) fuses multi-channel
information using a 1 × 1 convolution kernel and normalizes it using a sigmoid function to obtain
two-dimensional spatial weights. Feature channel enhance (FCE) obtains a 1× 256 vector using global
average pooling. Then, the vector is calculated by two fully connected layers and normalized using
the sigmoid function to obtain the one-dimensional channel weights. Enhanced features from the two
approaches are superimposed together, followed by further fusion of the local feature information
using 3 × 3 convolution.

In the spatial direction, the fused feature map contains both target features and back-
ground information. The feature map is to be modified along the two-dimensional spatial
direction to enhance the target features. The specific weight parameters are calculated as
shown in Equations (1) and (2). In Equation (2), ~ represents the multiplication of elements
in the corresponding position.

Ẑ(x,y) = σ

(
C

∑
i=1

Pi
(x,y)·kernel1×1

(x,y)

)
, x ∈ [1, h], y ∈ [1, w], (1)

Pc
FSE = Pc ~ Ẑ, c ∈ [1, C], (2)
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In the channel direction, as each level of the feature map group contains 256 channels,
not every channel of the two-dimensional feature map can contain the target feature
information well. Therefore, feature map channel weights are introduced to assign a
coefficient to each channel so that the feature maps containing the target features in the
feature map sets can be used to greater effect. The feature map channel weight parameters
are calculated as shown in Equations (3)–(5). In Equation (4), δ represents a sigmoid
function, and σ represents a ReLU activation function.

Zc =
1

h× w

h

∑
x=1

w

∑
y=1

P(x,y), c ∈ [1, C], (3)

Ẑ = σ(δ(W2 × δ(W1 × Z))), (4)

Pc
FCE = Ẑc × Pc, c ∈ [1, C], (5)

Finally, the features modified in both directions are fused together, as shown in
Equation (6), and the fused feature map will contain stronger feature information.

PFEM = Conv3×3(PFSE + PFCE), (6)

2.4. Loss Function

The training of deep convolutional neural networks is a process of iterative optimiza-
tion of network model parameters. Typically, the network first computes the category score
loss as well as the position loss for each proposed box in the forward direction, and updates
the network model parameters in the reverse direction based on the obtained losses, i.e.,
back-propagation of losses. Therefore, in the training process of deep neural networks,
using a reasonable loss function can achieve better convergence of the network parameters
and better detection accuracy of the network. In this paper, different loss functions for the
proposal generation part and the feature classification parts are applied to calculate the loss
values of each part, as shown in Equations (7)–(11).

For the category loss, the cross-entropy function is used to calculate the loss. Cross-
entropy is simple in design and can automatically adjust the learning speed of the network
parameters according to the loss size when back-propagating to avoid overfitting, which can
effectively calculate the loss for multi-category classification tasks. For location loss, we use
the smooth-L1 function for calculation. Smooth-L1 sets a constant 1 as the back-propagation
gradient for points with large loss values, while, for points with small loss values, the
backpropagation gradient decreases as the loss value decreases, and thus smooth-L1 is
insensitive to outliers.

LRPN_cls =
1

Nbatch

Nbatch

∑
i=1

cross_entro(pi, p∗i ), (7)

LRPN_bbox =
λ

Nboxes

Nboxes

∑
i=1

p∗i × smooth_L1(ti, t∗i ), (8)

where Nbatch represents the number of images in one mini-batch at training, Nboxes repre-
sents the number of anchors generated in each image, and λ represents the balance factor.
pi is the category score vector of the proposal box, p∗i represents the label of the proposal
box, ti represents the position parameter of the proposal box, and t∗i refers to the position
parameter of the ground truth box.

LRCNN_cls = cross_entro(p, u), (9)

LRCNN_bbox = smooth_L1(tu, v), (10)
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where p denotes the category score predicted by the network, u represents the score of
the ground truth, tu represents the coordinate of the ground truth, and v represents the
coordinate of the predicted box.

Loss = LRPN_cls + LRPN_bbox + LRCNN_cls + LRCNN_bbox, (11)

2.5. Dataset Selection and Data Augmentation

As deep neural networks become the dominant algorithm for remote sensing im-
age processing, the demand for remote sensing images is increasing, and therefore many
teams have open-sourced remote sensing image datasets for use by other scholars. Among
them, some typical remote sensing image datasets include DOTA (a large-scale Dataset
for Object deTection in Aerial images) [38], UCAS-AOD (UCAS-High Resolution Aerial
Object Detection Dataset) [39], NWPU VHR-10 (NWPU very-high resolution optical re-
mote sensing images with 10 categories) [1,21,40], RSOD-Dataset (Remote sensing object
detection) [41,42], the INRIA Aerial Image Labeling Dataset [43] and the TGRS-HRRSD-
Dataset [44].

DOTA was co-produced by State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing and School of Electronic Information and Com-
munications, HUST and consists of 2806 remotely sensed images with targets containing a
total of 188,282 instances in 15 categories. UCAS-AOD was compiled and labeled by the
Pattern Recognition and Intelligent Systems Development Laboratory of the University
of Chinese Academy of Sciences. It consists of 910 remote sensing images with only two
categories of targets, aircraft and vehicles, with negative background samples totaling
8066 instances.

NWPU VHR-10 contains 800 high-resolution satellite images cropped from the Google
Earth and Vaihingen datasets and then manually annotated by NWPU experts. Among
them, 650 images carry labeled targets, with a total of 10 categories and 3896 instances.
RSOD-Dataset was labeled by a team from Wuhan University, and the dataset contains
976 images divided into four categories with a total of 6950 instances (4993 instances belong
to the category of “aircraft”, accounting for 71.8%).

The INRIA Aerial Image Labeling Dataset is a dataset for urban building detection,
collected and labeled by the French National Institute for Information and Automation. It
has only two categories, building and not building, and is semantically segmented at the
pixel level. The TGRS-HRRSD-Dataset was collected and labeled by the Xi’an Institute of
Optical Precision Machinery, Chinese Academy of Sciences. It contains 13 categories of
objects, more than 21,000 images and more than 40,000 instances.

Considering the training cost and data diversity, we decided to select NWPU VHR-10
and RSOD-Dataset as the datasets used for the experiments in this paper. The number
of instances of each category in the two datasets is shown in Figure 5, and examples
of two datasets corresponding to each category are shown in Figure 6. Compared with
RSOD-Dataset, NWPU VHR-10 contains more categories and a relatively even number of
instances; therefore, we used NWPU VHR-10 as the main dataset for the comparison of
experimental results.

Among the 650 images in the original dataset, we randomly selected 50 images as test
images and used the remaining 600 images as training dataset images. In addition, we
performed data augmentation on the training set images, including horizontal flip, vertical
flip, diagonal flip, random luminance and random contrast, to expand the training set to
3600 images. As for the RSOD-Dataset, 900 images were used as training dataset images,
and 36 images were used as test images.
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2.6. Evaluation Metrics

In image target detection tasks, the most intuitive metric to evaluate the effectiveness of
a detection network is the detection accuracy, i.e., whether all targets are detected correctly.
The accuracy of an image target detection network can be represented by top-1 and top-
5, where top-1 represents the probability that the highest confidence category of each
target prediction is correct and top-5 denotes the probability that the top five confidence
categories of each target prediction contain the correct category. Early deep neural network
target detection frameworks used top-1 detection accuracy and top-5 detection accuracy for
combined evaluation due to low detection accuracy, and, with the gradual optimization of
the network, currently only top-1 is used to represent the accuracy of the detection network.

However, the samples we tested are of finite size, and there are limitations as the
accuracy is obtained by detecting a small sample of test images. Therefore, we need to
evaluate a detection network model comprehensively from different perspectives. The
detection results of an image target detection network can be classified into four cases,
namely TP (True Positive), FP (False Positive), TN (True Negative) and FN (False Negative).

TP indicates when positive samples are predicted to be positive, FP shows when
positive samples are predicted to be negative, TN represents when negative samples are
predicted to be negative and FN indicates when negative samples are predicted to be
positive. When a target detection network model completes the detection task, the number
of samples corresponding to these four cases can be counted, and the Precision and Recall of
the model can be calculated based on the counted data as shown in Equations (12) and (13).

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
, (13)

Precision indicates the accuracy of the model’s prediction results, with higher values
indicating better results. Recall indicates the proportion of correct predictions to the
labeled targets, with higher values indicating that the model is more capable of recalling
positive samples during training. Ideally, we would like the model to have higher Precision
and Recall; however, in reality, the relationship is usually negative. Using Recall as the
horizontal coordinate and Precision as the vertical coordinate, the Precision–Recall curve
(P-R curve) is obtained by picking different thresholds to count the values of Recall and
Precision and plotting the curves.

Following the principle that the larger the two metrics are, the better, we can believe
that the larger the area surrounded by the curve and the coordinate axis, the higher the
accuracy of the model, and this area is the Average Precision (AP) corresponding to each
category. In the multi-category target detection task, we calculate the average of the APs
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corresponding to all categories to obtain Mean Average Precision (mAP), and the larger
this value is, the higher the combined accuracy of the model can be.

3. Results

To verify that the Multi-stage FEPN proposed in this paper can detect targets in optical
remote sensing images more effectively, we selected the commonly used frameworks for
common optical image target detection tasks, such as Faster-RCNN, YOLO and SSD, and
for optical remote sensing image target detection tasks, such as RICNN, R-P-Faster-RCNN,
Def. Faster-RCNN, Def. R-FCN, RICADet and Multi-Scale CNN, for experiments. In terms
of hardware, we used a GTX 1050Ti graphics card for the graphical computations. The
network parameters and data set assignments used during the experiments are shown in
Table 1.

Table 1. Network training parameters and dataset details for Multi-stage FEPN.

NWPU VHR-10 RSOD-Dataset

Steps of training 60,000 60,000
Initial learning rate 0.01 0.01
Data augmentation Yes No

Pre-training Yes Yes
Backbone ResNet-101 ResNet-101

Images of training set 2304 576
Images of validation set 576 144

Images of testing set 720 180

3.1. Evaluation of Proposed Multi-Stage FEPN with NWPU VHR-10 Dataset

During the training process, the loss values generated by Multi-stage FEPN were
recorded every 10 iterations during the training process, and the loss curves were plotted as
shown in Figure 7. To more clearly represent the direction of change of the loss during the
training process, we fitted the data using the least squares method, which is represented
by the red curve in Figure 7. From the loss curve, it can be seen that the loss decreases
gradually during the training process of the network, with the loss decreasing faster at
the beginning of the training and then slower, which is in line with our expected results.
Finally, the loss of the network is essentially stable around 0.1, indicating that the training
process of Multi-stage FEPN is stable.
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Figure 8 shows the recall rate for each category of targets in the NWPU VHR-10 dataset.
The results show that Multi-stage FEPN has a high recall rate for most targets, but the recall
rates for storage tanks and vehicles are relatively low, only 0.8364 and 0.8433.
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To validate the effect of Multi-stage FEPN, ablation experiment were conducted. We
calculated the APs and mAP of FPN, FPN with CAFUS, FPN with FEM and Multi-stage
FEPN on the NWPU VHR-10 dataset and plotted the P-R curves, respectively, as shown
in Figure 9 and Table 2. By comparison, we can see that CAFUS and FEM are indeed
effective for feature fusion and feature enhancement, with the AP for each category of
targets improved, and the mAP is also improved by 0.0812 from 0.8312 to 0.9124, indicating
a clear advantage.

Table 2. The APs for each category of different methods and mAP in the ablation experiment.

FPN FPN with
CAFUS FPN with FEM Multi-Stage

FEPN

Airplane 0.9088 0.9091 0.9091 0.9995
Ship 0.8967 0.9001 0.9029 0.9041

Storage tank 0.7814 0.7839 0.7647 0.8024
Baseball
diamond 0.9033 0.9049 0.8888 0.9131

Tennis court 0.7598 0.8922 0.8849 0.8926
Basketball court 0.8762 0.9022 0.8123 0.9524

Ground track
field 0.9091 0.9975 0.9984 0.9992

Harbor 0.8914 0.8972 0.8961 0.9079
Bridge 0.7436 0.8782 0.7991 0.8853
Vehicle 0.6416 0.7040 0.7833 0.8671

Mean AP 0.8312 0.8769 0.8640 0.9124
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We plotted the P-R curves for each target detection framework in the comparison
experiment separately, as shown in Figure 10. For comparison, we calculated the APs and
the mAP of each framework in Table 3, the top-1 detection accuracy for each category of
targets and the average top-1 detection accuracy of Multi-stage FEPN in Table 4.

Table 3. The APs for each category and mean AP of different frameworks.

Faster-RCNN YOLO SSD RICNN R-P-Faster-RCNN Def. R-FCN Def. Faster-RCNN RICADet Multi-Scale CNN Multi-Stage FEPN

Airplane 0.9053 0.9026 0.9078 0.9086 0.9087 0.9082 0.9077 0.9089 0.9086 0.9995
Ship 0.8001 0.7491 0.8205 0.8188 0.8372 0.8677 0.8972 0.9011 0.8960 0.9041

Storage tank 0.5934 0.4962 0.4981 0.5735 0.5747 0.7896 0.8024 0.7976 0.8041 0.8078
Baseball diamond 0.9065 0.9054 0.9087 0.9089 0.9083 0.8927 0.9002 0.8673 0.8819 0.9131

Tennis court 0.7694 0.7936 0.8138 0.8091 0.8126 0.8452 0.8672 0.8921 0.8889 0.8926
Basketball court 0.8999 0.8991 0.9091 0.9091 0.9064 0.5917 0.9057 0.9056 0.8992 0.9524

Ground track field 0.3594 0.4225 0.5379 0.6309 0.6428 0.9091 0.9091 0.9091 0.9091 0.9992
Harbor 0.8654 0.7950 0.8691 0.8043 0.9043 0.8858 0.8972 0.9057 0.9942 0.9079
Bridge 0.5647 0.6292 0.6497 0.8038 0.7751 0.7246 0.7996 0.8138 0.8102 0.8853
Vehicle 0.4215 0.3501 0.5025 0.6513 0.6722 0.7233 0.7073 0.7841 0.7864 0.8671

Mean AP 0.7086 0.6943 0.7417 0.7818 0.7942 0.8438 0.8599 0.8685 0.8779 0.9124

Table 4. The top-1 detection accuracy for each category and average top-1 detection accuracy of
Multi-stage FEPN.

Airplane Ship Storage Tank Baseball
Diamond Tennis Court Basketball

Court
Ground Track

Field Harbor Bridge Vehicle Average
Top-1

Multi-stage
FEPN 0.929 0.904 0.853 0.913 0.922 0.943 0.994 0.924 0.911 0.915 0.921
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Figure 10. The P-R curves of different frameworks with the NWPU VHR-10 dataset. (a) Faster-
RCNN; (b) YOLO; (c) SSD; (d) RICNN; (e) R-P-Faster-RCNN; (f) Def. R-FCN; (g) Def. Faster-RCNN;
(h) RICADet; (i) Multi-Scale CNN; (j) Multi-stage FEPN.

The experimental results show that the target detection framework that is applicable
to common optical images cannot be well adapted to the optical remote sensing image
target detection task and is not ideal for the detection of blurred small targets and targets
with large scale variation range. Multi-stage FEPN outperformed other optical remote
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sensing image target detection frameworks in terms of the AP and overall mAP for most
categories of targets, especially for blurred small targets, such as aircraft and vehicles.

We recorded the detection times of different frames for the test images, as shown in
Table 5. Since Multi-stage FEPN retains multi-stage feature maps and uses algorithms
for feature map fusion and feature enhancement in the framework, the testing time was
slightly increased compared to some other frameworks.

Table 5. The average running time of different frameworks.

Faster-RCNN YOLO SSD RICNN R-P-Faster-
RCNN Def. R-FCN Def.

Faster-RCNN RICADet Multi-Scale
CNN

Multi-Stage
FEPN

Average
running time

per image
(second)

0.28 0.19 0.26 8.77 0.643 1.27 0.726 2.89 0.67 1.16

To more visually demonstrate the detection capability of Multi-stage FEPN for fuzzy
small targets, a number of the network’s detection results for vehicles and storage tanks are
shown in Figure 11. For convenience, we mark only the location of the target in Figure 10
and remove the text labels. The comparison shows that Multi-stage FEPN outperformed
other better performing frameworks in detecting small fuzzy targets.
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Figure 12 shows some detection results of Multi-stage FEPN on the NWPU VHR-10
dataset. In general, the detection accuracy of Multi-stage FEPN is relatively high, and it
can perform the task of optical remote sensing image target detection very well.

3.2. Evaluation of Proposed Multi-Stage FEPN with RSOD-Dataset

In Section 2, the RSOD-dataset is briefly described, which contains only four categories
of targets, with “aircraft” accounting for 71.4% of the total instances; thus, the dataset does
not have a balanced sample. Figure 13 shows the P-R curves of Def. R-FCN, RICADET,
Multi-Scale CNN and the proposed Multi-stage FEPN on RSOD-Dataset, and Table 6 shows
the APs of different categories and mAP of each framework. The comparison shows that
Multi-stage FEPN is better than the other networks in all metrics. Although the unbalanced
samples have some influence on Multi-stage FEPN, the detection effect of Multi-stage FEPN
is still better when compared with the other frameworks.
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Table 6. The APs for each category and the mAP of different frameworks on RSOD-Dataset.

Def. R-FCN RICADet Multi-Scale CNN Multi-Stage FEPN

Aircraft 0.7116 0.7089 0.7063 0.7106
Oil tank 0.8551 0.8682 0.8629 0.8782

Overpass 0.7242 0.7518 0.8330 0.8920
Playground 0.9567 0.9865 0.9829 0.9933

Mean AP 0.8119 0.8289 0.8463 0.8685

4. Discussion

Optical remote sensing images are susceptible to the effects of environment, climate
and illumination on the quality of imaging compared to common optical images. Due to
the longer distance taken, certain targets are presented in optical remote sensing images
at a smaller scale, i.e., small targets. Such small targets consist of fewer pixels and feature
information, such as contours and textures, which is one of the pressing issues in the field
of target detection in optical remote sensing images. At the same time, there are many
kinds of targets to be detected in optical remote sensing images, and there are large scale
variations among different kinds of targets, and thus the designed framework needs to
consider multi-scale targets and small targets comprehensively to improve the overall
detection accuracy.

In recent years, many studies have been proposed to improve the accuracy of small
and multi-scale targets in optical remote sensing images [45–49]. Collectively, a common
approach to solve the small target detection problem is to use multi-stage feature maps for
recognition, which is because multi-stage feature maps can enrich the features of small-scale
targets, and models can rely on more feature difference information for target classification.

The methods to solve the multi-scale target detection problem usually introduce multi-
scale information in the network, including multi-stage classifiers, multi-stage features
quadratic fusion and loss function weighting. Although these methods can deal with the
specificities of targets in optical remote sensing images, they can reduce the detection
efficiency or the detection accuracy will not be sufficiently high because of insufficient
feature usage.

The Multi-stage FEPN proposed in this paper adopts the idea of multi-stage feature
maps fusion so that, for small targets, the feature information of low-level feature maps
can be used to achieve classification, while for multiple targets with large scale variations,
the appropriate stage of feature maps can be reasonably selected to generate corresponding
proposals and perform classification. This method performs better in the optical remote
sensing image target detection task.

In the experiments of this paper, we demonstrated that the feature map up-sampling
algorithm CAFUS used in Multi-stage FEPN can improve the fusion effect of adjacent-stage
feature maps, while the feature map enhancement algorithm FEM can also highlight the
features effectively through the ablation experimental results in Figure 9 and Table 2. There-
fore, the accuracy is high in detecting blurred small-scale targets, as shown in Figure 11.
Then, three target detection frameworks (Faster-RCNN, YOLO and SSD) applicable to
common optical images and six target detection frameworks (RICNN, R-P-Faster-RCNN,
Def. Faster-RCNN, Def. R-FCN, RICADet and Multi-Scale CNN) applicable to remote
sensing images were compared in parallel, and the experimental results are recorded in
Figure 10 and Tables 3 and 4.

The experimental results show that Multi-stage FEPN was better than the other frame-
works in most categories of target detection accuracy, especially for small-scale targets,
such as airplanes, ships, storage tanks and vehicles, which have higher detection accuracy
improvement. Finally, similar experiments were conducted on RSOD-Dataset. The experi-
mental results show that the detection ability of Multi-stage FEPN decreases on datasets
with extreme sample imbalance, which becomes one of the key elements of our future re-
search, i.e., addressing the impact of the sample imbalance problem on deep convolutional
neural networks.
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In this paper, we only address a small part of the remote sensing image target detection
field, i.e., solving the detection problem of blurred small-scale targets and multi-scale targets
in optical remote sensing images. The task of remote sensing image target detection has
many essential problems that need to be focused on and broken through. For example,
optical remote sensing images are sensitive to weather; therefore, it is obvious that how to
attenuate or eliminate the influence of weather on the image quality when the weather is
cloudy or foggy is a key factor to improve the detection accuracy.

When there are clouds obscuring the targets or the data is satellite remote sensing
images, considering the variability of cloud shape and the extremely small scale of the target
in the satellite remote sensing image [50–52], the instance segmentation algorithm should
be introduced. A large number of studies have confirmed that instance segmentation
algorithms has better detection effects compared with target classification for target scale
diversity and very small scale targets [53–56].

In summary, in our future work, we will focus on the followings: First, we will intro-
duce the concept of deep separable convolution and the training mechanism of federated
learning to reduce the number of parameters of the network, and achieve the lightweight
of the model while ensuring the detection accuracy. Secondly, we will introduce the image
defogging algorithm to enhance the quality of optical remote sensing images and improve
the feature representation of the targets. Third, we will introduce the concept of instance
segmentation and design corresponding algorithms to further improve the target detection
accuracy of remote sensing images.

5. Conclusions

The research in this paper aimed to accomplish the task of multi-object detection of
optical remote sensing images. A Multi-stage Feature Enhance Pyramid Network was
proposed, and the detection capability of the framework was experimentally verified. The
main contributions of the results in this paper are as follows. First, we made targeted
improvements to address the shortcomings of the interpolation method and designed a
learnable up-sampling algorithm, named Content-Aware Feature Up-Sampling, which
corrects the higher-stage feature map after interpolation and improves the feature represen-
tation capability of the feature map after up-sampling.

Secondly, this paper analyzed the problem that the simple fusion process of adjacent-
stages feature maps tends to introduce noise and weaken feature information, and we
proposed a Feature Enhancement Module to further augment the obtained fused feature
maps. The module learns the weights from the spatial and channel directions, which effec-
tively suppresses the influence of noise and thus enriches the useful features of the feature
maps. Finally, the framework proposed in this paper is compared with other commonly
used frameworks for optical remote sensing images, and through the analysis of various
model evaluation metrics, we demonstrated that the Multi-stage Feature Enhance Pyramid
Network is more effective in the optical remote sensing image multi-object detection task.
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