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Abstract: This study presents a novel method to identify optically deep water using purely spectral
approaches. Optically deep waters, where the seabed is too deep for a bottom reflectance signal to
be returned, is uninformative for seabed mapping. Furthermore, owing to the attenuation of light
in the water column, submerged vegetation at deeper depths is easily confused with optically deep
waters, thereby inducing misclassifications that reduce the accuracy of these seabed maps. While
bathymetry data could mask out deeper areas, they are not always available or of sufficient spatial
resolution for use. Without bathymetry data and based on the coastal aerosol blue green (1-2-3)
bands of the Sentinel-2 imagery, this study investigates the use of band ratios and a false colour HSV
transformation of both L1C and L2A images to separate optically deep and shallow waters across
varying water quality over four tropical and temperate submerged sites: Tanzania, the Bahamas,
the Caspian Sea (Kazakhstan) and the Wadden Sea (Denmark and Germany). Two supervised
thresholds based on annotated reference data and an unsupervised Otsu threshold were applied.
The band ratio group usually featured the best overall accuracies (OA), F1 scores and Matthews
correlation coefficients, although the individual band combination might not perform consistently
across different sites. Meanwhile, the saturation and hue band yielded close to best performance for
the L1C and L2A images, featuring OA of up to 0.93 and 0.98, respectively, and a more consistent
behaviour than the individual band ratios. Nonetheless, all these spectral methods are still susceptible
to sunglint, the Sentinel-2 parallax effect, turbidity and water colour. Both supervised approaches
performed similarly and were superior to the unsupervised Otsu’s method—the supervised methods
featuring OA were usually over 0.70, while the unsupervised OA were usually under 0.80. In the
absence of bathymetry data, this method could effectively remove optically deep water pixels in
Sentinel-2 imagery and reduce the issue of dark pixel misclassification, thereby improving the benthic
mapping of optically shallow waters and their seascapes.

Keywords: benthic mapping; seabed classification; false colour; HSV; hue; saturation; band ratio;
optical water type

1. Introduction

Coastal seascape ecosystems such as seagrasses and coral reefs provide a multitude of
highly valued services such as coastal protection, biodiversity maintenance, blue carbon
sequestration as well as nursery and feeding grounds for many marine animals [1]. How-
ever, these ecosystems are also highly threatened and thus require urgent conservation and
monitoring efforts [1,2]. Coastal aquatic remote sensing can help monitor these ecosystems
by providing information on their benthic composition, water quality and bathymetry.
Unlike terrestrial remote sensing, aquatic applications require an additional consideration
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of the water column and its interactions with the light signal [3], which has implications for
seabed signals.

1.1. Seabed Remote Sensing

When the object(s) of interest is located on the benthic floor and not floating near the
water surface, the depth affects the attenuation of the water column and its constituents [4,5]
on the return signals [6], which modifies the spectral profile of the reflected signal with
increasing depth [7]. This effect on the benthic spectral signature not only reduces the
spectral difference between benthic classes [7–9] but also restricts the informative bands
mostly to the visible spectrum [4,10,11]. With sufficient depth, all information on the
benthic cover is lost, and only the backscattering of the water column remains in these
so-called optically deep waters [4,5]. These non-informative pixels should be removed
from a seabed image, especially since some classes such as the darker seagrasses are easily
confused with these deep waters [4,9,12]. However, identifying these optically deep waters
can be a challenge.

There are many approaches to manage this, such as through water column correction,
using bathymetry data or satellite-derived bathymetry (SDB) [13–15], object-based image
analysis [7] and machine learning techniques [16]. Bathymetric data are usually exploited,
since pixels deeper than 10 m have very weak benthic signals [5] or are quasi-optically
deep [4]. Nonetheless, the benthic floor is still detectable in optimal conditions up to about
43 m [17]. The optical limit is also highly influenced by water quality, bottom cover and
optical conditions during image acquisition [4], thereby suggesting potential information
loss with an arbitrary depth threshold. Alternatively, semi-analytical approaches [4,15,18]
such as the substratum detectability index (SDI) [5] could identify the optically shallow,
quasi-optically deep and optically deep pixels via radiative transfer models. However,
these underlying models are highly technical and might put off non-specialist researchers.
Naturally, manual digitisation via photointerpretation is possible but labour-intensive [19].
Thus, it would still be optimal to have a simple yet effective method for masking out
optically deep waters.

Such an approach might be possible when there is a correlation between pixel values
and depth [20], such as band ratios [20–22] or logarithmic-transformed band ratio [18,23,24].
While deriving bathymetry would require external data for depth calibration, Legleiter
et al. [20] found a strong linear relationship between radiometric values and bathymetry
depth in shallow river waters up to 1 m in depth, which could be extended to identify
optically deep water pixels without bathymetric information. Nonetheless, the choice of
band ratio is important, as shorter wavelengths have greater depth penetration but are
susceptible to turbidity, while longer wavelengths, such as the red band with its limit of
about 5 m [25], do not provide sufficient penetration or range [8,17]. Existing optimisation
approaches for depth estimation such as the Optimised Band Ratio Analysis (OBRA),
Multiple Optimal Depth Predictors Analysis (MODPA) and the Sample-specific Multiple
Band Ratio Techniques for SDB (SMART-SDB) [20,26,27] can naturally be translated to the
detection of the optically deep and shallow waters. Nonetheless, given the challenges of
the band ratios as well as the limited number of informative bands, alternative spectral
approaches might prove helpful.

1.2. Colour Spaces in Remote Sensing

Multispectral and hyperspectral remote sensing both lie in the red-green-blue (RGB)
colour space, expanding from three primary hues or wavelengths to the number of bands
detected [4]. While the RGB system is based on the physics of light, sometimes an RGB
image may not look similar to its supposed colour given its wavelength inputs [28,29].
Alternatively, the hue-saturation-luminosity colour space is based on the colour perception
of a normal human [28]. By considering the full colour spectrum as a wheel with red as
the origin, the hue or a human-perceived colour is the angle on this colour wheel, while
saturation is the richness of a colour with respect to its luminosity or brightness. Both hue
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and saturation describe the spectral shape of a signal [28]. While there might be different
luminosity variables, the “value” is used for the hue-saturation-value (HSV) colour space.

The use of the HSV colour space is not new to remote sensing. Some of its applications
include cloud and cloud shadow detection [30,31], crop and farmland detection [32,33],
algal bloom detection [34], surface water extraction and river extraction [35,36], oceanic
water assessments [37] and water quality retrieval [29,38]. Most recently, Lee et al. [6]
related the true colour hue angle to the vertical variation of light quality in marine waters,
as well as the different optical water types, which represent different aquatic environments
globally [39,40]. Many applications rely on a true colour RGB to HSV transformation,
even when using a hyperspectral sensor [41]. However, the red wavelength, with its low
penetrative property, is less useful at deeper depths [8]. An alternative is to transform a
false colour RGB image instead, as there are no restrictions on the input bands [41]. The
false colour RGB is most notably seen in band combinations for visualisation purposes
and has been used to successfully detect global surface water using the high-resolution
Landsat series [42]. In conjunction with the aforementioned difference in depth penetration
between wavelengths as well as the general use of blue and green bands for oceanic
remote sensing [43], this theoretically suggests that a coastal aerosol-blue-green wavelength
(~430–560 nm central wavelength range) false-colour-derived HSV image could provide the
required information to distinguish between the optically deep and shallow water pixels.

1.3. Study Aim

We employ Sentinel-2 imagery to develop and test our method as it features the
aforementioned wavelengths of interest, high spatial resolution of 10 m, high temporal
resolution of 5 days and widespread use in coastal aquatic remote sensing. By focusing
on the bands B1–B3, this study aims to investigate if the resultant band ratios and coastal
aerosol-blue-green false colour HSV transformation of the Sentinel-2 L1C and L2A images
can distinguish between optically deep and optically shallow waters in the absence of
bathymetry data.

2. Materials and Methods
2.1. Study Area and Data

Four sites were selected based on different environmental conditions in order to
investigate the effectiveness of the different indices in these conditions (Table 1 and Figure 1).
The images were either cloud-free or contained as little cloud cover as possible. The
Tanzanian and Bahamian sites were chosen as representatives of tropical, coastal waters.
While the selected image of the former had issues with sunglint, the selected Bahamian
image had highly optimal conditions. Meanwhile, the Caspian Sea and Wadden Sea
feature highly turbid, temperate waters of inland freshwater and coastal marine waters,
respectively.

Table 1. Test site descriptions.

Site, Country Site Description Satellite Image Id

Unguja, Tanzania Single scene, coastal/marine,
tropical, sunglinted 20191207T073209_20191207T074734_T37MEP

Andros and Nassau, The Bahamas Single scene, coastal/marine, tropical 20191119T155531_20191119T155526_T17RRH

Caspian Sea, Kazakhstan Single scene, freshwater,
temperate, turbid 20190610T072629_20190610T073416_T39TVK

Wadden Sea, Germany and Denmark Single scene, coastal/marine,
temperate, turbid 20190617T104029_20190617T104030_T32UMF
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not perform any atmospheric correction in order to evaluate the errors between using 
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shown that no further atmospheric corrections were required when applying this method 
onto single scenes, the corrections were not performed. In line with Thomas et al. [45], 
sunglint correction was also not performed in order to investigate its effects on the meth-
ods of interest. 

An adaptive Otsu’s threshold of the NDWI was then applied to all images of both 
products to mask out the land pixels [46]. 

  

Figure 1. Map showing the study sites mentioned in Table 1.

The following datasets were used: Sentinel-2 MSI: MultiSpectral Instrument, Top-
Of-Atmosphere Level-1C (L1C) and Sentinel-2 MSI: MultiSpectral Instrument, Bottom-Of-
Atmosphere Level-2A (L2A).

2.2. Preprocessing

Most of the processing was performed in the Google Earth Engine (GEE) cloud com-
puting platform [44]. Thus, unless otherwise stated, any functions mentioned are GEE
native functions, products or datasets. The same image ID was used for both the L1C and
L2A products (Table 1). Clouds were excluded using both the QA band and the Sentinel-2:
Cloud Probability dataset set to 40% threshold. Although the atmospheric correction for
air and water column is the standard for coastal water image analysis [9], Lee et al. [16]
was able to bypass atmospheric correction by using machine learning methods for their
semi-analytical model on Landsat 8 TOA images while Thomas et al. [45] deliberately did
not perform any atmospheric correction in order to evaluate the errors between using
Sentinel-2 L1C and L2A products for their SDB method. As the preliminary trials had
shown that no further atmospheric corrections were required when applying this method
onto single scenes, the corrections were not performed. In line with Thomas et al. [45],
sunglint correction was also not performed in order to investigate its effects on the methods
of interest.

An adaptive Otsu’s threshold of the NDWI was then applied to all images of both
products to mask out the land pixels [46].

2.3. Vector Dataset and Indices

Fifty line vectors were manually digitised from their corresponding scenes by visual
interpretation on the GEE web-based interface. Since the optically deep property is similar
to an apparent optical property, it is an image-specific property related to bathymetric depth
but is scene and sensor dependent [5]. Unlike the SDI [5], only two classes of optically
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deep and shallow were selected, for the quasi-optically deep class was ignored due to the
difficulty in visually distinguishing it from the two other classes. The deep water regions
were determined by a consistent, large area of dark pixels that is connected to the larger
ocean or sea in the image and thus could be distinguished from deeper but still optically
shallow dark benthic cover. From the visually identified shallow-deep boundary, line
vectors were drawn on both sides of the boundary which are perpendicular to the shore
to imitate a field survey’s line transect from shallow to deep and to better represent this
gradual gradient between classes. Each transect consists of one deep water and one shallow
water vector of similar length. In areas where a clear and distinct shallow-deep boundary
could not be identified, no vectors were drawn. For areas in which the optically shallow-
deep border is insufficient to contain all the vectors without possible spatial autocorrelation,
the remaining vectors were annotated on suitable pixels in the image (Figure 2).
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cally deep and optically shallow (Figure 3) given their very significantly different group 

Figure 2. Demonstration of how the line vectors were drawn. As much as possible, the vectors of both
classes were paired in a continuous line to mimic a line transect (A). If the length of the deep-shallow
boundary is insufficient to fit all the vectors without resulting in possible spatial autocorrelation, then
the remaining vectors are created based on the conventional sampling (B).

As the line vectors are created via photointerpretation, there would naturally be some
biases in the base image. As such, bathymetric inputs from ETOPO1 Global Arc-Minute
Elevation (ETOPO) [47], General Bathymetric Chart of the Oceans (GEBCO) [48] and a
Sentinel-2 image-based SDB [15] were used to evaluate the labels for all sites. As the
ICESAT-2 data for 2018 and 2021 are available for the Bahamian site, an SDB was created
from the same image in Table 1 based on a 7:3 split using three approaches—spatial,
random and temporal [45]. In addition, Kd photosynthetically active radiation (PAR) and
seabed PAR dataset for 2005–2009 by the European Marine Observation and Data Network
(EMODnet) are available at the Wadden Sea site to assess light penetration into the water
column [49]. Other than the image-based SDB method, these auxiliary datasets were not
of the same time period as the images, as the images were pre-selected, as described in
Section 2.1. A comparison of depth values between classes using the Welch’s unequal
variance t-test was performed in R version 4.1.0 [50]. The choice of a continuous instead
of a binary optically deep-optically shallow comparison was because the binary requires
a photointerpretation of the depth to the class labels in the image (s). That would have
defeated the purpose of this calibration. However, the combined analysis from all these
datasets showed that the vectors were reasonably placed to detect and label pixels as
optically deep and optically shallow (Figure 3) given their very significantly different group
means (all p values < 0.001). Nonetheless, a single depth threshold is insufficient as a
blanket cut-off across a single image, as seen by some overlaps in bathymetry depth values
between the optically deep and optically shallow vectors. This is especially valid for the
coarser resolution of the ETOPO1, GEBCO and EMODnet dataset. Nonetheless, most sites
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do not have an overlap in the interquartile ranges except for Tanzania (Figure 3), these line
vectors are deemed sufficient for use in this study. The reader is directed to Appendix A
Table A1 for the p values of all test combinations.
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Figure 3. Boxplots of the various bathymetric (m) and PAR (mol photon m−2 d−1) datasets with
respect to the optically deep and optically shallow vector labels, namely, the ETOPO1 Global Arc-
Minute Elevation (ETOPO), the General Bathymetric Chart of the Oceans (GEBCO), a Sentinel-2
image-based satellite derived bathymetry (SDB) based on [15], the ICESAT2 derived SDB based
on [45] using a pooled ICESAT2 data that was spatially split (ICESAT-S), randomly split (ICESAT-R)
and temporally split (ICESAT-T), as well as the European Marine Observation and Data Network
dataset for Kd PAR (EMODnet-K) and seabed PAR (EMODnet-S).

A 7:3 training–validation data (training data—TD, validation data—VD) split of the
vector dataset was performed for the subsequent k-fold cross-validation, where k = 10 as
commonly used in literature [51] and based on the GEE seeds 0 to 9 in the randomColumn
function. The same images were used as the optically deep–shallow boundary was observed
to have marginal temporal shifts owing to slightly temporally different environments.
Subsequently, this small border shift might affect the ends of drawn transects and contribute
to the mislabelling of border pixels, which are crucial for determining the threshold between
the two optical classes.

Six indices were compared in this study—the three 1-2-3 false colour HSV bands and
the band ratios B1/B2, B1/B3 and B2/B3 (Figures 4 and 5). B1, B2 and B3 were selected as
they have the best penetration, which means that they are more likely to pick up the bottom
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signal at deeper depths than the other bands, such as B4, which attenuates fast [8,52]. A
3 × 3 low pass filter was used to smoothen the image before the transformations.
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Figure 5. S2 L2A Bottom-of-Atmospheric true colour RGB image (left) with the band indices in
greyscale (right).

For the HSV bands, the rgbToHsv function was used to transform the 1-2-3 false colour
image to obtain its HSV components as seen in Figures 4 and 5. This function in GEE is
based on Java’s Color: RGBtoHSB function, which is normalised to a scale between 0 and 1
as well as based on standard HSV transformation algorithms [28,29]:

∆ = Cmax− Cmin (1)

Saturation =

{
0 , Cmax = 0

∆
Cmax , Cmax 6= 0

(2)

Hue =



0 , ∆ = 0
1
6 ×

(
G−B

∆

)
, Cmax = R, G > B

1− 1
6 ×

(
G−B

∆

)
, Cmax = R, G < B

1
3 + 1

6 ×
(

B−R
∆

)
, Cmax = G

2
3 + 1

6 ×
(

R−G
∆

)
, Cmax = B

(3)

Value =

{
Cmax , Cmax < 1
1 , Cmax ≥ 1

(4)
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The band ratios are an extension of Lyzenga’s relative depth index [18,23,24]. While
many studies employed log-transformed band ratios [20,43], the transformation is not
required for the purpose of a simple thresholding. The simple band ratio calculation was
applied to the smoothened image to obtain the band ratio indices as seen in Figures 4 and 5.
Given only the three sets of band ratio combinations, all band ratios were tested instead
of using an optimised approach. Unlike the HSV bands, the ranges are not normalised
and instead are arbitrarily capped between −10 and 10 to mitigate very large pixel values
arising from divisions involving a very small denominator (Figure 6).
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Figure 6. Spectral profile box plots of the two classes in the Bahamas derived from Sentinel-2 L1C (A) and
L2A (B) image for all spectral bands as well as band indices. H denotes hue, S denotes saturation and
V denotes value.

2.4. Deep Water Extraction

Using only the training dataset, the thresholds of HSV bands and band ratios were
set according to Table 2. The unsupervised method was chosen as the difference in pixel
values between the optically deep and shallow pixels (Figure 6), as well as a reported steep
chromocline in the MODIS true colour hue at ~25 m [6], seemed similar to the difference in
MNDWI values between land and water pixels [46]. Subsequently, the connectedPixelcount
function was used to create clusters based on a four-connected pixel connectivity. Clusters
of less than 100 pixels were then identified and masked out to reduce noise. This is to
mitigate the “salt-and-pepper” commissioning of deep aquatic vegetation onto the deep
water regions [17].



Remote Sens. 2022, 14, 590 9 of 21

Table 2. List of thresholding methods.

Method Name Description

Best OA Supervised; Corresponding threshold to the best possible
resubstitution Overall accuracy (OA)

Cross PAUA
Supervised; Corresponding threshold to the minimum sum of

difference between Producer’s accuracy (PA) and User’s accuracy
(UA) for both classes, based on the resubstitution error matrix

Otsu Unsupervised; Adaptive threshold using the Otsu’s threshold and
Canny Edge detection on an index [46]

2.5. Validation

Using the validation dataset of each k-fold, the overall accuracy (OA), F1 score (F1)
and the Matthews correlation coefficient (MCC) were calculated. The former two metrics
are commonly used in remote sensing, while the latter is recommended for evaluating
binary classifications [53].

Given class i, the equation to derive the class-specific F1 score is:

F1i =
2× PAi ×UAi

PAi + UAi
(5)

As the class of greater importance for a deep water mask is the shallow water class,
the F1 score for the shallow water class is used for comparison.

By assuming that the two-class error matrix is similar to a standard statistical error
matrix, we can relate both matrices together as seen in the table below (Table 3).

Table 3. Framework of a standard two-class statistical error matrix.

Actual

Class 1 Class 2

Predicted
Class 1 True positive (TP) False positive (FP)
Class 2 False negative (FN) True Negative (TN)

MCC is a binary metric that equally weighs both classes and thus only achieves high
scores when both are correctly predicted. It ranges from −1 to 1, with 0 as an outcome
that is equivalent to chance [53]. By assuming that class 1 represents positive and class 2
represents negative, the MCC can be easily transferred to a two-class classification. Thus,
the MCC equation is:

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(6)

In the monoclass outcomes, MCC faces a potential issue whereby the denominator
might be zero and in turn result in an undefined outcome. For such cases, the partial
sums in denominator that sum to zero are substituted with a small arbitrary value [53],
thus avoiding the outcome. Regardless of either monoclass outcome, MCC would be zero
instead of undefined.

In consideration of the different k-fold validation results, the mean and 95% confidence
interval for each metric were then calculated in R version 4.1.0 [50] and compared across
the various methods.

3. Results
3.1. Performance Comparison between Band Indices

The performances for the Sentinel-2 L1C products are generally similar to that of their
L2A counterparts, except that the saturation is the most consistent band for the former and
hue for the latter. While saturation was minimally on par with the second-best site-specific
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band ratio for the L1C product, hue performed the best most of the time for the L2A product
(Figures 7 and 8). The best band index had large overlaps in 95% confidence intervals with
other band indices, except for the L1C product in the Bahamas, where the best index B1/B2
had a non-overlapping 95% confidence interval with the second-best band index, hue.
Meanwhile, the band ratios were more site-specific. For brevity, only the L1C classification
maps are displayed and readers are referred to the Appendix A Figures A1–A4 for the L2A
classification maps.
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Figure 8. Mean and 95% confidence interval of the overall accuracy (OA), the F1 score for the shallow
water class and the Matthews correlation coefficient (MCC) over four single scene Sentinel-2 L2A
images, six band indices and three threshold methods. The y-axis range for MCC is between −1 and
1, unlike the OA and F1. For a tabular version, readers are directed to the Appendix A Tables A5–A7.

The optimal waters of the Bahamas allowed all bands to perform quantitatively well,
even for values whose metrics outperformed saturation in the L1C product but had a
worse classification map (Figure 9). The B1/B2 band ratio performed best in these clear
waters, too, with the Cross PAUA method achieving a mean OA of 0.98 ± 0.00 and the Best
OA method of 0.99 ± 0.00 for the L1C product, in comparison with its relatively worse
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performance among the band ratios in all other sites with their less optimal environmental
conditions. Nonetheless, B1/B2 had the best classification map here with the least under-
or overcommission.
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better than the Best OA method, its Hue map was strongly inversed, albeit with some errors. 

Figure 9. S2 L1C Top-of-Atmosphere true colour RGB image of the Bahamas with the deep-water-
masked images using the Best OA method of the different band indices. Dark blue denotes optically
deep waters and light blue denotes optically shallow waters. Only the B2/B3 band preserved this
area, at the cost of retaining the sunglinted waters in the east.

In the more turbid waters of the Caspian Sea and Wadden Sea, the B2/B3 band ratio
was the best band combination (Figures 10 and 11). There is a contrasting quantitative
performance between hue and saturation for both products using the Cross PAUA method,
which translated into an inversed map (Figure 11). This is reflected in the very low OA
and F1 scores and most evidently in the highly negative MCC scores (Figures 7 and 8),
suggesting that the MCC can better highlight potential inversion with a lack of relationship
at 0 instead of 50. In particular, the lack of an inversed map for the Best OA method
(Figure 10) when compared to the cross PAUA method suggests that minimising estimation
errors during training would produce better results than merely focusing on the best
overall accuracy.
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Figure 10. S2 L1C Top-of-Atmosphere true colour RGB image of the Caspian Sea with the deep-water-
masked images using the Best OA method of the different band indices. Dark blue denotes optically
deep waters and light blue denotes optically shallow waters. The red arrow points to the shallow
areas that are easily omitted. While the Cross PAUA method did not perform quantitatively better
than the Best OA method, its Hue map was strongly inversed, albeit with some errors.
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the Cross PAUA method has an edge when considering the inversed maps as shown in 
Section 3.1, the Best OA method allows for other bands to produce a consistently better 
mean OA in almost all sites. 

Figure 11. S2 L1C Top-of-Atmosphere true colour RGB image of the Wadden Sea with the deep-
water-masked images using the Cross PAUA method of the different band indices. Dark blue denotes
optically deep waters and light blue denotes optically shallow waters. Notice that the hue-masked
image is inverted and thus scored very low in the accuracy metrics (Figure 7).

In the sunglinted waters of Tanzania, the B2/B3 band ratio was the best for the L1C
product with a mean OA of 0.81 ± 0.04 using the best OA method, while saturation had a
corresponding value of 0.77 ± 0.04. For the L2A product, hue was the best at 0.87 ± 0.03
using the best OA method while the B1/B3 band ratio was the best band ratio at 0.87 ± 0.03
by preserving more shallow water pixels than the B2/B3 band ratio. Notably, the sunglint
and Sentinel-2 parallax effect posed a challenge, with noise in the eastern waters in the
B1/B3 band ratio as well as saturation and distinct overcommission of sunglinted pixels
along the parallax strips in the other indices (Figure 12). This parallax effect is also subtly
present in the Bahamas, such as the diagonal noise patterns in the B2/B3 band ratio
classification map (Figure 9).
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Figure 12. S2 L1C Top-of-Atmosphere true colour RGB image of Tanzania with the deep-water-
masked images using the Best OA method of the different band indices. Dark blue denotes optically
deep waters and light blue denotes optically shallow waters. The red arrow points to a challenging
shallow area that is susceptible to omission. Only the B2/B3 band preserved this area, at the cost
of retaining the sunglinted waters in the east. The Sentinel-2 parallax effect striping is particularly
apparent in this image.
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3.2. Performance Comparison between Threshold Methods

The Best OA and Cross PAUA method had similar performances of mean OA that
were usually above 0.70, and their recommended threshold values are very close. While
the Cross PAUA method has an edge when considering the inversed maps as shown in
Section 3.1, the Best OA method allows for other bands to produce a consistently better
mean OA in almost all sites.

Comparatively, more of the unsupervised method’s mean OA scores were below 0.80.
As an unsupervised method, the Otsu’s selected threshold remained constant throughout
the k-fold. Yet, it yielded larger errors of margin for the confidence intervals of the various
metrics than the corresponding results of the Best OA and Cross PAUA in the Wadden Sea
(Figure 7). While this implies that the k-fold is successful in producing different training
and validation datasets, the unsuitability of the Otsu’s method for these spectral indices is
also highly evident.

4. Discussion

This study explores the potential of using different spectral features from another
colour space to differentiate between optically deep and optically shallow waters. This is
less commonly looked into since many studies are generally focused at shallower depths
to reduce or avoid uncertainty errors [26,27]. As purely spectral methods, the band ratios
and false colour HSV-transformed bands provide a user-friendly option to mask out deep
waters.

4.1. Atmospheric Correction and Its Interaction with HSV

Interestingly, no additional atmospheric or water column correction is required be-
fore the masking process. This is atypical for coastal remote sensing [3] but not without
precedent [16,45]. On the other hand, the lack of atmospheric correction would lead to a
classification that is more susceptible to environmental conditions. Sunglinted and turbid
pixels as well as pixels lying in the brighter parallax stripes might introduce underes-
timations in depth [6,54]. Furthermore, the parallax effect is especially apparent over
the non-Lambertian sea surface [54], and some noise is currently recalcitrant despite a
morphological filter. Thus, this study is not advocating for disregarding atmospheric cor-
rection altogether. Regardless, this approach is transferable to other sites, since the optical
properties of water are generally similar in the tropical and temperate coastal aquatic
regions [55].

The finding that the bottom of atmosphere L2A images work better with hue might
explain the prominence of true colour hue in ocean colours of different sensors [6,37,56]
over saturation. Many of these studies are more interested in the water colour or water
column signals, while our study is on the substratum or benthic seabed signal. Thus, this
suggests possibilities in form of alternative band combinations that are suitable for different
purposes or even in different types of aquatic environments such as rivers.

4.2. Comparison with Systematic Optimisation

Since this study showed that different band pairs perform best at different sites, it
would logically follow that a systematic optimisation approach such as OBRA, MODPA or
SMART-SDB would provide competitive performances. This is in line with Lee et al. [16],
who found that the Rrs of shallow waters are governed by multiple variables and no single
band ratio can account for all these variations. However, owing to a lack of normalisation
and the potential for overcorrection to produce extreme values, the dynamic ranges of band
ratios need to be managed. The computational demand might be greater if the optimisation
search algorithm is iterative and reliant on the range itself [29]. Regardless, the optimisation
approaches are still available to users.
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4.3. Thresholding

While the boundary between both classes might not align with the bathymetric con-
tours, owing to possible heterogeneity across the images as well as between different seabed
covers [57], the supervised methods proved its possibility. Unfortunately, the selected un-
supervised method was not compatible with this application. Beyond Otsu’s method,
alternative possibilities could be explored, such as the recent development of a transferable
SDB approach based on multitemporal compositing and a semi-analytical model that is
currently restricted to clearer waters [15], feature subspace methods to separate between
different spectral clusters before applying spectral models to obtain the classification [26,45],
other adaptive threshold techniques, as well as object-based image analysis [7,58]. The
development on another suitable automated thresholding approach would greatly assist
this HSV approach and other indices.

5. Conclusions

While an uncommon approach, hue has been previously established to identify dif-
ferent optical water types, as well as vertical variations in the water column. The current
usage relies on original or reconstructed true colour images from remote sensing reflectance.
In comparison, this study showed the viability of a 1-2-3 false colour-derived saturation
and hue band to separate the optically deep and shallow waters in Sentinel-2 L1C and
L2A images, respectively, over four wide-ranging tropical and temperate water quality
environments without any additional atmospheric correction or bathymetry data.

Both the band ratios and 1-2-3 false colour HSV bands were able to separate optically
deep and shallow waters using a supervised threshold. While some of the band ratios
might have a slightly better performance quantitatively than the HSV bands, their individ-
ual performances are highly reliant on the water quality and, by extension, location. In
comparison, the hue and saturation bands have a greater tolerance to more water types and
are easily transferable to other sites or regions with minimal finetuning. Therefore, they
show more consistency in performance and do not require optimisation. The current lack
of an unsupervised adaptive threshold necessitates additional experimentation to improve
its automation, scalability and effectiveness. GEE offers a computationally efficient envi-
ronment for application and scalability of the HSV features across a wide range of spatial
scales and coastal aquatic remote sensing applications using open and dense satellite time
series, including turbidity and SDB estimations, and benthic habitat mapping.
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Appendix A

Table A1. Welch’s test p-value in scientific form showing difference in group means between optically
deep and optically shallow classes over four single scene Sentinel-2 images. The results for the
L1C and L2A products are highly similar. The greyed cells indicate an absence of valid data for
the site. ETOPO—ETOPO1 Global Arc-Minute Elevation, GEBCO—the General Bathymetric Chart
of the Oceans, SDB—Sentinel-2 image-based satellite derived bathymetry based on [18], the I-S—
ICESAT2 derived SDB based on [51] using a pooled ICESAT2 data that was spatially split, I-S ICESAT2
which data was randomly split, I-S—ICESAT2 which data was temporally split (ICESAT-T), E-K—
the European Marine Observation and Data Network dataset for Kd PAR (EMODnet-K), E-S—the
EMODnet dataset for seabed PAR (EMODnet-S).

Site ETOPO GEBCO SDB I-S I-R I-T E-K E-S
Bahamas 2.8 × 10−13 2.2 × 10−16 2.2 × 10−16 2.2 × 10−16 2.2 × 10−16 2.2 × 10−16

Caspian Sea 3.1 × 10−6 2.2 × 10−16 2.2 × 10−16

Tanzania 2.7 × 10−4 1.1 × 10−11 2.2 × 10−16

Wadden Sea 2.2 × 10−16 2.2 × 10−16 2.2 × 10−16 2.2 × 10−16 2.2 × 10−16

Table A2. Mean and 95% confidence interval of the overall accuracy (OA) over four single scene
Sentinel-2 L1C images, six band indices and three threshold methods, to 2 decimal places. CP—Cross
PAUA, BO—Best OA, Otsu—unsupervised Otsu’s threshold.

Site Threshold Type B1B2 B1B3 B2B3 Hue Saturation Value

Bahamas
CP 0.98 ± 0.00 0.92 ± 0.01 0.82 ± 0.02 0.93 ± 0.02 0.92 ± 0.01 0.95 ± 0.03
BA 0.99 ± 0.00 0.93 ± 0.01 0.88 ± 0.02 0.94 ± 0.01 0.93 ± 0.01 0.95 ± 0.02

Otsu 0.79 ± 0.04 0.70 ± 0.04 0.68 ± 0.05 0.50 ± 0.07 0.70 ± 0.05 0.49 ± 0.07

Caspian
Sea

CP 0.61 ± 0.05 0.71 ± 0.06 0.79 ± 0.05 0.16 ± 0.04 0.71 ± 0.06 0.56 ± 0.05
BA 0.59 ± 0.06 0.77 ± 0.06 0.77 ± 0.05 0.43 ± 0.04 0.77 ± 0.06 0.50 ± 0.06

Otsu 0.59 ± 0.05 0.66 ± 0.04 NA ± NA 0.50 ± 0.07 0.62 ± 0.04 NA ± NA

Tanzania
CP 0.74 ± 0.05 0.78 ± 0.04 0.79 ± 0.05 0.45 ± 0.05 0.78 ± 0.04 0.62 ± 0.08
BA 0.77 ± 0.07 0.79 ± 0.04 0.81 ± 0.04 0.51 ± 0.10 0.79 ± 0.04 0.57 ± 0.07

Otsu 0.82 ± 0.04 0.76 ± 0.04 0.79 ± 0.04 0.59 ± 0.08 0.86 ± 0.04 NA ± NA

Wadden
Sea

CP 0.90 ± 0.03 0.94 ± 0.02 0.94 ± 0.02 0.08 ± 0.02 0.93 ± 0.02 0.85 ± 0.02
BA 0.91 ± 0.02 0.92 ± 0.02 0.93 ± 0.02 0.45 ± 0.04 0.93 ± 0.02 0.86 ± 0.03

Otsu 0.56 ± 0.06 0.89 ± 0.04 0.91 ± 0.04 0.52 ± 0.05 0.89 ± 0.03 NA ± NA

Table A3. Mean and 95% confidence interval of the F1 score for the shallow water class over four
single scene Sentinel-2 L1C images, six band indices and three threshold methods, to 2 decimal places.
CP—Cross PAUA, BO—Best OA, Otsu—unsupervised Otsu’s threshold.

Site Threshold Type B1B2 B1B3 B2B3 Hue Saturation Value

Bahamas
CP 0.98 ± 0.01 0.92 ± 0.02 0.82 ± 0.03 0.93 ± 0.02 0.92 ± 0.02 0.95 ± 0.03
BA 0.99 ± 0.00 0.93 ± 0.01 0.87 ± 0.02 0.94 ± 0.01 0.93 ± 0.01 0.95 ± 0.02

Otsu 0.74 ± 0.02 0.59 ± 0.04 0.55 ± 0.05 0.07 ± 0.01 0.58 ± 0.05 0.00 ± 0.00

Caspian
Sea

CP 0.60 ± 0.07 0.71 ± 0.06 0.79 ± 0.04 0.14 ± 0.03 0.71 ± 0.06 0.55 ± 0.07
BA 0.63 ± 0.08 0.79 ± 0.06 0.79 ± 0.04 0.28 ± 0.16 0.79 ± 0.06 0.44 ± 0.13

Otsu 0.47 ± 0.07 0.56 ± 0.07 NA ± NA 0.08 ± 0.03 0.43 ± 0.08 NA ± NA

Tanzania
CP 0.74 ± 0.05 0.77 ± 0.05 0.78 ± 0.05 0.44 ± 0.04 0.77 ± 0.05 0.65 ± 0.06
BA 0.74 ± 0.06 0.77 ± 0.04 0.80 ± 0.04 0.43 ± 0.04 0.77 ± 0.04 0.58 ± 0.03

Otsu 0.78 ± 0.03 0.76 ± 0.05 0.78 ± 0.05 0.19 ± 0.02 0.82 ± 0.03 NA ± NA

Wadden
Sea

CP 0.89 ± 0.04 0.93 ± 0.03 0.94 ± 0.03 0.09 ± 0.04 0.93 ± 0.03 0.83 ± 0.02
BA 0.90 ± 0.03 0.92 ± 0.02 0.92 ± 0.03 0.24 ± 0.18 0.92 ± 0.02 0.85 ± 0.02

Otsu 0.17 ± 0.06 0.89 ± 0.04 0.91 ± 0.04 0.03 ± 0.03 0.86 ± 0.04 NA ± NA
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Table A4. Mean and 95% confidence interval of the Matthews correlation coefficient (MCC) over
four single scene Sentinel-2 L1C images, six band indices and three threshold methods, to 2 decimal
places. CP—Cross PAUA, BO—Best OA, Otsu—unsupervised Otsu’s threshold.

Site Threshold Type B1B2 B1B3 B2B3 Hue Saturation Value

Bahamas
CP 0.96 ± 0.01 0.84 ± 0.02 0.65 ± 0.04 0.85 ± 0.03 0.84 ± 0.02 0.89 ± 0.05
BA 0.97 ± 0.00 0.87 ± 0.02 0.77 ± 0.04 0.89 ± 0.02 0.87 ± 0.02 0.90 ± 0.04

Otsu 0.64 ± 0.04 0.51 ± 0.04 0.48 ± 0.05 0.13 ± 0.02 0.50 ± 0.05 0.00 ± 0.00

Caspian
Sea

CP 0.25 ± 0.13 0.44 ± 0.12 0.60 ± 0.09 −0.68 ± 0.07 0.44 ± 0.12 0.13 ± 0.12
BA 0.19 ± 0.12 0.56 ± 0.12 0.57 ± 0.08 0.08 ± 0.04 0.56 ± 0.12 0.08 ± 0.08

Otsu 0.23 ± 0.11 0.37 ± 0.09 NA ± NA 0.14 ± 0.03 0.33 ± 0.07 NA ± NA

Tanzania
CP 0.48 ± 0.09 0.56 ± 0.09 0.57 ± 0.09 −0.06 ± 0.10 0.55 ± 0.09 0.27 ± 0.13
BA 0.57 ± 0.08 0.57 ± 0.08 0.60 ± 0.08 0.21 ± 0.10 0.57 ± 0.08 0.19 ± 0.11

Otsu 0.63 ± 0.05 0.52 ± 0.10 0.57 ± 0.09 0.24 ± 0.03 0.71 ± 0.05 NA ± NA

Wadden
Sea

CP 0.82 ± 0.05 0.87 ± 0.04 0.89 ± 0.04 −0.85 ± 0.03 0.87 ± 0.04 0.70 ± 0.04
BA 0.82 ± 0.04 0.85 ± 0.03 0.86 ± 0.03 −0.01 ± 0.03 0.85 ± 0.03 0.71 ± 0.05

Otsu 0.22 ± 0.05 0.8 ± 0.07 0.84 ± 0.07 0.06 ± 0.05 0.79 ± 0.05 NA ± NA

Table A5. Mean and 95% confidence interval of the overall accuracy (OA) over four single scene
Sentinel-2 L2A images, six band indices and three threshold methods, to 2 decimal places. CP—Cross
PAUA, BO—Best OA, Otsu—unsupervised Otsu’s threshold.

Site Threshold Type B1B2 B1B3 B2B3 Hue Saturation Value

Bahamas
CP 0.96 ± 0.01 0.89 ± 0.02 0.80 ± 0.02 0.98 ± 0.01 0.88 ± 0.02 0.93 ± 0.03
BA 0.97 ± 0.00 0.90 ± 0.02 0.84 ± 0.02 0.98 ± 0.00 0.89 ± 0.02 0.95 ± 0.02

Otsu 0.96 ± 0.01 0.82 ± 0.04 0.48 ± 0.06 0.53 ± 0.07 0.76 ± 0.04 0.48 ± 0.07

Caspian
Sea

CP 0.65 ± 0.06 0.85 ± 0.04 0.91 ± 0.02 0.91 ± 0.02 0.35 ± 0.05 0.66 ± 0.05
BA 0.61 ± 0.05 0.84 ± 0.03 0.91 ± 0.02 0.91 ± 0.02 0.38 ± 0.05 0.65 ± 0.06

Otsu 0.54 ± 0.06 0.60 ± 0.06 0.52 ± 0.07 0.49 ± 0.07 0.39 ± 0.06 NA ± NA

Tanzania
CP 0.82 ± 0.03 0.84 ± 0.04 0.81 ± 0.04 0.85 ± 0.04 0.47 ± 0.06 0.67 ± 0.07
BA 0.81 ± 0.04 0.87 ± 0.03 0.85 ± 0.04 0.87 ± 0.03 0.50 ± 0.07 0.79 ± 0.04

Otsu 0.47 ± 0.08 0.61 ± 0.05 0.57 ± 0.05 0.83 ± 0.03 0.52 ± 0.05 0.54 ± 0.09

Wadden
Sea

CP 0.85 ± 0.04 0.88 ± 0.03 0.92 ± 0.01 0.93 ± 0.01 0.13 ± 0.03 0.93 ± 0.02
BA 0.87 ± 0.04 0.90 ± 0.04 0.93 ± 0.02 0.93 ± 0.01 0.44 ± 0.04 0.93 ± 0.03

Otsu 0.50 ± 0.05 0.69 ± 0.05 0.79 ± 0.05 0.84 ± 0.05 0.13 ± 0.04 NA ± NA

Table A6. Mean and 95% confidence interval of the F1 score for the shallow water class over four
single scene Sentinel-2 L2A images, six band indices and three threshold methods, to 2 decimal places.
CP—Cross PAUA, BO—Best OA, Otsu—unsupervised Otsu’s threshold.

Site Threshold Type B1B2 B1B3 B2B3 Hue Saturation Value

Bahamas
CP 0.96 ± 0.01 0.89 ± 0.02 0.80 ± 0.03 0.97 ± 0.01 0.88 ± 0.02 0.94 ± 0.03
BA 0.97 ± 0.01 0.90 ± 0.01 0.82 ± 0.02 0.98 ± 0.00 0.88 ± 0.01 0.95 ± 0.02

Otsu 0.96 ± 0.02 0.83 ± 0.04 0.65 ± 0.06 0.17 ± 0.02 0.70 ± 0.03 0.00 ± 0.00

Caspian
Sea

CP 0.63 ± 0.09 0.84 ± 0.04 0.91 ± 0.03 0.90 ± 0.03 0.37 ± 0.06 0.65 ± 0.07
BA 0.60 ± 0.07 0.84 ± 0.04 0.91 ± 0.03 0.91 ± 0.02 0.19 ± 0.15 0.70 ± 0.07

Otsu 0.68 ± 0.06 0.72 ± 0.06 0.68 ± 0.06 0.01 ± 0.00 0.45 ± 0.06 NA ± NA

Tanzania
CP 0.80 ± 0.04 0.83 ± 0.05 0.80 ± 0.05 0.84 ± 0.05 0.47 ± 0.03 0.69 ± 0.06
BA 0.79 ± 0.05 0.85 ± 0.03 0.82 ± 0.05 0.85 ± 0.04 0.58 ± 0.10 0.75 ± 0.04

Otsu 0.62 ± 0.08 0.68 ± 0.06 0.66 ± 0.06 0.75 ± 0.03 0.58 ± 0.05 0.00 ± 0.00

Wadden
Sea

CP 0.84 ± 0.04 0.88 ± 0.03 0.91 ± 0.02 0.92 ± 0.02 0.12 ± 0.05 0.92 ± 0.03
BA 0.87 ± 0.05 0.90 ± 0.04 0.93 ± 0.02 0.92 ± 0.02 0.30 ± 0.19 0.92 ± 0.04

Otsu 0.66 ± 0.05 0.76 ± 0.05 0.82 ± 0.05 0.86 ± 0.05 0.06 ± 0.03 NA ± NA
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Table A7. Mean and 95% confidence interval of the Matthews correlation coefficient (MCC) over
four single scene Sentinel-2 L2A images, six band indices and three threshold methods, to 2 decimal
places. CP—Cross PAUA, BO—Best OA, Otsu—unsupervised Otsu’s threshold.

Site Threshold Type B1B2 B1B3 B2B3 Hue Saturation Value

Bahamas
CP 0.93 ± 0.02 0.78 ± 0.03 0.61 ± 0.04 0.95 ± 0.01 0.76 ± 0.03 0.86 ± 0.06
BA 0.93 ± 0.01 0.81 ± 0.03 0.70 ± 0.03 0.95 ± 0.01 0.78 ± 0.03 0.90 ± 0.03

Otsu 0.92 ± 0.02 0.65 ± 0.06 −0.16 ± 0.02 0.21 ± 0.02 0.60 ± 0.04 0.00 ± 0.00

Caspian
Sea

CP 0.33 ± 0.13 0.70 ± 0.07 0.82 ± 0.05 0.81 ± 0.05 −0.29 ± 0.12 0.34 ± 0.12
BA 0.25 ± 0.11 0.69 ± 0.06 0.82 ± 0.04 0.82 ± 0.04 −0.09 ± 0.11 0.31 ± 0.12

Otsu 0.09 ± 0.08 0.26 ± 0.12 0.00 ± 0.00 0.05 ± 0.01 −0.25 ± 0.12 NA ± NA

Tanzania
CP 0.64 ± 0.05 0.67 ± 0.08 0.61 ± 0.10 0.70 ± 0.08 −0.05 ± 0.13 0.36 ± 0.13
BA 0.62 ± 0.06 0.72 ± 0.07 0.68 ± 0.08 0.73 ± 0.07 0.09 ± 0.16 0.59 ± 0.05

Otsu 0.06 ± 0.03 0.29 ± 0.11 0.19 ± 0.12 0.66 ± 0.03 0.03 ± 0.14 0.00 ± 0.00

Wadden
Sea

CP 0.72 ± 0.06 0.78 ± 0.05 0.84 ± 0.02 0.85 ± 0.02 −0.74 ± 0.06 0.86 ± 0.04
BA 0.75 ± 0.07 0.82 ± 0.07 0.86 ± 0.03 0.86 ± 0.03 −0.01 ± 0.01 0.86 ± 0.05

Otsu 0.08 ± 0.03 0.49 ± 0.06 0.65 ± 0.08 0.72 ± 0.07 −0.75 ± 0.06 NA ± NA
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Figure A1. S2 L2A Surface reflectance true colour RGB image of the Bahamas with the deep-water-
masked images using the Best OA method of the different band indices. Dark blue denotes optically
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Figure A3. S2 L2A Surface reflectance true colour RGB image of the Wadden Sea with deep-water-
masked images using the Cross PAUA method of the different band indices. Dark blue denotes
optically deep waters and light blue denotes optically shallow waters. Notice that the saturation-
masked image is inverted and thus scored very badly in the accuracy metrics (Main text Figure 8).
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Figure A4. S2 L2A Surface reflectance true colour RGB image of Tanzania with deep-water-masked
images using the Best OA method of the different band indices. Dark blue denotes optically deep
waters and light blue denotes optically shallow waters. The red arrow points to a challenging shallow
area that is susceptible to omission. The B2/B3 band had the least omission in this region, at the
cost of commissioning some sunglinted pixels in the east. The Sentinel-2 parallax effect striping is
particularly apparent in this image.

References
1. Duffy, J.; Benedetti-Cecchi, L.; Trinanes, J.; Muller-Karger, F.; Ambo-Rappe, R.; Boström, C.; Buschmann, A.; Byrnes, J.E.; Coles, R.;

Creed, J.; et al. Toward a coordinated global observing system for marine macrophytes. Front. Mar. Sci. 2019, 6, 1–26. [CrossRef]
2. Dunic, J.C.; Brown, C.J.; Connolly, R.M.; Turschwell, M.P.; Côté, I.M. Long-term declines and recovery of meadow area across the

world’s seagrass bioregions. Glob. Change Biol. 2021, 27, 4096–4109. [CrossRef] [PubMed]
3. Phinn, S.; Roelfsema, C.; Kovacs, E.; Canto, R.; Lyons, M.; Saunders, M.; Maxwell, P. Mapping, Monitoring and Modelling

Seagrass Using Remote Sensing Techniques. In Seagrasses of Australia; Springer: Berlin/Heidelberg, Germany, 2018; pp. 445–487.
4. Jay, S.; Guillaume, M.; Minghelli, A.; Deville, Y.; Chami, M.; Lafrance, B.; Serfaty, V. Hyperspectral remote sensing of shallow

waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance.
Remote Sens. Environ. 2017, 200, 352–367. [CrossRef]

5. Brando, V.E.; Anstee, J.M.; Wettle, M.; Dekker, A.G.; Phinn, S.R.; Roelfsema, C. A physics based retrieval and quality assessment
of bathymetry from suboptimal hyperspectral data. Remote Sens. Environ. 2009, 113, 755–770. [CrossRef]

6. Lee, Z.; Shang, S.; Li, Y.; Luis, K.; Dai, M.; Wang, Y. Three-Dimensional Variation in Light Quality in the Upper Water Column
Revealed With a Single Parameter. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [CrossRef]

7. Topouzelis, K.; Makri, D.; Stoupas, N.; Papakonstantinou, A.; Katsanevakis, S. Seagrass mapping in Greek territorial waters using
Landsat-8 satellite images. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 98–113. [CrossRef]

http://doi.org/10.3389/fmars.2019.00317
http://doi.org/10.1111/gcb.15684
http://www.ncbi.nlm.nih.gov/pubmed/33993580
http://doi.org/10.1016/j.rse.2017.08.020
http://doi.org/10.1016/j.rse.2008.12.003
http://doi.org/10.1109/TGRS.2021.3093014
http://doi.org/10.1016/j.jag.2017.12.013


Remote Sens. 2022, 14, 590 20 of 21

8. Li, J.; Fabina, N.S.; Knapp, D.E.; Asner, G.P. The Sensitivity of Multi-spectral Satellite Sensors to Benthic Habitat Change. Remote
Sens. 2020, 12, 532. [CrossRef]

9. Petit, T.; Bajjouk, T.; Mouquet, P.; Rochette, S.; Vozel, B.; Delacourt, C. Hyperspectral remote sensing of coral reefs by semi-
analytical model inversion–Comparison of different inversion setups. Remote Sens. Environ. 2017, 190, 348–365. [CrossRef]

10. Li, J.; Knapp, D.E.; Schill, S.R.; Roelfsema, C.; Phinn, S.; Silman, M.; Mascaro, J.; Asner, G.P. Adaptive bathymetry estimation for
shallow coastal waters using Planet Dove satellites. Remote Sens. Environ. 2019, 232, 111302. [CrossRef]

11. Rowan, G.S.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists. Remote Sens. 2021,
13, 623. [CrossRef]

12. Coffer, M.M.; Schaeffer, B.A.; Zimmerman, R.C.; Hill, V.; Li, J.; Islam, K.A.; Whitman, P.J. Performance across WorldView-2 and
RapidEye for reproducible seagrass mapping. Remote Sens. Environ. 2020, 250, 112036. [CrossRef] [PubMed]

13. Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating Satellite-Derived Bathymetry (SDB) with
the Google Earth Engine and Sentinel-2. Remote Sens. 2018, 10, 859. [CrossRef]

14. Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-Scale Seagrass Mapping
and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sens. 2018, 10,
1227. [CrossRef]

15. Li, J.; Knapp, D.E.; Lyons, M.; Roelfsema, C.; Phinn, S.; Schill, S.R.; Asner, G.P. Automated Global Shallow Water Bathymetry
Mapping Using Google Earth Engine. Remote Sens. 2021, 13, 1469. [CrossRef]

16. Lee, Z.; Shangguan, M.; Garcia, R.A.; Lai, W.; Lu, X.; Wang, J.; Yan, X. Confidence Measure of the Shallow-Water Bathymetry Map
Obtained through the Fusion of Lidar and Multiband Image Data. J. Remote Sens. 2021, 2021, 16. [CrossRef]

17. Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N. Mapping coastal marine habitats and delineating the deep limits of the
Neptune’s seagrass meadows using very high resolution Earth observation data. Int. J. Remote Sens. 2018, 39, 8670–8687.
[CrossRef]

18. Lyzenga, D.R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and
Landsat data. Int. J. Remote Sens. 1981, 2, 71–82. [CrossRef]

19. Astuty, I.S.; Wicaksono, P. Seagrass species composition and above-ground carbon stock mapping in Parang Island using
Planetscope image. In Proceedings of the Sixth Geoinformation Science Symposium, Yogyakarta, Indonesia, 21 November 2019;
p. 1131103.

20. Legleiter, C.J.; Roberts, D.A.; Lawrence, R.L. Spectrally based remote sensing of river bathymetry. Earth Surf. Processes Landf. 2009,
34, 1039–1059. [CrossRef]

21. Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom
types. Limnol. Oceanogr. 2003, 48, 547–556. [CrossRef]

22. Poursanidis, D.; Traganos, D.; Reinartz, P.; Chrysoulakis, N. On the use of Sentinel-2 for coastal habitat mapping and satellite-
derived bathymetry estimation using downscaled coastal aerosol band. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 58–70. [CrossRef]

23. Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383.
[CrossRef] [PubMed]

24. Lyzenga, D.R. Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Int. J. Remote Sens. 1985,
6, 115–125. [CrossRef]

25. Maritorena, S.; Morel, A.; Gentili, B. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo.
Limnol. Oceanogr. 1994, 39, 1689–1703. [CrossRef]

26. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. SMART-SDB: Sample-specific multiple band ratio technique for satellite-derived
bathymetry. Remote Sens. Environ. 2020, 251, 112091. [CrossRef]

27. Niroumand-Jadidi, M.; Vitti, A.; Lyzenga, D.R. Multiple Optimal Depth Predictors Analysis (MODPA) for river bathymetry:
Findings from spectroradiometry, simulations, and satellite imagery. Remote Sens. Environ. 2018, 218, 132–147. [CrossRef]

28. Malacara, D. Color Vision and Colorimetry: Theory and Applications, 2nd ed.; Spie: Bellingham, WA, USA, 2011.
29. Zhao, Y.; Shen, Q.; Wang, Q.; Yang, F.; Wang, S.; Li, J.; Zhang, F.; Yao, Y. Recognition of Water Colour Anomaly by Using Hue

Angle and Sentinel-2 Image. Remote Sens. 2020, 12, 716. [CrossRef]
30. Huang, W.; Wang, Y.; Chen, X. Cloud detection for high-resolution remote-sensing images of urban areas using colour and edge

features based on dual-colour models. Int. J. Remote Sens. 2018, 39, 6657–6675. [CrossRef]
31. Han, H.; Han, C.; Lan, T.; Huang, L.; Hu, C.; Xue, X. Automatic Shadow Detection for Multispectral Satellite Remote Sensing

Images in Invariant Color Spaces. Appl. Sci. 2020, 10, 6467. [CrossRef]
32. Hamuda, E.; Mc Ginley, B.; Glavin, M.; Jones, E. Automatic crop detection under field conditions using the HSV colour space and

morphological operations. Comput. Electron. Agric. 2017, 133, 97–107. [CrossRef]
33. Xu, L.; Ming, D.; Zhou, W.; Bao, H.; Chen, Y.; Ling, X. Farmland Extraction from High Spatial Resolution Remote Sensing Images

Based on Stratified Scale Pre-Estimation. Remote Sens. 2019, 11, 108. [CrossRef]
34. Park, C.W.; Jeon, J.J.; Moon, Y.H.; Eom, I.K. Single Image Based Algal Bloom Detection Using Water Body Extraction and

Probabilistic Algae Indices. IEEE Access 2019, 7, 84468–84478. [CrossRef]
35. Ngoc, D.D.; Loisel, H.; Jamet, C.; Vantrepotte, V.; Duforêt-Gaurier, L.; Minh, C.D.; Mangin, A. Coastal and inland water pixels

extraction algorithm (WiPE) from spectral shape analysis and HSV transformation applied to Landsat 8 OLI and Sentinel-2 MSI.
Remote Sens. Environ. 2019, 223, 208–228. [CrossRef]

http://doi.org/10.3390/rs12030532
http://doi.org/10.1016/j.rse.2017.01.004
http://doi.org/10.1016/j.rse.2019.111302
http://doi.org/10.3390/rs13040623
http://doi.org/10.1016/j.rse.2020.112036
http://www.ncbi.nlm.nih.gov/pubmed/34334824
http://doi.org/10.3390/rs10060859
http://doi.org/10.3390/rs10081227
http://doi.org/10.3390/rs13081469
http://doi.org/10.34133/2021/9841804
http://doi.org/10.1080/01431161.2018.1490974
http://doi.org/10.1080/01431168108948342
http://doi.org/10.1002/esp.1787
http://doi.org/10.4319/lo.2003.48.1_part_2.0547
http://doi.org/10.1016/j.jag.2019.03.012
http://doi.org/10.1364/AO.17.000379
http://www.ncbi.nlm.nih.gov/pubmed/20174418
http://doi.org/10.1080/01431168508948428
http://doi.org/10.4319/lo.1994.39.7.1689
http://doi.org/10.1016/j.rse.2020.112091
http://doi.org/10.1016/j.rse.2018.09.022
http://doi.org/10.3390/rs12040716
http://doi.org/10.1080/01431161.2018.1466069
http://doi.org/10.3390/app10186467
http://doi.org/10.1016/j.compag.2016.11.021
http://doi.org/10.3390/rs11020108
http://doi.org/10.1109/ACCESS.2019.2924660
http://doi.org/10.1016/j.rse.2019.01.024


Remote Sens. 2022, 14, 590 21 of 21

36. Li, J.; Feng, K.; Yu, J.; Gu, H. River extraction of color remote sensing image based on HSV and shape detection. In Proceedings of
the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 12 March 2021; p.
117635W.

37. Van der Woerd, H.J.; Wernand, M.R. Hue-angle Product for Low to Medium Spatial Resolution Optical Satellite Sensors. Remote
Sens. 2018, 10, 180. [CrossRef]

38. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Novel spectra-derived features for empirical retrieval of water quality parameters:
Demonstrations for OLI, MSI, and OLCI Sensors. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10285–10300. [CrossRef]

39. Pitarch, J.; van der Woerd, H.J.; Brewin, R.J.; Zielinski, O. Optical properties of Forel-Ule water types deduced from 15 years of
global satellite ocean color observations. Remote Sens. Environ. 2019, 231, 111249. [CrossRef]

40. Spyrakos, E.; O’donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.; Neil, C.; Barbosa, C.C.; Binding, C.E.; Bradt, S. Optical
types of inland and coastal waters. Limnol. Oceanogr. 2018, 63, 846–870. [CrossRef]

41. Liu, H.; Lee, S.-H.; Chahl, J.S. Transformation of a high-dimensional color space for material classification. J. Opt. Soc. Am. A 2017,
34, 523–532. [CrossRef]

42. Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes.
Nature 2016, 540, 418–422. [CrossRef]

43. Warren, M.A.; Simis, S.G.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A.
Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote
Sens. Environ. 2019, 225, 267–289. [CrossRef]

44. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

45. Thomas, N.; Pertiwi, A.P.; Traganos, D.; Lagomasino, D.; Poursanidis, D.; Moreno, S.; Fatoyinbo, L. Space-Borne Cloud-Native
Satellite-Derived Bathymetry (SDB) Models Using ICESat-2 And Sentinel-2. Geophys. Res. Lett. 2021, 48, e2020GL092170.
[CrossRef]

46. Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; Van de Giesen, N. A 30 m Resolution Surface Water Mask Including
Estimation of Positional and Thematic Differences Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-
Darling Basin, Australia. Remote Sens. 2016, 8, 386. [CrossRef]

47. Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. Natl. Geophys. Data
Cent. 2009, 10, V5C8276M.

48. GEBCO Compilation Group. GEBCO 2020 Grid; British Oceanographic Data Centre: Liverpool, UK, 2020. [CrossRef]
49. Populus, J.; Vasquez, M.; Albrecht, J.; Manca, E.; Agnesi, S.; Al Hamdani, Z.; Andersen, J.; Annunziatellis, A.; Bekkby, T.; Bruschi,

A.; et al. EUSeaMap. A European broad-scale seabed habitat map. Arch. Inst. L’ifremer 2017, 10, 49975. [CrossRef]
50. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2021.
51. Espel, D.; Courty, S.; Auda, Y.; Sheeren, D.; Elger, A. Submerged macrophyte assessment in rivers: An automatic mapping method

using Pléiades imagery. Water Res. 2020, 186, 116353. [CrossRef]
52. Xu, J.; Zhao, J.; Wang, F.; Chen, Y.; Lee, Z. Detection of Coral Reef Bleaching Based on Sentinel-2 Multi-Temporal Imagery:

Simulation and Case Study. Front. Mar. Sci. 2021, 8, 268. [CrossRef]
53. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef]
54. European Space Agency. Sentinel-2 Data Quality Report; Tech. Rep. S2-PDGS-MPC-DQR. 2021. Available online: https:

//sentinel.esa.int/documents/247904/3897638/Sentinel-2_L1C_Data_Quality_Report (accessed on 1 November 2021).
55. Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote sensing of shallow waters–A 50 year retrospective and

future directions. Remote Sens. Environ. 2020, 240, 111619. [CrossRef]
56. Wernand, M.; Hommersom, A.; van der Woerd, H.J. MERIS-based ocean colour classification with the discrete Forel–Ule scale.

Ocean Sci. 2013, 9, 477–487. [CrossRef]
57. Wei, J.; Wang, M.; Lee, Z.; Briceño, H.O.; Yu, X.; Jiang, L.; Garcia, R.; Wang, J.; Luis, K. Shallow water bathymetry with multi-

spectral satellite ocean color sensors: Leveraging temporal variation in image data. Remote Sens. Environ. 2020, 250, 112035.
[CrossRef]

58. Kovacs, E.; Roelfsema, C.; Lyons, M.; Zhao, S.; Phinn, S. Seagrass habitat mapping: How do Landsat 8 OLI, Sentinel-2, ZY-3A,
and Worldview-3 perform? Remote Sens. Lett. 2018, 9, 686–695. [CrossRef]

http://doi.org/10.3390/rs10020180
http://doi.org/10.1109/TGRS.2019.2933251
http://doi.org/10.1016/j.rse.2019.111249
http://doi.org/10.1002/lno.10674
http://doi.org/10.1364/JOSAA.34.000523
http://doi.org/10.1038/nature20584
http://doi.org/10.1016/j.rse.2019.03.018
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1029/2020GL092170
http://doi.org/10.3390/rs8050386
http://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
http://doi.org/10.13155/49975
http://doi.org/10.1016/j.watres.2020.116353
http://doi.org/10.3389/fmars.2021.584263
http://doi.org/10.1186/s12864-019-6413-7
https://sentinel.esa.int/documents/247904/3897638/Sentinel-2_L1C_Data_Quality_Report
https://sentinel.esa.int/documents/247904/3897638/Sentinel-2_L1C_Data_Quality_Report
http://doi.org/10.1016/j.rse.2019.111619
http://doi.org/10.5194/os-9-477-2013
http://doi.org/10.1016/j.rse.2020.112035
http://doi.org/10.1080/2150704X.2018.1468101

	Introduction 
	Seabed Remote Sensing 
	Colour Spaces in Remote Sensing 
	Study Aim 

	Materials and Methods 
	Study Area and Data 
	Preprocessing 
	Vector Dataset and Indices 
	Deep Water Extraction 
	Validation 

	Results 
	Performance Comparison between Band Indices 
	Performance Comparison between Threshold Methods 

	Discussion 
	Atmospheric Correction and Its Interaction with HSV 
	Comparison with Systematic Optimisation 
	Thresholding 

	Conclusions 
	Appendix A
	References

