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Abstract: Unmanned aerial vehicles (UAVs) are gaining considerable interest in transportation
engineering in order to monitor and analyze traffic. This systematic review surveys the scientific
contributions in the application of UAVs for civil engineering, especially those related to traffic
monitoring. Following the PRISMA framework, 34 papers were identified in five scientific databases.
First, this paper introduces previous works in this field. In addition, the selected papers were
analyzed, and some conclusions were drawn to complement the findings. It can be stated that this is
still a field in its infancy and that progress in advanced image processing techniques and technologies
used in the construction of UAVs will lead to an explosion in the number of applications, which
will result in increased benefits for society, reducing unpleasant situations, such as congestion and
collisions in major urban centers of the world.

Keywords: UAV; traffic monitoring; civil engineering

1. Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, are gaining con-
siderable interest in applications such as surveillance, mapping, and remote sensing [1].
The growing interest in the use of UAVs is based on many factors, including the cost of
acquiring these systems, the availability of trained operators, low risk to human life, and
ease of use. Due to these advantages, as well as offering a good resolution and tracking
capabilities, they are starting to be used increasingly in more fields.

After they were first used in geomatics applications, providing alternatives to classical
photogrammetry [2] and 3D mapping [3] to present data in a suitable format for architects
and engineers [4], UAVs became commonly used tools for data acquisition. Through
photogrammetry techniques and remote sensing, structure from motion (SfM) applications
allow for the creation of 3D models of different objects, buildings, or areas [5].

In the last few years, UAVs have found their applicability in the field of civil engineer-
ing, especially in transportation engineering, in order to supervise and monitor traffic [6].
The main benefit of traffic monitoring with UAVs is that they can be deployed to many
different places where, for example, a local council may want to gather information on
the use of infrastructure, such as roads, bridges, train tracks, and so on. The same goes
for monitoring people and animals for conservation purposes [7,8], or, more recently, they
have been used to combat the coronavirus disease (COVID-19) pandemic [9]. Because of
their mobility, traffic monitoring UAVs are able to collect high-resolution data, which can
then be analyzed in real time. The results can then be displayed or printed, and in some
cases sent to a central server or cloud for further analysis.

The growth in traffic volume and the growth of global travel makes traffic monitoring
a problem of interest and a major challenge in many countries around the world. In this con-
text, it is expected that UAVs will be an emerging solution to this challenge [10]. The bird’s
eye-view of the camera provided by UAVs improves the traditional methodologies used in

Remote Sens. 2022, 14, 620. https://doi.org/10.3390/rs14030620 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030620
https://doi.org/10.3390/rs14030620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6420-2750
https://orcid.org/0000-0002-0496-3483
https://doi.org/10.3390/rs14030620
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14030620?type=check_update&version=2


Remote Sens. 2022, 14, 620 2 of 28

traffic monitoring [11], but the recognition and tracking of moving vehicles still remains a
challenging problem, depending on the accuracy of image registration methods [12].

The use of UAVs for monitoring purpose is a relative new emerging field that requires
development and validation of new solutions [13]. UAVs represent a potential solution to
support many aspects of the existing traffic monitoring systems such as surveillance and
collision avoidance [14]. In a similar way, UAVs have been applied for the monitoring of
environmental parameters, e.g., air pollution, land surface temperature, flood risk, forest
fire, road surface distress, land terrain monitoring etc. [15–20], but also for pedestrian traffic
monitoring or disaster evacuation [21–23].

Currently, UAVs are very vulnerable to adverse weather conditions, such as wind,
fog, and rain [24]. However, there have been significant efforts to improve the robustness
of the systems using different types of sensors. For instance, GPS-enabled UAVs have
been shown to provide a reasonable degree of robustness and accuracy in challenging
environments [25]. Moreover, the use of inertial measurement units (IMUs) for UAV
stabilization has received significant attention and has been applied to different types of
UAVs including quadcopters [26].

In traffic monitoring, precision is needed to collect and send real-time vehicle data to
traffic processing centers for efficient traffic management. This is of special significance to
cities where traffic and road conditions are monitored every day. In most cases, wireless
sensors are deployed on the road and connected to each other via wireless communica-
tion networks to obtain real-time traffic data within the intelligent transportation system
(ITS) [27]. In addition, in the case of vehicle monitoring, it is necessary to identify the
speed, distance, and current location of the vehicle. In this context, UAVs have significant
advantages in traffic information collection because they provide a global perspective of
the road and they can obtain traffic parameters that cannot be extracted by conventional
monitoring methods [28].

Traffic monitoring represents a challenge not only for police and traffic authority
departments, but also for individual drivers. There is great potential in UAVs for assisting
drivers in a variety of traffic-related applications, including safety, incident detection, and
vehicle tracking [11]. Some problems that can be solved with UAVs in the future are:
traffic congestion [29,30], collision avoidance [31], safety analysis [32], and roundabout flow
analysis [33]. The driver assistance can be provided via UAV-to-car communication [34].

The aim of this paper is to analyze the main applications regarding the use of UAVs
in traffic monitoring. A systematic literature review was conducted for this purpose and
the results provide a base for future research and development in this field. The study also
highlights the current surveys related to the use of UAVs in the civil engineering field.

2. Related Work

Research on the on the use of UAV in civil engineering related to transportation
is relative limited, including several literature reviews that summarize a wide range of
applications (Table 1). These studies address the following topics:

• In [35], a review optimization approaches for drone operations and drone–truck com-
bined operations in civil applications is provided. Drone operation and applications,
some previous works, and issues like mathematical models, solution methods, and syn-
chronization between a drone and a truck are presented in the study, also suggesting
some possible research directions.

• The recent advances of UAVs and their roles in current and future transportation
systems are presented in [10]. The paper summarizes the emerging technologies of
UAV in transportation, highlighting performance measures, network and commu-
nications, software architecture, privacy, and security concerns. The challenges and
opportunities of integrating UAVs in ITS are discussed and some potential research
directions are identified in the paper.
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• In [36], a literature review of 111 publications related to the use of civil drones for
transportation is provided. The focus is on passenger transportation drones, but
applications from the urban and transportation planning fields are also reviewed.
Potential problems are identified, and proposed solutions are given for different areas
of application.

• Emerging issues in civilian UAV usage and case studies for various fields are presented
in [37], a review article that tries to analyze the potential implementations of drones in
the economic system and how these implementations can be managed.

• The state of the art of UAV for geomatics applications is reported in [3]. The survey
gives an overview of different UAV platforms, also presenting various applications,
approaches, and perspectives for UAV image processing.

• Ref. [38] provide an extensive review of optimization approaches for the civil ap-
plication of UAVs. The study addresses different aspects related to UAV operation,
such as area coverage, search operations, routing, data gathering and recharging,
communication links, and computing power.

• In [11], the applications of UAVs in three domains of transportation (road safety,
traffic monitoring, and highway infrastructure management) are reviewed. The paper
discusses topics related to vision algorithms and image processing systems used in
accident investigation, traffic flow analysis, and road monitoring.

• An overview of advances in the vision-based condition assessment of civil infras-
tructure, civil infrastructure inspection, and monitoring applications is presented
in [39]. The study reviews relevant findings in computer vision, machine learning,
and structural engineering, highlighting some key challenges and concluding with
ongoing work.

• Another study [40] presents the research on using UAVs for vehicle detection by means
of deep learning techniques. The work is focused on accuracy improvements and com-
putation overhead reduction, showing similarities and differences of various techniques.

• A comprehensive study focused on UAV civil applications and their challenges is pre-
sented in [12]. Research trends, key challenges related to charging, collision avoidance,
networking and security, and future insights are featured in the paper.

• In [41], a critical review of UAVs remote sensing data processing and their applica-
tion is performed, focusing on land-cover classification and change detection and
discussing potential improvements and algorithmic aspects.

Despite the diversity of UAV analyses in transportation-related areas, less attention has
been paid to advances in traffic monitoring techniques using UAV data, which are briefly
addressed in the presented studies. Thus, to our knowledge, there is no overview of the
acquisition and processing of data received from UAVs in traffic monitoring applications
in urban areas. There is only one slightly older conference paper that deals exclusively
with this topic, presenting the advantages and disadvantages of various researches in
universities and research centers [42]. This paper is therefore a first attempt to review a
study that strictly addresses this topic and opens the door to further research in drone
monitoring applications that use various detection algorithms. Although there have been
many articles investigating the use of UAVs in various fields (mining [43], architecture and
urbanism [44], glacial and periglacial geomorphology [45], agriculture [46], geology [5],
forest regeneration [47], water monitoring [48] etc.), there is no study yet to exclusively
summarize the applications of UAVs in urban traffic monitoring and analysis.

The high percentage of drones in various applications can be seen in the large number
of review studies that systematize the work in various fields corresponding to the latest
technologies, such as: path planning techniques [49], computer vision algorithms [50],
application of blockchain [51], swarm communication and routing protocols [52], configu-
rations, flight mechanisms [53], optical remote sensing applications [54], communication
and networking [55], regulation policies and technologies [56], mobile edge-computing for
Internet of Things (IoT) applications [57], photogrammetry and remote sensing [58], deep
learning approaches for road extraction [59], and advances toward future transportation.
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As shown in paper [49], it is expected that the percentage of UAVs in the transportation
system to be 81% by the year 2022.

Table 1. Related review papers on UAV application in civil engineering.

No. Ref. Title Year Journal Application Domain

1 [35]
Optimization for drone and drone-truck

combined operations: A review of the state of
the art and future directions

2020 Computers and Operations
Research

civil applications including
construction/infrastructure, agriculture,

transportation/logistics, security/disaster
management, entertainment/media, etc.

2 [10]
Advances of UAVs toward Future

Transportation: The State-of-the-Art,
Challenges, and Opportunities

2021 Future Transportation

transportation sector: surveillance, urban
planning, traffic monitoring, emergency response,

road maintenance and safety, warehouse
inventory management, UAV delivery, disaster

management, search and rescue

3 [36] Drones for parcel and passenger transportation:
A literature review 2020 Transportation Research

Interdisciplinary Perspectives
safety and security, environment and

sustainability, urban planning and infrastructure

4 [37]

Managing the drone revolution: A systematic
literature review into the current use of

airborne drones and future strategic directions
for their effective control

2020 Journal of Air Transport
Management

monitoring, inspection and data collection,
photography/image collection,

recreation, logistics

5 [3] UAV for 3D mapping applications: a review 2014 Applied Geomatics archeological site 3D recoding and modeling,
geological and mining studies, urban areas,

6 [38]
Optimization approaches for civil applications
of unmanned aerial vehicles (UAVs) or aerial

drones: A survey
2018 Networks

agriculture, environmental protection and
disaster management, rescue, transport,

infrastructure and construction, air traffic
management, manufacturing, traffic surveillance,

telecommunications, entertainment and media

7 [11]

Applications of unmanned aerial vehicle (UAV)
in road safety, traffic and highway

infrastructure management: Recent advances
and challenges

2020 Transportation Research Part A road safety, traffic monitoring and highway
infrastructure management

8 [39] Advances in Computer Vision-Based Civil
Infrastructure Inspection and Monitoring 2019 Engineering Inspection, monitoring

9 [40] A survey of deep learning techniques for
vehicle detection from UAV images 2021 Journal of Systems

Architecture traffic management—vehicle detection

10 [12]
Unmanned Aerial Vehicles (UAVs): A Survey

on Civil Applications and Key Research
Challenges

2019 IEEE Access

search and rescue, remote sensing, construction
and infrastructure inspection, precision
agriculture, delivery of goods, real-time

monitoring of road traffic, surveillance, providing
wireless coverage

11 [41] Unmanned Aerial Vehicle for Remote Sensing
Applications—A Review 2019 Remote Sensing

precision agriculture and vegetation, urban
environment and management, disaster, hazards

and rescue

3. Materials and Methods

A systematic review of the literature covering relevant research over the last 10 years
was performed. The papers were selected according to the recommendations of Systematic
Review and Meta-Analysis (PRISMA) (Salameh, 2020).

3.1. Protocol and Registration

The methods and the hypothesis of the review were prepared a priori, but they were
not registered on PROSPERO.

3.2. Eligibility Criteria

The papers were selected according to the following inclusion criteria: articles ad-
dressing UAV with focus on traffic monitoring or traffic analysis; articles published in
English; articles published in peer-review journals; articles published from 2010 onwards;
research articles.

The exclusion criteria were the following: duplicate articles; articles addressing the use
of UAV in contexts other than car traffic; articles published in languages other than English;
articles published before 2010; conference papers, book sections, editorial letters; reviews,
conceptual papers. Articles that focused on simulations instead of using real-world data
were also excluded.
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Although they may provide interesting and valuable works, publications that did
not meet these criteria were not included in the study in order to ensure a high-quality
standard of investigation.

3.3. Information Sources

The research was carried out on five electronic databases: Scopus, Web of Science,
Science Direct, IEEE Xplore, and Springer. The filtering facilities provided by the electronic
databases were used to identify the items according to the eligibility criteria presented
above. The search has been performed on 25 August 2021.

3.4. Search

Search terms included were: UAV, unmanned aerial vehicle, uncrewed aerial vehicle,
drone, unmanned aerial system, traffic, transport, flow, road, analysis, monitoring, surveil-
lance, management, observation, vehicle detection, congestion, urban, city, intersection.
The keywords were combined with Boolean operators according to the search possibilities
provided by each database.

The results obtained were exported to EndNote (Clarivate™, Philadelphia, PA, USA).
Using this software, the duplicates were removed and an initial screening of titles and
abstracts followed to extract relevant studies.

Figure 1 shows the author keywords visualization related to UAV use for traffic
monitoring. It was obtained using VOS viewer software and it can be observed that
several clusters are formed according to the author keywords: aerial vehicle, drone, traffic,
image, communication.

Figure 1. Network visualization of author keywords co-occurrence.

3.5. Study Selection

The authors of this article (R.G.B. and E.V.B.) performed the search and selection of
papers to be included in the study. When disagreements arose between the two reviewers,
they were resolved by consensus. Papers were included in this review if they were relevant
to a UAV system used for traffic surveillance purposes.
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3.6. Data Extraction

Data extraction was performed independently by the two reviewers (R.G.B. and E.V.B)
and disagreements were also resolved by consensus. The following data from each study
were extracted: author, publication year, country, paper objective, UAV type, camera
resolution, flying height, software technique, urban area, outcomes, vehicle type, main
findings, future work. This information was added to Microsoft Excel (Microsoft, Redmond,
WA, USA) for further analysis.

4. Results
4.1. Study Selection

A flow-chart diagram showing the selection process according to PRISMA guidelines
is presented in Figure 2. A total of 2557 articles were found, but 191 were duplicated
papers. After their removal, 2366 studies were screened by title and abstract and 2278
were excluded because they were not relevant to our study. The remaining 88 papers were
selected for full-text screening. Of these articles, 54 were excluded (no full-text available:
two, magazine article: one, review article: three, no relevant to the study: 48). Finally,
34 papers were considered eligible to be included in the review.

Figure 2. Study selection process.

4.2. Study Characteristics

The review process identified a total of 34 studies: Ahmed et al., 2021 [60], Apeltauer et al.,
2015 [61], Balamuralidhar et al., 2021 [62], Barmpounakis et al., 2018 [63], Barmpounakis et al.,
2019 [64], Barmpounakis and Geroliminis 2020 [65], Brkić et al., [66], Chen et al., 2019 [67],
Chen et al., 2021 [68], Guido et al., 2016 [69], Javadi et al., 2021 [70], Kang and Mattyus 2015 [71],
Kaufmann et al., 2018 [72], Ke et al., 2017 [73], Khan et al., 2017 [74], Khan et al., 2018 [75],
Khan et al., 2020 [76], Kujawski and Dudek 2021 [77], Li et al., 2019 [78], Li et al., 2020 [79],
Liu and Zhang 2021 [28], Luo et al., 2020 [80], Moranduzzo and Melgani 2014 [81],
Shan et al. [82], Wan et al., 2019 [83], Wang et al., 2016a [84], Wang et al., 2016b [85], Wang et al.,
2019 [86], Wang et al., 2019 [87], Xing et al., 2020a [88], Xing et al., 2020b [89], Xu et al., 2016 [90],
Zhu et al., 2018a [91], Zhu et al., 2018b [92].

The quantitative analysis of the publications is presented in Figure 3, where the
distribution of papers in terms of journal, publication year, and country is presented. This
was realized online [93]. As can be seen, the analyzed articles were published in top ranking
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journals like Automation in Construction (AC), Transportation Research: Part A (TR_A),
IEEE Internet of Things (IoT) Journal and so on. Most of the articles identified have been
published in Remote Sensing (six studies), then Accident Analysis & Prevention (AAP)
(four studies), IEEE Access (two studies), IEEE Transactions on Intelligent Transportation
Systems (two studies), Transportation Research: Part C (two studies).

Figure 3. Sankey diagram showing journal vs. publication year vs. country.

Regarding the year of publication, there is a growing trend from 2014 to 2021. This
is to be expected given the continuous growth of the UAVs market [94]. Further, it was
considered the country where the experiment was conducted or where the research center
is located. As can be seen, the country that dominates overwhelmingly in terms of the
number of publications on the proposed topic is China, with 16 studies, followed by Greece
with three studies and Belgium, Germany, and Italy with two studies each. For one of
the studies, even if the authors belong to an institution in Switzerland, the experiment
described was performed in Athens, so Greece was considered as the host country.

4.3. Synthesis of Results

The synthesis of the results is provided in Table 2, where some significant data are extracted,
and Table A1, where objective findings and future work for each study are summarized.

Table 2. Summary of information related to data acquisition and analysis.

Author UAV Type Camera
Resolution, fps

Flying
Height

Video Dataset
Duration

Software
Techniques Vehicle Type Urban Area Measures

Ahmed et al.,
2021 [60]

DJI
Phantom 3 4k, NR NR 15 min

manual extraction,
speed-density
model—least-

squares method
(LSM)

cars,
motorbikes,
rickshaws,

loading
pickups, buses,

trucks

University
Road in

Karachi—100-
ft long, four

marked lanes

traffic flow,
traffic density,
average speed,

longitudinal and
lateral gap

Apeltauer
et al., 2015 [61] NR 1920 × 980,

29 fps 100 m NR

Viola and Jones’s
AdaBoost
algorithm,

sequential particle
filter

vehicles

The site of
roundabout
junction of
Hamerska
road and

Lipenska road
near Olomouc,

Czech
Republic

relative number
of missed targets,
relative number
of false tracks,

average number
of swaps in

tracks, temporal
average of
measure of

completeness,
spatial precision
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Table 2. Cont.

Author UAV Type Camera
Resolution, fps

Flying
Height

Video Dataset
Duration

Software
Techniques Vehicle Type Urban Area Measures

Balamuralidhar
et al., 2021 [62]

DJI
Phantom 3

3269 × 720,
30 fps 50 m NR

CPSDarkNet53
backbone, EnEt-

segmentation head,
YOLO v4,

Minimum Output
Sum of Squared
Error (MOSSE)

algorithm, Ground
Sampling Distance

(GSD);
YOLO v4, Tiny

YOLO v4, YOLO
v3, SSD, Faster

RCNN
comparation

vehicles NR

performance of
vehicle

detectionand
vehicle tracking

algorithms,
speed estimation,

inference on
Jetson Xavier NX

Barmpounakis
et al., 2018 [63] hexacopter 4K, 30 fps NR NR

manual or
semi-automatic

extraction,
frame-by-frame

analysis, machine
learning—meta-

optimized Decision
Trees

motorcycles,
scooters, cars

and heavy
vehicles

National
Technical

University of
Athens

campus—
arterial with

three lanes per
direction

the type of each
vehicle, the lane
each vehicle is

moving, speeds
of all vehicles

present,
accelerations of

all vehicles
present, spatial

distances
between vehicles,

duration
between each

state and general
information for
the PTW driver

Barmpounakis
et al., 2019 [64] hexacopter 4K, 30 fps 70 m 15 min

positive and
negative vehicle

‘detectors’ on
image content,

matching the peaks
of probability

140 vehicles,
23 pedestrians

intersection in
the National

Technical
University of

Athens
campus—four-

legged
intersection

trajectory, speed

Barmpounakis
and

Geroliminis
2020 [65]

DJI
Phantom 4
Advanced

4K, 25 fps NR 59 h

virtual loop
detectors (gates)
used to calculate

several traffic
variables and

extract valuable
information

cars, taxis,
motorcycles,
buses, heavy

vehicles

a congested
area of a 1.3

km2 area with
more than 100

km-lanes of
road network,

around 100
busy

intersections

arterial travel
time, congestion

propagation,
lane changing

Brkić et al.,
2020 [66] NR 4096 × 2160,

24 fps 50 m 13:52 min

deep learning
object

detection—Faster
R-CNN with

ResNet50 backbone
network

vehicles

500 m long
section of

Zagreb bypass
motorway

traffic flow rate,
speed estimation,

traffic flow
density, distance
headways and

gaps, time
headways and

gaps

Chen et al.,
2019 [67] NR 1920 × 1080, NR 100 m NR

Viola-Jones (V-J) and
linear SVM classifier
with HOG feature

(HOG + SVM), KLT
(Kanade-Lucas-
Tomasi) feature
tracker, image

processing system,
surrogate safety
measures (SSMs)

pedestrians
and

right-turning
vehicles

two urban
intersections

in Beijing,
China

vehicle turning
path, turning

speed, gap
acceptance model

and pedestrian
behavior model,

post
encroachment

time (PET)

Chen et al.,
2021 [68]

DJI Mavic
professional

3840 × 2160,
25 fps

223, 281
m 22, 43 s

Canny-based
ensemble detector,

kernelized
correlation filter
(KCF), wavelet

transform

vehicles

two urban
expressway
sections in
Nanjing,

China

Root-mean-
square deviation

(RMSE), the Mean
Squared

Deviation (MSD),
and the Pearson
product-moment

correlation
coefficient

(Pearson’s r)



Remote Sens. 2022, 14, 620 9 of 28

Table 2. Cont.

Author UAV Type Camera
Resolution, fps

Flying
Height

Video Dataset
Duration

Software
Techniques Vehicle Type Urban Area Measures

Guido et al.,
2016 [69]

UAV drone
with eight
propellers

4k, 23 fps 60 m 19, 21 min, 11,
5 min

identifying pixels
associated with the
objects of interest,

Haar classifier,
video stabilization,
the conversion to
grayscale space

and the
Gaussian-blurring

filter, extract
vehicle

trajectories—Haar
Classifier, ROI

vehicles

a great urban
roundabout at

the
intersection of

the “Asse
Viario” with
De Gasperi

road

Normalized Root
Mean Square

Error in
positioning,

speed profile,
Root Mean

Square
Percentage Error

in speed
evaluation

Javadi et al.,
2021 [70] NR 3840 × 2160, NR NR NR

YOLO v3 +
DarkNet-53,
SqueezeNet,

MobileNet-v2 and
DenseNet-201 + 3D

depth maps,
Levenberg-
Marquardt

algorithm, fcNN

trucks,
semi-trailers,
and trailers

two industrial
harbors

average
precision,

performance
evaluation

Kang and
Mattyus
2015 [71]

NR 5616 × 3744, NR NR NR

Integral Channel
Features (ICF),
HOG features,

AdaBoost classifier
in Soft Cascade

structure

cars and
trucks

area of
Munich,

Germany

orientation
estimation, type

classification,
baseline

comparison,
computation

time

Kaufmann
et al., 2018 [72]

DJI Inspire
1—a

small-scale
quadcopter

4K, 25 fps 100 m 14.5 min

Levenberg-
Marquardt

optimization,
moving linear

regression (MLR),
vehicle

trajectories—
supervised

tracking method

vehicles

the street
“Völklinger
Straβe” in

Düsseldor—
600m street—
starting with

two lanes,
broadens to

three lanes at
location 500m

and to four
lanes at

location 530 m

speed, location,
trajectories, lane

changes per
minute

Ke et al.,
2017 [73] NR 960 × 540, 24 fps NR 1.17 min

vehicle tracking
(Shi-Tomasi

features,
Kanade-Lucas

optical flow
algorithm),

motion-vector
clustering
(k-means

algorithm),
connected-based
graph method to

detect cluster

vehicles

six lanes of
traffic moving

in two
directions

speed, density,
volume

Khan et al.,
2017 [74]

Argus-One
(from Ar-

gusVision)
4K, 25 fps 80, 60

m 14 min

optical flow
tracking

(Lucas-Kanade
algorithm,

background
substraction

treshold, blob
analysis, vehicle

extraction—
computer

vision

vehicles

an urban
intersection

near the city of
Sint-Truiden
in Belgium—

four-leg
intersection

trajectory, speed
profile,

space-time
trajectories

Khan et al.,
2018 [75]

Argus-One
(from Argus-

Vision)
4K, 25 fps 80, 60

m 10–12 min

optical flow
tracking, blob

analysis, Kalman
filter

vehicles

a four-legged
sub-urban
signalized

intersection
from

Sint-Truiden,
Belgium

trajectory, speed
profile
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Table 2. Cont.

Author UAV Type Camera
Resolution, fps

Flying
Height

Video Dataset
Duration

Software
Techniques Vehicle Type Urban Area Measures

Khan et al.,
2020 [76] NR NR NR NR

detect speed or
other traffic
violation in

real time

vehicles Saudi Arabia

excess speed
limit and other

traffic safety
violations on
highways and

roads

Kujawski and
Dudek

2021 [77]
NR 720p, 60 fps NR 8 h

image
processing—blob

detection

vehicles
in/out

city of
Szczecin in

Poland—two
lanes of traffic
each from and

to the city

numbers of cars
per hour on
holiday and

workday

Li et al.,
2019 [78]

DJI-Matrice
100 1280 × 960, NR 80 m

YOLO v3, tracking-
by-detection

methd, Kalman
filter, Hungarian

algorithm, motion
compensation

based on
homography,

optical
flow—RANSAC,
adaptive vehicle
speed estimation

vehicles

an intersection,
country road,

parking
entrance,

highways, and
crossroads

vehicle speed
estimation,

velocity
measurement

Li et al.,
2020 [79]

DJI Matrice
100 NR NR NR

CNN +
SSD—scale-specific

prediction based
single shot detector
(SSP-SSD), Resnet

101, remove
redundant

detection—OA-
NMS

(Outlier-Aware
Non-Maximum

Suppression),
comparation with

SSD, Cascade
RCNN, FRCNN,

YOLOV3,
YOLOV4,

YOLOV5(x), FCOS,
Retinanet and

CenterNet

Vehicles—
small,

medium, large

dataset
containing

312071
vehicles

performance
evaluation—

precision, recall
rate, F1-score,

average
precision

Liu and Zhang
2021 [28] NR NR NR NR

YOLO v4,
DeepSORT (KF

prediction),
trajectory

estimation—eight-
dimensional space,

high-precision
positioning—

interacting
multiple model

(IMM)—PF
(particle filter)

algorithm, IMM-PF,
CV-EKF, IMM-EKF

comparison

cars, buses,
trucks, and

vans

dataset
containing

15,741 images

position,
Normalized

distance, Model
probabilities

Luo et al.,
2020 [80]

small UAV
similar as

SkyProwler

640 × 360,
570 × 640 NR NR

blob detection,
classifier,

dot-product
kernels and radial

basis function
(RBF) kernels,
tracking-by-

detection, crash
decision

vehicles

environment
includes city,

suburban and
rural areas

vehicle trajectory
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Table 2. Cont.

Author UAV Type Camera
Resolution, fps

Flying
Height

Video Dataset
Duration

Software
Techniques Vehicle Type Urban Area Measures

Moranduzzo
and Melgani

2014 [81]
hexacopter 5184 × 3456, NR NR NR

feature extraction
process based on
scalar invariant

feature transform
(SIFT),

classification by
means of support
vector machine
(SVM) classifier,
grouping of the

key points
belonging to the

same car

vehicles NR accuracy

Shan et al.,
2021 [82]

DJI
Phantom

4 Pro

3840 × 2160,
25 fps

150–
350 m NR

Pre-processing,
YOLO v3, deep
SORT algorithm

vehicles

1 km long of
Xi’an Ring

Expresswa—
upstream of
ZHANG-BA
interchange

exit

precision of vehicle
detection, precision
of extracted speed

Wan et al.,
2019 [83] NR NR NR NR

joint dictionary,
L2 regularization

based on
temporal

consistency,
Markov Random

Field
(MRF)-based

binary support
vector, particle

filter framework
along with a

dynamic template
update scheme;

comparation of 9
state-of-the-art
visual tracking

algorithms,
including IV, L1,
PCOM, CT, MTT,

WMIL, OFDS,
STC and CNT

vehicles,
pedestrians UAV videos

precision and
success plots, time

complexity,
execution time

Wang et al.,
2016a [84] NR NR 80–90

m 4 h

Shi-Tomasi
features, optical

flow
(Kanade-Lucas

algorithm),
prediction
method—
bivariate
bivariate

extreme value
theory (EVT)

vehicles

ten urban
signalized

intersections
in Fengxian
District in
Shanghai

time-to-accident
(TA),

post-encroachment
Time (PET),
minimum

time-to-collision
(mTTC), and

maximum
deceleration rate

(MaxD)

Wang et al.,
2016b [85]

MD3-1000
by Germany

Micro-
drones

Company

NR 42.6 m NR

calculating
start-wave
velocity at
signalized

intersections

large, medium
and small
vehicles

straight lanes
at the

intersection of
Cao-an

Highway and
North Jia-song

Road in
Shanghai

speed, density of
traffic flow

Wang et al.,
2019 [86]

DJI
Phantom 4

Pro

2720 × 1530,
30 fps

60–150
m NR

YOLOv3, motion
estimation based

on Kalman
filtering is

integrated with
deep appearance

features

vehicles N/A

true positive (TP),
false positive (FP),
true negative (TN),
false negative (FN),

identification
precision (IDP),

identification recall
(IDR), F1 score,
multiple-object

tracking accuracy
(MOTA), mostly

tracked (MT),
mostly lost (ML),

and identity
switching (IDSW)
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Table 2. Cont.

Author UAV Type Camera
Resolution, fps

Flying
Height

Video Dataset
Duration

Software
Techniques Vehicle Type Urban Area Measures

Wang et al.,
2019 [87]

DJI
Phantom 2

1920 × 1080,
30 fps

100–150
m NR

image
registration,

image feature
extraction—edge

(Prewitt edge
detection),

optical flow
(Lucas–Kanade
operator), local
feature point

(SIFT), vehicle
detection—

shape detection,
vehice

tracking—optical
flow, matched
local feature

points

vehicles

the north part
of the 5th Ring

Road in
Beijing, China

correctness,
completeness and
quality—vehicle

detection, number
of vehicles, error

rate

Xing et al.,
2020a [88] NR 4K, 30 fps NR NR

logistic
regression,

time-varying
random effects

logistic
regression

(T-RELR) model
and

time-varying
random

parameters
logistic

regression
(T-RPLR), two
time-varying
mixed logit

models
including

time-varying
random effects

logistic
regression

(T-RELR) model
and

time-varying
random

parameters
logistic

regression
(T-RPLR) are
developed to

examine the time
varying effects of

influencing
factors on

vehicle collision
risk

cars, buses
and trucks

a toll plaza
area on G42
freeway in
Nanjing,

China -12 toll
collection

lanes on the
east-west
direction

(north side)
and 6 toll
collection

lanes on the
west-east
direction

(south side)

model
performance,
time-varying

logistic regression
model, TTC

Xing et al.,
2020b [89] NR 4K, 30 fps NR 50 min

logistic
regression model

vs. K-Nearest
Neighbor (KNN),
Artificial Neural

Networks
(ANN), Support
Vector Machines
(SVM), Decision
Trees (DT), and
Random Forest

(RF)

vehicles

a toll plaza
area on G42
freeway in
Nanjing,

China

surrogate safety
measure

(SSM)—extended
TTC, model
performance

Xu et al.,
2016 [90]

DJI
Phantom 2

1920 × 1080,
24 fps NR 10 min

Viola-Jones,
linear support

vector machine
(SVM) +

histogram of
oriented

gradients (HOG)
features,

comparation
with 9 other

methods

vehicle NR

detection speed
(f/s), correctness,

completeness, and
quality
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Table 2. Cont.

Author UAV Type Camera
Resolution, fps

Flying
Height

Video Dataset
Duration

Software
Techniques Vehicle Type Urban Area Measures

Zhu et al.,
2018a [91]

DJI Inspire 1
Pro

4K (3840 × 2178),
30 fps NR 2 min 47 s

Retina object
detector

(RetinaNET),
associated
detections,
trajectory

modeling and
extraction,

semi-supervised
nearest

neighbor search,
double spectral

clustering (DSC),
deep learning

model based on
Long Short-Term
Memory (LSTM)

cars, buses,
and trucks

busy road
intersection of

a modern
megacity

trajectory, tracking
speed, vehicle

behavior
recognition

Zhu et al.,
2018b [92]

DJI Inspire 1
Pro 4K, 30 fps NR 56 min 39 s

deep learning
(enhanced single

shot multibox
detector),

support vector
machine;

comparation
with SSD, Faster

RCNN (FRC),
and YOLO

cars, buses,
trucks

five key road
intersections
in Shenzhen

vehicle counting,
counting accuracy

Note: NR—not reported, fps—frames per second.

4.4. Main Purpose of the Study

The selected works were classified according to their main purpose into two main
categories, as can be seen in Table 3: traffic analysis and traffic monitoring. For each of these
categories, the basic objective of the study was extracted and several subcategories could
be identified. As can be observed, most studies in the first category address issues related
to vehicle trajectory extraction, traffic parameter estimation, congestion analysis, or conflict
evaluation. In the category of articles referred to traffic monitoring, works that mainly
address vehicle detection, vehicle tracking, or vehicle collision detection were included.

Table 3. Synthesis of the results related to the main purpose of the studies.

Application Field Main Purpose Paper

Traffic analysis

congestion analysis [77]
crash prediction [86]

vehicle collision detection [80]
driving behavior modeling [60]

vehicle trajectories extraction [61,64,68,74,75]
traffic parameters extraction [82]

moving synchronized flow patterns observation [72]
traffic flow parameter estimation [73]

traffic density estimation [92]
traffic information collection [85]

unconventional overtaking decisions
identification [63]

vehicle behavior recognition [91]
vehicle collision risk evaluation [88,89]

vehicle-pedestrian conflicts evaluation [67]

Traffic monitoring

smart monitoring system [76]
traffic streams recording [65]

vehicle detection [28,70,71,79,81,90]
vehicle detection and tracking [62,84,87]

vehicle tracking [83]
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The articles were classified in the two categories, taking into account the following
criteria: in the traffic monitoring category, the studies focused only on the identification
and/or tracking of vehicles in traffic, often in real time were included. In the category of
traffic analysis, studies that present a more detailed analysis of certain traffic parameters,
such as traffic density estimation, recognizing vehicle behavior, or assessing the risk of
collisions were included. In most cases, traffic analysis studies include elements of traffic
monitoring: vehicles are first detected, tracked, then further analyses are performed. The
analysis, visualization, and interpretation of data obtained from UAV cameras requires
intelligent processing systems [77]. Thus, for the trajectory extraction of multiple vehicles,
several steps are required: preprocessing, stabilization, georegistration, vehicle detection
and tracking, and trajectory management [74]. The first four steps are usually common for
both traffic monitoring and traffic analysis applications.

There are a variety of techniques implemented in the analyzed studies that focus
on vehicle detection, tracking and/or extraction of traffic parameters. The vast majority
of efforts used UAVs to record a certain area and then to extract significant information
from the videos. The information can be extracted manually [60], semi-automatic [63] or
fully automatic [28]. For vehicle detection, some of the works used conventional computer
vision techniques that are focused on feature extraction, such as interest point detection
(Shi-Tomasi features) [73], scale invariant feature transform (SIFT) [67,70], histogram of
oriented gradients (HOG) features [58,76], local binary patterns (LBP) [49], Viola–Jones
object detection scheme [58,76], Haar-like features [56] together with classifiers like sup-
port vector machine (SVM) [81], AdaBoost classifier [49,58,76], or k-means clustering [70].
Moreover, for fully automatic techniques of tracking, traditional motion-based methods
can be identified, e.g., optical flow (e.g., Kanade–Lucas algorithm) [73–75,84,86], back-
ground subtraction [61,74,75,77,80], particle filter [28,61,83], correlation filter [68], Kalman
filter [65,75,78,82,87,92].

In addition to these classic methods, deep learning-based methods have been de-
veloped using two-step detectors like deep neural network (DNN) [70], RetinaNet [91],
convolutional neural network (CNN) [28,79], Faster R-CNN [66], fully connected neural
network (fcNN) [70], or one-step detectors: You only look once (YOLO) [28,70,78,82,87] and
single shot multibox detector (SSD) [92]. These studies showed that deep learning-based
methods are more effective than traditional computer vision techniques in traffic video
analysis [92]. There are several well-defined steps that researchers follow to detect and
track moving vehicles and their trajectories: pre-processing, stabilization, geo-registration,
vehicle detection and tracking, and trajectory management [75].

Regarding the variables that were taken into account for the evaluation of the proposed
system, some authors used parameters such as speed [60,64,78,85], traffic density [66,73], ve-
hicle counting [77,92], vehicle trajectory [80,91], and parameters related to the performance
of developed method: precision [79], accuracy [81], F1 score [87], correctness, completeness,
and quality [84,90]. In the vast majority of studies, there is no difference between the types
of vehicles identified, but in some of the them, vehicles are classified in various categories,
like cars, buses, trucks, motorbikes, and even pedestrians are detected in several studies.

The drones used for data acquisition are of various types, the most used being pro-
duced by DJI Technology Co., Ltd., Shenze, China, especially Phantom model (in seven
studies, Phantom 2, 3, and 4 were used), Inspire 1 (three studies), Mavic Pro (two studies),
Matrice 100 (two studies). Thirteen studies did not mention the UAV model. The flying
height varies from 50 to 281 m, but this parameter is also reported in a few studies. The
resolution of images varies from 960 × 540, 24 frames per second (fps) to 5184 × 3456.

The objective of the studies, the main findings, and the future work for each selected
study are presented in Table A1 from Appendix A.

5. Discussion

The applications related to traffic monitoring and analysis identified in the literature
review include different techniques for vehicle detection and tracking, and estimation or
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extraction of different traffic parameters. The variety of approaches can be divided into
two categories: conventional machine vision techniques and deep learning machine vision
techniques [95]. The conventional motion-based methods use traditional machine learning
and computer vision techniques to detect and track vehicles, e.g., background subtraction,
optical flow, blob analysis [74], histogram of oriented gradient (HOG), Haar-like features,
speeded-up robust features (SURF), and so on. The most recent techniques are based on
deep learning and it has been shown that they outperform the traditional ones, providing
better feature representation and processing time [70]. There are many object detection
methods based on deep learning, but they are often divided into one-stage or two-stage
detectors [87]. While one-stage detectors use region of interest (ROI) directly from the
image, two-stage detectors use first some techniques such as region proposal network
(RPN) to predict the location of potential objects [66]. YOLO and SSD are CNN one-stage
detectors [79], while R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN are two-stage
detectors [70]. Even if two-stage detectors are more advanced, they require high hardware
performance [62]. Moreover, it was shown that YOLO v3 outperforms R-CNN and runs
significantly faster [78].

In the following, some aspects related to the type of UAVs used for traffic monitoring
purposes will be discussed. Depending on the construction of the flying mechanism,
UAVs can be classified in: fixed-wing, rotary-wing and hybrid UAV [57]. Fixed-wing were
prevalent for traffic monitoring applications a few years ago [75], but today small rotary-
wing are preferred [11] due to the fact that they are low-cost and require less experience
and training [64]. The first type of UAV have some advantages, e.g., increased flight
endurance [53], faster travel and ability to carry heavier payloads [51], and ability to fly
along linear distance [62], but they are larger in size and depend on airfield for take-
off [96]. Rotary-wing UAVs are lighter in weight, capable for vertical take-off and landing
(VTOL), provide significant advantages in enclosed or constrained environments [43], and
are capable to hover and to get very close to objectives [62], providing very high spatial
resolution [64]. On the other hand, they have less mobility and consume more power [51]. A
compromise of this types is the hybrid fixed/rotary-wing UAV, that can provide operation
modes for both high speed flight and low speed flight, including hovering [80]. However,
all types presented are limited to climate factors, the presence of physical obstructions, as
well as instrumental or legal factors [97]. More details, classifications and characteristics
of UAVs can be seen in [50]. In the analyzed studies, the rotary-wing type predominates,
especially quadcopter DJI drones (Phantom 2, Phantom 3, Phantom 4, Mavic Pro, Inspire 1
Pro, Matrice 100), Argus-One quadcopter, and hexacopters (see Table 3). This is consistent
with the findings of a study showing that rotary-wing UAVs are more efficient for use in
urban environments [98].

Another important issue when it comes to using UAVs for traffic monitoring in urban
environments is the safety of UAV against ground vehicles. The certification of UAV
operation is regulated by authorities for each state in order to avoid different situations like
crashing into pedestrians or buildings, collision with other aircrafts, or disturbance [87].
With the spread of drones and their types, the risk of accidents also increases [35] and
that is why strict rules are needed to control UAV operations and avoid their unsafe
and unnecessary use. The cooperation between all authorities is of great importance to
ensure the uniformity of regulations [3]. In some countries, the operation of UAVs can
be performed only if the operator holds a certificate recognized by the Federal Aviation
Administration (FAA) [99]. In order to ensure the safety of UAV and to reduce the risk of
collisions, in most cases adequate separation of people, buildings, and traffic is sufficient.
Thus, some countries have imposed on UAV operators well-defined limits (i.e., 30 or
50 m) for the flight of drones to any person or structure [100]. However, this separation is
difficult to achieve in urban environments and different solutions were proposed for this
problem: an air tunnel designed as an air tunnel for movement of UAV in areas of transport
infrastructure facilities [101], risk maps to define the risk associated to accidents [102], safe
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landing systems able to identify obstacles [103] or to identify landing zones [104]. The
various techniques of safe landing zone detection are reviewed in [96].

In most of the cases, a single UAV was used in the analyzed literature for urban traffic
monitoring, capturing portions of roads [60,66,72,85], intersections (one intersection [64,74,75],
two [67], five [92], or ten intersections [86]), roundabouts [61,69], a toll plaza area [88,89], and
so on. One single paper presented a large-scale field experiment, using observation taken
by a swarm of 10 UAVs from a large congested area covering 1.3 km2 with around 100 busy
intersections [65]. It is obvious that a collaborative formation of UAVs can provide faster,
more effective and more flexible monitoring [55]. A performance comparison of single and
multi-UAV systems is provided in [52]. Moreover, different solutions for traffic monitoring
and management using multiple cooperative UAVs were proposed [105,106]. However, there
are also limitations of multi-cooperative UAV systems like ‘blind’ gaps, as can be seen in [76].

The low-altitude traffic management should also be taken into account when devel-
oping systems for monitoring traffic in urban areas since the flight environment in these
areas is increasingly complex with the development of UAVs. Progress has been made in
this regard as well through the development of public air route networks for UAVs [107]
based on aerial corridor systems [108] or airspace geofencing volumization algorithms to
support unmanned aircraft management of low-altitude airspace [109]. Another solution
is represented by a multilayer network of nodes and airways [110]. Nevertheless, these
aspects are not discussed in the papers selected for this analysis because they are strictly
focused on describing the algorithms for traffic monitoring. As stated in [82], the require-
ments for real-time traffic management and control generated broad attention in the field
of traffic monitoring and new frameworks for low-altitude UAV systems were developed
in many countries.

In this field of urban traffic monitoring, appropriate spatial and temporal resolutions
are required to capture details related to three-dimensional traffic. The spatial resolution
determines the quality of an image, the smallest pixel area that can be identified [111]. It
represents a key aspect for determination of traffic flow parameters [66]. Since the UAVs
fly at lower altitudes, they can achieve high spatial resolutions [64]. For instance, in [61]
the spatial resolution is mentioned as having the value of 10.5 cm, in [66] it has the value
of 13 cm and in [81] it is 2 cm. Compared to satellite remote sensing, that can achieve
high-resolution of up to 0.3 m [112], UAVs provide ultra-high spatial resolutions at cm-
level. A research on the evaluation of the impact of spatial resolution on the classification
of vegetation types in provided in [113]. Another research on post-fire mapping and
vegetation recovery highlights the advantages of UAV-based systems compared to satellite-
collected imagery in terms of spatial and temporal resolutions [114]. Temporal resolution is
also of great importance for remote-sensing applications in urban environments because
of its dynamic nature. Traffic monitoring and analysis must be performed promptly
and consistently. UAV platforms are efficient in this regard, providing appropriate high
temporal resolutions [112,115]. However, in the analyzed studies, these parameters were
reported to a very small extent.

Finally, some issues related to different laws and regulations of airspace management
will be addressed. In light of the growing number of UAVs, countries around the world are
trying to develop policies and means to control the operations of low-altitude aircrafts to
ensure their safety and the environment in which they fly. The main regulations are related
to the controlled use of airspace, operational limitations, and administrative procedures [10].
There are three categories of the management of low-altitude UAVs: the registration of flight
activity, the limitation of maximum flight height for different types of UAVs, setting the
area for different flight activities [107]. As an example, the Federal Aviation Administration
of USA mention that the maximum allowable altitude is 400 ft (about 122 m) above the
ground [116]. The same maximum height is stated by the European Aviation Safety Agency
(EASA) [117]. A review of maximum flying height for different countries is provided
in [56]. Regarding the different zones where the UAVs are allowed to fly, there are different
legal requirements defined by each country. For instance, in Belgium and the Netherlands,



Remote Sens. 2022, 14, 620 17 of 28

the use of UAVs for flying above crowds of people or urban areas, and in Canada, UAVs
must not approach more than 120 m to people, animals, buildings or vehicles [118]. In
Romania, the Romanian Civil Aviation Authority (AACR) provides that a safety distance
of 500m from buildings, people, vehicle and animals is required [119]. Moreover, in order
to take pictures or videos in this country, pre-approval is required from the Ministry of
Defense. Other EU regulations and requirements regarding policies and authorizations can
be found in [120].

Given these regulations, authorities around the world are trying to find solutions
to implement a secure UAV operating environment. At the EU level, a report states that
there is a need to develop and validate UAV capabilities in certain key areas, such as:
urban air mobility, air traffic management, advanced services and technologies [121]. Since
in the future the airspace will be very crowded, as multi-purpose UAV applications are
developed, it is necessary to implement policies and regulations for a safe, reliable, and
efficient use of these flying vehicles, and this can be obtained by digitally sharing flight
details in traffic management systems, with minimal human intervention [10]. It has
become obvious that there is a need for a common system to control the flight of UAVs
and large aircraft, referred to by specialists as ‘low altitude airspace management systems
(LAAM)’ [37]. Moreover, future smart cities must provide the necessary infrastructure
for UAV to vehicle (UAV-2-V) communication [122], which ultimately has to be adopted
in the vehicle-to-everything (V2X) space, involving serious data security issues [85] and
issues of processing large volumes of data. A new approach to addressing these issues is
proposed in [123], a blockchain-based solution for unmanned traffic management. Beyond
the current limitations and barriers of UAVs (such as reduced flight time, legal issues, lack
of acceptance, economic barriers, and so on [36]), solutions must be found for optimal
planning routes, the development of computer vision systems, infrastructure for processing
large data sets [124], and UAV positioning algorithms [125]. Some future research directions
are provided in [11,12,35,56,57].

6. Conclusions

In this work, we provided an overview of the UAVs application for traffic monitoring
and analysis. The main conclusions that can be drawn are the following:

• There is a growing trend in the use of drones to monitor traffic in recent years, with a
significant increase in the last three years.

• China has supremacy in terms of the number of applications in this field, as well as
the source of data acquisition equipment (i.e., UAV models).

• In terms of the construction of flying mechanisms, rotary-wing UAVs were preferred
for data collection, especially quadcopters.

• Various image processing methods were proposed for vehicle detection and tracking,
but approaches based on deep learning have been preferred in recent years.

• Most of the identified studies are based on vehicle detection and tracking techniques,
but also the extraction of the trajectory of the vehicles and the evaluation or prediction
of a collision.

• There is a vast literature on the use of drones in various fields, but there is still much
to add to traffic monitoring. This article is part of a series of those aiming to provide
help to researchers and practitioners who contribute to this field.

For future work, we plan to expand the investigation and to include more studies,
to add the current ones and to analyze in more detail every aspect related to the use of
drones in transportation field. Obviously, this article has limitations that will be covered in
a future paper.
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Appendix A

Table A1. Summary of the purpose, results and future work for the analyzed studies.

Author Paper Aim Findings Future Work

Ahmed et al., 2021 [60]

The utilization of a UAV-based
geospatial analysis technique for
accurate extraction of longitudinal
and lateral distances between vehicles
to determine the relationship between
macroscopic and microscopic
parameters of traffic flow.

• Lateral gaps between vehicles are
inversely related to traffic density;

• Higher heterogeneity and
aggressive driver behaviour,
which also increases the risk of
accidents;

• A policy framework is needed to
reduce the heterogeneity of the
traffic stream and induce some
discipline in the traffic stream.

• Studying the relation of traffic
mix on the behaviour of
fundamental diagrams and
drivers’ behaviour.

Apeltauer et al., 2015 [61]

A new approach for simultaneous
detection and tracking of vehicles
moving through an intersection in
aerial images acquired by an
unmanned aerial vehicle (UAV).

• The approach showed sufficient
performance for automatic
extraction of vehicles’ trajectories
for further traffic inspection

• Handling the road junctions
with grade separations, as well
as using data fusion from more
UAVs.

Balamuralidhar et al., 2021 [62]

Presentation of a traffic monitoring
system that can detect, track, and
estimate the velocity of vehicles in a
sequence of aerial images. The
solution has been optimized to
execute these tasks in real-time on an
embedded computer installed on an
Unmanned Aerial Vehicle (UAV)

• Vehicle detection model
performed 4.8% better than the
state-of-the-art algorithms for
vehicle detection in aerial images,
in terms of accuracy (mAP) while
preserving the processing speed;

• Vehicle detection network showed
it is able to generalize to real
world data, such as the used
state-of-the-art dataset

• The acquisition of more realistic
datasets over traffic scenes,
capturing cars moving at high
speed and in varying lighting
conditions;

• Different flight heights.

Barmpounakis et al., 2018 [63]

Address PTW (Powered
Two-Wheeler) overtaking phenomena
using a two-step modelling approach
based on optimized and
meta-optimized decision trees.

• UAV can contribute substantially
towards creating detailed
naturalistic trajectory datasets;

• A detailed dataset is the most
important step when it comes to
data mining techniques and
understanding a phenomenon.

• The combination of the
advanced data gathering tools
and ML models that can
advance the design of
Advanced Driver Assistance
Systems (ADAS).

Barmpounakis et al., 2019 [64]

Examination of the potential of using
UAVs as part of the ITS infrastructure
as a way of extracting naturalistic
trajectory data from aerial video
footage from a low volume four-way
intersection and a pedestrian passage.

• Accuracy is highly dependent on
the stabilization of the video and
the geo-reference procedure.

• High accuracy and fast
communication protocols are
required to send the
information back to the ground
(for example researchers, traffic
centres and managers).

Barmpounakis and Geroliminis
2020 [65]

Recording traffic streams in a
multi-modal congested environment
over an urban setting using UAS that
can allow the deep investigation of
critical traffic phenomena.

• Tremendous possibilities of the
specific dataset to be share with
the rest of the community;

• It can be a benchmark dataset for
both existing and future
modelling approaches for several
disciplines.

• This dataset can be utilized by
the whole research community
of transportation science and
other disciplines, such as
Machine Learning or Artificial
Intelligence, to study, model
and improve traffic congestion.

Brkić et al., 2020 [66]
Proposing a new, low-cost framework
for the determination of highly
accurate traffic flow parameters.

• The proposed framework provides a
simple and accurate method for
plotting vehicle trajectories and
continuous headway measurements
at road sections;

• Vehicle detection achieved a recall of
0.994 and vehicle speed estimation
with a MAPE was 0.92%.

• Creating large datasets
containing labelled vehicles in
images from different videos
and different contexts.
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Chen et al., 2019 [67]

Assessing how simulation can be
utilized for vehicle-pedestrian conflict
assessment at crosswalks. Empirical
models have been established to
represent the stochastic behaviour of
right-turning vehicles and pedestrians
under different geometric layouts and
operational conditions at signalized
intersections.

• The simulation model can
reasonably represent the
frequency and severity of conflict
occurrence at signalized
crosswalks;

• Large dimensions and turning
angles of intersections tend to
result in undesirable safety
performance.

• It is necessary to update some
key behavioural models, such
as non-free-flow right-turning
vehicle path/speed models and
pedestrian behaviour outside
the crosswalk;

• Other conflict types, such as
left-turning vehicles versus
opposing through traffic conflict
should also be incorporated
into the future development of
the simulation model.

Chen et al., 2021 [68]

Proposing a novel methodological
framework for automatic and accurate
vehicle trajectory extraction from
aerial videos.

• The proposed method successfully
extracts vehicle trajectories with a
high accuracy: the measurement
error of Mean Squared Deviation
is 2.301 m, the Root-mean-square
deviation is 0.175 m, and the
Pearson correlation coefficient is
0.999.

• Enhancing the usability of the
proposed vehicle trajectory
extraction algorithms under
challenging situations such as
moving UAV with
multi-dimensional camera
motions (rolling, heaving and
surging, combination of the two
motions, etc.);

• Investigating the performance
of the approaches for other
traffic states or complex state
transition status;

• Enhancing the framework and
improving the model
performance for poor visibility
situations such as night time,
raining, snowing, etc.;

• Employing deep learning
models for accurate vehicle
detections and assemble vehicle
trajectories by solving the
vehicle matching tasks in
different image frames.

Guido et al., 2016 [69]

Presenting a methodology to extract
vehicle trajectories and speeds from
Unmanned Aerial Vehicles (UAV)
video processing.

• The results of the experiments
highlight the versatility of the
Unmanned Aerial Vehicles
technology combined with video
processing technique in
monitoring real traffic data.

• Calibrating simulation models
with a high level of detail by
using spatial information
acquired from a UAV;

• The observed level of accuracy
in speed estimation can be used
for safety assessment where the
differential speed between a
pair of vehicles is the most
important factor;

• Considering other additional
intrinsic camera parameters
(including, for example, lens
distortion) to better match the
ground coordinate systems.

Javadi et al., 2021 [70]

Investigating the ability of
three-dimensional (3D) feature maps
to improve the performance of deep
neural network (DNN) for vehicle
detection. First, we propose a DNN
based on YOLOv3 with various base
networks, including DarkNet-53,
SqueezeNet, MobileNet-v2, and
DenseNet-201.

• The experimental results show
that 3D features improved the
precision of DNNs from 88.23% to
96.43% and from 97.10% to 100%
when using DNN confidence
thresholds of 0.01 and 0.05,
respectively;

• The proposed system was able to
successfully remove 72.22% to
100% of false positives from the
DNN outputs.

• Developing a unified deep
neural network that includes 3D
features as part of the input
signal.

Kang and Mattyus 2015 [71]

Presenting a method which can detect
vehicles with orientation and type
information on aerial images in a few
seconds on large images. The
application of Integral Channel
Features in a Soft Cascade structure
results in both good detection
performance and fast speed

• The application of Integral
Channel Features in a Soft
Cascade structure results in both
good detection performance and
fast speed;

• The detector works on original
images where no georeference and
resolution information is
available.

• Performance could be improved
by using a deep neural network
after the binary detector like
R-CNN.



Remote Sens. 2022, 14, 620 20 of 28

Table A1. Cont.

Author Paper Aim Findings Future Work

Kaufmann et al., 2018 [72]

Showing a suitable way to perform
spatiotemporal measurements of city
traffic using aerial observations with
an unmanned aerial vehicle.

• The conducted video analyses
using supervised tracking
together with key frame
techniques proved to be a robust
solution to gain complete
microscopic data (single-vehicle
data) for empirical traffic research.

• More detailed measurements
and studies of single vehicle
data in city traffic are required.

Ke et al., 2017 [73]

Proposing a novel framework for
real-time traffic flow parameter
estimation from aerial videos. The
proposed system identifies the
directions of traffic streams and
extracts traffic flow parameters of
each traffic stream separately.

• The experimental results show
that the proposed method
achieves about 96% and 87%
accuracy in estimating average
traffic stream speed and vehicle
count, respectively;

• The method also achieves a
fast-processing speed that enables
real-time traffic information
estimation.

• Testing the method on heavily
congested traffic conditions and
curved road segments, and
adjusting it to improve
performance would also be
insightful;

• Improving accuracy for
estimation of large vehicles and
improving the overall
performances.

Khan et al., 2017 [74]

Processing and analysis of
UAV-acquired traffic footage. A
detailed methodological framework
for automated UAV video processing
is proposed to extract the trajectories
of multiple vehicles at a particular
road segment.

• The results generated depict the
overall applicability of the system.
Such a systematic framework may
prove to be helpful for future
traffic-related UAV studies as well
by streamlining the processes
involved. It may also serve as a
comprehensive guide for the
automated and quick extraction of
multivehicle trajectories from
UAV-acquired data.

• The extension of the
applications of the proposed
framework within the context
of UAV-based traffic monitoring
and analysis;

• The proposed framework will
be extended to implement
real-time processing and
analysis of UAV-acquired data.

Khan et al., 2018 [75]

Analysis of vehicle trajectories
acquired via small rotary-wing UAV
footage. The experimental data to
analyse traffic flow conditions at a
signalized intersection was obtained
in the city of Sint-Truiden, Belgium.

• The results reflect the value of
flexibility and bird’s-eye view
provided by UAV videos; thereby
depicting the overall applicability
of the UAV-based traffic
analysis system.

• Various approaches for
automation and optimization of
vehicle trajectories’ analysis,
including the ‘critical point’
approach, will be explored in
more detail;

• The prospects of real-time
processing and analysis of
traffic data obtained via UAVs
will be inspected.

Khan et al., 2020 [76]
Proposing a smart traffic surveillance
system based on Unmanned Aerial
Vehicle (UAV) using 5G technology.

• The results show that those
violations when to overcome, the
number of accidents per year falls
to 299,317 leading to 4868 deaths
and 33,199 injuries for 1st year,
and in the next five years the
number of deaths and will be
decreased to 3745 and injuries to
16,600 based on the current data
available.

• Autodetection of lane switching,
other traffic violations, and
warning to drivers about these
violations will promote better
lane discipline among drivers in
Saudi Arabia.

Kujawski and Dudek 2021 [77]

Presenting methods of data
acquisition from cameras mounted on
unmanned aerial vehicles (UAV) and
their further analysis, which may be
used to improve urban transportation
systems and its sustainability. The
analysed data concerning the situation
of urban transport in points of
intersection of national and
local roads.

• Results can be used in the future
together with the data from
existing intelligent transportation
systems (a fusion of such data will
be needed);

• The application of used methods
allow to extend and support the
existing approaches to manage
public and freight transport
in cities.

• Improving the power supply of
flying vehicles so that it is
possible to power them
continuously, because currently
there is only possibility to fly up
to 30 min on one battery.

Li et al., 2019 [78]
Proposing a novel adaptive
framework for multi-vehicle ground
speed estimation in airborne videos.

• The proposed system has a unique
ability to detect, track, and
estimate the speed of ground
vehicles simultaneously even with
a single downward-
looking camera.

• The system can obtain effective
and accurate speed estimation
results, even in various
complex scenes.

• Using SLAM to estimate the 3D
information of the scene to
improve the accuracy of vehicle
speed estimation.
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Li et al., 2020 [79]

Proposing a robust vehicle detection
model for aerial images. First, image
pre-processing to deal with IoU
distribution imbalance problem and
greatly improve the recall rate were
performed. Then, SSP-SSD to enhance
feature representation of vehicles with
different scales and improve the
precision was proposed.

• Extensive experiments
demonstrate the superiority of the
proposed algorithm by
comparison with other SOTA
solutions.

• Focusing the research on
few-shot learning to improve
the performance of our detector
on unbalanced data.

Liu and Zhang 2021 [28]

Fusing the target detection network,
YOLO v4, with the detection-based
multitarget tracking algorithm,
DeepSORT, a method based on deep
learning for automatic vehicle
detection and tracking in urban
environments, has been designed.

• Results of the simulation show
that the algorithm proposed can
detect and track vehicles
automatically in urban
environments;

• The particle filter algorithm based
on an interactive multimodel
significantly improves the
performance of the UAV in terms
of positioning the manoeuvring
targets, and this has good
engineering application value.

NR

Luo et al., 2020 [80]

Proposing a traffic collisions early
warning scheme aided by small
unmanned aerial vehicle (UAV)
companion. Basically, it is a
vision-based driver assistance system,
and the difference in comparison with
the available schemes is that the
camera is flying along with the
host vehicle.

• Extensive experimental results
and examples demonstrate the
effectiveness of the proposed
method, and its real-time
performance outperforms typical
tracking methods such as that
based on Gaussian mixture model.

• Incorporating a high level
intelligent onboard processing
system in UAV for detection,
classification and
understanding various types of
vehicle crashes, such as
head-on, road departure,
rear-end, side collisions,
rollovers, etc. In particular, the
innovations of artificial
intelligence, data mining and
machine learning can be used.

Moranduzzo and Melgani 2014 [81]

Presenting a solution to solve the car
detection and counting problem in
images acquired by means of
unmanned aerial vehicles (UAVs).

• The experimental results obtained
on a real UAV scene characterized
by a spatial resolution of 2 cm
show that the proposed method
exhibits a promising car
counting accuracy.

• Other colour-based SIFT
methods could be envisioned in
order to better exploit the
discrimination potential
conveyed by the original image
colour space;

• Efforts should be made in the
direction of assessing other
kinds of descriptors and
detectors (e.g., Harris and
Gabor filters, local binary
patterns) as potentially
alternatives to SIFT in terms of
complexity and
discrimination power.

Shan et al., 2021 [82]

Proposing a systematic approach to
detect and track vehicles based on the
YOLO v3 model and the deep SORT
algorithm for further extracting key
traffic parameters.

• The proposed approach exhibits
strong robustness and reliability,
due to the 90.88% accuracy of
object detection and 98.9%
precision of tracking vehicle.

• The absolute and relative error of
extracted speed falls within ±3
km/h and 2%, respectively.

• The overall accuracy of the
extracted parameters reaches up
to 98%.

• Different traffic scenarios (for
example, intersection,
roundabout, low visibility, etc.)
may also be considered to test
the robustness of the proposed
approach;

• Further analysis about driving
behaviour could be conducted
utilizing real-time traffic data
obtained from the present work.

Wan et al., 2019 [83]

Proposing a computer vision-based
target tracking algorithm aiming at
locating UAV-captured targets, like
pedestrian and vehicle, using sparse
representation theory.

• Both qualitative and quantitative
experiments implemented on
visible (Vis) and infrared (IR) UAV
videos prove that the presented
tracker can achieve better
performance in terms of precision
rate and success rate when
compared with other
state-of-the-art trackers.

• Focusing on optimizing the
codes and transplanting our
algorithm to hardware devices,
like FPGA and GPU, to make
the real-time running come true.
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Wang et al., 2016a [84]

Presenting a crash prediction method
based on a bivariate extreme value
theory (EVT) framework and UAV
trajectory data processing.

• The crash prediction method
appeared to be a promising tool
for safety evaluation on signalized
intersections.

• Incorporate more intersections;
• Using other state-of-the-art

computer vision techniques,
such as deep learning methods;

• A multivariate EVT model
framework could also be
attempted, incorporating
multiple conflict metrics.

Wang et al., 2016b [85]

Proposing an improved start-wave
velocity model, where the speed and
density of traffic flow are converted
into vehicle space headway, meaning
vehicle length and other auxiliary
parameters which can be recognized
from aerial video or other means

• The improved model is accurate
enough to be used for model
calibration and validation in
signal timing optimization

• The correlation between the
weighted average of PCU and
the average start-up
acceleration should be analysed;

• The relationship between
characteristics of queues
dissipating and driver
behaviours needs a more
specific study.

Wang et al., 2019 [86]

Proposing a deep-learning framework
for vehicle detection and tracking
from UAV videos for monitoring
traffic flow in complex road structures.
The approach is designed to be
invariant to significant orientation and
scale variations in the videos. The
detection procedure is performed by
fine-tuning a state-of-the-art object
detector, You Only Look Once
(YOLOv3), using several
custom-labelled traffic datasets.

• Experiments demonstrated that
high detection accuracy could be
achieved with an average F1-score
of 92.1%. Besides, the tracking
technique performs accurately,
with an average multiple-object
tracking accuracy (MOTA) of
81.3%.

• More custom UAV traffic
images with different lighting
and weather conditions as well
as vehicle models and colours
will be beneficial to train a more
robust vehicle tracker;

• Traditional data augmentation
approaches, as well as
generative adversarial
networks, can be helpful in
improving training data;

• Geometric calibration of the
camera will be performed, and
images will be rectified in order
to reduce mis-detection errors
near image corners.

Wang et al., 2019 [87]

Introducing a new vehicle detecting
and tracking system based on image
data collected by UAV. The system
uses consecutive frames to generate
vehicle’s dynamic information, such
as positions and velocities.

• Field tests demonstrate that the
present system exhibits high
accuracy in traffic information
acquisition at different UAV
altitudes with different view
scopes, which can be used in
future traffic monitoring and
control in metropolitan areas.

• Vehicle detecting and tracking
methods for different altitudes
and different accuracy should
be considered.

Xing et al., 2020a [88]

Investigating the traffic conflict risks
at the upstream approach of toll plaza
during the vehicles’ diverging period
from the time of arrival at the
diverging area to that of entering the
tollbooths. Based on the vehicle’s
trajectory data extracted from
unmanned aerial vehicle (UAV)
videos using an automated video
analysis system, vehicles’ collision
risk is computed by extended time to
collision (TTC).

• The results indicate that the
T-RPLR model has the highest
prediction accuracy. Eight
influencing factors including
following vehicle’s travel distance,
following vehicle’s initial lane,
following vehicle’s toll collection
type, leading vehicle’s toll
collection type, distance between
two vehicles’ centroids, and
following vehicle’s speed, are
found to have time-varying effects
on collision risk.

• Various toll plaza diverging
areas should be conducted for
validation and a general model
suitable for all kinds of toll
plaza diverging areas should be
developed.

Xing et al., 2020b [89]

Developing the logistic regression (LR)
model and five typical non-parametric
models including, K-Nearest
Neighbour (KNN), Artificial Neural
Networks (ANN), Support Vector
Machines (SVM), Decision Trees (DT),
and Random Forest (RF) to examine
the relationship between influencing
factors and vehicle collision risk.

• Results of model performance
comparison indicate that not all
non-parametric models have a
better prediction performance
than the LR model;

• The KNN, SVM, DT and RF
models have better model
performance than LR model in
model training, while the ANN
model has the worst model
performance;

• The accuracy of LR model is
higher than that of other five
non-parametric models under
various ETTC thresholds
conditions.

• The detailed influence needs to
be investigated in order to
further enhance prediction
accuracy;

• The interpretability and
convenience of non-parametric
models could be improved,
which may impede the
practicability compared with
statistical models;

• The unobserved heterogeneity
should be analysis by
employing the advanced
modelling techniques.
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Xu et al., 2016 [90]

Proposing a new hybrid vehicle
detection scheme which integrates the
Viola-Jones (V-J) and linear SVM
classifier with HOG feature (HOG +
SVM) methods for vehicle detection
from low-altitude unmanned aerial
vehicle (UAV) images.

• A comprehensive evaluation
shows that the switching strategy,
combined with the road
orientation adjustment method,
can significantly improve the
efficiency and effectiveness of the
vehicle detection from
UAV images;

• The proposed vehicle detection
method is competitive compared
with other existing vehicle
detection methods.

• Future research will be focusing
on expanding the current
method for detecting other
transportation modes such as
buses, trucks, motors, bicycles,
and pedestrians.

Zhu et al., 2018a [91]

Presenting an all-in-one behaviour
recognition framework for moving
vehicles based on the latest deep
learning techniques.

• The approach outperformed all
other methods in terms of both
single class performance and
overall performance;

• T-BiLSTM achieved an accuracy of
0.965 on the “go straight” types.

• Vehicle trajectory analysis also
has more applications which we
will consider in future works:
for example, illegal lane
changes, violations of traffic
lines, overtaking in prohibited
places, and illegal retrograde;

• An artificial-intelligence-based
transportation analytical
platform can be implemented
and it can be integrated into the
existing intelligent
transportation system in order
to improve the driving
experience and safety of drivers.

Zhu et al., 2018b [92]

Presenting an advanced urban traffic
density estimation solution using the
latest deep learning techniques to
intelligently process
ultrahigh-resolution traffic videos
taken from an unmanned aerial
vehicle (UAV).

• The enhanced single shot
multibox detector (Enhanced-SSD)
outperforms other DNN-based
techniques and the deep learning
techniques are more effective than
traditional computer vision
techniques in traffic
video analysis;

• ultrahigh-resolution video
provides more information that
enables more accurate vehicle
detection and recognition than
lower resolution contents.

• Developing more effective
vehicle detection and tracking
algorithms while achieving a
high processing speed and
robustness;

• Designing a method to
automatically select wanted
regions (city roads) to further
reduce human supervision and
improve the overall efficiency.
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