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Abstract: Building change detection using remote sensing images is significant to urban planning
and city monitoring. The height information extracted from very high resolution (VHR) satellite
stereo images provides valuable information for the detection of 3D changes in urban buildings.
However, most existing 3D change detection algorithms are based on the independent segmentation
of two-temporal images and the feature fusion of spectral change and height change. These methods
do not consider 3D change information and spatial context information simultaneously. In this
paper, we propose a novel building change detection algorithm based on 3D Co-segmentation, which
makes full use of the 3D change information contained in the stereoscope data. An energy function
containing spectral change information, height change information, and spatial context information
is constructed. Image change feature is extracted using morphological building index (MBI), and
height change feature is obtained by robust normalized digital surface models (nDSM) difference.
3D Co-segmentation divides the two-temporal images into the changed foreground and unchanged
background through the graph-cut-based energy minimization method. The object-to-object detection
results are obtained through overlay analysis, and the quantitative height change values are calculated
according to this correspondence. The superiority of the proposed algorithm is that it can obtain
the changes of buildings in planar and vertical simultaneously. The performance of the algorithm
is evaluated in detail using six groups of satellite datasets. The experimental results prove the
effectiveness of the proposed building change detection algorithm.

Keywords: building change detection; 3D change detection; stereo satellite imagery; morphological
building index; digital surface models; Co-segmentation

1. Introduction

Automatic building change detection using remote sensing imagery is significant
for city monitoring, disaster assessment, map updating, etc. For the very high resolution
(VHR) satellite remote sensing imagery, the spatial resolution is better than 1 m, which
brings the complex details of ground features. It makes the results of two-dimensional
(2D) change detection vulnerable to minor changes on the ground surface. Furthermore, as
the resolution improves, slight changes in the viewing angle may cause severe geometric
distortions, making 2D change detection more challenging. With the development of dense
stereo image matching technology [1–3] and the launch of more and more VHR stereo
observation satellites, we can extract accurate height information from the satellite stereo
images, which is very useful for building change detection. The introduction of the height
features makes three-dimensional (3D) change detection insensitive to the image’s detailed
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change information. It can correct the geometric distortion caused by different observation
angles. Therefore, 3D change detection appears to have obvious advantages for change
detection in urban areas.

However, there are still many challenges in the 3D change detections [4]. With dif-
ferent sensors, algorithms, and resolutions, 3D data have varying degrees of uncertainty.
Elevation data differs from image data in terms of properties and characteristics, so special
considerations must be made to effectively integrate these two types of data. Besides,
the perspective distortion, occlusion, and incompleteness in the data also bring great
challenges.

In recent years, Xiao et al. [5] applied the graph-cut algorithm to 2D change detection
and proposed a co-segmentation algorithm. They simultaneously used spectral change
and spatial context information to solve the global energy minimizing problem. The
co-segmentation can directly divide the image into the changed object and unchanged
areas. Afterward, Zhang et al. [6] further analyzed and compared multiple multi-temporal
segmentation methods in detail and co-segmentation obtained the best change detection
performance. Chen et al. [7] detected building changes by combining coarse location
and co-segmentation. Gong et al. [8] generated the changed building proposals based
on graph-cut and then the changed buildings were detected using a patch matching
approach and conditional random field (CRF) optimization. Then they proposed a roof-cut
algorithm [9] to detect change between imagery and existing footprint map. Zhu et al. [10]
applied the superpixels algorithm to co-segmentation, which solved the problem of slow
segmentation due to the complexity of graph structure. Hao et al. [11] used the support
vector machine (SVM) algorithm to calculate the prior probability of change for graph-cut-
based segmentation. Zhang et al. [12] proposed a multitemporal building change detection
method based on co-segmentation using time-series synthetic aperture radar (SAR) images.

For 3D change detection, Qin et al. [4] summarized the existing 3D change detection
algorithms in detail. Gstaiger et al. [13] concluded that using 3D change information com-
bined with 2D information for change detection can deliver valuable indications. For the
pixel-based method, Tian et al. [14,15] used digital surface models (DSM) difference and
threshold segmentation to detect building change. Then they proposed a 3D change detec-
tion algorithm based on Dempster–Shafer (DS) theory [16], which fused the height change
feature and spectral change feature using DS theory at the decision level. Subsequently,
they continued to improve the algorithm in [17–21] by using extended DS theory named
Dezert-Smarandache Theory and reliability discounting method, which considers DSM
quality. As for the object-based method, Tian et al. [22] used the separate segmentation and
region combination for region-based automatic building change detection. Qin et al. [23]
proposed an object-based 3D building change detection method using synergic mean-shift
with the constraints of the DSM. They also proposed a 3D change detection algorithm
based on the LOD2 (Level of Detail 2) building model [24]. But this algorithm relies on
the existing LOD2 3D building model, which is difficult and expensive to be acquired.
Gharibbafghi et al. [25] used the edge-based simple linear iterative clustering (ESLIC)
superpixel segmentation method to refine the 3D building model and detect building
change. Wen et al. [26] proposed an object-based image-to-map change detection method
to generate time-series 3D building maps. Huang et al. [27] proposed an object-based
time-series newly constructed building areas detection method using both planar and
vertical features. Supervised classification was also introduce into the 3D change detection
algorithm, including SVM [28], decision-tree [23], and random forest [29]. However, the
training label was generated by a rule set method, which has certain limitations. Tian and
Qin et al. [30,31] used the random forest to extract building probability map and then com-
bined multi-temporal building probability map with the 3D bilateral filter. Yuan et al. [32]
extracted the building probability map using deep learning and integrated it with the 3D
change feature based on DS fusion theory. Pang et al. [33] used a graph-cuts-based algo-
rithm to extract changed objects from two-temporal DSMs and used the corresponding aerial
images to remove non-building objects with a structural feature. Then, they used semantic
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segmentation based on deep learning to extract building areas and integrated the result
into the graph-cuts-based segmentation algorithm [34]. There are also some methods based
on post-classification [23,35–38] in the 3D building change detection.

In this paper, we propose a novel 3D change detection algorithm for urban buildings
based on 3D co-segmentation. We construct an energy function containing spectral change
information, height change information, and spatial context information. By taking the 3D
change feature as the prior knowledge, combining it with the spatial context information,
3D co-segmentation is performed via graph-based energy minimization [39]. It segments
the two-temporal images into the changed foreground and unchanged background and
obtains the change detection results with spatial correspondence. Subsequently, we can get
the corresponding relationship between the two-temporal changed buildings through overlay
analysis. Finally, the quantitative height change values are obtained using robust statistics.

The main contributions of the proposed algorithm are as follows:

1. A novel energy function is proposed that can fully mine the information contained in
stereo image pairings by taking height information, spectral information, and spatial
neighborhood information into consideration;

2. Using a sigmoid function to map the change indicator to the energy value, which can
better deal with the gross error in the change features;

3. A 3D co-segmentation algorithm for building change detection is proposed based
on the proposed energy function. The algorithm considers height change, spectral
change, and spatial neighborhood information, and uses segmentation to directly
obtain change detection results;

4. The algorithm can obtain the quantitative height change value of each changed
building.

This paper is organized as follows. Section 2 describes the details of the proposed 3D
co-segmentation based building change detection approach. We provide some experimental
results of the proposed method on six groups of actual satellite stereo images in Section 3.
Section 4 discusses the influence of adjustable parameters on the performance of the
proposed algorithm. Finally, Section 5 draws the conclusion.

2. Materials and Methods

This section will introduce the proposed 3D-co-segmentation-based urban buildings
change detection algorithm in detail. The workflow of the proposed method is shown in
Figure 1. The inputs of the algorithm are two pairs of satellite stereo images with changes.
After the dense image matching, we can obtain the DSMs as well as the orthorectified
images of the two-temporal and extract the nDSM from the DSM. Then, the spectral
change feature is extracted through MBI [40,41] difference, and the height change feature is
extracted through the robust height difference of nDSM. The 3D co-segmentation is then
done using the same 3D change feature as the prior knowledge and the spatially associated
segmentation results corresponding to two-temporal orthoimages are acquired. After
that, the overlay analysis is applied to the two-temporal segmentation results, and the
object-to-object correspondences of the changed objects are determined. Finally, the height
change values of each changed building are calculated using the robust height means.
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Figure 1. Flowchart of the proposed methodology.

2.1. Stereo Reconstruction

For the input two-temporal stereo images, the block adjustment [42–44] is first per-
formed using the automatically extracted tie-points (TP) and the external ground control
points (GCP). After the adjustment, the error of the positioning model is greatly reduced,
so that the DSM elevation calculation and planar positioning are more accurate. After that,
the semi-global-matching (SGM) [1,3] algorithm, which employs the CENSUS transform
and hamming distance as the matching cost, is used to densely match the stereo images.
The DSM elevation is then calculated based on the matching result. Finally, the orthoimage
is obtained using the produced DSM as the reference elevation.

Since the objects of interest are the changed buildings, the nDSM containing only the
height above ground surface is extracted from the DSM using white top-hat transformation
based on morphological open-by-reconstruction operation [45].

nDSM = DSM− RDSM(DSM	 SE), (1)

where 	 represents morphological erosion operation, RG(B) represents the morphological
reconstruction of G with B as the marker, and SE represents the structural element for
morphological reconstruction. Here, we select the square structural element with the size
of w× w. The size of the structural elements needs to be greater than the maximum short
axis of the buildings in the area of interest to ensure that all buildings are preserved.

2.2. 3D Change Feature

Change features provide the prior change information for subsequent co-segmentation.
The main characteristics of building changes are spectral changes and height changes. We
make full use of the information in stereo images to extract the 3D change features in
orthoimages and nDSMs.
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2.2.1. Spectral Change Feature

As the bare ground changes to buildings, the gray value of each pixel in the image
often changes. Using the brightness, local contrast, size, and directionality characteristics,
MBI can extract buildings based on gray-level morphological processing. The basic idea
of MBI is to build the relationship between the spectral structural features of buildings
and the morphological operators. These spectral structural characteristics of buildings are
represented using the open-by-reconstruction with a series of linear structural elements.
The change of MBI can reflect the change of buildings in the image. When the MBIs of
two-temporal orthoimages are calculated, the spectral change index can be obtained by the
difference between the two MBIs. Then, a 5× 5 median filter is used to reduce noises.

MBIdi f = median(|MBI(I2)−MBI(I1)|), (2)

where MBIdi f represents the MBI difference value between two-temporal and MBI(I)
represents the MBI of image I. The MBI can be calculated according to [41].

MBI =
∑d,s DMPWTH(d, s)

D× S
, (3)

where DMP is the differential morphological profiles as described in [41]; D and S denote
the numbers of directionality and scale of the profiles, respectively. Four directions (D = 4)
are enough, and the length s should be determined according to the spatial resolution. In
this paper, smin = 10, smax = 210 and ∆s = 50.

2.2.2. Height Change Feature

As a significant feature of building changes, the building height changes can signifi-
cantly improve change detection accuracy and reduce the impact of uninterested objects on
the ground surface. The height change values can be obtained from the nDSM difference
of the two temporal images. However, the nDSM produced from stereo matching cannot
obtain precise boundaries in regions of elevation leap, especially at building edges. This
will result in a large number of false alarms at building edges with the direct difference
of the nDSM, so we use a robust nDSM difference algorithm [16] to calculate the height
change values.

Hdi f = robust_di f f erence(nDSM2, nDSM1). (4)

The robust nDSM difference calculates the minimum value of height difference within
a certain window range. The robust difference between nDSM1 at time T1 and nDSM2
at time T2 is defined as the minimum value of the height difference between a pixel in
nDSM2 and all pixels within the specific neighborhood range (windows of radius w) of
the corresponding pixel in nDSM1. That is, only the difference with the smallest absolute
value in all positive changes and the smallest absolute value in all negative changes are
considered. The robust positive difference and the robust negative difference are defined
as follows:

XPdi f (i, j) = min
p∈[i−w,i+w],
q∈[j−w,j+w]

{(x2(i, j)− x1(p, q)), (x2(i, j)− x1(p, q)) > 0},
(5)

XNdi f (i, j) = max
p∈[i−w,i+w],
q∈[j−w,j+w]

{(x2(i, j)− x1(p, q)), (x2(i, j)− x1(p, q)) < 0}.
(6)

The window size w depends on the quality of the nDSM. A smaller window can be
selected for a higher quality nDSM and a larger window for a lower quality nDSM.

Figure 2 shows the schematic diagram of robust difference and the profile of the result.
The schematic diagram in Figure 2a shows the direct difference results of two buildings
with certain height differences and different boundaries. The height difference at the edge
is higher than the actual buildings change due to different edge positions. The schematic
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diagram in Figure 2b shows the result of robust difference. For each point, the point
with the smallest difference in elevation within a certain range is found for differencing.
The height difference at the edge is effectively removed, and the part really higher than
the building is successfully retained. Figure 2c,d show the profile of nDSM and height
difference. There is a certain degree of inconsistency at the boundary between the two
nDSM due to the performance of the matching algorithm. It will lead to a large number of
spikes in the direct difference results while the robust difference results effectively avoid
this problem.

(a) (b)

(c)

(d)

Figure 2. The schematic diagrams of (a) directed difference and (b) robust difference, and the profiles
of (c) nDSMs and (d) height differences.

2.3. 3D Co-Segmentation

According to the principle of global energy minimization, 3D co-segmentation employs
the above 3D change features as the prior, combining the spatial neighborhood similarity
of the images to divide the image into foreground and background, that is, changed and
unchanged.

2.3.1. Energy Function

In order to integrate the height change information, the spectral change information,
and the spatial context information, we construct the following energy function:
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E = λEchange + (1− λ)Esmooth

= λ(αEH
change + (1− α)EI

change) + (1− λ)Esmooth

= λαEH
change + λ(1− α)EI

change + (1− λ)Esmooth,

(7)

where 0 < λ ≤ 1 indicates the relative importance of the data item to the smoothing item
and 0 ≤ α ≤ 1 indicates the relative importance of the height change feature to the spectral
change feature. EH

change, EI
change, and Esmooth represent the energy item of height change,

spectral change, and spatial smoothness, respectively.
Let λH = λα, λI = λ(1 − α) represent the weights of height change energy and

spectral change energy, then
λ = λH + λI ,

α = λH/(λH + λI),
(8)

and

E(L) = λHEH
change + λI EI

change + (1− λH − λI)Esmooth

= λH ∑
p∈P

DH
p (lp) + λI ∑

p∈P
DI

p(lp) + (1− λH − λI) ∑
(p,q)∈N

Vp,q(lp, lq), (9)

where L = {lp|lp ∈ {l f g, lbg}, p ∈ P} is a possible label for all pixels p in image P. l f g and
lbg represent foreground and background labels, respectively. DH

p (lp) and DI
p(lp) are the

energy of the feature items and represent the cost of assigning label lp to pixel p according
to the height change or spectral change. Vp,q is the smoothing item energy, which represents
the penalty when pixel p and pixel q allocates different labels. N represents the set of all
possible neighborhood pixel pairs.

2.3.2. Graph Construction

As show in Figure 3, for each image,we construct the weighted graph
G = (V, E),

V = P ∪ {s, t},
E = N ∪ {(s, p), (p, t)}.

(10)

The nodes set V of the graph contains two kinds of nodes: pixel nodes and terminal
nodes. The pixel nodes set P compose all pixels of the image, and each pixel represents a
node. Besides, there are two terminal nodes. The source node s represents the background
that didn’t change, and the sink node t represents the foreground that changed. Similarly,
the edges set E contains two kinds of edges, neighbor edges N (n-links) that connect two-
pixel nodes, and terminal edges T (t-links) that connect a pixel node with a terminal node.
Each pixel node p has two t-links (s, p) and (p, t) connected to the two terminal nodes and
several n-links connected to its neighboring pixel nodes.
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Figure 3. The graph structure of 3D co-segmentation and the cut (adapted from [46]). The yellow
edge represents n-links, and its weight depends on the image. The red and blue edges represent
t-links, and their weight depend on the change index. The green dashed line represents the minimum
cut. Edge weights are reflected by their thickness.

2.3.3. Edge Weights

The weight setting for each edge is listed in Table 1.

Table 1. Graph edge weight setting.

Edge Type Value Condition

n-link (p, q) (1− λH − λI)Vp,q (p, q) ∈ N

t-link (s, p) λH DH
p (l f g) + λI DI

p(l f g) p ∈ P

t-link (p, t) λH DH
p (lbg) + λI DI

p(lbg) p ∈ P

The edge weights correspond to the energy function items. The n-link weights cor-
respond to the smoothing energy item and depend on the image neighborhood features.
They represent the penalty when similar pixels are assigned different labels. The similarity
measure of pixels is expressed by the Euclidean distance and the difference between the
pixel’s gray values. The weight of the edge connecting the two pixels is larger when their
positions are closer, and their gray values are more similar. The weighting function of
n-links is defined as follows

Vp,q = exp(−
‖Ip − Iq‖2

2σ2 ) · 1
d(p, q)

,

d(p, q) =
√
(rp − rq)2 + (cp − cq)2,

σ2 = E(‖Ip − Iq‖2),

(11)

where Ip, Iq denote the gray value of pixels p, q; rp, cp denote the row and column coordi-
nates of pixel p; d(p, q) represents the Euclidean distance of pixels p, q in image coordinate
and E(·) represents the expectation for all possible neighboring pixels pairs in N.

The weights of t-link correspond to the data energy item and depend on the change
features. They represent the prior knowledge of whether a pixel has changed or not. For the
edge (s, p) connecting the source node s to a pixel node p, the weight of the corresponding
edge should be lower when the probability of change is higher. Similarly, for the edge
(p, t) connecting a pixel node p to the sink node t, the weight of the corresponding edge
should be higher when the probability of change is higher. Many existing works [5,6,8,12]
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of literature use the negative logarithm as the weighting function. It can map the change
index in the range of [0, 2T] to the edge weight, where T is the threshold value. When the
change index is greater than 2T, it is considered that the pixel must have changed. Due to
errors, some pixels in the 3D building change detection based on stereo satellite images
may have a change index of greater than 2T, therefore we cannot infer that this pixel has
changed. Therefore, to preserve some prior probabilities even for the pixels with large
changes, we use the sigmoid function as the weighting function. The sigmoid function has
an “S” shape and maps the change values to the intervals (0, 1). The specific weighting
function is defined as follows:

Dp(x, lp; T, τ) =


1

1 + exp ( x−T
τ )

, i f lp = l f g

1
1 + exp (− x−T

τ )
, i f lp = lbg

(12)

DH
p (lp) = Dp(Hdi f

p , lp; TH , τH),

DI
p(lp) = Dp(MBIdi f

p , lp; TI , τI),
(13)

where x represents the change index of pixel p. The greater the change index, the higher
the probability of building change. T is the threshold for change index and controls the
symmetry point of the sigmoid function. Figure 4a shows the sigmoid functions with
different parameters T. Since the height change has a specific physical meaning, we can
determine the threshold value TH manually according to the corresponding application and
the precision of the nDSMs. The threshold value TI of spectral change can be determined
by an automatic threshold selection method such as OTSU [47]. From now on, we ignore
the coefficients λ and the other item in the t-link weight and only discuss one Dp(lp). When
the change index is T, it is considered that the probability of change is 50%. At this time,
the weights of edge (s, p) and edge (p, t) are the same. When the change value is greater
than T, the change probability increases, the weight of edge (s, p) approaches 0, and the
weight of edge (p, t) approaches 1. At this time, the pixels tend to be classified as changed
pixels, vice versa. However, the weight of all t-links will always not be 0. The parameter τ
controls the shape of the sigmoid function. Figure 4b shows the sigmoid functions with
different parameters τ. A larger τ will make the weight function smoother, and the change
of weight with the change index will be slower. On the contrary, a smaller τ will make
the weight function steeper, and the change of weight with change index is severer. After
determining the threshold T, the parameter τ can be obtained using a given sampling point
on the sigmoid function.

-10 0 10 20

0

0.2

0.4

0.6

0.8

1

T=0

T=5

T=15

T=20

(a)

-10 0 10 20

0

0.2

0.4

0.6

0.8

1

=0.1

=0.3

=1

=3

=10

(b)

Figure 4. Sigmoid functions with (a) different T and (b) different τ.
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The weight coefficients λH and λI determine the relative importance between height
change feature, spectral change feature, and spatial neighborhood feature. Too large λ
means that the change feature plays a leading role. It will make the results over-segmented
and produce more false alarms. Too small λ means the spatial neighborhood smoothing
feature plays a leading role. The segmentation result will be too smooth, multiple changed
buildings will be connected as a whole, and some buildings with small areas and small
changes will be smoothed out. When λ = 1, the segmentation result depends on the change
feature, and the result is the same as the pixel-based threshold method. λH and λI cannot
be set to 0 at the same time because the changes cannot be detected without the change
feature.

2.3.4. Energy Minimization

At this point, the problem has been converted to a standard graph-cut problem which
can be solved by the standard max-flow/min-cut [48] algorithm. After the segmentation,
all the pixels connected to the s-node are the unchanged pixels, and all the pixels connected
to the t-node are the changed pixels.

2.4. Spatial Correspondence

Using the same prior knowledge of the change, we segment the two-temporal orthoim-
ages separately and obtain two spatially related segmentation results. Firstly, we perform
morphological closing and morphological opening operations on the segmented results
to fill the small gaps and remove the speckle noises. Fragmentation areas smaller than a
certain threshold are then removed, which is often due to other changes on the ground
surface and stereo matching errors. Subsequently, overlay analysis [5] is performed on the
two-temporal segmentation results. With this step, we get the object-to-object correspon-
dence relationship between the two-temporal segmentation results. Because two-temporal
image features are added to the co-segmentation process, the segmentation results are
related to specific images, which allows the geometric change of the building to be detected.

2.5. Height Change Determenation

After obtaining the correspondence relationship of the changed objects, the heights
of each building at two-temporal are calculated based on the nDSM. There will be some
coarse pixels in the height values of each area because the building edges in the nDSM are
inaccurate and inconsistent with the segmentation results. So, we use a robust height mean
method to calculate the average height of each building.

As shown in Figure 5, for each building, the nDSM height values of all the pixels are
sorted. The maximum and minimum 10% pixels are removed, and then the average height
of the remaining intermediate pixels is calculated as the final height. After overlay analysis,
the object-to-object correspondence relationship between the two-temporal segmentation
result is obtained. We can get the height change values of the changed buildings by
subtracting the average heights of the corresponding objects.

10% 10%

MaxValueMinValue

Figure 5. The schematic diagram of robust height mean (adapted from [16]).

3. Results

To illustrate the effectiveness of the proposed algorithm, the experimental results using
several real satellite datasets are shown below.

3.1. Study Area and Datasets

The first experimental area is located in Henan Province, China. It contains two pairs
of GaoFen-7 stereo imagery data and the corresponding multi-spectral images collected on
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11 December 2019, and 17 January 2021, respectively. The resolution of the panchromatic
stereo imagery is 0.8 m, and the intersection angle is about 31 degrees. Because the
satellite is in a sun-synchronous orbit and the data collecting seasons are the same, the sun
altitude angle of two-temporal is almost the same, implying that the impact of illumination
conditions on change detection is insignificant. The second experimental area is located
in Sichuan Province, China. It contains two pairs of GeoEye-1 stereo imagery data and
the corresponding multi-spectral images collected on 21 August 2021, and 21 November
2021, respectively. The resolution of the panchromatic stereo imagery is 0.5 m, and the
intersection angle is greater than 30 degrees. As shown in Table 2, the two-temporal stereo
images have different viewing angles, so the geometric distortion will result in the failure
of 2D change detection. However, this distortion can be corrected by introducing the DSM
to obtain a well-registered true orthorectified image.

Table 2. Satellite view angles.

T1 T2
Azimuth Zenith Azimuth Zenith

DataSet 1 BackWard 191.475671 5.528352 241.092863 9.128378
ForeWard 12.051169 28.249459 359.066534 28.711070

DataSet 2 BackWard 290.6 17.1 348.3 15.3
ForeWard 221.2 32.9 208.2 23.4

The input stereo pairs are processed using the stereo 3D reconstruction algorithm
described above. The GCPs are acquired manually using an existing reference digital
orthophoto map (DOM), and the TPs are obtained automatically using a phase-correlation-
based matching method. For all images in each dataset, the block adjustment is performed
using the GCPs and TPs mentioned above. The DSMs and corresponding orthoimages are
generated using the adjusted positioning model, and nDSMs are extracted from DSMs. With
the adjusted positioning model, all generated DSMs and orthoimages are co-registered
to each other with errors of less than one pixel. The elevation accuracy of the DSM is
better than 1.5 m. The reference change maps are manually labeled, and only buildings
larger than 100 m2 are considered. Figure 6 shows the orthoimages, generated DSMs, and
manually labeled reference changed building maps of the first dataset. Both pairs of data
are collected in winter, and the buildings are very high, so the long shadows make it difficult
for traditional 2D methods to detect the correct building changes. Additionally, changes in
plant height have less influence on the detection result because there is less vegetation in
the winter. As a result, the changes in height are mainly caused by the building changes.
Figure 7 shows the corresponding orthoimages, DSMs, and reference ground truth of the
second dataset. This area is mainly composed of construction sites and also contains less
vegetation. Because of the large off-nadir viewing angle of this dataset, the building will
cause a large region of occlusion, making change detection more difficult.

Test area 1 contains a large number of buildings under-construction in 2019. In 2021,
these buildings have been mostly completed. The majority of the completed buildings
are more than 80 m tall, with a small number of lower buildings. Test area 2 is located
in a construction area. Most buildings just started construction in 2019 and are still not
completed in 2021, but the building heights have changed significantly. Test area 3 is a
school district with four new dorms and relatively low building heights. In the center
of the area, there is a large gymnasium with a single and smooth texture that cannot be
reconstructed correctly by stereo matching, bringing significant challenges for follow-up
detection. Test area 4 is a new building area in the middle of the dense building area. Test
areas 5 and 6 include some buildings under construction. Although the acquisition interval
of two-temporal data is only three months, the height of these under-construction buildings
has changed significantly. Test area 5 contains many buildings that cannot obtain elevation
due to the occlusion in T1 imagery, but they can in T2 imagery. These occlusion areas will
be interpolated as the ground, which will produce a large number of false alarms.
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(a) (b) (c) (d) (e)

Figure 6. Stereo reconstruction results of dataset 1, Test areas 1–4: (a) Orthorectified panchromatic
image from T1; (b) Orthorectified panchromatic image from T2; (c) DSM from T1; (d) DSM from T2;
(e) Ground truth.

(a) (b) (c) (d) (e)

Figure 7. Stereo reconstruction results of dataset 2, Test areas 5–6: (a) Orthorectified panchromatic
image from T1; (b) Orthorectified panchromatic image from T2; (c) DSM from T1; (d) DSM from T2;
(e) Ground truth.
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3.2. Evaluation Method
3.2.1. Pixel Based Accuracy

For the pixel-based evaluation, the changed areas are usually relatively small com-
pared with the unchanged areas. To reduce the impact of class imbalance, we use F-score to
measure the result accuracy. F-score is defined as follows:

precision =
TP

TP + FP
, (14)

recall =
TP

TP + FN
, (15)

F-score = 2× precision× recall
precision + recall

, (16)

where TP is true-positive, indicating the number of correctly detected changed pixels,
FP is false-positive, indicating the number of unchanged pixels mistakenly detected as
changed pixels, and FN is false-negative, indicating the number of changed pixels that
are mistakenly detected as unchanged pixels. Precision is negatively correlated with the
false alarm rate. The higher the precision, the lower the false alarm rate. The recall rate
is negatively correlated with the missed detection rate. The higher the recall rate, the
lower the missed detection rate. F-score is the harmonic average of precision and recall,
which means a compromise between the false alarm and missed detection. It can provide
a more reasonable accuracy evaluation when the numbers of samples in the two classes
are unbalanced. In addition, the true-negative (TN) is not considered in the calculation of
F-score, which reduces the influence that most pixels in the change detection result are TN.

3.2.2. Object Based Accuracy

In the application of building change detection, we are more concerned about whether
changed buildings are detected correctly rather than whether the edge of the detection
results is accurate. Therefore, we introduce the object-based accuracy evaluation index. As
a high-level evaluation index, we ignore the size of the detected building and only count
the number of detected buildings. When the overlap area between the detected object
and the reference map is higher than 40%, we believe that a changed building has been
correctly detected. The following four indicators [16] are used to evaluate the accuracy of
the experiment results

• True detected number (TDN): The number of changed buildings detected correctly;
• True detected rate (TDR): The ratio of the number of correctly detected buildings to

the total number of changed buildings in the reference map,TDR = TDN/NR × 100%;
• False detected number (FDN): The number of incorrectly detected buildings with

unchanged as changed;
• False detected rate (FDR): The ratio of the number of buildings that are incorrectly

detected as changed to the total number of buildings detected in the result, FDR =
FDN/ND × 100%.

3.2.3. Height Change Accuracy

When calculating the accuracy of height change value, we only consider the correctly
detected changed buildings. The height change accuracy is evaluated by the root-mean-
square error (RMSE) between the detected height change value and the actual height
change.

RMSE =

√√√√ 1
TDN

TDN

∑
i=1

(Hi
d − Hi

r)
2, (17)
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where TDN is the number of correctly detected buildings mentioned above, Hi
d represents

the height change value of the ith detected changed building, Hi
r represents the reference

height change of the corresponding building.

3.3. Parameter Setting

The structure element size of nDSM extraction is set to 100 pixels. The DSM obtained
by the SGM algorithm is difficult to get the accurate building boundary, so the window
size w of nDSM robust difference is set to 19 pixels. Set the threshold TH for calculating
t-links weight to 5 m. That is, when the height changes by 5 m, it is considered that there is
a 50% probability of building change. The threshold TI for MBI change is selected by the
OTSU method. As for the shape parameter τ, we consider that even when the MBI and
building height do not change, the probability of actual building change is 20%. The value
of parameter τH and τI can be obtained by substituting the point (0,0.2) into the sigmoid
function. The parameters λ in this paper are determined according to Table 3. The λ at time
T1 is slightly larger than that at time T2 because it needs a higher weight for the change
feature to preserve the changed object for a smoother image. We set the weight λI of the
spectral change feature to 0 for Test areas 1 and 2 since the tops of the buildings are too
dark to see changes in MBI. We pick 100 m2 as the overlay analysis area threshold. We
believe that buildings smaller than 100 m2 are tiny houses, which can be ignored.

Table 3. λ setting for Test areas 1–6.

λ
Test Area

1
Test Area

2
Test Area

3
Test Area

4
Test Area

5
Test Area

6

T1 λH 0.5 0.5 0.4 0.3 0.3 0.2
λI 0.0 0.0 0.3 0.2 0.2 0.15

T2 λH 0.4 0.3 0.2 0.2 0.2 0.2
λI 0.0 0.0 0.1 0.1 0.1 0.15

3.4. Experiment Result

The results of proposed algorithm are shown in Figures 8 and 9. The height difference
values calculated using the robust difference of nDSM are shown in Figures 8a and 9a. The
red color denotes a height difference greater than 20 m, whereas the blue color denotes
a height change less than 0 m. Only the positive height changes are considered because
there are only new buildings and no demolition in the study area. The influence of ground
surface change has been almost eliminated through nDSM extraction operation. Test areas
4, 5, and 6 contain a large number of errors caused by DSM interpolation. These errors
are difficult to eliminate without the help of image information. Figures 8b,c and 9b,c
show the object-to-object correspondence of the detected results between two-temporal,
overlaid with the panchromatic image. The same color indicates the corresponding changed
buildings. Almost all the changed buildings have been correctly detected, and only a few
areas have missed detection and false alarm. Because the same change features are utilized,
the results are almost identical, with only a few differences at the border. Most areas with
obvious height changes are saved through segmentation, whereas those with slight height
or spectral changes are successfully eliminated. The boundaries of changed buildings are
more fit reality through the segmentation. After overlay analysis, some fragmented false
alarm areas are further removed. But there are still some false alarms due to the large area
of height error during the stereo match.
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(a) (b) (c) (d)

Figure 8. Experiment results of dataset 1, Test areas 1–4: (a) Robust difference value of nDSM;
(b,c) Detected changed buildings at T1 & T2, same colors represent corresponding changed buildings;
(d) Height change values of changed buildings between T1 and T2.
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(a) (b) (c) (d)

Figure 9. Experiment results of dataset 2, Test areas 5–6: (a) Robust difference value of nDSM;
(b,c) Detected changed buildings at T1 & T2, same colors represent corresponding changed buildings;
(d) Height change values of changed buildings between T1 and T2.

To illustrate the accuracy of the detected result, the comparison between the detected
binary change maps and the reference values are shown in Figures 10d and 11d, in which
the green represents correct detection, the red represents false alarm, and the blue represents
missed detection. The corresponding accuracy evaluation can be seen in Table 4. Except
that the F-score of test area 5 is 0.79, the F-score of all other test areas is more than 0.8. In
the final result, 33 out of the 35 changed buildings are correctly detected for Test area 1,
with only two missed detected buildings and one false alarm. Since two buildings in the
occlusion area of nearby buildings are not visible in the stereoscopic forward view image,
the actual elevation in the DSM cannot be obtained. So, the two missed detection occur.
The false alarm occurs because there is one detected building with the wrong position. For
Test area 2, 54 out of the 60 changed buildings are successfully detected. Here, the reason
why ND is greater than TDN plus FDN is that some buildings are successfully detected, but
the overlaps with the reference map are less than the threshold value. Therefore, they do
not belong to TDN or FDN but belong to DN. Many miss detections occur in this area due
to a large number of under-constructed buildings with slight height and spectral changes
that are difficult to detect. The one false alarm is caused by a tower crane at that position.
For Test areas 3–6, all changed buildings are successfully detected. The false alarm is also
caused by a tower crane for Test area 4. Figures 8d and 9d shows the height change value
of each detected changed buildings. We can observe the location and degree of building
changes through this figure. Most of the changed buildings with different height changes
are detected. The maximum height change is about 100 m, and the minimum height change
is only about 10 m. Other buildings that have not changed will not appear on this figure.
The accuracy evaluation of height change value will be carried out later.
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(a) (b) (c) (d)

Figure 10. Result evaluation of dataset 1, Test areas 1–4. (a) Results of threshold segmentation
of height change map using threshold TH ; (b) Results of belief function-based DS fusion method;
(c) Results of graph-cut based DSM segmentation method; (d) Results of the proposed method. The
green color represents true detection. The red color represents false alarms. The blue color represents
missed detected.
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(a) (b) (c) (d)

Figure 11. Result evaluation of dataset 2, Test areas 5–6. (a) Results of threshold segmentation
of height change map using threshold TH ; (b) Results of belief function-based DS fusion method;
(c) Results of graph-cut based DSM segmentation method; (d) Results of the proposed method. The
green color represents true detection. The red color represents false alarms. The blue color represents
missed detected.

Table 4. Accuracy Evaluation of various methods. dnDSM-T: Direct threshold segmentation of nDSM
difference value. DS Fusion: Belief function-based DS fusion method. DSM-GC: Graph-cut based
DSM segmentation method. The best performance is highlighted in bold.

DataSet Method Pixel Based Object Based
Precision Recall F-Score TDN/NR TDR FDN/ND FDR

Test area 1

dnDSM-T 0.75353 0.85181 0.79966 / / / /
DS-Fusion 0.77981 0.83344 0.80573 33/35 94.29% 0/35 0%
DSM-GC 0.79883 0.83449 0.81627 33/35 94.29% 1/35 2.86%
Proposed 0.78533 0.83475 0.80929 33/35 94.29% 1/34 2.94%

Test area 2

dnDSM-T 0.74105 0.83150 0.78367 / / / /
DS-Fusion 0.76292 0.80187 0.78191 54/60 90% 3/57 5.26%
DSM-GC 0.77557 0.82755 0.80072 57/60 95% 4/61 6.56%
Proposed 0.81698 0.79966 0.80823 54/60 90% 1/57 1.75%

Test area 3

dnDSM-T 0.75395 0.74629 0.75010 / / / /
DS-Fusion 0.82399 0.73545 0.77720 4/4 100% 1/5 20%
DSM-GC 0.75901 0.69289 0.72445 4/4 100% 3/7 42.86%
Proposed 0.88972 0.89174 0.89073 4/4 100% 0/4 0%

Test area 4

dnDSM-T 0.68805 0.90771 0.78276 / / / /
DS-Fusion 0.65317 0.91346 0.76169 17/17 100% 1/17 5.88%
DSM-GC 0.67037 0.88906 0.76438 17/17 100% 3/19 15.79%
Proposed 0.73124 0.88523 0.80090 17/17 100% 1/18 5.56%

Test area 5

dnDSM-T 0.53095 0.95516 0.68251 / / / /
DS-Fusion 0.60928 0.92995 0.73621 19/19 100% 1/20 5%
DSM-GC 0.56258 0.96028 0.70950 19/19 100% 8/27 29.63%
Proposed 0.72754 0.87491 0.79445 19/19 100% 0/19 0%

Test area 6

dnDSM-T 0.55767 0.92747 0.69653 / / / /
DS-Fusion 0.67196 0.88452 0.76373 7/7 100% 3/9 33.33%
DSM-GC 0.63604 0.91741 0.75124 7/7 100% 6/12 50%
Proposed 0.86920 0.87839 0.87377 7/7 100% 0/7 0%

3.5. Accuracy Evaluation

To further verify the effectiveness of our proposed algorithm, we compare the pro-
posed method with several existing state-of-the-art 3D building change detection algo-
rithms. The first algorithm directly performs threshold segmentation on the difference
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value of nDSM (dnDSM-T) as the change detection result. It serves as the baseline for the
comparison of subsequent algorithms. The second algorithm is the DS fusion method [21]
(DS-Fusion) based on belief function. It models 3D change detection as a feature decision
fusion problem which fuses the change information in the spectrum and DSM using DS
evidence theory. The detection results are obtained without setting a threshold. Further-
more, it incorporates spectral and DSM confidence into the reliability discounting process,
which greatly reduces false alarms caused by DSM interpolation errors. The third method
segments the two-temporal DSMs using the graph-cut method [33] (DSM-GC). It builds
a graph using DSM, nDSM, and differential DSM (dDSM) to extract changed buildings.
Since the original paper uses aerial images, we will adjust the algorithm parameters based
on the data resolution and quality in our experiment to achieve the best performance. All
algorithms use the robust difference of the same window to calculate the height change
value. Except for the dnDSM-T, all detection results undergo the same fragmentation
removal procedure, where regions with an area less than 100 m2 are removed.

The accuracy evaluation of the detection results of all algorithms are shown in Table 4.
The corresponding change detection results can be seen in Figures 10 and 11. Compared
with other algorithms, our proposed algorithm obtains better results in all Test areas.
Especially for Test areas 4–6 with more DSM interpolation errors, the improvement of the
proposed algorithm is significant. Only in Test area 1, the F-score is slightly lower than the
DSM-GC method. As the baseline of detection performance, dnDSM-T can retain most of
the changed buildings, but there are many false alarm areas due to the existence of DSM
errors. The recall rate is very high but the precision is very low, so the performance of the
F-score is ordinary. However, it still reaches more than 0.68. Especially for Test areas 1–3
with few errors, the performance is only a little lower than the other three algorithms. We
can foresee that for high-quality DSMs, good results can be obtained only through dDSM
threshold segmentation. The DS-Fusion method can effectively reduce mistakes caused by
shadows and DSM interpolation errors because of the incorporation of image and DSM
reliability. The DS-Fusion algorithm can effectively combine the advantages of the spectral
and height change features. This makes the precision of the detection results improved
at the cost of a slight decrease in recall. However, the detected building boundary cannot
be optimized due to the lack of spatial neighborhood information, resulting in inaccurate
building boundaries and some holes inside the building. The DSM-GC algorithm uses
nDSM to indicate the existence of buildings and dDSM to indicate the changes of buildings.
Graph cut is used to detect building changes using DSM smoothing as the constraint.
The incorporation of a spatial smoothing constraint resulted in a smoother border in the
detection results, as well as a high recall value. The algorithm achieves good performance
in Test areas 1 and 2 which have high DSM quality. It effectively maintains buildings
with slight height changes in Test area 2 and obtains the highest TDN. However, because
only DSM data is used for segmentation, the algorithm cannot deal with a large area of
DSM error. This makes many false alarms in the result. Although some false alarms can
be removed through post-processing, the FDN value of the final result is still very high.
As for the proposed method, with the co-segmentation process and subsequent overlay
analysis, the precision of the detected result is greatly improved with a slight decrease of
the recall. In comprehensive, the F-score of the detection result is improved. This is mainly
due to the inclusion of the MBI change and image neighborhood information. Through
segmentation, a large number of noises are removed, but the real changes are retained. The
false alarm caused by the wrong building height is successfully removed by introducing
the spectral change feature. The detected building boundary is more smooth and more
consistent with the actual boundary in the image than the pixel-based method with the
consideration of neighborhood information in co-segmentation. With the advantage of
height features, almost all algorithms can correctly detect changed buildings. However, our
algorithm can effectively reduce the false alarm in the result while maintaining the correct
detection of changed buildings through the comprehensive consideration of height change
features, spectral change features, and spatial smoothing features.
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For the accuracy of the detected height change value, we only obtain the height
reference values of some buildings in Test areas 1 and 2 in 2021. The data comes from
the public information of Zhengzhou Bureau of natural resources and planning. Since
the building was under construction in 2019, the building height cannot be obtained. The
height change value accuracy is reflected by the height accuracy of the detected changed
building at time T2. Table 5 shows the detected building height and the reference value.
The heights of most buildings are close to the reference value and the overall RMSE is
1.435 m, which is close to the accuracy of DSM. Since the building HanS1# has not been
completed at time T2, its height is far lower than the reference height. After removing this
building, the overall RMSE value is 1.066 m.

Table 5. Height accuracy evaluation (unit: meter). RMSE = 1.435 m.

Building
ID

Detected
T2 Ref Bias Building

ID
Detected

T2 Ref Bias

Xin1 98.87 99.9 −1.03 Hong1# 70.8 71.4 −0.6
Xin2 99.33 99.9 −0.57 Hong2# 71.46 71.4 0.06
Xin3 100.1 99.9 0.2 Hong3# 71.62 71.4 0.22
Xin4 98.95 99.9 −0.95 Hong5# 72.38 74.3 −1.92
Xin5 100.5 99.9 0.6 Hong6# 81.12 79.5 1.62
Xin6 100.5 99.9 0.6 Hong7# 80.71 79.5 1.21

Han1# 100.3 99.8 0.5 Hong8# 80.89 79.5 1.39
Han2# 97.43 97.5 −0.07 Hong9# 80.01 79.95 0.06
Han3# 96.72 97.5 −0.78 Hong10# 80.44 79.95 0.49
Han5# 95.45 97.5 −2.05 Hong11# 79.86 79.5 0.36
Han6# 96.21 97.5 −1.29 Hong12# 79.2 79.5 −0.3
Han7# 98.07 99.8 −1.73 Ze1# 99.65 97.6 2.05

HanS1# 13.94 20.4 −6.46 Ze2# 96.88 97.6 −0.72
HanS2# 12.77 14.7 −1.93 Ze3# 96.53 97.6 −1.07
Shao1# 100.4 99.8 0.6 Ze5# 11.02 12.1 −1.08
Shao2# 99.34 99.8 −0.46 Ze6# 77.68 77.3 0.38
Shao3# 99.76 99.8 −0.04 Ze7# 96.74 97.6 −0.86
Shao5# 95.98 97.5 −1.52 Ze8# 74.17 74.4 −0.23
Shao6# 93.04 94.6 −1.56 Ze9# 96.85 97.6 −0.75
Shao7# 93.34 94.6 −1.26 Ze10# 8.925 8.65 0.275

ShaoS1# 11.81 13.35 −1.54 Ze11# 99.2 97.6 1.6
ShaoS2# 12.19 13.35 −1.16 Ze12# 60.16 59.9 0.26

4. Discussion

To clarify the influence of the adjustable parameters of the algorithm on the results,
we do three groups of experiments to analyze the influence of the weight parameters λH
and λI and the threshold parameter TH in detail.

First, we set the height threshold TH to 5, the spectral change feature weight λI to
0, and height change feature weight λH from 0.1 to 1 in steps of 0.1. The same λ is used
for the two segmentations. Figure 12 shows the effect of the weight parameter λH on the
algorithm result. When λH = 1, the result is the same as direct threshold segmentation.
With the increase of λH , the performance of the algorithm improves rapidly and then
decreases very slowly until it is the same as the result of direct threshold segmentation.
The precision increases gradually with λ, while recall decreases gradually. When the λH
is small, the segmentation result is too smooth, and many changed buildings are filtered
out, resulting in many missed detections. When λH reaches a certain threshold, we get the
best results. The correct changed buildings are retained, and the noises are successfully
removed. Finally, as λH increases continuously, more noises are retained. Because the noise
pixels account for only a few in the pixel-based evaluation indicators, the F-score decreases
slowly. However, the number of false alarm objects is gradually growing, as seen by the
object-based evaluation indicators. Here is the result of post-processing, so much of the
noises can still be successfully removed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. Influence of λH on co-segmentation accuracy. (a,c,e,g,i,k) Influence of λH on TDR and
FNR for Test areas 1–6; (b,d,f,h,j,l) Influence of λH on precision, recall and F-score for Test areas 1–6.

Figure 13 shows the influence of parameter λI on the result. In this experiment, we set
the same λH as Table 3 and λI from 0 to 0.5 in steps of 0.05. When the weight of the MBI
change feature is slightly increased, the accuracy of Test areas 1 and 2 is almost unchanged,
but TDR decreases slightly. Some buildings are in shadow or incomplete construction,
resulting in small height changes and almost unchanged MBI. These buildings will be
missed detected with the increase of λI . As for Test area 3, after introducing the spectral
change feature, the false alarm caused by the height error of the gymnasium in the center is
successfully removed, and the four changed buildings become complete. Therefore, both
precision and recall are significantly improved, resulting in a large improvement of F-score.
The accuracy of Test area 4 is slightly improved, and the false alarm caused by the surface
change is further eliminated. The accuracy of Test areas 5 and 6 are improved significantly
due to the elimination of false alarms caused by DSM errors. When λI increases further,
the performance of the algorithm decreases rapidly. It is difficult to extract accurate change
information from the image containing complex details. So, the error information in the
spectral change feature is much more than that in the height change feature. When the
weight of the spectral change is higher than the height change, the result of the algorithm
will deteriorate rapidly. Therefore, we should choose λI smaller than λH in practical
application.
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Figure 13. Influence of λI on co-segmentation accuracy. (a,c,e,g,i,k) Influence of λI on TDR and FNR
for Test areas 1–6; (b,d,f,h,j,l) Influence of λI on precision, recall and F-score for Test areas 1–6.

Regarding the height threshold TH , we set parameter TH from 1 to 20 in steps of
1. The parameter λH is the same as in Table 3. λI is set to 0 and τH is set to constant
3. Figure 14 shows the influence of height threshold TH on the algorithm results. The
setting of parameter TH depends on the actual height of the region of interest and the
target of interest. The results show that the algorithm can achieve good results in a large
range. When TH is too small, the segmentation result will retain small height changes.
These changes may be real building changes or some other surface changes, shown as
high recall rate and low precision in the result. When TH is greater than the height of the
interesting building, the corresponding building will be recognized as unchanged. It will
lead to many missed detections so that the evaluation index will drop rapidly. The target of
interest in this paper is buildings in urban areas, so the threshold TH = 5 is a good choice,
corresponding to the change of buildings with at least two floors.
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Figure 14. Influence of TH on co-segmentation accuracy. (a,c,e,g,i,k) Influence of TH on TDR and
FNR for Test areas 1–6; (b,d,f,h,j,l) Influence of TH on precision, recall and F-score for Test areas 1–6.

5. Conclusions

Height information is essential for urban area monitoring, especially building change
detection. The development of very high-resolution stereo satellite imagery and dense
stereo matching technology provides convenience for building change monitoring in large-
scale urban areas. A novel change detection algorithm based on 3D co-segmentation
is proposed in this paper to combine the spectral change information, the height change
information, and the spatial context information. The proposed algorithm can make full use
of the 3D change information contained in the stereoscope data. Using the spectral change
and height change information as the prior, we construct graphs for two-temporal images
to obtain the spatial corresponded two-temporal segmentation results. The object-to-object
detection results are obtained through overlay analysis, and the quantitative height change
values are calculated according to this correspondence. The algorithm is unsupervised
and fully automatic. The performance of the algorithm is evaluated in detail through
experiments with several groups of real satellite data. Our proposed algorithm achieves
satisfactory results for pixel-based, object-based, and numerical-based evaluation metrics
when compared to the state-of-the-art algorithms. Problems caused by DSM errors are
successfully eliminated with the incorporation of the MBI change feature. The experimental
results are consistent with the reference map in terms of the detected building’s position,
number, and height change accuracy.

For future work, we will consider the following aspects: (1) The MBI extracted in this
paper is affected by other surface changes, especially the shadow changes, and contains
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a lot of noise. We will introduce the multi-spectral image attached to the data to extract
better image-based change features. (2) The integration of spectral change features and
height change features is simple weighting, making it difficult to adjust the parameters.
More novel feature fusion methods will be used to give full play to their advantages. (3) We
will consider other types of changes and obtain the detection of multiple types of changes
simultaneously through one processing.
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