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Abstract: Deep Learning has been successfully applied to image recognition, speech recognition,
and natural language processing in recent years. Therefore, there has been an incentive to apply
it in other fields as well. The field of agriculture is one of the most important fields in which the
application of deep learning still needs to be explored, as it has a direct impact on human well-being.
In particular, there is a need to explore how deep learning models can be used as a tool for optimal
planting, land use, yield improvement, production/disease/pest control, and other activities. The
vast amount of data received from sensors in smart farms makes it possible to use deep learning as a
model for decision-making in this field. In agriculture, no two environments are exactly alike, which
makes testing, validating, and successfully implementing such technologies much more complex
than in most other industries. This paper reviews some recent scientific developments in the field of
deep learning that have been applied to agriculture, and highlights some challenges and potential
solutions using deep learning algorithms in agriculture. The results in this paper indicate that by
employing new methods from deep learning, higher performance in terms of accuracy and lower
inference time can be achieved, and the models can be made useful in real-world applications. Finally,
some opportunities for future research in this area are suggested.

Keywords: agriculture; deep learning; smart farm; support decision-making algorithms

1. Introduction

European landscapes have been transformed primarily by human activities, so that
pristine vegetation and real wilderness are currently extremely rare in the European Union
(EU). Agriculture plays a particularly important role in the development of European
landscapes, as it now accounts for almost half of the total area of the EU [1]. On the other
hand, we are already exceeding the Earth’s capacity with the current type of agricultural
production. Climate change, degradation of soils, pollution, rising costs of groundwater
and pump irrigation, the transition from a fuel-based to a bio-based economy, the scarcity
of freshwater as demand increases, and other environmental and economic issues will
make access to fresh food an ever-greater challenge [2,3].

Moreover, it has already been shown that some of the aforementioned practices such
as climate changes and scarcity of freshwater lead to stagnation and sometimes even a
decline in production. Thus, the question arises whether transforming all agricultural
systems into high-intensity farming systems alone is not counterproductive in an attempt
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to solve the world’s food problems. It is understandable, then, that the implementation of
practices adapted to the reality of a given production will have positive effects in terms of
better use of resources and even a different approach to their use.

One way to address this challenge is to use new technologies, supplement workers
with robots and machines, and better address biodiversity parameters and functions
as well as ecosystem state. Smart farms include farm management systems that use
new technologies to increase food safety, quality, and quantity and reduce environmental
impact. Increased control of production leads to better cost management and reduced
waste [2,4]. These farms use sensors to monitor, control, and treat animals and plants [2,4,5].
With the help of sensors in the field, we can collect data such as soil mapping, climate
changes, weather data, among others [2,4,5]. The combined analysis of this data can provide
information to make the appropriate management decisions. Artificial Intelligence (AI)
receives significant attention in the development of decision-making algorithms. AI is any
technique that enables machines to learn from experience, adapt to new inputs, and mimic
human behavior [6,7].

Machine Learning (ML) is a sub-area of AI that uses computational algorithms to
convert raw data from the real world into useful models and decision advice. By using
ML models, the system can automatically learn from previous experiences and improve
itself. ML techniques include Support Vector Machines (SVM), decision trees, Bayesian
learning, K-means clustering, association rule learning, regression, neural networks, and
many others [6]. Liakos et al. [8] presented an overview of the application of the ML model
in various agricultural activities of agriculture.

Deep learning (DL) is a subfield of ML. The algorithms of DL are more complex than
traditional ML models. In a network, the layers between input and output are called hidden
layers. A shallow network has one hidden layer, while a deep network has more than one.
With multiple hidden layers, deep neural networks can learn the features of data and solve
more complex problems [6,7]. Since the models of DL are faster and more efficient compared
to the shallow algorithms in ML, and unlike them, they can automatically extract features
from the input data, they have been the most widely used models in recent years [6,7].
In 2012, AlexNet [9] won the LSVRC competition for classification. Sermanet et al. [10]
showed that DL models could be used for classification, recognition, and localization and
achieved excellent results. These achievements encourage researchers to apply DL models
to other areas of human life, including agriculture.

Liu et al. [11] reviewed advances in combining edge intelligence and remote sensing
with Unmanned Aerial Vehicles (UAV) in precision agriculture. This paper presented a list
of recent works using UAVs in combination with DL models. Since the focus of the paper
was on UAV devices, this work was listed based only on the application and model used in
the paper and did not include reviews and analysis of the work.

Regarding the diversity of environments in agriculture, the result of a trained model
on one environment may not be transferable to others [12]. This makes the application of
deep learning models in agriculture more challenging and requires more attention. This
paper aims to review newly published works to find new techniques, challenges, and
possible solutions for using deep learning in agriculture since 2018. The following are the
main objectives of this paper:

• To provide an overview of recent work and identify challenges related to data acquisi-
tion and preparation for deep learning models;

• To review of the new DL model algorithms used in agriculture;
• Highlight the challenges in training the model;
• Examine the challenges associated with applying the trained model in the real world;
• Review the new edge devices used to implement the trained models.
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2. Materials and Methods

The two most reputable databases for scientific papers, the Web of Science and Sci-
enceDirect, were searched for relevant journal articles and conference proceedings. The
term “deep learning” was used in the keywords of the screening titles with one of the
following keywords: “agriculture”, “plant diseases”, “weed detection”, “yield estima-
tion”, “fruit detection”, “species identification”, “crop classification”, “soil management”,
“automation and robotics” and “irrigation”.

The articles that did not deal with Deep Learning in agriculture were excluded. In
the end, forty-six articles remained. Of these, ten articles were related to plant diseases,
eleven articles were related to fruit detection, five articles were related to weed detection,
six articles were related to species detection, three articles were related to soil management,
five articles were related to water management, and six articles were related to automation
in agriculture.

The following criteria were considered in the analysis of the articles:

• The way the dataset was collected for training the model and the challenges regarding
the dataset.

• The DL models/architectures used in the article and the performance of the models.
• The metrics that were used to evaluate the model.
• The inference time of the model (if specified), as it is a very important critical for the

use of the model in the real-time application.
• The analysis of the failure predicted by the model.
• Whether the authors used a low-cost device to deploy the trained model.

These articles base on the above criteria are discussed in Section 3.8 and listed in the
Tables 1–9.

3. An Overview of Deep Learning

DL models were inspired by human neural networks in the brain. The word “deep”
refers to the number of hidden layers through which the data is transformed. Through
training, they send the input through a deep network with different layers, where each layer
hierarchically extracts specific features at different scales or resolutions from the data and
combines them into a higher-level feature, and uses these features to make predictions [6].

DL models are divided into supervised learning, unsupervised learning, and rein-
forcement learning [6]. Supervised learning is the task of learning a function from labeled
training data. In supervised learning, all data in the dataset is a pair consisting of an input
object and the desired output value. A supervised learning model analyzes the training
data and produces a function that can be used for prediction [6]. The most commonly
used DL models included in this review are Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN). Unsupervised learning was used in three papers.

3.1. Convolutional Neural Network

The CNN model is a supervised learning model specifically designed for classification,
recognition, and segmentation. A CNN model consists of a stack of convolutional layers,
nonlinear functions, pooling layers, and fully connected layers. A convolutional layer
contains a set of kernels whose parameters must be learned and is used to extract features
from the data. Each kernel slides over the height and width of the input, and the dot
product between the kernel entries and each position of the input is computed (Figure 1).
The output of a convolutional layer can be calculated by Equation (1):

yi = X ∗ Wi + bi, i = 1, · · · , m (1)

where X is the input of the layer, yi is the output corresponding to the i-th convolutional
kernel, Wi is a matrix of the trainable weights of the i-th kernel, bi is the i-th bias, and m is
the number of kernels.
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After each convolutional layer, a nonlinear activation function is used to introduce
nonlinear features into the model. Rectified Linear Units (ReLU) have become state-of-the-
art and are the most commonly used activation function in Deep Learning models [6]. A
pooling layer is usually located between two convolutional layers and is used to reduce the
number of parameters to minimize overfitting [6,7].

Figure 1. The left side image is the example of the convolutional operation, and the right side is the
example of a max-pooling operation with pooling size (2,2).

The final layers consist of fully connected layers that take the features extracted by the
previous layer and generate class probabilities or scores. These layers are fully connected to
all neurons in the previous layer. Figure 2 shows the architecture of the well-known CNN
model called VGG19 and the visualization of the last layer of the VGG19 model in plant
disease classification, respectively.

conv1

conv2

conv3

conv4
conv5

fc6 fc7 fc8

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

56 x 56 x 256

28 x 28 x 512
14x 14 x 512

1 x 1 x 4096 1 x 1 x 1000

convolutional + ReLU

max pooling

fully connected + ReLU

softmax

7x 7 x 512

Figure 2. Architecture of the well-known CNN model VGG19. The VGG19 network contains
convolutional layers, max-pool layers, fully connected layers, and a soft-max classification layer.

3.1.1. Classification/Regression by CNN

The CNN model can be used for classification or regression problems. For the
classification task, the last layer of the model is chosen as a fully connected layer with
softmax activation function and for the regression task as a fully connected layer, usu-
ally with linear function. The most popular CNN architectures for classification include
AlexNet [9], GoogleNet [13], VGG [14], and ResNet [15], as well as the new lightweight
models such as MobileNet [16], and EfficientNet [17]. The lightweight models enable
to use mobile and low cost edge devices such as Jetson nano (https://developer.nvidia.
com/embedded/jetson-nano-developer-kit, accessed on 8 November 2021), Raspberrypi
(https://www.raspberrypi.com/, accessed on 15 November 2021) and Google TPU Coral
(https://coral.ai/, accessed on 8 November 2021) to deploy the trained model in robots
and use them in the field [11,18] (Figure 3).

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.raspberrypi.com/
https://coral.ai/
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Figure 3. From left to right: Jetson nano, Raspberrypi, and Google TPU Coral.

3.1.2. Detection by CNN

The CNN model can also be used for object detection. There are two types of modern
object detection algorithms, the two-stage detectors such as R-CNN [19], Fast R-CNN [20],
and Faster R-CNN [21] as well as single-stage detectors such as You Look Once (YOLO) [22],
Single Shot multi-box Detector (SSD) [23], and LedNet [24]. In the two-stage detector,
regions of interest are generated in one stage using a Region Proposal Network (RPN). In
the other stage, the proposed regions are evaluated for object classification and bounding
box regression using convolutional layers. Such models achieve high accuracy rates but
are very slow [23]. Single-stage detectors, on the other hand, contain a single feed-forward
convolutional network that directly provides the bounding boxes and objects classification.
The single-stage detectors are faster in detection but less accurate than two-stage detectors,
and it depends on the application which model should be chosen. Figure 4 shows the
architecture of Faster R-CNN and SDD, and Figure 5 shows the result of peach detection
using the Faster R-CNN model [25].
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Figure 4. (A) Faster R-CNN model and (B) SSD model with VGG16 as the backbone. In the faster
R-CNN, a series of convolutional layers (Conv layer) is used to extract features from the input, and
then an RPN algorithm is used to find the region of interest, but in the SSD model the features and
bounding box are extracted using only convolutional layers.
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Figure 5. Detection of peaches in the image using Faster R-CNN model. Each bounding box contains
peach and the score above the box shows the confidence score for each detected object [25].

3.1.3. Segmentation by CNN

The segmentation task can also be performed with CNN models. In segmentation, an
image is divided into groups of pixels, and each group is assigned a class. Figure 6 shows
the segmentation of the grape in the image.

Figure 6. The left side shows the original image and the right side shows the task of segmentation for
and the right side shows the task of segmentation for grapes [26]. Reprinted with permission from
ref. [26]. Copyright 2020 Elsevier.

The fully Convolutional Networks (FCN) [27], Mask R-CNN [28], and Deeplab [29] are
DL models for segmentation. Lottes et al. [30] used an encoder-decoder Fully Convolutional
Network (FCN) model to identify crops and weeds during field operations. Ghiani et al. [31]
used Mask R-CNN with ResNet101 which was trained with the dataset COCO, as a back-
bone for detecting grape branches in the tree.

3.2. Recurrent Neural Network

RNN is specially designed for handling sequential data. In RNN, the output from the
previous step is fed into the current step as input. The output of an RNN unit is determined
using a tanh function by Equation (2):

ht = tanh(Wxxt + Whht−1 + bt) (2)

The main problem with RNN is the vanishing gradient, i.e., the gradient of the loss
function approaches zero [32]. Long Short-Term Memory networks (LSTM) [33] is a special
type of RNN created to solve the vanishing problem in RNN. A standard LSTM unit
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consists of an input gate (3), forget gate (4), an output gate (7), and a memory cell (6).
Figure 7 shows an LSTM unit and an RNN unit.

it = σ(Wixxt + Wihht−1 + bi), (3)

ft = σ(W f xxt + W f hht−1 + b f ), (4)

zt = tanh(Wzxxt + Wzhht−1 + bz), (5)

ct = ft ∗ ct−1 + it ∗ zt. (6)

ot = σ(Woxxt + Wohht−1 + bo) (7)

The weights (W) and biases (b) are trainable parameters that are adjusted and opti-
mized during the training of the model.

Figure 7. (A) LSTM unit diagram, (B) regular RNN unit. In an RNN unit, all input data is used for
output. However, in an LSTM unit, a set of gates is used to control the information in memory and
decide how long and how much information may be stored.

3.3. Unsupervised Learning

Unsupervised learning is a type of learning in which hidden structures are found in
unlabeled data with minimal human supervision [6]. The primary method of unsupervised
learning is cluster analysis, such as K-Means clustering. Cluster analysis groups or segments
datasets with common attributes. In supervised learning, labeling a large amount of
agricultural data to train the model is expensive and time-consuming. Deep clustering
models can be used to avoid labeling and make the model more robust. Kang and Chen [34]
used automatic label generation by a clustering RCNN (C-RCNN) model to identify the
apple on the trees. Tang et al. [35] used K-means clustering to label the dataset and
identify weeds in the field. Ferreira et al. [36] used DeepCluster and Joint Unsupervised
Learning from Deep Representations and Image Clusters (JULE) to identify weeds in the
field. However, many other new deep clustering algorithms can be explored to avoid
labeling in agriculture [37].

3.4. Reinforcement Learning

Reinforcement Learning (RL) is concerned with how an agent performs appropriate
actions in an environment to maximize the rewards in a given situation. RL agents must
determine the best strategy to maximize their expected cumulative rewards. An interactive
environment receives the current state and the action chosen by the agent and indicates
the next state and reward (see Figure 8). This interaction between the DRL agent and the
training environment is repeated until the DRL agent converges to an optimal strategy for
choosing an action.
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Figure 8. Interaction of the agent with the environment [38]. The agent chooses an action at in
the current state st based on a policy. The environment receives the action and the current state
and outputs the next state and the reward. Reprinted with permission from ref. [38]. Copyright
2022 Elsevier.

Deep reinforcement learning (DRL) combines deep learning and reinforcement learn-
ing [39]. As Bu and Wang [39] mentioned, DRL is a promising model for building smart
farms. Chen et al. [40] used Deep Q-Network to build a decision-making system for rice
irrigation based on weather forecasts.

3.5. Data Acquired and Data Preparation

AI models convert raw data into usable models, so a training dataset is required to
train a model. The more data available, the better results are obtained. A dataset can be
collected using advanced technologies such as sensors mounted on ground-based platforms,
satellites, and unmanned aerial vehicles (UAVs) [41–46].

A sensor node is a specialized device capable of sensing physical parameters and
processing the sensed parameters using a microcontroller. In addition to processing, it can
also transmit the processed data wirelessly to neighboring nodes or router nodes using
transceiver [47]. Sensors mounted on ground-based platforms are divided into hand-held,
free-standing in the field (Figure 9), and agricultural machinery-mounted sensors that can
measure soil, plant, and weather characteristics [41,42,48]. The advantages of ground-based
sensors are that they are less expensive than other sensors, they are not sensitive to humid
conditions, and they are more suitable for small farms. The disadvantage of these types of
sensors is that they are very time-consuming and, even when attached to farm machinery,
the information is very inefficient for larger fields. Furthermore, some of these sensors are
inflexible in terms of the type of spectral data that can be collected [49].

Figure 9. From left to right: sensors mounted on ground-based platforms to test vineyard stress
(https://www.goodfruit.com/using-sensors-to-test-vineyard-stress/, accessed on 9 December 2021),
Sentinel2 satellites (https://www.esa.int, accessed on 3 November 2021), and unmanned aerial
vehicles (UAVs: https://precisionagricultu.re/12-potential-uses-for-uas-in-agriculture/, accessed
on 9 December 2021).

Satellite remote sensing provides synoptic, objective, and homogeneous data that
can be captured geographically and temporally, and therefore could be an efficient tool to
provide high-quality information about agriculture over large areas, even across national

https://www.goodfruit.com/using-sensors-to-test-vineyard-stress/
https://www.esa.int
https://precisionagricultu.re/12-potential-uses-for-uas-in-agriculture/
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borders [50]. Depending on the spatial and spectral resolution, repetition frequency, and
cost, the multitude of satellites and sensors orbiting the Earth can be used to provide data
for many types of applications [48]. The main disadvantage of satellite imagery is that it is
expensive at high spatial resolution. Another disadvantage is their fixed schedule, thus the
data cannot be acquired in a specific time step. For example, the time step for Sentinel2 is
five days. Another disadvantage of satellite images is that they highly depend on climate
and cannot be post-processed on cloudy days [48]. For a list of satellites launched since
1970, we refer to [48,51].

An aircraft system with no pilot on board that, once programmed, allows no outside
intervention during flight. Originally intended for military use, they are now used in
agriculture to monitor crops and collect images and data from anywhere in the field [11,49].
Unlike satellites, unmanned aerial systems can collect data at a specific time step, and the
results of the collected data have a higher resolution than that of satellites. Most unmanned
aerial systems can fly in precipitation, but cloud cover can affect the data unless a second
sensor is used to measure the amount of sunlight reaching the aircraft. The unmanned
aerial systems can also be expensive, but there are models that are inexpensive. The
disadvantages of unmanned aerial systems are the requirement of a human operator [49],
limited flight duration, the limited weight of cargo carried, energy consumption [41], and
dependence on weather conditions [41,52]. In addition, the processing of data collected by
UAS is higher than that of satellite imagery [49].

In addition to using sensors, the dataset can also be collected from free online datasets
such as ImageNet, Microsoft COCO, and PlantVillage [46] or images can be generated
synthetically as described in [53] or by using simulation software in agriculture such as
AguaCrop and DSSAT [54]. For DL models, a large dataset is required for training to
extract appropriate features [55]. Collating and labeling a large amount of data is time-
consuming. One strategy to overcome these challenges is to increase the size of the dataset
using augmentation techniques [55]. Augmentation techniques artificially create different
versions of a real dataset to increase its size. These include rotation, blurring, scaling, and
flipping of images in the dataset [55,56].

Another strategy is transfer learning and fine-tuning the model [57]. In transfer
learning, the model is trained with a large dataset such as ImageNet or COCO and then
the same model is reused and re-trained for a similar task. If the dataset does not contain
enough data to train a model from scratch, this strategy can be used. Ghazi et al. [58]
investigated how fine-tuning pre-trained models affects plant classification results. For
this purpose, the AlexNet, GoogLeNet, and VGGNet models were trained, once from
scratch, and another time using fine-tuning from Caffe Models. The results showed that
fine-tuning the models improved their performance. Barbedo [55], however, investigated
how the size and diversity of the dataset affect the performance of DL techniques applied
to plant diseases. The results showed that even with transfer learning and augmentation
techniques, CNN might require a large number of images to extract useful features from
the data. Figure 10 shows the transfer learning task.

The next challenge is how well the trained datasets represent the real world. Ramcha-
ran et al. [12] trained the SSD object detection model to identify three diseases in cassava.
Although the model was trained on the dataset collected in the field with a camera, the
F1-score decreased by 32% on the images from other sources. Therefore, the main focus
when collecting datasets should be how well the dataset represents the field study.
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A common Large
Dataset Model Last layer 1 Prediction1

Custom Dataset Hidden layers Custom Last layer Prediction2

Task 1

Task 2
Transfer  
weights

Figure 10. Transfer learning task. The weights and biases of a previously trained model are transferred
to a similar model, the final layers are replaced with modified new layers, and then the model is
trained with a custom dataset.

3.6. Training and Learning

In the training step of a DL model, the dataset is divided into the training set, the
validation set, and the test set. The training set is used to train the model. The validation
dataset is a sample of data retained by the training model and used for model selection. The
model structure is determined using hyperparameters. Hyperparameters are parameters
whose values are set before the learning process begins, such as the number of hidden
layers in the model, the number of kernels in the CNN model, and the number of nodes in
each LSTM layer [32]. A test set is used to test a machine learning model after it has been
trained on an initial training dataset. When the test set is used during the training of the
model, it does not provide information about how the network will perform on unseen
data, and the evaluation of the result has no statistical significance [32]. Figure 11 shows
the general steps from preprocessing the data to finalizing the model for prediction.

The error of a model is defined as the difference between the actual value the predicted
output, and it must be minimized in the training step. The function that is used to compute
this error is known as the loss function. It can be categorized into two types: Classification
and Regression Loss. The loss function used for the classification contains Hinge loss,
Expositional loss, cross-entropy, Log loss, and many more. For the regression problems,
the loss function such as Mean Square Error (MSE), Mean Absolute Error (MAE), Huber
loss, and log cosh loss can be used. Each of these gives a different error for the same
prediction. The choice of a loss function depends on the algorithm. Training DL models
are based on backpropagation [59]. Backpropagation uses the chain rule and computes the
loss function’s gradient concerning the network’s weights and biases for a single input–
output example, adjusted network weights, and biases. The optimization algorithm must
be selected to minimize the loss function. The choice of optimization algorithm and loss
functions are critical. The same as loss function, there are several ways to optimize the error,
such as Stochastic Gradient Descent (SGD), SGD with momentum, Root Means Square
propagation (RMSprop), and Adam [6]. Zhang et al. [60] built up an experience to compare
the performance between SGD and Adam in identifying tomato leaf disease. The ResNet
with the SGD optimization method obtained the highest test accuracy of 96.51%. Figure 12
shows the learning steps of a DL model.
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Figure 11. Flowchart for DL algorithm tasks. The test data is obtained by splitting the original
dataset, which is not used for training and validation. The training data is passed to the model to
perform automatic feature extraction and validation to evaluate the model during training and tune
the hyperparameters.
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Figure 12. During training, the parameters of the model (weights and biases) are modified using the
backpropagation and optimization algorithms to minimize loss.
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3.7. Evaluating the Models

Once the model is trained, the most crucial question is how good the model is. There
are several metrics for evaluating DL models. The most commonly used metrics in this
review for the regression problems are:

• MSE: is the average of the squared differences between prediction and actual observation.
• Root Mean Square Error (RMSE): is the square root of MSE.
• MAE: is the average of the absolute differences between prediction and actual obser-

vation.
• R2: is a statistical measure calculated from the variance explained by the model versus

the total variance. The higher R2 indicates, the smaller the differences between the
observed data and the fitted values.

The metrics that can be used in evaluating a classification or segmentation problem
are as follows:

• Accuracy (AC) is the ratio of correctly predicted observation of the total observations.
• Recall (R): also known as sensitivity, measures how many actual positives capture by

the model correctly.
• Precision (P): also known as a positive predictive value, measures how accurate the

prediction is in classification, i.e., the correct prediction.
• The Average Precision (AP) is given by the area under the precision–recall curve

above. Since Precision and Recall always lie between 0 and 1, AP also lies between 0
and 1. The Mean Average Precision (mAP) is calculated by taking the mean AP over
all classes.

• F1-score: is the weighted average of Precision and Recall.
• Intersection Over Union (IOU): is an evaluation metric used to measure an object

detector’s accuracy on a particular dataset.
• Area Under the ROC Curve (AUC): measures the area underneath the entire ROC curve.

3.8. Brief Review of Papers
3.8.1. Disease Detection

Plant diseases cause losses in agricultural production and endanger food security. The
most common practice in pest and disease control is to spray the crop area evenly with
pesticides [8]. This method requires significant amounts of pesticides, which results in
high financial and human resources and significantly changes the environment. The use
of a deep learning algorithm that detects the exact time, location, and affected crops and
sprays the pesticides only on the affected plants can reduce resource consumption and
environmental changes.

Kerkech et al. [61] used the SegNet model to segment and detect grapevine diseases
using images with RGB and infrared ranges. The dataset was acquired using a UAV
device with two MAPIR Survey2 camera sensors, including a visible light (RGB) sensor
set for automatic illumination and an infrared sensor. The dataset was labeled using a
semi-automatic method, i.e., a sliding window to identify potentially diseased areas. Then,
each block was classified by a LeNet5 network for pre-labeling. In the end, the labeled
images were manually corrected. The SegNet recognizes four classes including the shaded
areas, soil, healthy and symptomatic vines. Two models were trained, one for the RGB
images and the other for the infrared images. The segmentation results of the two models
were also fused in two ways. The first case was called “Fusion AND”, which means that
the symptom is considered detected if it is present in both the RGB and infrared images.
The second case is called “fusion by the union” and has the symbol ”fusion OR”, which
means that the symptom is considered detected if it is present in either the RGB or the
infrared image. The model trained with RGB images (AC = 85.13) outperformed the model
trained with infrared images (78.72). The fusion AND had the best performance, and the
fusion OR had the worst accuracy. The runtime of SegNet on a UAV image was reported to
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be 140 s for visible and infrared images. The fusion between the two segmented images
takes less than 2 s.

Kerkech et al. [62] used a CNN model to detect Esca disease in grapevine using UAV
RGB images. A CNN model was trained with different combinations of patch sizes 16 × 16,
32 × 32 and 64 × 64 with different color spaces including RGB, HSV, LAB, and YUV, and
vegetation indices such as ExG, ExR, ExGR, GRVI, NDI, and RGI. All the different color
spaces and vegetation indices used in this study can be calculated from the RGB images.
The results show that the CNN model trained with the RGB and YUV color spaces has a
better performance compared to the models trained with HSV and LAB. It was pointed
out that the lower accuracy of the models trained with HSV could be due to the Hue (H)
channel in HSV, which combines all color information into a single channel and is less
relevant for the network to learn the best color features. The LAB color space has one
luminance channel (L) and two chrominance channels, which do not reproduce the colors
of the diseased vineyard well.

In the next experiment, vegetation indices were added to the RGB and YUV data.
Combining vegetation indices with RGB and YUV improved classification results in most
cases. The final investigation concerned the models trained by combining the vegetation
indices alone. The combination of ExR, ExG, and ExGR vegetation indices with a size of
16 × 16 gave the best performance among the other inputs (including color space) and sizes
with an accuracy of 95.80%. Furthermore, the combination of YUV and ExGR vegetation
indices with sizes of 32 × 32 and 64 × 64 achieved similar performance but the run-time
was longer.

From the results, the color of the images and leaves is very important in the detection
of grapevine diseases. Furthermore, the number of channels in the input does not affect the
run-time of the model, but the size of the input and the model structure do.

Barbedo [55] investigated how dataset size and diversity affect the performance of
DL techniques applied to plant diseases. An image dataset of leaves with a small number
of samples for the CNN model was used to investigate the behavior of GoogLeNet under
different conditions. Data augmentation and transfer learning methods were used to
train the CNN. The results showed that even with transfer learning and augmentation
techniques, CNN requires a large number of images to extract useful features from the data.
Even though a large number of images can be easily acquired with the new technology,
labeling the dataset is time-consuming. One option proposed in this paper was to share
the dataset, but as mentioned earlier, the two environments are not the same in agriculture.
The effect of removing the background of the images on the accuracy of the model was
also investigated. The model has trained again with the images without background. The
model has trained again with the images without background. The results show different
behaviors with respect to the accuracy of the model, including no significant effect, a
significant improvement in accuracy in some cases, a significant decrease in accuracy, and
mixed results (improved accuracy in some diseases while the error rate increased in others).
From the significant decrease in accuracy for some plants, it was inferred that the CNN
model sometimes uses the background of the model to classify the images. An attempt that
can be made here is to train the model with both datasets (with and without background)
and investigate the accuracy of the model in this case.

Ferentinos (2018) [63] used AlexNet, AlexNetOWTBn [64], GoogLeNet, Overfeat [10],
and VGG models to identify 25 plant disease in 58 different classes of (plant, disease) com-
binations, including some healthy plants. The dataset used was images of healthy and in-
fected leaves of the plants from the Plantvillag database (https://github.com/spMohanty/
PlantVillage-Dataset, accessed on 17 November 2021). More than 37.3% of the images in
the dataset were taken under real cultivation conditions in the field, and the other images
were taken under laboratory conditions. In the first experiment, the number of images
acquired under laboratory conditions and real conditions was kept similar in the training
and test set, and the models were trained using this dataset. The VGG model performed
best on the test set with an accuracy of 99.53%.

https://github.com/spMohanty/PlantVillage-Dataset
https://github.com/spMohanty/PlantVillage-Dataset
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They also investigated the significance of the presence of field-captured images in
the training set. From the 58 available classes of the form (plant, disease), the 12 that
contained images of both types were selected. Two experiments were conducted with
these 12 classes, and two CNN models were developed: one was trained with images
under laboratory conditions and tested with images under field conditions, and another
was trained with images under field conditions and tested with images under laboratory
conditions. Although the number of images acquired under field conditions was less than
the number of images acquired under laboratory conditions, the CNN model trained only
with images under field conditions performed better with an accuracy of 68% than the
CNN model trained only with images under laboratory conditions with an accuracy of
33%. This result shows the importance of the presence of the images acquired under field
conditions. From the misclassification image, they point out some problematic situations,
including images with extensive partial shading on the leaves, images with multiple objects
in addition to the image, images where the leaf occupies a very small and non-centric part
of the frame, and images without leaves.

Jiang et al. [65] implemented the CNN models to detect five common apple leaf
diseases using images from the field. By applying data augmentation, such as rotational
transformations, horizontal and vertical flips, intensity disturbances, and Gaussian noise,
26,377 disease images were generated. The problem with SDD is that it cannot detect
a small object, and also, an object can be detected multiple times. To overcome these
drawbacks, they developed an SSD model with a VGG-INCEP as the backbone, where
two GoogLeNet inception layers replace two convolutional layers of the VGG model.
Moreover, the structure of feature extraction and fusion is designed by applying the
Rainbow concatenation method instead of the pyramid (which is used in the SSD model) to
improve the performance of feature fusion. The results showed that the data augmentation
improved the accuracy of the model by 6.91% compared to the original dataset. Moreover,
the proposed model achieved the best performance compared to faster R -CNN and SSD
with VGG and Rainbow SSD (RSSD) model.

To investigate the effect of using a deep model as a backbone, ResNet-101 was used
as a feature extractor for SSD. The results show that ResNet-101 does not lead to any
improvement. In terms of speed, Faster RNN was the slower model with more accuracy.
The proposed model with 78.80% mAP and 23.13 Frames Per Second (FPS) was more
accurate than SDD and RSSD, but SSD outperformed the other models in terms of time
inference. By examining the misclassified images, it was indicated that similarity between
diseases, misclassified background, and light condition were the challenges in classification.

Karthik et al. [66] proposed a Residual Attention Network for disease detection in
tomato leaves. The main idea of attention is to focus on the relevant parts of the input to
produce outputs. The dataset was collected from the open-source website Plantvillage and
contained one healthy class and three diseases. They implemented three models. One was
a traditional CNN model, the second used the three residual layers introduced into the
CNN model as part of the ResNet architecture, and the last used an attention mechanism
on top of the residual CNN for effective feature learning. The traditional CNN-based
methods focus on ordered feature learning, starting from basic image-level features such
as edges, color, etc., to complex texture-based differences [66]. In the deeper layer, some
important features extracted in the first layer may be lost. The residual layers are designed
to avoid this problem [66]. They concatenate the extracted features from the earlier layers
with the deeper layers. In addition, the attention mechanism is used to extract the relevant
parts of the feature maps. The Residual Attention Network CNN performed better with an
overall accuracy of 98% than the Vanilla Residual Network with an accuracy of 95% and
the traditional CNN model with an accuracy of 84%.
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Liu et al. [67] implemented the model Cascade Inception to detect four common apple
leaf diseases in images captured in the field. The Cascade Inception was a modified AlexNet
model with inception layers from GoogleNet. Various data enhancement methods such as
image rotation, mirror symmetry, brightness adjustment, and PCA jittering were applied to
the training images. Moreover, the fully connected layers were replaced by convolutional
layers, which results in fewer parameters and avoids overfitting. The proposed model was
trained using the optimization method Nesterov Accelerated Gradient (NAG) and achieved
an accuracy of 97.62%. The performance of the proposed model was compared with
SVM and BP neural networks, standard AlexNet, GoogLeNet, ResNet-20, and VGGNet-
16. Transfer learning method was used to train VGGNet-16 and achieved 96% accuracy.
Standard AlexNet, GoogLeNet, and ResNet-20 were trained from scratch using SGD-
optimization and achieved a maximum accuracy of 95.69%. The SVM and BP, which
achieved an accuracy of less than 60%, show that the traditional approaches rely heavily
on the expert developed classification features to improve the recognition accuracy. They
also investigated the effect of data augmentation methods and optimization algorithms
on accuracy. The model with the SGD optimizer achieved 93.32% accuracy, while the
model with NAG achieved 97.62% accuracy. The data augmentation methods improved the
performance of the model by 10.83%. The advantage of the model is that it outperformed
other CNN models in terms of training time and memory required. Furthermore, the
number of parameters of the model was less than AlexNet and GoogleNet. One point
that emerges from the paper is that GoogleNet and AlexNet were trained using the SGD
optimizer, and the proposed model was trained using the NAG method, but as mentioned
in the paper, SGD has the “local optimum” problem. In addition, the models were not
compared based on the inference time.

Ramcharan et al. [12] trained the SSD object detection model to identify three diseases,
two types of pest damage, and nutrient deficiency in cassava at the mild and pronounced
stages. A dataset was collected from the field, which was divided into 80–20 as training
and testing sets. The model achieved 94 ± 5.7% mAP on the test dataset. The trained model
was used on a mobile phone to investigate the performance of the model in the real world.
One hundred twenty images of leaves were captured using a mobile device of the study
experiment, and the model inference was run on a desktop and mobile phone to calculate
the performance metrics of the trained model. The results show that the average precision
of the model on the real dataset decreases by almost 5%, but the average recall decreases
by almost half, and the F1-score decreases by 32%. Furthermore, the results show that the
model performs better on the leaves with pronounced symptoms than on the leaves where
the symptoms are only mildly pronounced.
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Table 1. Feature descriptions of recent published papers in the field of “Disease Detection”.

References Application Data Used Model Metric Used Model Performance

Kerkech et al. [61] Detect Esca disease in grapevine
using UAV RGB images.

The images were collected using
a UAV system with an

RGB sensor.

A CNN model was trained with
different combinations of patch
sizes and different color spaces.

AC

The CNN model trained with the RGB
and YUV color spaces has a better

performance compared to the models
trained with HSV and LAB. Moreover,
The model was obtained by combining
YUV and RGB trained with vegetation
indices gave better performances than
the models trained with YUV and RGB.

Kerkech et al. [62] Segmentation of the plant
symptomatic area

A Quadcopter drone with two
camera sensors SegNet P, R, F1, AC

The model trained with RGB images
outperformed the model trained with

infrared images.

Barbedo [55] Disease detection on 12 plants
with a variety of diseases.

The images were taken with a
variety of digital cameras and

mobile devices.
GoogleNet AC

CNN’s AC using the original image as
the dataset was 84% and using the

removed background was 87%.

Ferentinos (2018) [63]
Identification of 25 plant disease

in 58 different classes of
(plant, disease).

https:
//github.com/spMohanty/

PlantVillage-Dataset, accessed on
17 November 2021

AlexNet, AlexNetOWTBn,
GoogLeNet, Overfeat, and

VGG models
AC

The VGG model performed best on the
test set. Furthermore, the CNN model
trained only with images under field
conditions performed better than the
CNN model trained only with images

under laboratory conditions.

Jiang et al. [65] Identification of apple
leaf diseases.

Images were taken in the field,
and some of them were in

the laboratory.
SSD with base VGG-INCEP. mAP

SSD with VGG-INCEP as base achieved
better performance with an mAP of

78.80% compared to FR-CCN and SSD
with VGG and ResNet as the base.

https://github.com/spMohanty/PlantVillage-Dataset
https://github.com/spMohanty/PlantVillage-Dataset
https://github.com/spMohanty/PlantVillage-Dataset
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Picon et al. [68] used DL model to detect seventeen diseases of five crops (wheat,
barley, corn, rice, and rapeseed) in images captured in the field. The dataset contained
several challenges, such as multiple diseases on the same plant, similar visual symptoms
among diseases, images of early and early-stage diseases, and diseases of leaves, and stems.
To improve the accuracy of the model, the crop ID was used in the network. The crop ID
was defined as a categorical vector with K components, where K is the number of crops in
the model. Several models were trained. The first approach was to train an independent
model for each crop and the second approach was to train a single model for the entire
dataset. The results show that the multi-crop model had a similar performance to splitting
the training dataset into the different crops (1% increased accuracy). However, the class of
diseases with fewer images in the training set may benefit from the multi-crop model. The
second approach was to add the crop ID to the multi-crop model. The results show that by
adding crop id, the model can still benefit from more images for training, while crop ID
information helps the network to discriminate between similar diseases.

Chen et al. [69] used pre-trained MobileNet V2 networks to identify twelve rice
plant diseases. The dataset was collected from online sources and real agricultural fields.
An attention mechanism was added to the model, and transfer learning was performed
twice during model training to achieve better performance. The MobileNet-V2 achieved
94.12% accuracy on the PlantVillage dataset, while the MobileNet-V2 with attention and
transfer learning achieved 98.26%. The five CNNs such as MobileNetv1, MobileNet-V2,
NASNetMobile, EfficientNet-B0, and DenseNet121 were selected for comparison with
the proposed models. In addition, two other networks named MobileNetv2-2stage and
MobileAtten-alpha were trained. In the MobileNetv2-2stage model, transfer learning was
performed twice to identify the images of plant diseases.

Similarly, in MobileAtten-alpha, the attention method was used instead of transfer
learning twice. The proposed model (using attention and transfer learning twice) achieved
the the second best accuracy of 98.84%. The DenseNet121 with an accuracy of 98.93%
outperformed other models. MobileNetv2-2stage and MobileAtten-alpha achieved an
accuracy of 98.68% and 96.80%, respectively. The proposed model was trained with images
from the field and achieved an accuracy of 89.78%.

3.8.2. Fruit Detection and Yield Forecast

Yield forecasting is one of the most important and popular topics in precision agricul-
ture because it is the basis for yield mapping and estimation, supply and demand matching,
and crop and harvest management [8]. Modern approaches go far beyond simple forecast-
ing based on historical data but incorporate methods from DL to provide a comprehensive
multidimensional analysis of crop, climatic and economic conditions to maximize yields.
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Table 2. Feature descriptions of recent published papers in the field of “Disease Detection”.

References Application Data Used Model Metric Used Model Performance

Karthik et al. [66] Identifying the type of infection
in tomato leaves. Plant Village Dataset. Residual CNN with attention. AC

Residual CNN with attention
with an AC of 98% achieved

better performance compared to
CNN and residual CNN.

Liu et al. [67] Identification of 4 apple leaves
diseases.

Images were taken in field using
digital color camera.

CNN (AlexNet+ +Inception
layers from GoogleNet). AC

Their model with an AC of
97.62% performed better than

GoogLeNet, ResNet-20,
VGGNet16, SVM, and BP,

AlexNet.

Ramcharan et al. [12] Identification of cassava pests
and diseases. Dataset from [70] SSD F1-score

The F1-score decreased by 32%
when moving from the test set to

real images.

Picon et al. [68]
Identification of 17 diseases and
five crops by adding metadata to

the model.

Images were taken by cell phone
in real field wild conditions. CNN (ResNet50 AC, R2, Negative and positive

predictive value

Adding plants species
information to the model by

concatenating plant information
in the embedding layer improved

the performance of the model
(AC = 0.98)

Chen et al. [69] Identify rice plant diseases from
collected real-life images.

Online sources and agricultural
fields.

MobileNet-V1, MobileNet-V2,
DenseNet-121, NASNetMobile,

EfficientNet-B0, proposed model.
AC, R, P, F1-score

The proposed model with an
accuracy of 0.98 out- performed

the other models.
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Silver and Monga [71] trained five CNN models to estimate grape yield from RGB
images taken in a vineyard on harvest day using the camera of a Samsung Galaxy S3. The
images of 40 grapevines were split into two parts, one for the left cordon and one for the
right cordon, resulting in a total of 80 cordons. A simple CNN was trained by inputting
the RGB images of the left and right cordons and estimating the grape yield. The second
model was the same as the first model, but the input to the model was the right cordon
images and the inversion of the left cordon images to look similar to right cordon images.
The third model, an autoencoder network, is trained to a high level of accuracy and the
CNN encoder weights are transferred as starting weights into the CNN model for the yield
estimation model. In the fourth model, an autoencoder model was trained to output the
density map of the grapes in the image. Then, the weights of the encoder are transferred as
initial parameters into the CNN model for yield estimation. The last model was trained
with the output of the autoencoder for the density map as input to the CNN model for yield
estimation instead of the RGB images. The CNN models with flipped images outperformed
the simple CNN model with an MAE % of 15.43. The models of transfer learning from
Density Map Network Representation with MAE % of 11.79 achieved the best performance
among the other models. The last model with MAE % of 15.99 did not perform as well as
the fourth model because the accuracy of the density map estimates was quite low. The
results show that transfer learning, when used properly, can improve recognition accuracy.

Aguiar et al. [72] trained SSD MobilenetV1 and the Inception model to detect Grape
Bunch in Mid Stage and early stages and then transferred the trained model to the TPU-
Edge device to investigate the temporal accuracy of the model. The same strategy in [18]
was used to collect the dataset and it is publicly available (https://doi.org/10.5281/zenodo.
5114142, accessed on 3 November 2021) with 1929 vineyard images and their annotation.
Overall, SSD MobileNet-V1 performed better than the Inception model, as it had a higher
F_1 score, AP, and mAP. The early stage was more difficult to detect than the middle growth
stage. The first class represented smaller clusters that were more similar in color and
texture to the surrounding foliage, making them more difficult to detect. SSD MobileNet-V1
showed an AP of 40.38% in detecting clusters at an early growth stage and 49.48% at a
medium growth stage. In terms of time, SSD MobileNet-V1 was more than four times faster
than the Inception model on TPU-Edge Device.

Ghiani et al. [31] used Mask R-CNN with ResNet101 as a backbone which was pre-
trained with the dataset COCO (https://cocodataset.org/#home, accessed on 18 November
2021) for detecting grape branches on the tree. An open-source dataset GrapeCS-ML [73]
containing more than 2000 images without annotation of fifteen grape varieties at different
stages of development in three Australian vineyards was used to train the model. In
addition to the GrapeCS-ML dataset, 400 images were collected from the island of Sardinia
(Italy). The result obtained by applying the detector to the test samples was an mAP value
of 92.78%. To investigate the generalizability of the proposed model, the model trained on
the GrapeCS-ML dataset was tested on its internal dataset. The dataset contained different
grape varieties, vegetation, and colors than the GrapeCS-ML dataset. An mAP of 89.90%
was obtained with the internal dataset, indicating that the model can be used in other fields.
To investigate the significance of the size of the dataset used for training and the importance
of the augmentation techniques, the size of the original dataset was reduced to 10% of the
training images in one case with augmentation and the other case without augmentation of
the dataset. The mAP was reduced by up to 5%, especially in the experiments performed
without augmentation. It was observed that the recognition accuracy decreased for images
with overlap between clusters.

In Milella et al. [74], a system for the automatic estimation of harvest volume and for
detecting grapes in vineyards using an RGB-D sensor on board an agricultural vehicle has
been proposed. An RGB-D sensor is a special type of depth detection device that works in
conjunction with an RGB camera and is able to add depth information to the conventional
image pixel by pixel. The approach to determine the crop volume involved three steps: the
3D reconstruction of the vine rows, the segmentation of the vines using a deep learning
method, and the estimation of the volume of each plant. In the first step, the depth output

https://doi.org/10.5281/zenodo.5114142
https://doi.org/10.5281/zenodo.5114142
https://cocodataset.org/#home
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from the camera was not used because the parameters of the algorithm are fixed and cannot
be configured. Instead, the semi Global Matching (SGM) algorithm was used, which is a
computer vision algorithm for estimating a dense disparity map from a rectified stereo
image pair. A box-grid filter is then used to merge the point clouds.

In segmentation, a segmentation algorithm was first used to separate the canopy from
the background using the green–red vegetation index (GRVI), and then k-means were
used to identify each plant. Based on the results of the clustering algorithm, different
plants were calculated and an estimate of the volume per plant was performed. Finally, the
pre-trained AlexNet, VGG16 and VGG19, and GoogLeNet were trained to perform grape
cluster detection in 5 different classes (grapes, vineyard stakes, vine stems, cordons, canes,
leaves, and background). The VGG model performed the best with an accuracy of 91.52.

Santos et al. [26] used deep learning models and computer vision models to estimate
grape wine yield from RGB images. Images were captured with a Canon EOS REBEL T3i DSLR
camera and a Motorola Z2 Play smartphone from five different grape varieties. The dataset
named Embrapa Wine Grape Instance Segmentation Dataset (WGISD) with 300 RGB images
is publicly available (https://doi.org/10.5281/zenodo3361736, accessed on 18 November
2021). Models from DL such as Mask R-CNN, YOLOv2, and YOLOv3 were trained to detect
and segment grapes in the images. Then, an image processing algorithm called Structure-
from-Motion (SfM) was used to perform spatial registration, integrating the data generated by
the CNN-based step. In the final step, the results of the CV model were used to remove the
clusters detected in different images to avoid counting the same clusters in several images. The
Mask R-CNN with ResNet101 as the backbone outperformed YOLOv2 and YOLOv3 in terms
of object detection, but the YOLO model outperformed the Mask R-CNN in terms of detection
time. The worst performance was obtained with YOLOv3. To verify the performance of Mask
R-CNN+SfM, 500 key-frames of a video were used, and the result is shown in a video at
https://youtu.be/1Hji3GS4mm4, accessed on 17 November 2021.

Palacios et al. [75] applied the method of deep learning to detect the flowering of
the vine and used it for the estimation of early yield estimation. Images of six grapevine
varieties were acquired using a mobile platform developed at the University of La Rioja.
The RGB camera was a Canon EOS 5D Mark IV RGB with a full-frame CMOS sensor. The
ground truth was acquired using the algorithm in [76]. This algorithm was developed to
process only images with a single inflorescence and a dark background. In the first step,
SegNet was used with VGG (VGG16 and VGG19) as a backbone to segment and extract
the inflorescences contained in the images. Then, these regions were used to count the
flowers in each inflorescence using three algorithms, including SegNet, Watershed Flower
Segmentation, and a linear model. The SegNet with VGG19 as backbone outperformed the
model with VGG16 in terms of IOU and F1-score. For flower recognition, the SegNet model
with VGG19 was trained to classify a group of flowers per image into three classes including
contour, center, and background. After segmentation, false-positive filtering of flower
segmentation was performed. Here, the flowers whose center and contour was segmented,
and whose contour surrounded the center above a certain threshold were considered as
true positives. The F1-score reached its highest value when contour filtering was set to 50%,
resulting in an F1-score of 0.729. The best F1-score for the watershed approach was 0.708
and the worst performance in counting flowers was obtained with linear regression in the
form of the Root Mean Square metric. The number of flowers counted using SegNet-VGG19
for inflorescence extraction and flower detection, and flower counting using the algorithm
of [76] showed a correlation with R2 close to or above 0.75 for all cultivars.

https://doi.org/10.5281/zenodo3361736
https://youtu.be/1Hji3GS4mm4
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Table 3. Feature descriptions of recent published papers in the field of “Fruit detection and Yield estimation”.

References Application Data Used Model Metric Used Model Performance

Silver and Monga [71] Estimate grape yield from RGB
images.

Images were taken in of a
vineyard on harvest day using

the camera of a Samsung Galaxy
S3.

Five CNN models from scratch
trained with five different

techniques for training
MAE

The models of transfer learning
from Density Map Network

Representation. with MAE% of
11.79 achieved the best

performance among the other
models.

Aguiar et al. [72] Detect Grape Bunch in Mide
Stage and early stages.

The images were acquired from
four different vineyards in

Portugal.

SSD Inception-V2, SSD
MobileNet- V1 IOU, mAP, R

The SSD Inception-V2 had higher
precision than the SSD

MobileNet-V1 at all confidence
values, but lower recall. In terms
of time, SSD MobileNet-V1 was
more than four times faster than

the Inception

Ghiani et al. [31] Detecting grape branches in the
tree

GrapeCS-ML [73] and 400 images
were collected from field

Mask R-CNN with ResNet101 as
back- bone IOU, mAP The model achieved an mAP

value of 92.78%

In Milella et al. [74]
Estimation of harvest volume

and for detecting grapes in
vine-yards

Images was collected from field
using RGB-D sensor AlexNet, VGG, GoogleNet P, R, AC, TP (true positive) The VGG model performed the

best with an accuracy of 91.52%.

Santos et al. [26] Estimate grape wine yield from
RGB images.

Images were captured with a
camera from five different grape

varieties.

Mask R-CNN and YOLOv2 and
YOLOv3 P, R, F1-score

The Mask R-CNN with ResNet
101 as the back-bone

outperformed YOLOv2 and
YOLOv3 in terms of object

detection, but the YOLO model
outperformed the Mask R-CNN

in terms of detection time.

Palacios et al. [75]
Detect the flowering of the vine,
and used it for the estimation of

early yield estimation

Images of six grapevine varieties
were acquired using a mobile

platform
SegNet model with VGG19 IOU and F1-Score

The number of flowers counted
using SegNet- VGG19, and
flower counting using the

algorithm of [76] showed a
correlation with R2 close to or

above 0.75 for all cultivars.
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Kang and Chen [34] implemented DaSNet-v2, which is an ’Encoder–Decoder with
atrous convolution developed in Deeplab-v3+ to detect and segment the apple in an
orchard for harvesting by a robot. Atrous convolution is a type of convolutional layer that
allows control of the resolution of the features computed by the CNN. The dataset was
collected from an apple orchard as RGB-D and RGB. The RGB-D was used to visualize the
environment. A lightweight model, Resnet 18, was used as the backbone of the DaNet-v2
to ensure its deployment on the Jetson-TX2 with limited computing capacity. In addition,
the model was trained with the Resnet50 and Resnet101 backbones. The performance of
the model with the Resnet101 backbone was compared with DaSNet-v1, YOLO-v3, faster-
RCNN, and the Mask-RCNN. DaSNet-v2 and Mask-RCNN with F1-score of 0.873 and
0.868, respectively, outperformed the other models. However, DaSNet-v2 outperformed
mask-RCNN with a computational efficiency between 306 and 436 ms with a time of
1.3 s. The results also show that single-stage detection models such as Yolo have better
computational efficiency compared to two-stage detectors. The model was implemented
on Jetson-TX2, a lightweight backbone of Resnet-18, and the experimental results show
that DaSNet-v2 with Resnet-18 can achieve similar performance in recall and precision of
detection compared to YOLO-v3. Environmental factors such as strong sunlight reflection,
shadows, and appearance variations of fruits in color, shape, occlusion, or viewing angle
could lead to false-negative detection results. RGB-D images were processed using DaSNet-
v2 and the PPTK toolbox, a Python package for image visualization, to deploy the robot in
the orchard.

Koirala et al. [77] developed a DL model, called Mango-YOLO, based on YOLO-v3
and YOLO-v2 (tiny) for counting mangoes on trees. YOLOv2 (tiny) has a small architecture
with only nine convolutional layers, six pooling layers, and one detection layer, sacrificing
accuracy for speed. YOLOv3 [22] is based on Darknet-53 and improves upon YOLOv2 [78].
The Mango YOLO had 33 layers compared to 106 layers in YOLO-v3 and 16 layers in YOLO-
v2 (tiny). The reduction in the number of layers is expected to reduce computation time
and detect mangoes more accurately. The model was trained on the dataset collected from
five orchards. The Mango-YOLO achieved better performance with an accuracy of 0.967%
compared to YOLO-v2 (tiny) (0.9% ) and YOLO-v3 (0.951%). In terms of time inference,
the Mango YOLO with 15 ms was faster than YOLO-v3 (25 ms) and slower than YOLO-v2
(tiny) (10 ms). Moreover, Mango-YOLO was trained once from scratch on the augmented
dataset, and the second time transfer learning was used using the COCO dataset. The
models had the same performance on the test set, and the reason was explained by the fact
that the COCO dataset does not contain Mango images. The false detection over images
taken with Canon camera shows resizing of the images and results in image distortion
with leaves taking a curved shape resembling the fruit and overexposed areas on branches,
trunks, and leaves.

Liang et al. [79] applied the SSD network to detect mango and almond on tree fruits.
The dataset in [80] was used to train the model. The SSD model used the original and
sampled a patch such that the minimum Jaccard overlap with the objects is 0.1, 0.3, 0.5,
0.7, or 0.9, and finally randomly sampled the input image. The size of each sampled area
and the minimum Jaccard overlap are critical for object detection. These two parameters
were changed to adopt the SSD model for small mango detection. Using VGG16 as the
basic framework for the SDD outperformed the SSD with ZFNet. Furthermore, using the
input image size of 400 × 400 and 500 × 500 as the input of the model, the model achieved
better performance than SSD with an input size of 300 × 300. The model outperformed the
faster RCNN in terms of speed and accuracy. The challenges related to mango detection
on the tree were considered in the paper: the size of mango on the whole image, blocking
the mango with leaves, branches, resizing the original image, making mango smaller, and
similarity between mango and background.

Tian et al. [81] developed YOLO-V3 with DenseNet as the backbone to detect apples
on trees. They used two datasets for training. The first one contained images of apples at
one growth stage, and the second one contained images taken at different growth stages.
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The model showed better performance for mature apples than for young and growing
apples because the color features were more prominent, the individual volume was larger,
and there was less overlap. The results also showed that the F1-score of the model trained
with the first dataset was higher than that of the model trained with the second dataset.
The performance of the trained model decreased for images with partial occlusion of apples
with branches and leaves but is still an acceptable result (IOU = 0.889 for mature apples ).

The model achieved the best performance compared to Faster R-CNN, YOLOV2, and
the original YOLOv3. In terms of time inference, the model was faster than Faster R-CNN
and similar to YOLOv3. The F1-score and IOU of the model without data augmentation
methods decreased by 0.033 and 0.058, respectively.

Zhou et al. [82] implemented an SSD model with two lightweight backbones Mo-
bileNetV2 and InceptionV3, to develop an Android APP called KiwiDetector that detects
kiwis in the field. Quantization is a technique for performing computations and storing
tensors with bit widths smaller than floating-point numbers. When training a neural net-
work, 32-bit floating-point weights and activation values are typically used. A quantized
model performs some or all operations with tensors using integers instead of floating-
point values. This allows the computational complexity to be reduced and the trained
model can be used on devices with lower resource requirements. The quantization method
was used to compress the model size and improve the detection speed by quantizing
the weight tensor and activation function data of convolutional neural networks from 32
to bit floating-point numbers to an 8-bit integer. The results showed that MobileNetV2,
quantized MobileNetV2, InceptionV3, and quantized InceptionV3 achieve a true detec-
tion rate of 90.8%, 89.7%, 87.6%, and 72.8%, respectively. The quantized MobileNetV2 on
the Huawei P20 smartphone outperformed the other models in terms of detection speed
(103 ms/frame) and size. Although the SSD with MobileNetV2 was more accurate than the
SSD with quantized MobileNetV2, the SSD with quantized MobileNetV2 was 37% faster.
The problem with kiwi detection was that overlapping kiwis were reported, which the
model counts as one kiwi.

3.8.3. Weed Detection

Besides disease, weeds are considered to be a prevalent threat to agricultural produc-
tion. These are plants considered undesirable in a particular situation, as they may compete
with crops for sunlight and water, resulting in crop and economic loss. One significant
problem in weed control is that they are difficult to detect and distinguish from crops
[8]. DL algorithms can improve weed detection and discrimination at a lower cost with
reduced environmental problems and side effects. These technologies could power robots
that detect and remove weeds.

Bah et al. [83] proposed a CNN model with unsupervised training dataset annotation
collection for weed detection in UAV images of bean and spinach fields. They assumed that
crops are grown in regular rows and that plants growing between the rows are considered
weeds. The Hough transform was applied to the skeleton to detect the rate of plant rows,
and then a simple linear iterative clustering (SLIC) algorithm was applied to create a
marker and delineate the plant rows. This algorithm generated superpixels based on
k-mean clustering. After row detection, a blob coloring algorithm was used to identify the
weeds. The unsupervised training dataset was used to train ResNet18 for weed detection
in the images. The supervised learning method performed 6% better than the unsupervised
learning method in the bean field and about 1.5% better in the spinach field. The low
number of weeds between rows may explain the difference in performance in the bean
field. The performance of the model was compared with SVM and RF. In general, ResNet18
shows better performance in supervised and unsupervised learning methods than SVM
and RF.
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Table 4. Feature descriptions of recent published papers in the field of “Fruit detection and Yield estimation”.

References Application Data Used Model Metric Used Model Performance

Kang and Chen [34] Counting apple on tree. The images were taken in the
field with a camera.

C-RCNN+LedNet with a
light-weight (LW) as backbone,

resnet-50, resnet-101, darknet-53.
IOU, P, R, F1-score

LedNet with resnet-101 achieved
an AC of 0.864 and LedNetwith

LW achieved an Ac of 0.853.

Koirala et al. [77] Counting mango on trees. The images were taken in the
field. CNN (Mango-YOLO) F1-score

Mango-YOLO with an F1-score of
0.97 achieved better performance
compared to faster R-CNN, SSD,

and YOLO.

Liang et al. [79] Detection of mango and almond
fruits on the tree.

https:
//arxiv.org/abs/1610.03677,

accessed on 15 November 20221
SSD with VGG-16 and ZFNet IOU, F1-score

The model outperformed the
faster RCNN in terms of speed

and accuracy.

Tian et al. [81] Detection of apple in image and
yield estimation.

Image capture was performed
with a camera in the field.

Improved YOLO-V3 with
DenseNet as the backbone. F1-score

The proposed model with an
F1-score of 0.817 had better
performance compared to

YOLO-V2, YOLOV3, and Faster
R-CNN.

Zhou et al. [82]
Detection of kiwi fruit in the

orchard with android
smartphones.

Collected from the orchard.
MobilNetV2, quantized

MobileNetV2, InceptionV3,
quantized InceptionV3.

IOU, TDR, FDR

Quantized MobileNetV2
outperformed the other models

in terms of accuracy, speed,
and size.

https://arxiv.org/abs/1610.03677
https://arxiv.org/abs/1610.03677
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Ferreira et al. [36] implemented the unsupervised learning models JULE and Deep-
Cluster to detect weeds in the field. The JULE consists of stacked multiple combinations of
convolutional layer, batch normalization layer, ReLU layer, and pooling layer. AlexNet and
VGG16 were implemented as the basis of the DeepCluster model to extract features, and
then K-means is used as the clustering algorithm. Two datasets, Grass-Broadleaf [84] and
DeepWeeds [85] were used in this work. The DeepCluster model performed better than
the JULE model on both datasets with a large number of clusters. The DeepCluster with a
base of Alexnet and VGG achieved similar performance, with Alexnet performing better
on DeepWeed and VGG on the other dataset. To investigate the effect of transfer learning
on unsupervised learning, the pre-trained VGG and AlexNet were used on ImageNet. The
pre-trained model did not improve the accuracy of Grass-Broadleaf, but it did improve the
accuracy of DeepWeed. The data augmentation also improved the accuracy of the unsuper-
vised learning methods. They also used semi-supervised data labeling. Semi-supervised
learning is a machine learning approach that deals with the use of labeled and unlabeled
data. In the semi-supervised method, labeled images from the DeepCluster model were
used to train Inception-V3, VGG, and ResNet. Inception-V3 and VGG outperformed ResNet
on the Grass-Broadleaf and DeepWeeds dataset, respectively.

Milioto et al. [86] modified Encoder–Decoder CNN architecture in [87] to distinguish
weeds from crops and soil. The number of convolutional layers was decreased to reduce
time inference, and additional vegetation indices (14 channels) were included in the input
for more accurate detection. The dataset of three fields was used. Three networks were
trained with different inputs: one with RGB images, another with RGB and near-infrared
(NIR) images, and the last one was trained with 14 channels such as RGB, Excess Green
(ExG), Excess Red (ExR), color index of Vegetation Extraction (CIVE), and Normalized
Difference Index (NDI). To investigate the generalization ability of the proposed model,
the model was trained on the images of one field and tested on images of all fields. The
results indicate that feeding these 14-channels into the input can speed up the training
and improve the performance of the model on the unseen dataset compared to the model
trained on RGB images and RGB+NRI but still, the recall and precision of the model on the
unseen field drop sharply (11–50%).

Another experience was conducted to investigate the generalization capacity of the
proposed model. The trained model was retrained on the unseen dataset with 10, 20, 50, or
100 images in the training set. The performance of the RGB network when retrained with
100 images is almost the same as the performance of the proposed model trained with ten
images. The inference time of the proposed model on PC and Jetson TX2 platform was also
found to be 44 ms and 210 ms, respectively, which is slower than the model trained with
RGB images with 31 ms and 190 ms, respectively.

Lottes et al. [30] developed an encoder–decoder Fully Convolutional Network (FCN)
with the sequential model for weed detection in sugar beet fields. The encoder–decoder
FCN was used to extract features from the input images, and the sequential model processed
the five images in a sequence using 3D convolution and output a sequence code that was
used to learn sequential information about the weeds in five images in a sequence. The
results showed that the encoder-decoder with a sequential model improved the F1-score of
the module by almost 11–14% compared to the encoder-decoder FCN. The results indicated
that the changes in the visual appearance of the images in the training and test dataset
could lead to a decrease in model performance, and adding additional information, such as
vegetation indices, leads to better generalization for other fields.
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Table 5. Feature descriptions of recent published papers in the field of “Weed Detection”.

References Application Data Used Model Metric Used Model Performance

Bah et al. [83] Weed detection in bean and
spinach fields.

The images were taken with a DJI
Phantom 3 Pro drone.

Simple linear iterative clustering
(unsupervised)+ CNN (Resnet18) AC

CNN trained with unsupervised
labeling achieved an AC of 88.73

(spinach) and 94.34 (bean), and with
supervised labeling achieved an AC
of 94.84 (spinach) and 95.70 (bean).

Ferreira et al. [36] Identification of weeds with
unsupervised clustering.

The Grass-Broadleaf Dataset
in [84] and DeepWeed in [85] . JULE, DeepCluster AC, NMI DeepCluster achieved better

performance than JULE.

Milioto et al. [86]
Identification of weeds

(additional vegetation indices
added to the input).

Data was taken with a 4-channel
RGB+NIR camera. Mask R-CNN. IOU, mIOU

The model achieved better
performance by adding an extra
channel at the input of the model

(IOU = 80.8%)

Lottes et al. [30] Crop and weed detection in the
sugar field.

Dataset was taken with robots
equipped with a 4-channel with

RGB+NIR camera

Encoder–Decoder FCN
(FC-DenseNet) sequential model. Average F1-score

The proposed model achieved better
performance with a F1-score of 92.3
compared to encoder-decoder FCN

without a sequential model, random
forests, and vanilla FCN.

Wang et al. [88] Pixel-wise segmentation of field
images into soil, crop, and weeds.

Two datasets used: the first
Dataset in [89] and oilseed image

acquired in the field

Encoder-decoder CNN with
different inputs. AC, IOU

The model with RGB input with an
AC of 96.06 on dataset1 and 96.12 on

dataset2 achieved the best
performance. Image enhancement

improved the results.
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Wang et al. [88] used the encoder–decoder with Atrous Convolution for pixel-wise
semantic segmentation of crops and weeds. The two datasets for sugar beet and oilseed
included in the paper were taken under completely different lighting conditions. To mit-
igate the effects of the different lighting conditions, three image enhancement methods
were evaluated, including Histogram Equalization (HE), Auto Contrast, and Deep Photo
Enhancer. The models were also trained with various inputs, including YCrCb and YCgCb
color spaces and vegetation indices such as Normalized Difference Index (NDI), Normal-
ized Difference Vegetation Index (NDVI), Excess Green (ExG), Excess Red (ExR), Excess
Green minus Excess Red (ExGR), Color Index of Vegetation (CIVE), Vegetative Index (VEG),
and Modified Excess Green Index (MExG), Combined Indices (COM1), and COM2. For
the sugar beet dataset, the model trained with NIR images enhanced by Auto Contrast
outperformed the other models with a mean IOU of 87.13%. For the Oilseeds dataset, the
models were trained with RGB images only, and the model trained with images enhanced
by Deep Photo Enhancer outperformed the other models (mIOU = 88.91%). Moreover, the
auto-contrast method outperforms other methods in terms of time inference.

3.8.4. Species Recognition

The classification of species (e.g., insects, birds, and plants) is another critical aspect of
agricultural management. The traditional human approach to species classification requires
specialists in the field and is time-consuming. Deep learning can provide more accurate
and faster results by analyzing real-world data.

Rußwurm and Körner [90] trained LSTM and GRU models for multitemporal classifi-
cation, which achieved high accuracy in crop classification tasks for many crops. Images
were collected from SENTINEL 2A images between 31 December 2015 and 30 September
2016. For consistency with the LANDSAT series, the blue, green, red, near-infrared, and
shortwave infrared 1 and 2 bands were selected for this assessment. The performance of the
LSTM model was compared to the RNNs, the CNN model, and a baseline SVM. The LSTM
model outperformed the other models in terms of accuracy in land cover classification.

Lee et al. [91] used CNN to classify 44 plants based on leaf images. Two datasets were
prepared. One contained the entire image of a leaf, and for the other, each leaf image was
manually cropped. The accuracy of the CNN model trained with the second dataset was
higher than that obtained with the first dataset. The results showed that CNN can extract
high-level features such as structural subdivisions, leaf tip, leaf base, leaf margin, etc., and
is not limited to shape, color, and texture.

Ayhan et al. [92] implement DeeplabeV3+, a CNN model developed from scratch
and a machine learning method that uses NDVI (NDVI+ML) to segment vegetation and
non-vegetation in the images. The dataset of [93] belongs to two studied sites, Vasiliko in
Cyprus and Kimisala in Rhodes Island, were used. The images were acquired using a UAV
and a modified, uncalibrated near-infrared camera. The image resolution of the Vasiliko
image is 20 cm per pixel and these images were used to train the models. On the other
hand, the Kimisala dataset was used as a test set. The images in this dataset contain two
different resolutions of 10 cm per pixel and 20 cm per pixel.

Two DeeplabeV3+ models were trained with RGB images as input and G, B bands
plus NDVI as the third channel. Although the loss of the DeeplabeV3+ model trained from
scratch with NDVI+GB was decreased, the test result was very poor. However, the same
model trained with transfer learning and NDVI+GB channels improved the accuracy of the
model compared to the model trained with RGB images (almost one percent). The CNN
developed from scratch was also trained with two different channels. The first was trained
with RGB images and the second with four channels of RGB and NIR. The model trained
with RGB and NIR outperformed the model trained with RGB images with an accuracy of
80.9% and an accuracy of 76%.

In the last experience, the NDVI and the Gaussian Mixture Model (GMM) of the
machine learning model were used to classify the images. This method includes several
thresholds that need to be adjusted by the user. The NDVI+ML method outperformed the
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models from DL with an accuracy of 87%. Note that the deep learning method in this work
was trained with a dataset from one location and tested at another location with a different
land cover. This could be a reason why NDVI+ML outperformed the DL models.

Bhusal et al. [94] used the pre-trained MobileNet on the ImageNet to classify bird
pests in the image. Video data from a commercial vineyard captured with a GoPro Hero
4 outdoor camera with 1080P resolution was used as the dataset. In their work, a motion
detection algorithm was used that is capable of detecting moving objects. For each of these
moving objects, the abounded rectangle was extracted. These moving objects were cropped
from the original RGB image and reduced to 32 × 32. Each of these cropped images was
referred to as motion instance images (MIIs). More than 5000 MIIs were collected from
different videos and classified as bird or non-bird. In the next step, a CNN model developed
in [95] was used to improve image resolution. The images were converted from 32 × 32
to 64 × 64, 96 × 96, and 128 × 128 and denoted as MIIs (e-MIIs), 2e-MIIs, 3e-MIIs, and
4e-MIIs, respectively. Five MobilNet models were trained with the MIIs, 2e-MIIs, 3e-MIIs,
4e-MIIs, and the entire Dataset. The worth results in terms of accuracy were obtained with
a model trained with MIIs, and the best result was obtained with the model trained with
all the datasets.

Mac Aodha et al. [96] used the CNN models from scratch to detect bats from audio
files. Two CNN models called CNNFULL with three convolutional layers and 32 filters and
CNNFAST consisting of two convolutional layers and 16 filters were trained. The audio
files were converted to a spectrogram and used as input to the CNN model. CNNFULL and
CNNFAST took 53 and 9.5 s, respectively, to run the entire detection pipeline on the 3.2-min
full-spectrum test dataset. CNNFAST showed a trade-off between speed and accuracy with
slightly lower performance compared to CNNFULL.

The performance of the models was compared with three existing commercial closed-
source detection systems, including SonoBat (version 3.1.7p) (https://sonobat.com/, ac-
cessed on 26 November 2021); SCAN’R (version 1.7.7), and Kaleidoscope (version 4.2.0
alpha4) (https://www.wildlifeacoustics.com/products/kaleidoscope-pro, accessed on 26
November 2021), as well as a machine learning method RF. The CNN model significantly
outperformed the other algorithms in terms of mAP.

Ramalingam et al. [97] used Internet of Things (IoT) based architecture for insect
detection. The Internet is a global system of interconnected computer networks that use
Transmission Control Protocol/Internet Protocol (TCP/IP) to connect billions of computers
worldwide [98]. The IoT, on the other hand, is a global network of physical objects equipped
with sensors and actuators that connect to the Internet in real-time to be identified, sensed,
and controlled remotely [98]. The IoT architecture used in [97] consists of four layers:
perception layer, transport layer, processing layer, and application layer. In the perception
layer, a smart wireless camera captures an image of a sticky insect trap. The transport
layer uses WiFi communication and TCP/IP to send images to the processing layer and
transmit processed data to the application layer. In the processing layer, an Fast RCNN
with ResNet50 is used to detect the insect in the images. In the final stage, smartphones and
web interfaces are used to perform the application layer tasks. The experimental results
show that the trained model achieves 96% accuracy in insect detection and outperforms
YOLO and SSD in terms of accuracy.

3.8.5. Soil Management

For experts in agriculture, soil is a heterogeneous natural resource with complex
processes and unclear mechanisms [8]. Its temperature alone can provide insight into
the impact of climate change on regional yields. Deep learning algorithms study the
processes of evaporation, moisture, and soil temperature to understand the dynamics of
the ecosystem and the implications for agriculture.

https://sonobat.com/
https://www.wildlifeacoustics.com/products/kaleidoscope-pro
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Table 6. Feature descriptions of recent published papers in the field of “Species recognition”.

References Application Data Used Model Metric Used Model Performance

Rußwurm and Körner [90] Segmentation of land cover with
sequential models.

Images were collected from the
SENTINEL2A satellite. LSTM, RNN, CNN, SVM F1-score, P, AC, R LSTM networks and RNN achieved

better results.

Lee et al. [91] Classification of plants based on
leaf images.

MalayaKew (MK) Leaf dataset
was collected at Royal Botanic

Gardens Kew, England.
CNN+SVM, CNN+MLP AC

CNN+SVM with an AC of 0.993
achieved better performance compared

to RBF, CNN+MLP.

Ayhan et al. [92] Classification of land into
vegetation and non-vegetation

Images were collected
using UAV.

Deeplabv3+, CNN model,
GMM+NDVI AC, IOU

GMM+NDVI outperformed DL models.
The DeeplabeV3+ outperformed the

CNN model developed from scratched

Bhusal et al. [94] Classify bird pests in the image. Video data from a commercial
vineyard captured with cameras. MobileNet with different input AC The best result was obtained with the

model trained with all the datasets.

Mac Aodha et al. [96] Insects detection Images taken with a WiFi camera F-RCNN with Resnet50 AC, R, P, F1-score The model achieved an accuracy of 96%.

Ramalingam et al. [97] Insect detection using Internet of
Things (IoT) base architecture. Images from the traps. Fast RCNN with ResNet 50,

YOLO, SSD Ac

The trained model achieves 96%
accuracy in insect detection and

outperforms YOLO and SSD in terms
of accuracy. .
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Li et al. [99] used a bidirectional LSTM model to estimate soil temperature at 30 sites
under five different climate types. Soil temperature (ST) measurements were obtained
from the U.S. Department of Agriculture’s National Water and Climate Center, which
has established more than 200 sites across the country to collect data on meteorology,
soil, and solar radiation. Two models were trained with different inputs and outputs.
The first model received the meteorological weather conditions including daily hours,
minimum and maximum air temperature, minimum and maximum relative humidity,
vapor pressure, average solar radiation, and average wind speed, and outputted the soil
temperature amplitude obtained by subtracting the daily average soil temperature from the
hourly soil temperature. The second model obtained the meteorological weather conditions
including month, day of the month, observed air temperature, dew point temperature,
minimum and maximum air temperature, minimum and maximum relative humidity,
vapor pressure, average solar radiation, average wind speed, and outputted the daily
average ST. To calculate the hourly ST, the output of the first model was added with the
output of the second model and called the integrated BiLSTM model. The result of the
model was compared with the BiLSTM model, which directly estimates the hourly ST, the
LSTM model, the deep neural network, random forest, SVR, and Linear Regression. The
integrated BiLSTM model outperformed the other models in terms of MAE, RMSE, and R2.
The LSTM model achieved the second-best performance.

It was also found that the performance of each model is not as good in snowy areas as
in warm or dry areas and that, the accuracy of the other models increases with soil depth
(except for RF). This behavior could be due to a change in the standard deviation of the soil
temperature at different depths and climate types, but this is not investigated in the study.

Yu et al. [100] implement CNN (Conv2D, Conv3D), ConvLSTM to estimate the soil
temperature. The difference between Conv2D and Conv3D is the size of the input channels.
In the ConvLSTM model [101], there are convolution structures in both the input-to-state
and state-to-state transitions. The model obtains the last ten days of historical data from
spatiotemporal ST and predicts the ST one, three, and five days in advance. Each model
was trained with two different input channels. The first time the raw data from ST was
fed into the model, the second time, the input was processed using the Empirical Mode
Decomposition (EMD) method, which is a proposed method for processing signals. In
the EMD method, the number of channels was increased from one to ten. To complement
the model DL, persistent prediction (PF) is used, a simple prediction method that treats
the temperature of the first day as a prediction for the next day. When forecasting ST
with one-day historical data, PF outperformed the models of DL with raw data input.
On the other hand, when the models of DL used the EEMD- processed data as input, the
prediction performance was significantly improved. Among all the models, EEMD-Conv3D
performed the best in predicting the spatiotemporal ST. It could be noted that ST depends
not only on the historical data of ST but also on the meteorological weather conditions,
which can be used as input to the model to improve the accuracy.

Alibabaei et al. [102] used Bidirectional LSTM (BLSTM), CNN-LSTM, and a simple
LSTM model to model daily reference evapotranspiration and soil–water content. Meteo-
rological weather data for three sites in Portugal were collected from the stations Póvoa
de Atalaia, Estação Borralheira, and Direção Regional de Agricultura e Pescas do Centro,
Portugal. Evapotranspiration was calculated from meteorological data using the FAO
Penman–Monteith equation and soil water content was retrieved from ERA5 land. The
BLSTM model with an MSE of 0.014 to 0.056 outperformed the LSTM, CNN, and CNN-
LSTM models. The performance of BLSTM was also compared with traditional machine
learning methods such as Random Forest and SVR and outperformed these two models.
Among the machine learning methods, RF outperformed the SVR model. The model was
not tested with data measured in the field. For use in the field, it can be re-trained with a
small set of field-measured data to be used with more confidence in real-world applications.
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Table 7. Feature descriptions of recent published papers in the field of “Soil management”.

References Application Data Used Model Metric Used Model Performance

Li et al. [99] Estimation of soil temperature
https://www.wcc.nrcs.usda.
gov/scan/, accessed on 20

November 2021

Integrated BiLSTM, BiLSTM,
LSTM, RF, SVR, DDN, LR RMSE, MAE, R2, MSE

Integrated BiLSTM model
outperformed the other models

Yu et al. [100] Estimation of soil temperature
https:

//cds.climate.copernicus.eu/,
accessed on 20 November 2021

CNN (Conv2D, Conv3D),
ConvLSTM RMSE, MAE, R2, MSE

EEMD-Conv3D performed the
best in predicting the

spatiotemporal.

Alibabaei et al. [102] Estimation of soil water content
and evapotranspiration

https:
//cds.climate.copernicus.eu/,
accessed on 20 May 2020 and
weather stations in Portugal

BLSTM, CNNLSTM, simple
LSTM, CNN, RF, SVR MAE, R2, MSE

BLSTM outperformed
other models.

https://www.wcc.nrcs.usda.gov/scan/
https://www.wcc.nrcs.usda.gov/scan/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
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3.8.6. Water Management

Water management in agriculture has implications for hydrological, climatological,
and agronomic balance [8]. Five papers on the topic were reviewed, where machine learning
models are employed to estimate various values, such as evapotransition, allowing for
more effective use of irrigation systems, and water table detection, which helps determine
crop water needs.

Saggi and Jain [103] used multilayer perceptrons (MLP) to evaluate daily evapotranspi-
ration for irrigation scheduling. They developed their model from scratch. The developed
DL model performed well in estimating evapotranspiration and outperformed ML models
such as RF, Generalized Linear Model (GLM), and Gradient Boosting Models (GBM).

Zhang et al. [104] presented an LSTM-based model for water management in agri-
cultural areas. The LSTM model with a R2 value of 0.789–0.952 outperformed the fully
connected network. As mentioned in the paper, the prediction of water table depth can
help engineers and decision-makers to develop an optimal irrigation scheduling system
while controlling the effects of salinity on intensive irrigation.

Loggenberg et al. [105] applied hyperspectral sensing and machine learning to model
water stress in vineyards. Stem water potential (SWP) was measured in the field by using a
pressure chamber to determine vine water stress status. Vines with SWP values between
−1.0 MPa and −1.8 MPa were classified as water-stressed, while vines with SWP values
−0.7 MPa were classified as not stressed. Images were acquired using the SIMERA HX MkII
hyperspectral sensor, which detects 340 spectral wavebands in the VIS and NIR. A spectral
subset consisting of 176 wavebands with a spectral range of 473–708 nm was used as
input to the models. Two ML models Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) were used for classification. In the first experience, RF and XGBoost models
used all wavebands (176 bands) as input. RF with an accuracy of 83.3% outperformed
XGBoost with an accuracy of 78%. When using a subset of important wavebands (18 bands),
the accuracy of RF and XGBoost was improved (RF = 93.3% and XGBoost = 90%). The
results show that the choice of input to the model in ML is crucial and should be carefully
selected. The effect of smoothing the spectral data with the Savitzky–Golay filter in the data
preprocessing step was also investigated in the paper. The Savitzky–Golay filter reduces
the model accuracy ranging between 0.7% and 3.3%.

Chen et al. [40] used a deep Q-learning (DQN) model for an irrigation decision
strategy based on short-term weather forecasts for rice. Daily observed meteorological
data of the rice-growing period at three stations, including daily minimum and maximum
temperature, average temperature, average wind speed, sunshine duration, average relative
humidity, and precipitation were collected. The state-space consisted of Pt is the predicted
precipitation sequence for the next 7 days on day t , mm; ht is the water depth on day t, mm;
hmin is the lower limit of water depth, mm; hmax is the upper limit of water depth, mm;
Hp is the maximum allowable water depth after precipitation. In the action space, three
possible actions were included, representing the fraction of the irrigation quota (irrigation
to hmax) to be supplied to the field on day t. Action 0 returns 0%, action 1 returns 50%, and
action 2 returns 100%. The reward is based on the rainfall use reward and the yield reward.
The results of the DQN irrigation strategy compared to the results of the conventional
irrigation strategy showed a significant reduction in irrigation water volume, irrigation
timing, and drainage water without yield loss.

Alibabaei et al. [38] uses the DQN model to schedule irrigation of a tomato field in
Portugal using climate Big Data. Historical data are collected from various sources and
processed for use as input. Two LSTM models are trained on the obtained historical data to
predict the total soil water in the soil profile for the next day and the tomato yield at the
end of a season, respectively.

The trained LSTM models were used in the DRL training environment, which takes
the current state (historical climate data) and action (amount of irrigation) and then returns
the next state and reward. The reward was calculated as the net return and the Q-value
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was estimated using an LSTM model. The results show that the agent learns to avoid water
waste at the beginning of the season and water stress at the end of the season. Compared
to the threshold and fixed irrigation method, the DQN agent increases productivity by 11%
and avoids water waste by 20–30%.

3.8.7. Automation in Agriculture

Deep learning is also being used to control sensors and robots that enable automation
and optimization of agricultural processes. These robots can be used for a variety of
purposes, including automated seeding, pesticide, and crop nutrient application, damage
repair, irrigation, weed detection and removal, harvesting, etc.

Li et al. [52] used a deep-learning algorithm to quickly and accurately detect and
locate longan fruit in imagery and pick the fruit with a UAV device. An RGB-D camera
on the UAV was used to collect images of the fruits. As mentioned in the paper, one of
the disadvantages of UAVs is that they are easily affected by local circulation and airflow
when capturing images, resulting in blurred images of the fruits. In the preprocessing of
the data, a Fuzzy image processing algorithm was used to remove the blurred images from
the data set.

FPN, YOLOv3, YOLOv4, MobileNet-SSD, YOLOv4-tiny, and MobileNet-YOLOv4
models were trained on the images to detect and locate string fruits, simple fruits, and fruit
branches. In the final phase, the detection results are mapped onto the optimized depth
image to extract the contours and spatial information of the three targets. Based on this in-
formation, the drone can detect and locate the fruits and use them in harvesting. In general,
the YOLO models had faster detection speed and achieved better accuracy than the FPN
and SSD models. MobileNet-YOLOv4 achieved the best performance in terms of accuracy
(mAP = 89.73) and inference time (68 s), while FPN achieved the worst performance.

To test the model in orchards, a picking platform was developed with a UAV, a Jetson
TX2, an RGB-D camera, a set of scissors with clamps, and a support frame. The accuracy
rate of successful harvesting in four cases was reported as 75, 75, 69.23, and 68.42.

Aghi et al. [106] presents a low-cost, energy-efficient local motion planner for au-
tonomous navigation of robots in vineyards based on RGB-D images, low-range hardware
(a low-cost device with low power and limited computational capabilities), and two control
algorithms. The first algorithm uses the disparity map and its depth representation to
generate proportional control for the robot platform. The second backup algorithm, based
on a deep learning algorithm, takes control of the machine when the first block briefly fails
and generates high-level motion primitives.

An Intel RealSense Depth Camera D435i RGB-D camera was used to capture images
and compute the depth map on the platform. The video was captured in different terrain,
quality, and time of day. Then, a light depth map-based algorithm processes the depth
maps to detect the end of the vineyard row and then calculates control values for linear and
angular velocities using a proportional controller. Since, as in many outdoor applications,
sunlight negatively affects the quality of the results and interferes with the control provided
by the local navigation algorithm, MobileNet was trained to classify whether the camera
was pointed at the center of the end of the vineyard row or one of its sides, and it was used
when the first algorithm failed due to outdoor conditions. The CNN model was trained
with transfer learning and classified the images into three classes: Middle, Left, and Right.
For the middle class, the video was taken in rows with the camera pointed at the center,
and for the other two classes, the videos were rotated left and right with the camera at a
45-degree angle to the long axis of the row. The accuracy of the model on the test set was
one. The model was trained on a small portion of the data set to investigate the significance
of the size of the data set. The accuracy of the model decreased by 6% with the small
data set.
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Table 8. Feature descriptions of recent published papers in the field of “Water Management”.

References Application Data Used Model Metric Used Model Performance

Saggi and Jain [103] Estimation of evapotranspiration
for irrigation scheduling.

Fourteen years of time-series
data were used. Multi-layer DL RMSE

MLDL achieved better
performance compared to RF,

GLM, and GBM.

Zhang et al. [104] Prediction of water table depth in
agriculture areas

Daily meteorological data of
31 years for Hoshiarpur and

38 years for Patiala was
considered for the study.

LSTM R2, RMSE
LSTM achieved better

performance.

Loggenberg et al. [105] Model water stress in vineyards

Stem water potential (SWP) was
measured in the field using a

pressure chamber. Images were
acquired using the SIMERA HX

MkII hyperspectral Sensor

RF and XGBoost AC RF outperformed XGBoost

Chen et al. [40] Irrigation decision-making for
rice base on weather forecasts

http://data.cma.gov.cn,
accessed on 2 November 2021 DQN, CNN

The threat score (TS), missing
alarm rate (MAR) and false alarm

rate (FAR)

The DQN irrigation strategy
compared to the results of the

conventional irrigation strategy
showed a significant reduction in

irrigation water volume.

Alibabaei et al. [38] Irrigation decision-making for
tomato base on weather forecasts

www.drapc.gov.pt, accessed on 1
May 2021 DQN, LSTM R2-score, RMSE

Compared to the threshold and
fixed irrigation method, the DQN
agent increases productivity by
11% and avoids water waste by

20–30%.

http://data.cma.gov.cn
www.drapc.gov.pt
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Finally, the CNN model was optimized by discarding all redundant operations and
reducing the floating-point accuracy from 32 to 16 bits. The accuracy of the optimized
model was the same as the original and the time inference was improved. The proposed
model was implemented on a robot and the tests were performed in a new vineyard
scenario. The first algorithm can detect the end of the vineyard regardless of the direction
of the long axis of the robot. When the first algorithm fails, the CNN model jumps in and
detects the end of the vineyard.

Badeka et al. [107] trained YOLOv3 to detect grape crates in the field for use on robots
harvesting grapes. The images of the crate were taken under natural field conditions. Three
data enhancement techniques were used, including rotation, noise, processing, and blur
processing. The model achieved an accuracy of 99.74% (mAP%) with an inference time
of 0.26 s. To use the trained model on robots, it must be deployed on edge devices and
report the inference time and accuracy of the model on these devices. Another interesting
problem is that the robot can detect whether the box is full or not.

Majeed et al. [108] combined the DL model with mathematical models to detect
cordons in grape canopies and determine their trajectories. Images were taken so that a tree
trunk was approximately in the center of the field of view of a high-resolution camera (Sony
Cyber-shot RX100 IV). A total of 191 images of random RGB images were captured from two
different vineyard blocks with different cultivars. Each image in the dataset was classified
into three classes: Background, Trunk, and Cordon (http://hdl.handle.net/2376/16939,
accessed on 1 September 2021). Since the background pixels in the labeled images covered
most of the images, a weight was assigned to each class in the preprocessing of the data,
which was calculated using a median frequency class balancing method to avoid bias during
training. Data augmentation and transfer learning techniques were used in this work.

A fully convolutional neural network (FCN) and SegNet with VGG and AlexNet
backbones were trained to segment the cordons in the images. The FCN-VGG16 network
achieved the best performance in terms of mean accuracy and F1-score compared to the
other networks. In the next step, the mathematical model including the Fourier model,
Gaussian model, polynomial model, and sine sum model was applied to estimate the
trajectory of the cordons. The sixth-order polynomial equation with an average R2 value of
0.99 had the best fit for the trajectories of the cordons compared to the other mathematical
models tested.

Pinto de Aguiar et al. [109] trained seven different DL models for detecting grapevine
stems in two vineyards in Portugal. The trained models included Single Shot Multi-
box (SSD) MobileNet-V1 (α = 0.75), SSD MobileNet-V1 with different hyperparameters
(α = 0.75), SSD MobileNet-V2, Pooling Pyramid Network (PPN) MobileNet-V1, SSDLite
MobileNet-V2, SSD Inception-V2, Tiny YOLO-V3. In this work, Transfer Learning was ap-
plied using the COCO dataset. A dataset was created using a robotic platform. This dataset
contains images captured in two different vineyards, using two cameras each, including
the Raspberry Pi cameras and a conventional infrared filter, and the other camera Mako
G-125C and an infrared filter (dataset is available at http://vcriis01.inesctec.pt/-DS_AG_39,
accessed on 1 September 2021). After training the model, two edge devices, including
Google’s USB Accelerator and NVIDIA’s Jetson Nano were used for real-time inference
of the model in a real-world application. The advantage of NVIDIA’s Jetson Nano over
Google’s USB Accelerator is that it supports floating points and more models. However,
Google’s USB Accelerator outperformed NVIDIA’s Jetson Nano in terms of inference time
(about 49 frames per second), average accuracy, and time to load models. The combination
of edge devices and lightweight deep learning models makes the model DL applicable
in practice.

http://hdl.handle.net/2376/16939
http://vcriis01.inesctec.pt/- DS _AG_39
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Table 9. Feature descriptions of recent published papers in the field of “Automation in agriculture”.

References Application Data Used Model Metric Used Model Performance

Li et al. [52] Pick longan fruits with a UAV
device

A RGB-D camera on the UAV
device used to capture images

from the field.

FPN, YOLOv3, YOLOv4,
MobileNet-SSD, YOLOv4- tiny

and MobileNet-YOLOv4
mAP, AC, R, P

The accuracy rate of successful
harvesting using a picking platform
in four cases was reported as 75, 75,

69.23, and 68.42.

Aghi et al. [106]
Local motion planner for

autonomous navigation of robots
in vineyards

A camera D435i RGB-D camera
was used to capture images from

the field.
MobileNet AC, R, P, F1-score

The accuracy of the model on the test
set was given as one and it was

decreased 6% with the small dataset.

Badeka et al. [107] Detect grape Crates in the field
The images of the crate were

taken under natural field
conditions

YOLOv3 AC The model achieved an average
detection rate of 99.74%.

Majeed et al. [108]
Detect cordons in grape canopies

and then de- determine their
trajectories

Images were taken so that a tree
trunk was approximately in the
center of the field of view of a

high-resolution camera

FCN and Seg-Net with VGG and
AlexNet R, P, F1-score

The FCN-VGG16 network achieved
the best performance in terms of

mean accuracy and F_1 score
compared to the other networks.

Pinto de Aguiar et al. [109]
Detect grapevine trunk in two

vineyards in Portugal using TPU
and NVIDIA’s Jetson Nano

This dataset contains images
captured in two different

vineyards, using two cameras

FCN and Seg-Net with VGG and
AlexNet, SSD MobileNet-V2,
Pooling Pyramid Network,
MobileNet-V1, SS- DLite

MobileNet-V2, SSD Inception-V2,
Tiny YOLO-V3.

IOU, F1-score

SSD MobileNet-V2 on the TPU coral
with an average precision of 52.98%
and approximately 49 f/s achieved

the best

Aguiar et al. [18] Detect the trunk in a vine
The images were acquired from

four different vineyards in
Portugal

SSD MobileNetv1, SSD
MobileNetv2, SSD Inception mAP, IOU, R

The SSD MobileNetv1 and the SSD
MobileNetv2 achieved similar
performance (maximum AP of
84.16%), but the SSD Inception

achieved an AP of 75.78.
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Aguiar et al. [18] trained the SSD model using MobileNetv1 and MobileNetv2 as
backbones to detect the stem in a vine. The model was deployed on an edge AI mode
(Google’s USB Accelerator) in order to investigate accuracy and penetration. The images
were acquired from four different vineyards in Portugal and published under the name
VineSet. They contain RGB and thermal images of a single vineyard and include the anno-
tations for each image (http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip, accessed
on 2 September 2021). A robotic platform AgRob V16 with a frontal stereo RGB camera
and a frontal thermal camera was used to capture a video from which the images were
extracted. Data augmentation methods such as rotation, translation, scaling, flipping, hue
and saturation, Gaussian noise, and random combination were used to resize the dataset
to a suitable size for the seepage learning method. Two training datasets were used to
evaluate the effect of the training dataset size on the performance of the detectors. The
original VineSet dataset and a small subset of it containing 336 non-augmented images
were used. The SSD MobileNetv1 and the SSD MobileNetv2 trained with VineSet and
using transfer learning achieved similar performance, a maximum AP of 84.16%, but the
SSD Inception achieved an AP of 75.78. In terms of inference time, the MobileNets on
the TPU achieved an average inference time of 21.18 ms and 23.14 ms, which was faster
than SSD Inception. The performance of the models trained with a small dataset dropped
significantly (with a maximum of AP = 34.42), reinforcing the importance of the dataset
size for the performance of the deep learning model.

The SSD MobileNet-V1 trained with VineSet was published on the Google Colabora-
tory platform (https://colab.research.google.com, accessed on 1 September 2021) to help
researchers automatically label the new dataset and then manually correct the labeling.
Labeling the data is one of the challenges of using the DL model. In this way, labeling the
images of the trunk becomes less time-consuming.

4. Discussion

Deep learning is already being used in various areas of agriculture, but it is still far
from being widely applied in agriculture. In this paper, we reviewed 46 recent research
papers to examine the challenges of using deep learning in agriculture. Figure 13 shows
the pie chart of the researched papers based on the application domain.

Disease Detection

Yield Prediction

Weed Detection

Species Detection

Soil Management Water Management

Automation 

Figure 13. Pie chart representing the papers by application area.

The following challenges can be pointed out from the reviewed articles. The most
critical point concerns the dataset. Training the model with a small dataset can lead to
significant failures [18,72,106] and even with transfer learning and data augmentation,
training the model may require a sufficient amount of data [55]. The presence of the image
under field conditions in the data set is very important [63]. Therefore, collecting authentic
field images and datasets under different conditions is the first and most important step.

http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip
https://colab.research.google.com
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Using open-source datasets, sharing the dataset with other researchers, data augmentation,
and transfer learning properly can help to overcome these challenges [71,77].

In addition, agricultural image datasets are more complex due to outdoor conditions,
the object of interest usually occupying a very small and uncentered part of the image,
similarity between objects and background, blocking the object with leaves and branches,
multiple objects in one image, and many more [31,63,65,68,79,82]. To be applicable in the
real world, the dataset should fully represent the state of the environment. In some cases,
such as variable illuminance, data augmentation may also be helpful.

The type of input affects the performance of the model [55,62,88,92]. Removing
background from images [55], using different color spaces and vegetarian indices as in-
put [62], detecting crop at different growth stages [81], adding vegetarian indices to the
input [30,86], cropping the input image [91], and data from different climate types [99]
change the performance of the model. The size of the input also affects the runtime and
accuracy of the model [62,79]. Therefore, it is challenging to determine the best input set
for the specific task.

Labeling large amounts of data is expensive and time-consuming [55]. In addition,
there are some tasks, such as those related to plant diseases, that can only be performed
by specialists in the field. Even when using open-source datasets with already annotated
data, there is no way to find out who actually did the annotation. As it was seen in
several papers, data augmentation and transfer learning are ways to avoid labeling a
large dataset, but labeling a small dataset is still time-consuming [55]. Unsupervised and
semi-supervised learning methods can be of great help but need further investigation in
this area [35,36,61,83].

When choosing a model for a task, there is a tradeoff between accuracy and inference
time [26,34,65,67,77,96]. Depending on the application, the model can be chosen.

Neither environment is similar in the field of agriculture, and each environment and
problem requires its own dataset, and therefore the DL model may not be universally
applicable, i.e., if a model has been trained with a dataset from a particular site or a dataset
from an open-source site such as ImageNet, it may not be able to be used at another site, or
accuracy may decrease when applied to the dataset collected in the real world [12,69]. The
changes in the visual appearance of the images in the training and test dataset could lead
to a decrease in model performance [30]. One way to overcome this is to retrain the already
trained model with a small dataset from the new environment [86].

The design of deep models is complex and they are referred to as black boxes [7]. One
of the challenges in training DL models is that a system with very high computational
power (GPU) is needed [7]. Moreover, the performance of these models depends on the
choice of hyperparameters, loss functions, and optimization algorithm [60,67]. Algorithms
such as Bayesian optimization [110] can help to find the right hyperparameters [102].
Google researchers used neural architecture search (NAS) algorithm [111] to find state of
the art MobilenetV3 [112]. NAS is a method that searches among all possible combinations
of submodules that can be repeatedly assembled to obtain the entire model with the best
possible accuracy.

The other challenge relates to the real-time applicability of the models. Most deep
learning models have many parameters that need to be trained, and after training the
model, inference of the model is not made in real-time. In some applications, such as using
a robot for harvesting, time inference is essential. As we see in this work, most of the
models are implemented and tested on the PC, which requires power and it is impractical
in real applications. Moreover, implementation on devices such as smartphones still, brings
various challenges that need to be considered, such as memory consumption, speed, etc.
Single-stage detection models such as YOLO and SSD, lightweight classification models
such as MobileNet, the development of edge devices such as Raspberry Pi and Jetson nano,
and the use of cloud computing have made it possible to deploy Deep Learning models in
real-world applications and practical ways [34,52,72,86,109]. The quantization method can
be also used to compress the model size and improve the detection speed [82].
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On small farms, the use of some methods is sometimes impractical because farmers
must have some knowledge to interpret the results obtained. For example, the model
that predicts soil moisture for irrigation scheduling requires a human expert to use this
information to determine the best time and amount of water for irrigation. As mentioned
earlier, Deep Reinforcement Learning is showing great success in several areas as a promis-
ing model for building smart farms in several areas [39]. The model can be trained to
make decisions about when and how much to irrigate [38,40]. Information generated by
IoT devices also helps farmers track agricultural operations and make better decisions to
improve agricultural productivity [97].

5. Conclusions

This paper discussed some recent work on the application of DL to agriculture and
biodiversity and highlighted some challenges in this area. More sustainable agriculture
and the promotion of biodiversity in agricultural systems can be achieved by reducing the
use of agrochemicals, low pesticide use and organic farming, appropriate crop rotations,
small-scale fields, and the preservation of natural spaces between agroecosystems [113]. As
mentioned, this can be achieved through the new IoT technology in combination with the
new biodiversity algorithms and Artificial Intelligence model. They can be used to detect
and control species and also to improve ecosystem state and thus productivity having to
resort to the use of environmentally damaging practices.

The novelty of the application of DL models and the challenges identified in agriculture
demonstrates the need for further research. CNN is the most widely used DL model in
agriculture. The use of new methods, such as attention mechanisms, new lightweight
models, single-stage detection models, can improve the performance of the model, as a
slight improvement in accuracy and run time can significantly improve the final results.

In the future, we expect to develop or improve models that help farmers make crop
management decisions. These models can be integrated into decision support tools, and
these tools can guide users through precise steps and suggest optimal decision paths. It is
expected that the development of these models will also enable biodiversity monitoring.
Consequently, the adoption of new sustainable practices supported by DL models and
biodiversity monitoring will help manage the farm with minimal human intervention and
greater effectiveness.
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