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Abstract: Detailed urban landuse information plays a fundamental role in smart city management. A
sufficient sample size has been identified as a very crucial pre-request in machine learning algorithms
for urban landuse classification. However, it is often difficult to recognize and label landuse categories
from remote sensing images alone. Alternatively, field investigation is time-consuming with a high
demand in human resources and monetary cost. Therefore, previous studies on urban landuse
classification have often relied on a small size of labeled samples with very uneven spatial distribution.
This study aims to explore the effectiveness of a semi-supervised classification framework with multi-
source data for detailed urban landuse classification with a few labeled samples. A disagreement-
based semi-supervised learning approach, the co-forest, was employed and compared with traditional
supervised methods (e.g., random forest and XGBoost). Multi-source geospatial data were utilized
including optical and nighttime light remote sensing and geospatial big data, which present the
physical and socio-economic features of landuse categories. Taking urban landuse classification in
Shenzhen City as a case, results show that the classification accuracy of the semi-supervised method
are generally on par with that of traditional supervised methods, and less labeled samples are needed
to achieve a comparable result under different training set ratios. Given a small sample size, the
accuracy tends to be stable with training samples no less than 5% in total. Our results also indicate
that the classification accuracy by using multi-source data is significantly higher than that with any
single data source being applied. Among these data, map POI and high-resolution optical remote
sensing data make larger contributions on the classification, followed by mobile data and nighttime
light remote sensing data.

Keywords: urban landuse; small sample learning; semi-supervised classification; sampling strategy;
multi-source geospatial data

1. Introduction

With the development of smart city construction, accurate and detailed urban landuse
information plays a fundamental role for urban planning, resource allocation, and public
administration. Up-to-date urban landuse map is in high demand in the management of a
smart society. Remote sensing technology, providing the ability of wide-range observation
and rapid response to change, has been widely used in many studies on urban landuse
and land cover classification [1–4]. Traditional urban landuse classification techniques
are based on multi-spectral remote sensing images. In addition to the spectral features,
geometric and texture features are employed to obtain a more accurate classification as
the spatial resolution of remote sensing imagery has improved [5–7]. However, it is
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often difficult to derive detailed urban landuse information from imagery data due to
the complexity of social attributes in urban land. With the advent of the big data era,
human behavior and socio-economic features from multi-source geospatial data such as
taxi trajectories [8], map point-of-interest (POI) data [9,10], geo-tagged photos [11], social
media data [12,13], and mobile phone data [14,15] have been utilized for urban functional
zoning and landuse classification.

Numerous machine learning algorithms have been developed and applied to urban
landuse classification. The number of training samples is crucial in machine learning
algorithms, which is directly associated with model training performance. For instance,
Wieland and Pittore [16] employed several machine learning algorithms including naive
Bayes (NB), k-nearest neighbors (kNN), random trees (RT) and support vector machine
(SVM) for the recognition of urban landuse patterns based on multi-scale remote sensing
data. They indicated that these algorithms would show better performance if the training
sample size was large enough. Sun et al. [17] compared another five classifiers including
logistic regression (LR), decision tree (DT), random forests (RF), gradient boosted decision
trees (GBDT), and AdaBoost in the extraction of urban built-up areas based on the inte-
gration of multi-source data. They used an official map of urban built-up areas to retrieve
labeled samples and adopted a large number of samples for model training. Cao et al. [18]
compared the eXtreme gradient boosting (XGBoost) algorithm with classical machine learn-
ing algorithms in urban landuse classification based on multi-source geospatial data. They
chose 80% of labeled samples for model training. Zhang et al. [19] applied the RF algorithm
to urban landuse classification based on the combination of remote sensing and social
sensing data. They used training samples accounting for 50% of labeled samples. From
the previous studies, a sufficient sample size is necessary in model training and learning.
However, it is often difficult to recognize and label landuse categories from remote sensing
images alone, even assisted by manual interpretation. Alternatively, field investigation is
labor-intensive and time-consuming with a high demand in human resources and monetary
cost [20]. Particularly for detailed urban landuse classification, challenges include obtain-
ing more explicit and detailed landuse labels such as distinguishing between residential
and commercial landuse rather than roughly labeling as a “built-up area”. It is almost
impossible to obtain a reliable classification result of urban landuse with limited samples.
Besides, few studies have indicated an ideal training size that balances sampling cost and
classification accuracy. The selection of samples for model training is relatively arbitrary,
which may result in a poor generalization performance. We still lack a theoretical guidance
of sampling strategy in urban landuse classification based on the small size of samples.
Due to the above reasons, most detailed urban landuse classifications face the problem of
small sample learning.

Recently, semi-supervised learning methods have been increasingly developed to
solve small sample learning issues [21,22]. However, the effectiveness of applying semi-
supervised classification for detailed urban landuse classification has not been reported.
In addition, it is broadly believed that multi-source data can provide more dimensional
features for a better classification accuracy, but may also introduce redundance and even
conflicting information [18,23]. Therefore, we address two research questions in this study:
(1) Is the semi-supervised classification framework effective in detailed urban landuse
classification with a smaller sample size? and (2) Does the use of multi-source geospatial
big data effectively improve the accuracy of detailed urban landuse classification?

Considering the difficulty of obtaining a large number of labeled samples, we aimed to
adopt a semi-supervised classification method for detailed urban landuse classification by
incorporating the physical and socio-economic features from multi-source geospatial data.
Under the small sample size level, we also attempted to test the classification stability with
different proportions of training samples to find an optimal training set ratio for reliable
classification results.
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2. Related Work

To implement urban landuse classification based on multi-source geospatial big data
including remote sensing and social attribute data, there are some key issues. (1) Traditional
machine learning algorithms including deep learning methods need a large number of
training samples to build a reliable classifier. However, it is usually difficult to obtain a
large number of labeled samples since reliable labeling work of urban landuse types by
field investigation is time-consuming and needs a high demand on human and monetary
resources. (2) Considering the balance between the cost of sampling and the effect of model
training, the optimal size of training samples for different algorithms in urban landuse
classification has not been well addressed. This section reviews the existing urban landuse
classification methods and the relevant discussion on classification stability issues with
limited training samples.

2.1. Urban Landuse Classification Methods

Variety of machine learning algorithms have been developed for urban landuse and
land cover classification and urban functional zoning in the past decades. Apart from
remote sensing images, multi-source social sensing data have increasingly been adopted.
The application of multi-source data has become an important direction of the urban
landuse classification field [24]. The most commonly used algorithms include SVM, DT, RF,
which are also regarded as the benchmarks in comparative analyses. Mountrakis et al. [25]
reviewed the SVM algorithm in remote sensing applications and pointed out that the
SVM algorithm was suitable for multi-class image classification tasks. Considering the
simplicity in algorithms, the DT algorithm is widely used in remote sensing urban landuse
classification with advantages of fusing complex features at different scales [26]. As a
further advance of the tree-based DT algorithm, the RF algorithm is another commonly used
method. Talukdar et al. [27] summarized several machine learning algorithms including
RF, SVM, and artificial neural network (ANN) in landuse and land cover classification
based on multi-spectral remote sensing images. They found that the RF algorithm obtained
the best performance. Zhang et al. [28] compared machine learning algorithms in landuse
classification based on map POI data. They drew the conclusion that the tree-based methods
such as the RF algorithm performed better than the Bayesian network, rule-based learning,
and the SVM. With the development of deep learning, deep neural network algorithms
with high-level features have been used in the recognition of urban functional zones [29].
Jozdani et al. [30] compared deep learning algorithms with traditional machine learning
algorithms in an object-based landuse classification. They indicated that traditional machine
learning algorithms such as the XGBoost algorithm had a comparable result with deep
learning algorithms. Besides, unsupervised algorithms such as Gaussian mixture model,
the k-means algorithm, kernel density classification algorithm, and hierarchical clustering
algorithm have been applied to urban landuse classification [31,32]. The classification
results are generally not as good as the supervised methods.

2.2. Classification Stability with Small Sample Size

In practical applications, the use of limited samples is very common in urban landuse
classification because labeled samples are always rare, and labeling a large number of
unlabeled samples costs too much. A small sample size refers to a situation where the
proportion of labeled or training samples is small relative to the samples to be classified.
Zhao et al. [33] reviewed the current work of machine learning with small size of labeled
samples. They concluded that there were still many challenges, although progress has been
made in this area. Based on multi-spectral remote sensing data, Li et al. [34] tested the
impact of training sample size on urban landuse classification by using supervised and
unsupervised classifiers. They indicated that tree-based classifiers were more sensitive to
training sample size. Based on multi-source geospatial data, Su et al. [35] analyzed the
impact of training sample size on detailed urban landuse classification by using the RF algo-
rithm. They pointed out that a stable result could be achieved with a proportion of training



Remote Sens. 2022, 14, 648 4 of 17

samples no less than 7%. From the angle of increasing labeled samples, Gong et al. [36]
employed a crowd-sourcing method to obtain a large number of labeled urban landuse
samples in more than 30 cities in China to improve the generalization performance of the
classification model. However, considering the total number of samples to be classified over
the 30 cities, the number of labeled samples is still regarded as a small size for a specific
urban landuse category. Furthermore, labeling landuse information on urban land parcels
is highly dependent on expert experience (e.g., urban planner) and is usually difficult to
obtain through a crowd-sourcing approach.

3. Materials and Methods

In this study, we conducted a parcel-based landuse classification based on road seg-
mentation. We chose a set of urban landuse features from multi-source geospatial big data
for model training and classification including multi-spectral and textural features from
high-resolution optical remote sensing images, light brightness features from nighttime
light (NTL) remote sensing images, and human activity and behavior features from map
POI and mobile phone data. Based on the multi-dimensional features, we adopted a semi-
supervised co-forest classification framework for detailed urban landuse classification, and
compared it with the most popular supervised tree-based classifiers such as the RF and XG-
Boost. To analyze the impact of small sample size on the model performance, we also tested
the stability of the classification models under different proportions of training samples.

3.1. Study Area

We chose Shenzhen City as the study area (Figure 1a). Shenzhen is a coastal city in
southern China and on the border with Hong Kong. It has an area of 1997 km2 with a
population of more than 13 million by the end of 2020. The city is one of the pioneer cities
experiencing reform and the opening-up policy in China. With rapid urban development
in the past decades, it has experienced a dramatic change including changes in the urban
landscape. Shenzhen has been designated as a national pilot city for China’s comprehensive
reform, and to lead the construction of the Guangdong–Hong Kong–Macao Greater Bay
Area. New residential areas, industrial parks, transport network, and tourism infrastructure
have been planned. More changes in urban landscape are expected in the future. As one
of the fastest growing cities in China, Shenzhen can offer more open and comprehensive
geospatial big data and is regarded as a natural template for urban studies.
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3.2. Road Segmentation for Land Parcels

Road network information from an open-source dataset—OpenStreetMap (OSM)
(https://www.openstreetmap.org, accessed on 6 December 2021)—was utilized to divide
the whole study area into land parcels. Two levels of important roads from the OSM

https://www.openstreetmap.org
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data were utilized, namely, the main road and secondary road. The geometry of the road
network is presented in the OSM data with single lines (i.e., road centerline). Buffer zones
were applied to those lines based on the widths of the roads, which were determined by
road levels. Since we aimed to classify detailed urban landuse rather than land cover, an
impervious surface data of Shenzhen from GAIA_2018 (http://data.ess.tsinghua.edu.cn/
gaia.html, accessed on 6 December 2021) was utilized to mask non-built-up areas such
as woodland, grassland, wetland. The sizes of land parcels were heterogeneous. After
segmentation, very small land parcels with an area of less than 1000 square meters were
removed. Finally, the number of urban land parcels to be classified was more than 6800.
Figure 1b shows the distribution of these land parcels in Shenzhen.

3.3. Data and Data Pre-Processing

To present the characteristics of urban landuse in multiple dimensions, multi-source
geospatial data were utilized, most of them free-of-charge (Figure 2). These are from
Sentinel-2 high-resolution remote sensing data (source: https://earthengine.google.com/,
accessed on 6 December 2021), Luojia-1 NTL remote sensing data (source: http://59.1
75.109.173:8888/app/login.html, accessed on 6 December 2021), Gaode Map POI data
(source: https://lbs.amap.com, accessed on 6 December 2021), and GPS location-based
mobile big data provided by a leading third-party big data company in China. The mobile
data recorded the cumulative number of active mobile devices in a grid (around 140 m
resolution) by month. Daytime (9 a.m.–5 p.m.) and nighttime statistics (9 p.m.–5 a.m.)
were adopted. To maintain the temporal consistency of the data, all datasets were collected
from the same period of 2019, except for the map POI data, because of the difficulty of
obtaining the historical POI data through public methods. Hence, the POI data in 2020
were collected to keep the temporal consistency as much as possible. Table 1 summarizes
the basic characteristics of the data.
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Table 1. The characteristics of data for detailed urban landuse classification.

Type of Data Source Spatial Resolution Acquisition Time

Optical remote sensing Sentinel-2 10 m 2019

NTL remote sensing Luojia-1 130 m November 2018 to
March 2019

Mobile big data Apps with GPS
location sharing 140 m (approx.) October 2018 to

February 2019

Map POI Gaode map POI / June 2020

To reduce the influence of clouds and precipitation on remote sensing data (Sentinel-2
and Luojia-1), cloud-free composite images in autumn and winter were utilized. Consid-
ering that Shenzhen is an immigrant city, human activities are easily affected by holiday
economy and population migration. The mobile data were collected in October 2018 (Na-
tional Day holiday), November 2018 (non-holiday), and February 2019 (Chinese Lunar
New Year). Data pre-processing included data cleansing and coordinate transformation.
As for map POI data, the pre-processing also included category reclassification to match
the urban landuse classification system.

3.4. Feature Selection and Dimension Reduction

The multi-scale data were spatially unified based on land parcels in the form of data
features (i.e., attributes to land parcels). The statistical characteristics were utilized to
generate these attributes (e.g., the average NTL brightness value in a land parcel). Based
on prior knowledge, initial features were manually selected including physical and socio-
economic features. The former was mainly from remote sensing imagery data such as
band spectral characteristics, vegetation index, and nighttime light brightness. The latter is
mainly from map POI and mobile big data such as population density in the daytime and
nighttime, population in different months, POI density, and type.

Similar to most machine learning algorithms, it is necessary to reduce the dimension
of feature space to simplify the complexity of the classification model. A few features that
can best describe and present urban landuse types were finalized. Generally, there are two
approaches to dimension reduction, namely, feature extraction and feature selection [37].
Feature extraction aims to construct a new feature space through feature transformation or
a combination of features. It involves the generation of new features that may result in the
loss of original feature information. The newly generated attributes are usually difficult
to be explained physically while feature selection aims to obtain a subset of the original
attribute features, which can retain the physical interpretability of the features. To preserve
the features’ physical interpretability, feature selection was adopted for feature dimension
reduction. Correlation coefficient (r) was utilized to filter the redundancy with a threshold
score of 0.95 to minimize the feature dimension. If the r is greater than 0.95, only one of the
paired features remains. After feature dimension reduction, a subset of the features was
utilized for model training.

3.5. Semi-Supervised Multi-Feature Classification Framework

The main objective of semi-supervised learning is to train classifiers with both labeled
and unlabeled samples. The classification model is first trained from labeled samples
and then refined by unlabeled samples [38]. In our study, the semi-supervised co-forest
algorithm was applied to detailed urban landuse classification. The co-forest algorithm
is a disagreement-based semi-supervised classification method and is regarded as an
extension of co-training based on the RF algorithm (a co-training-style RF algorithm) [39].
In the co-forest, N (N > 3) classifiers such as random decision trees are first individually
trained based on an original labeled sample set. If the classifiers make an agreement on
labeling some unlabeled samples with a certain confidence, a new training set will be
generated based on the original and newly labeled samples to re-train the classifiers. The
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automated labeling strategy for unlabeled samples was characterized with higher cost-
performance [40]. Figure 3 illustrates the research framework of detailed urban landuse
classification based on multi-source geospatial data and the co-forest algorithm.
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3.6. Model Adjustment and Improvement

Urban landuse classification is a typical multi-nominal classification task. There is a
common problem that the training set has an imbalance issue. For instance, various urban
landuse types are not evenly distributed in a city, which can easily cause a sampling bias.
Besides, unlike traditional target recognition and extraction tasks in which the samples are
certain with a clear-cut definition or attribute, urban land parcels may be a mixed landuse
type (e.g., commercial-residential mixed), especially in many well-developed mega cities.
This will cause the deviation of training results in a semi-supervised model. To minimize
the above problems, three improvement schemes of the co-forest algorithm were applied
as follows.

Improvement scheme 1: Add the weight of the sample in the process of initialing and
constructing classifiers to deal with the sample imbalance issue; set a judgement in the
model that unlabeled samples should not be added into the labeled sample set unless a
certain confidence level is reached (exclude mixed landuse samples).

Improvement scheme 2: On the basis of improvement scheme 1, add a restriction of
error rate in the iteration process (i.e., limits the error to below 0.2 to end the iteration to
avoid over fitting).

Improvement scheme 3: On the basis of improvement scheme 2, a noise cutting step
is executed after adding the unlabeled samples into the labeled sample set.
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3.7. Model Evaluation and Accuracy Assessment

In this study, the k-fold (k = 5) cross-validation was adopted to evaluate the model
performance to ensure the reliability of model evaluation. To quantify the classification
accuracy, a confusion matrix was used and the assessment metrics included overall accuracy
(OA) and Kappa coefficient [41].

3.8. Impact Analysis of Small Sample Size

In order to investigate the influence of small sample size on the classification result,
we tested the stability of the classification by using different proportions of the training
samples. Based on all training samples, the classification models were tested as the number
of training samples decreased by 1% each time. A stratified random sampling method was
adopted for each sampling process to keep the proportion of sample distribution consistent.
The optimal cost-performance for the number of training samples was determined by the
change rate of the accuracy. The change rate (m) can be calculated by using the following
formular: m = (A − a_k)/A, where A represents the best accuracy by using all training
samples and a_k represents the accuracy by using k% training samples.

To make the model learning more reliable, training samples were randomly selected
from the training set for model training five times at every training set ratio. The average
of five-time accuracy scores was adopted as the classification accuracy under that training
set ratio.

4. Experiments
4.1. Subset of Features

According to the researchers’ prior knowledge, 59 features from multi-source geo-
spatial data were initially selected as the main characteristics of urban landuse types.
The correlation coefficient between any two of those features was computed to eliminate
redundant features. Finally, 34 individual features were adopted for model training. Table 2
lists the selected features by data type.

Table 2. Selected features after dimension reduction.

Type Selected Features

Optical remote sensing imagery mean and standard deviation of NDVI, NDBI, MNDWI, band
4 (red), band 8 (NIR), band 7 (red edge), band 11 (SWIR)

NTL remote sensing imagery DN value (or brightness) in November 2018, January 2019,
and March 2019, mean brightness

Mobile apps data average number of mobile devices, no. at daytime
and nighttime

Map POI data no. of POI, no. and ratio of POI by landuse category
(5 categories)

Note: NDVI = normalized difference of vegetation index, NDBI = normalized difference of built-up index,
MNDWI = modified normalized difference of waterbody index, NIR = near infrared, SWIR = shortwave infrared,
DN = digital number.

4.2. Urban Landuse Classification System

Referring to previous studies [34,35] and the national standard of landuse classification
(GB/T 21010-2017), an urban landuse classification system was adopted that consists of
five level-1 urban landuse categories, namely residential (R), commercial (C), industrial
(I), transportation (T), and public management and service (P). Table 3 lists the detailed
landuse categories with descriptions or examples.
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Table 3. Urban landuse classification system of Shenzhen City.

Code Category Descriptions

1 Residential (R) Residential area including village-in-city (urban village
specific to China).

2 Commercial (C) Commercial area including business districts, shopping
areas, etc.

3 Industrial (I) Industrial area including manufacturing districts, storage
areas, etc.

4 Transportation (T) Roads * and transportation hubs (e.g., station, airport,
harbor, etc.).

5 Public management
and service (P)

Governmental office zone, medical and health services,
sports and cultural facilities.

* Because land parcels are from road network segmentation, the classification of roads was excluded in our study.

4.3. Labeling and Train/Test Split

Figure 4 illustrates the distribution of labeled samples including two sources from field
survey and manual interpretation of very high-resolution (VHR) imagery. Field survey data
contain 162 labeled land parcels, which were sourced from the Urban Planning and Land
Resource Research Center, Planning and Nature Resource Bureau of Shenzhen Municipality.
The other labeled samples were derived from VHR image interpretation by human vision.
The visual interpretation process is based on VHR images from Google Earth and assisted
with map apps including Gaode maps and Microsoft Bing maps. Besides, field survey data
are also used to assist in manual image interpretation. Through sample quality control, a
total of 1021 labeled samples accounting for around 15% of all land parcels were finally
collected for model training and testing.
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All labeled samples were divided into two groups, namely, the training set and test
set. The stratified sampling method was adopted to ensure the same sample distribution
for different landuse categories. To make the model training results comparable, a fixed
number of labeled samples (i.e., 204) accounting for 3% of all land parcels was selected
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as the test set. The remaining labeled samples (i.e., 817), accounting for 12% of all land
parcels, were employed as the training set. In order to find an optimal training set ratio,
the proportion of labeled samples used for model training decreased by 1% each time. For
each proportion, training samples were randomly selected five times. The model training
results were evaluated by the fixed test set. The average of five-time calculation results at
every training set ratio was regarded as the accuracy of the model at that ratio.

4.4. Experimental Environment and Parameters

The experiment was carried out on a Mac OS platform (4-core CPU, 16G memory).
The implementation of the co-forest algorithm and the modified versions was based on
Java language, JDK version 8.1, and Waikato Environment for Knowledge Analysis (Weka)
framework, version 3.8.4. The number of co-training classifiers for the co-forest algorithm
was set from 3 to 20.

5. Results and Analysis
5.1. Performance of Algorithm Improvement of the Co-Forest

Figure 5 shows the classification accuracies of the original co-forest algorithm and the
improved versions by the overall accuracy and Kappa coefficient, respectively. Results
showed that all of the three improvement schemes were better than the original version of
the co-forest algorithm. Among them, improvement scheme two had a better performance
compared with the other improvement schemes, since it obtained a ranking as No.1 more
times. Therefore, improvement scheme two was employed as the preferred method in the
further comparison and analysis.
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5.2. Comparison with Traditional Supervised Algorithms

Based on the model improvement, the classification accuracy of the semi-supervised
co-forest algorithm was compared with traditional supervised algorithms including the
RF and XGBoost at different levels of the training sample size. From Figure 6, the semi-
supervised algorithm performance was better than the other two supervised algorithms in
the case of using a 7% training set ratio or above. In other words, the proposed co-forest
classification method can achieve a comparable, and even a better classification result by
using less labeled training samples. Table 4 lists the minimum sample size requirement
for the three algorithms at different accuracy levels. Compared with the similar tree-based
classifiers, the semi-supervised learning framework (co-forest) could reduce 17~20% of
labeled samples to achieve the same accuracy level.
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Figure 6. Comparison of the accuracy with traditional supervised algorithms at different levels of the
training sample size.

Table 4. Minimum sample size requirements to achieve different accuracy levels.

The Level of
Accuracy (by OA)

Training Sample Size Requirement (% in Total) * Training Samples
Saved (%)RF XGBoost Co-Forest

0.74 5% 4% 4% 20%
0.76 / 6% 5% 17%
0.78 / / 11% /

* Compared with the supervised methods (i.e., RF and XGBoost0).

5.3. Impact of Training Sample Size

In order to analyze the influence of the training sample size on the classification
performance, Figure 7 shows the change rate in the classification accuracy in the case of
using a small sample size. By taking the best accuracy with a 12% training set ratio as a
reference, the model performance declined as the training sample size became smaller. The
classification accuracy declined rapidly once the training sample size was smaller than
5%. Accordingly, we can obtain a high cost-performance (i.e., the ratio of the labor cost in
sampling and the accuracy of classification) with a training sample size no less than 5%.

5.4. Importance of Multi-Source Geospatial Data

Figure 8 presents the influence of different combinations of multi-source data on clas-
sification accuracy. The use of all multi-features leads a better accuracy of the classification.
In general, we can obtain better accuracy when more features are added. When considering
the sources separately, map POI and high-resolution optical remote sensing (Sentinel-2)
data showed better results than the other datasets.

5.5. Detailed Urban Landuse Mapping with Few Samples

Based on the modified co-forest algorithm and multi-source data, Figure 9 illustrates
the detailed urban landuse classification result in Shenzhen with 5% training samples.
The spatial distributions of detailed urban landuse categories were consistent with the
official urban planning scheme to some extent. Residential and commercial lands were
mainly distributed in the downtown, while industrial lands were mainly distributed in
the suburbs.
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Figure 9. Detailed urban landuse mapping in Shenzhen City (2019) based on the semi-supervised
co-forest algorithm with 5% training samples.

To quantify the classification result, Figure 10 shows the confusion matrix and accuracy
assessment. The overall accuracy of the classification was 0.79. For the accuracy of specific
urban landuse category, the producer and user accuracies measure the omission and
commission errors, respectively. From the results, “residential”, “industrial”, and “public
management and service” types achieved higher accuracies. The classification errors mainly
concentrated in the misclassification between “commercial” and “residential” types, and
the misclassification between “public management and service” and “residential” types.
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6. Discussion
6.1. Small Sample Learning in Urban Landuse Classification

The selection of the training sample size is always an empirical process. Although
the usual guidance is “use as much as possible”, it is a tradeoff when considering the
cost and time of collecting the labeled samples for model training and testing [42]. In the
case of urban landuse classification with limited labeled samples, the ideas to improve the
utilization of labeled samples are mainly from the data level or the model level. The former
includes the use of high-dimensional data, and the latter includes the automatically train of
unlabeled samples by active learning or semi-supervised learning methods. In this study,
the two ideas are both considered.

The physical property of landuse such as “buildings” and “built-up areas” can be
obtained directly through remote sensing imagery data. However, remote sensing data
are not enough to obtain high-level semantic information of detailed urban landuse. By
providing high-dimensional landuse features, socio-economic big data provide a better
approach to the classification of detailed urban landuse. For example, map POI data
are usually considered to be very closely related to the identification of urban landuse
categories [43]. It should be pointed out that a single data source is still insufficient.
According to our experiment, it is hard to obtain a satisfied classification result only by
using map POI data or the combination of POI and optical remote sensing data. This
confirms the importance of multi-features, where a better classification accuracy can be
achieved with all multi-source and multi-modal data.

Since there might be many more parameters than the training samples, it is generally
considered to be a reason for the failure of deep neural networks when the training sample
size is small. The tree-based classifiers such as the RF and XGBoost have been proven to
show a better classification effect and have been widely utilized in urban landuse classifica-
tion applications [44]. Therefore, in this study, we adopted a semi-supervised tree-based
classification framework for the comparison. The results prove that the semi-supervised
method performed better than the supervised classifiers, and it effectively reduced the
demand of labeled samples for model training without reducing the classification accuracy.

6.2. Classification Stability under Small Size of Training Samples

To examine the classification stability with small sample size, a previous study pointed
out that the number of training samples should not be less than 7% of all land parcels for
the RF algorithm based on multi-source geospatial data [35]. Our study agrees with this
conclusion. For the semi-supervised co-forest algorithm, even a 5% sample size can ensure
the variation of classification accuracy within an acceptable range. Our study also showed
that the semi-supervised algorithm attained a better performance than the supervised
algorithms when the training sample size was larger than 7%.

6.3. Limitations and Uncertainties

Most previous studies have focused on the classification of broad landuse/land cover
categories rather than detailed urban landuse categories. Due to the difficulty of semantic
segmentation, it is hard to obtain a highly-accurate result of detailed urban landuse classifi-
cation. Some scholars have reported that the overall accuracy of detailed urban landuse
classification in mega cities such as Shenzhen is lower than 0.76 [35,36]. Although our
results reached or even exceeded that accuracy level, in this study, we focused more on the
effectiveness of applying multi-source geospatial data and semi-supervised classifier to
improve small sample size-based landuse classification, rather than the absolute accuracy
of the classification task.

In this study, training samples were mainly from high-purity landuse samples (e.g.,
the dominant type occupies more than 90% of the area in a land parcel). However, as
a fast and well-developed city, Shenzhen has various mixed models of landuse such as
“commercial-residential mixed” land. The models of mixed use include the mixture in
horizontal space and vertical space. This may introduce a certain degree of uncertainty



Remote Sens. 2022, 14, 648 15 of 17

in the classification. When considering the generalization to other cities (e.g., using the
original labels from one city to another), the major challenges come from the difference in
urban landuse structure. The same urban landuse may have a distinct physical description
in different cities. Therefore, more city cases and landuse labels are needed to verify the
generalization performance of the model.

7. Conclusions

In this study, we explored the effectiveness of the semi-supervised co-forest algorithm
and multi-source geospatial data in detailed urban landuse classification with a small
sample size. Given that the collection of the large number of labeled samples in urban
landuse classification practice is very difficult and has a high-cost, we also tested an optimal
training set ratio of maintaining a stable classification result. By taking Shenzhen City as a
case, the semi-supervised co-forest method showed a comparable result with the traditional
supervised classifiers such as RF and XGBoost with a lower training set ratio level (reduced
by 17–20%). The model performance declined rapidly once the training sample size was
less than 5% in total. Therefore, 5% training samples or above are necessary to keep the
loss of classification accuracy within an acceptable range. This study also confirms the
importance of multi-source and multi-modal data, which have significantly improved the
classification accuracy. Among them, POI data and high-resolution remote sensing data
make a higher contribution.

In the future, we will extend the proposed method to other rapidly changing cities to
evaluate the generalization performance. For more efficient usage of labeled samples, we
will introduce data enhancement methods such as unsupervised enhancement algorithms
to generate new labeled samples based on the existing labeled and unlabeled samples.
Besides, we will analyze the mixed landuse by creating more labels to mine the features of
the mixed landuse category.
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