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Abstract: Multi-purpose Faidherbia albida trees represent a vital component of agroforestry parklands
in West Africa as they provide resources (fodder for livestock, fruits and firewood) and support water
lifting and nutrient recycling for cropping. Faidherbia albida trees are characterized by their inverse
phenology, growing leaf flowers and pods during the dry season, thereby providing fodder and
shedding leaves during the wet season, which minimizes competition with pastures and crops for
resources. Multi-spectral and multi-temporal satellite systems and novel computational methods
open new doors for classifying single trees and identifying species. This study used a Multi-Layer
Perception feedforward artificial neural network to classify pixels covered by Faidherbia albida canopies
from Sentinel-2 time series in Senegal, West Africa. To better discriminate the Faidherbia albida signal
from the background, monthly images from vegetation indices were used to form relevant variables
for the model. We found that NDI54/NDVI from the period covering onset of leaf senescence
(February) until end of senescence (leaf-off in June) to be the most important, resulting in a high
precision and recall rate of 0.91 and 0.85. We compared our result with a potential Faidherbia albida
occurrence map derived by empirical modelling of the species ecology, which deviates notably from
the actual species occurrence mapped by this study. We have shown that even small differences in dry
season leaf phenology can be used to distinguish tree species. The Faidherbia albida distribution maps,
as provided here, will be key in managing farmlands in drylands, helping to optimize economic and
ecological services from both tree and crop products.

Keywords: multi-layer perception; savanna; species distribution model

1. Introduction

Faidherbia albida (Del.) A. Chev. (synonym Acacia albida Del.) trees belong to the
mimosoideae sub family of the Fabaceae family and are a key component of West African
agroforestry parklands, where crops are grown under a discontinuous cover of scattered
trees. Faidherbia albida trees provide resources such as fodder for livestock, fruits, firewood,
wood products for construction and traditional medicine [1–6]. The deep-rooted trees
have access to deep water layers and mineral resources. In addition, Faidherbia albida trees
contribute to symbiotic nitrogen fixation, and thus serve multiple ecosystem services, such
as water lifting, nutrients recycling and carbon sequestration [7]. What makes Faidherbia
albida trees distinct is their unique leaf phenology, which is characterized by leafing out
during the dry season and shedding leaves in the rainy season. Due to this “inverse
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phenology” [8], the trees do not intercept rainfall and sunlight from crops growing below
the tree canopy during the rainy season, and the litter dropped by trees provides organic
matter and nutrients to the soil. Faidherbia albida trees are therefore kept within fields while
other woody species are often removed [9].

Faidherbia albida trees are found in parklands throughout the Sudano-Sahelian zone
of West Africa, as well as in eastern and southern Africa [10–14]. Several scholars have
demonstrated that Faidherbia albida trees improve crop yields as well as agricultural re-
silience and sustainability [15–19]. Roupsard [20] used unmanned aerial vehicles (UAV)
to derive detailed field data to quantify the radius where Faidherbia albida trees influence
crop yields in an agroforestry parkland in Senegal. Accurate mapping of Faidherbia albida
trees is therefore important for a better understanding and management of the interaction
of trees with crops within the agricultural system (species, density, planting design, etc.).
This has become even more important in recent times with increases in human population
driving agricultural intensification, and climate change threatening established agroforestry
systems. The effectiveness and optimal implementation of restoration plans in relation to
Farmer-Managed Natural Regeneration projects in Sub-Saharan Africa [21–24], also calls
for accurate mapping of the spatial distribution of Faidherbia albida as a prerequisite.

The intriguing question of how specific tree species are spatially distributed has
inspired many scholars within plant ecology. In addition to detailed and laborious field
inventories, species distribution modelling (SDM) has been the main method to predict
the spatial distribution of plant species. Since woody species are known to be highly
dependent on biotic and abiotic conditions, most SDM approaches use computer algorithms
to predict the spatiotemporal distribution of a species using geo-spatial data of the physical
environment combined with observed species distribution points [25]. Data used for
modelling are related to climatic, geomorphologic and pedologic variables like temperature,
precipitation, elevation and soil type as well as human management, like land use [26].
However, such empirical models generate maps of the probability or potential occurrence
rather than the actual distribution of particular species. The coarse resolution of gridded
input data, as well as difficulties regarding how to adequately account for anthropogenic
drivers, limits the prediction capacity of these models [27,28]. Species distribution points,
serving as input to the SDM model, still rely on field records of tree species data, and
accurate remotely sensed tree species mapping across large scales would provide valuable
complementary information. Large-scale actual distribution of Faidherbia albida generated
from remote sensing would thereby open new research avenues for data-driven SDM
approaches that allow studying the importance of input environmental variables on species
distribution for an improved variable parameterization of SDMs.

As an alternative to modelling the potential occurrence of a given species, recent
advances in remote sensing enable the mapping of actual species distributions, yet previous
studies remain at a local scale [29,30]. The principles behind the majority of the methods
are linked to an understanding that woody species have unique individual biochemical and
biophysical characteristics such as spectral reflectance, canopy structure, branch and foliage
density, as well as phenological cycles. Mapping attempts grounded in these characteristics
have been conducted along three separate pathways in relation to the use of satellite and
aerial data: the first pathway utilizes optical remote sensing data to capture the biochemical
character of tree species [31–34]. The second relies on the vertical structure of vegetation,
and here LiDAR [35,36] is an effective data source. A third approach integrates synthetic
aperture radar (SAR) with optical data [37–40]. The recent availability of high temporal
resolution optical data enables the capture of the seasonal phenology of tree leaves with the
timing of the images being the key for a successful classification [41]. Schriever et al. [42]
compared images from different periods and found that the period of leaf senescence is
most important for classifying tree species. Hesketh et al. [43] also found that inter-seasonal
spectral variation allowed the accurate discernment of species of trees using automated
classification methods. Moreover, several studies showed that the combination of images
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from the leaf-out (May/June) and senescence (October) phases provide a higher accuracy
as compared to the use of single image [44–46].

So far, most attempts to conduct tree species mapping from remote sensing have
focused on forest environments, and mapping tree species of scattered woody populations
in drylands on a large-scale remains a challenge. The scattered distribution of agroforestry
parkland trees in the Sahel makes the mapping different from trees in forest stands, as
the signal from a pixel can be influenced by the soil or herbaceous background, especially
when the pixel is at the edge of the canopy. Despite the improvement in spatial, temporal
and spectral resolution of sensor systems, remote sensing has not yet been widely applied
for the mapping of Faidherbia albida on a country scale. For instance, Triboulet et al. [47]
pioneered this area by using pixel value thresholding, but due to the lack of field data the
final result was not validated. Lelong [48] utilized WorldView-3 imagery to classify 7 tree
species including Faidherbia albida in Senegal. However, these studies were limited to a local
scale and a snapshot in time. It is still a challenging endeavour to achieve species-level
detection across large geographic areas due to restrictions related to data costs and the
workload associated with the data analysis.

Previous studies have demonstrated that large savanna trees can be identified with the
10-m resolution of Sentinel-2 [49]. Classification algorithms are rooted in computer science
and statistical learning [29], for example, machine learning algorithms like Random Forest
and neural networks [50–52]. Considering trade-offs between data cost and spatiotemporal
resolution requirements, this study investigates the possibility of mapping the distribution
of Faidherbia albida over Senegal based on publicly available Sentinel-2 time series data.
The constellation of Sentinel-2A and 2B multi-spectral satellite systems were launched
in 2015 and 2017 as a part of European Commission’s Copernicus Programme. This
system, with a 5-day revisiting time under the same viewing conditions [53], provides
an unprecedented opportunity for mapping Faidherbia albida trees. The high temporal
resolution may capture the inverse phenology of Faidherbia albida, contrasting with other
woody and herbaceous vegetation types in the semi-arid Sahel. Our specific objectives
are (1) to select dates and bands from Sentinel-2 images suited to map Faidherbia albida
trees, (2) to use a Multi-Layer Perception (MLP) artificial neural network fed with a number
of features to generate a 10-m resolution Faidherbia albida distribution map over Senegal
and (3) to compare this distribution map with a potential occurrence map derived from an
SDM model.

2. Materials and Methods
2.1. Study Area and Sample Data

Most of Senegal extends in the Sahelian and Sudanian regions with annual rainfall
ranging between 100 to 1000 mm (Figure 1). The western part of Senegal comprises a
vast area of subsistence rain-fed cultivation, called the peanut basin. Livelihoods are
based on traditional farming systems rotating millet grown for on-farm consumption and
groundnuts as cash crops. The peanut basin is the most important crop production area
in the country and is characterized by intensively cultivated parklands [54] comprising
randomly scattered trees and woody shrubs within cropped fields. The two major soil types
are arenosols and calcisols, according to the FAO classification [55]. They are characterized
by a high sand content and low organic matter. Among tree species forming the parklands,
Faidherbia albida is widely present across the peanut basin. Generally, the natural habitat of
Faidherbia albida species occurs throughout most areas in West, East and Southern Africa
where annual rainfall ranges between 400 and 900 mm [56]. As a leguminous nitrogen-fixing
tree species, Faidherbia albida adds nitrogen and organic matter through leaf fall, and hence
improves soil fertility and boosts crop productivity [57]. Consequently, Faidherbia albida
occurs widely in croplands as a result of human management promoting the presence of
this species on deep light sands or sandy clays [58], which is also the case for the peanut
basin in Senegal [11]. Faidherbia albida rarely occurs in pristine savannas but is mainly
disseminated by livestock in croplands.
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Figure 1. (A) Location of Senegal and land use/cover map of 2019 (Copernicus Global Land Service
at 100-m resolution). The precipitation data are derived from the CHIRPS long-term (1981–2019)
yearly average. The rainfall zones of 100–300 mm, 300–600 mm and 600–1000 mm are categorized
as arid area, semi-arid area and sub-humid area. The two grey boxes represent locations of data
sampling in Niakhar and Nioro. (B) Examples of Faidherbia albida trees (red dots) during the (I) dry
and (III) rainy season from Google Earth. Image (II) and (IV) represent the corresponding stretched
true colour images from Sentinel-2 at 10-m resolution. Blue points represent other tree species.

Field samples were collected in two different semi-arid regions of Senegal (Niakhar
and Nioro; Figure 1) in 2018 and 2019 using an optimized sampling strategy based on
a landscape heterogeneity classification [59,60]. At each sampling site, an exhaustive
inventory of all trees was conducted in a 1-hectare plot. The coordinates of each individual
tree were recorded with a GPS. The collection of tree species contains over 70 common
species, including 6612 sample points in the Nioro area where Faidherbia albida accounted
for 3.07% (203) of the samples. A total of 9258 trees were collected in Niakhar among which
Faidherbia albida accounted for 41.82% (3872). Since the spatial resolution of Sentinel-2 is
10 m, we only selected Faidherbia albida samples with a canopy diameter greater or equal
than the Sentinel-2 pixel size as the reference data used for the building the MLP model.
The individual tree canopy diameter information was derived from a previous study [61].
We further selected and added samples of other tree species, cropland, water, urban,
herbaceous vegetation, bare soil and shrubs. In total, 2310 samples were used as reference
points for a binary classification of two classes encompassing 516 points representing
Faidherbia albida, and 1794 point for the other class. The Sentinel-2 pixels that contain the
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reference points were sampled and used for building the model. Since the sampled pixels
are often a mixture of the tree canopy and the immediate surroundings of the tree, the
Faidherbia albida mapping is thus conducted at a canopy level with a tree canopy minimum
mapping unit of one pixel.

2.2. Sentinel-2 Data Pre-Processing

Sentinel-2 top of atmosphere data are available in the Google Earth Engine (GEE) cloud
computing platform. All available Sentinel-2 images from January 2017 to December 2019
with cloud cover less than 50% were fused to monthly composites. Cloud masking was
done according to the flags of the Sentinel-2 QA band. The spectral noise caused by scene-
specific illumination conditions and residual cloud effects is expected to be reduced by
using 3-year average values from the period 2017–2019. Vegetation indices and bands (next
section) in specific months and their dynamic changes were selected as feature collection
for the following image classification based on Recursive Feature Elimination. The detailed
Sentinel-2 data processing is described in the following sections.

2.2.1. Vegetation Indices

The Sentinel-2A and B instruments sample 13 spectral bands: visible and near-infrared
at 10-m, red edge and SWIR at 20-m and atmospheric bands at 60-m spatial resolution.
The bands with a resolution >20 m have been discarded from the current study due to
the mismatch between pixel resolution and tree size, and the six bands of 20-m resolution
were resampled to 10-m by the nearest neighbour, leaving 10 bands for the monthly
composites. To better isolate the signal inherent to photosynthetic activity from other
signals within spatially mixed pixels, 10 vegetation indices, which are widely applied to
Sentinel-2 imagery [62], were selected (Table S1). As some of those vegetation indices were
derived from the same spectral bands, considerable redundancy in information exists. To
determine the similarity of indices, the pair-wise correlation coefficient was calculated
(Table S2). Based on the high co-variability, those indices were categorized into 3 classes.
The first class is composed of NDVI, NDVI74, PSSRa, EVI, MCARI, S2REP and EVI2. The
second class is composed of NDI54 and GNDVI and the third class includes only MTCI.
To select only one of each group for feature collection, the correlation coefficient between
vegetation index values of Faidherbia albida and other species (Table S3) was taken into
consideration, with a lower coefficient value indicating a higher discrepancy between
Faidherbia albida and other tree species. Hence only NDVI and NDI54 were retained, and
the MTCI was omitted because its monthly values showed a high standard deviation
during the growing season (Figure S1H). The initial feature bands used to construct the
model are the monthly values of each band and 2 vegetation index bands, yielding in total
12 × (2 + 10) = 144 bands.

The foliage production of Faidherbia albida trees is high in the dry season and low in
the rainy season, and their foliage production reaches a peak in December (Figure 2). As
biochemical and structure properties of woody plants can influence the spectral signature,
the inverse phenology of Faidherbia albida potentially makes the tree distinguishable from
other deciduous or evergreen tree species. The green herbaceous layer and understory
impact the Faidherbia albida canopy pixels in Sentinel-2 images, so this study discriminates
Faidherbia albida trees not only based on monthly band/vegetation index values but also
uses seasonal dynamics. This was done by calculating all possible monthly image com-
binations (by subtraction of images) producing 792 dynamic images, leading to a total of
936 feature bands.
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Figure 2. Seasonal distribution of leaf mass depending on the phenological type of woody plants in
the Sahel [8]. The inverse deciduous type represents Faidherbia albida trees.

2.2.2. Feature Selection

A recursive feature elimination was then applied to reduce redundant features. The
Random Forest classifier ranks the importance of features through their impact on the
model accuracy. Recursive feature elimination can be used to rank the feature by looping
through Random Forest classifiers and removing the least important feature until the
accuracy remains stable. Here we generated collections of features and a 4-fold cross-
validation was utilized to test the performance of the various feature collections on the
MLP model. Cross-validation is a universal method for assessing the accuracy of a classifier
based on a limited data sample. The dataset was generated from the field-observed data in
combination with the Sentinel-2 imagery, and the whole dataset was split into 5 individual
sets. A test set was held out for final evaluation. Then, three of the remaining datasets
were used as training datasets, initially used to fit the model. The last dataset is used as a
validation dataset, which provides an unbiased evaluation of a model fit on the training
dataset while tuning the parameters. The process is repeated 4 times. The feature collection
including the fewest number of features achieving the same performance as using all
features was selected for the final model.

The performance metrics of recall and precision were used to evaluate models using
different feature collections [63]. Precision is defined as the fraction of relevant instances
among the retrieved instances, i.e., the number of true positives divided by the total number
of elements labelled as belonging to the positive class. Recall is defined as the fraction of
relevant instances that were retrieved, i.e., the number of true positives divided by the total
number of elements that actually belong to the positive class. The true positives refer to the
elements correctly labelled as belonging to the positive class, here, Faidherbia albida trees.
The elements labelled as belonging to the positive class is the sum of true positives and false
positives, the latter which are instances incorrectly labelled as belonging to the class. The
elements that actually belong to the positive class are the sum of true positives and false
negatives, which are the elements that were not labelled as belonging to the positive class
but should have been. Recall and precision scores are often inversely related. Taking the
harmonic average of precision and recall leads to the F-measure (a measure that combines
precision and recall):

F-measure = 2 × recall × precision/(recall + precision) (1)

Precision and recall weigh equally in F-measure and a higher F-measure represents a
superior model.
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2.3. Mapping Faidherbia albida Trees Using Artificial Neural Networks

The Multi-Layer Perception (MLP) model was adopted for the binary classification of
Faidherbia albida trees. MLP is an artificial neural network with multiple densely connected
layers between the input and output layers. The densely connected layers in MLP models
combine all the features of the previous layer, which is suitable for complex classification
tasks. We used the artificial neural network instead of other non-parametric classifiers, such
as Random Forests or Support Vector Machines, which have been applied in previous tree
species classifications, because of the irregular spectral signatures of the dataset and the
uneven composition of species in the data structure. Considering the image resolution and
the size of tree canopy, any given Faidherbia albida pixel will usually be a mix of reflectance
from Faidherbia albida canopies and background vegetation or bare soil. Therefore, even the
same tree species would show considerable intra-species spectral variability among training
and testing data. Neural networks as a general-purpose technique for classification hold the
potential to map Faidherbia albida in such a challenging case. The MLP model is created with
three layers, and the learning rate, batch size and epochs are fine-tuned through grid search.
The input of the MLP is the feature collection selected by cross-validation. The output
of the MLP is the probability that a pixel includes a Faidherbia albida canopy, with values
ranging from 0 to 1. Here, pixel values > 0.5 were mapped as Faidherbia albida canopies.

2.4. Post Processing

To comply with the nature of parklands and savanna ecosystems where Faidherbia albida
trees are predominantly scattered without forming a closed canopy, all clusters of predicted
Faidherbia albida pixels covering more than 1000 m2 were masked. This threshold was
selected based on Brandt et al. [61], where very high spatial resolution image analysis
revealed that <0.0001 of all single tree canopies surpass this size in the study area.

We combined the Faidherbia albida canopy map derived from MLP with the woody
canopy map produced by Zhang et al. [49], which is also based on time-series Sentinel-2 data.
A map representing the relative cover of Faidherbia albida related to all woody plant cover
was generated by calculating the fraction of the Faidherbia albida cover (per hectare) and
the woody canopy cover (per hectare) map. To explore the agreement between our remote
sensing based Faidherbia albida distribution map and the potential occurrence based on
ecological modelling, we obtained a Faidherbia albida potential occurrence map that was
provided by Kindt [64] at a 5-km resolution. The occurrence map was generated from
9 bioclimatic layers, 2 topographic layers and 3 soil maps by the R package BiodiversityR.
Details about the data sources and resolution of the layers can be found in Table S4. This
map consists of a unitless Faidherbia albida habitat suitability index varying from 0 (lowest)
to 910 (highest). The absence–presence threshold for suitability of Faidherbia albida was
provided by the SDM model as 534, meaning that suitability values above 534 correspond
to the likely presence of the species with increasing values associated with higher likelihood
of species presence.

3. Results
3.1. Intra-Annual Difference in Vegetation Indices

Monthly values of NDVI and NDI54 for pixels covering Faidherbia albida and other
tree species were analysed for Nioro and Niakhar. It is noticeable that even pixels covering
the same group of tree species show varying index values in the two study regions. This
is likely because the majority of the sampled pixels in Sentinel-2 images are mixed pixels,
and the index value is the result of the reflectance from the tree canopy and a complex
set of other covers underneath such as crops and herbaceous vegetation or bare soil,
especially in the wet season when the Faidherbia albida trees are defoliated. However, the
values of pixels with Faidherbia albida show the same seasonality in both regions different
to other tree species (Figure 3). Specifically, pixels with Faidherbia albida have a lower
NDVI value in the rainy season and a higher NDVI value in the dry season as compared
to the pixels representing other tree species (Figure 3A), which means that the relative
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difference of Faidherbia albida NDVI values between the dry and wet seasons is smaller as
compared to other tree species. While all tree species reach their NDVI peak in October, the
NDVI value of pixels with Faidherbia albida decrease much slower after the peak month as
compared to other tree species. As for NDI54 (Figure 3B), Faidherbia albida pixels have the
highest values in November while the pixels of other tree species show a peak in October.
Consequently, the mapping of Faidherbia albida ideally should not only depend on the
absolute index values of individual months, but also take the dynamics between different
months into consideration.
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Figure 3. Averaged monthly (A) NDVI and (B) NDI54 values for sample pixels of Faidherbia albida
and other species in the regions of Nioro and Niakhar. Vertical lines represent the standard deviation
of the sample population. Overall, 1418 pixels were sampled and averaged over the study period,
including 57 Faidherbia albida pixels and 112 pixels with other tree species in the Nioro region, and
459 Faidherbia albida pixels and 790 pixels with other species in the Niakhar region.

3.2. Mapping Faidherbia albida Using the MLP Model

By conducting a recursive feature elimination on the original 936 features (Section 2.2)
we tested subsets of feature combinations as a function of the model mean accuracy
using a 4-fold cross-validation approach (Figure 4). The evaluation of the Faidherbia albida
mapping was performed by mean accuracy of all iterations using a test set. Using only
the seasonal dynamic feature of NDI54 between November and August, the classifier
achieves an average F-measure of 60%. When increasing the features to 40, the total
variability in the feature layers reaches the same level of accuracy (precision, recall and
the F-measure) as when using all features, indicating that 40 features are sufficient. Using
40 features, the model achieves an overall F-measure of 89%, with a fairly well-balanced
rate of 91% precision and 85% recall, showing that the pixels of Faidherbia albida canopies are
captured well (Table S5). The final selected features for the MLP model (Table 1) show that
the seasonal dynamic features account for more than 50% of all selected features, and the
typical span of the two months forming the difference feature is around 5 months, usually
representing one month in the start of the dry season and the other month at the end of
the dry season. The acquired times of the selected data by recursive feature elimination
are February (start of Faidherbia albida senescence), July (leaf-off) and October (leaf-out). In
terms of feature type (vegetation index or single band reflectance), the NDVI and NDI54
dominate the selected features.



Remote Sens. 2022, 14, 662 9 of 16Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 4. Relationship between mean accuracy and number of features fed to the MLP classifier. 
The flat horizontal dashed line represents the accuracy from a model using all features. 

Table 1. Feature information of the 40 features finally retained to feed the MLP model including 
monthly features (band/spectral index and specific month) and seasonal dynamics features 
(band/spectral index and related months). 

Monthly Feature Seasonal Dynamic Feature 
Band/Index Month Feature Importance Band/Index Month Feature Importance 

NDI54 2 0.040 NDVI 2–6 0.063 
Band12 6 0.035 NDI54 2–6 0.043 
Band12 3 0.032 NDVI 2–5 0.041 
Band11 6 0.031 NDI54 8–12 0.038 
Band12 5 0.030 NDVI 4–6 0.031 
NDI54 12 0.029 NDVI 7–12 0.031 
NDI54 3 0.029 NDI54 2–5 0.029 
Band2 10 0.026 NDI54 2–8 0.024 

Band12 4 0.025 Band12 3–11 0.023 
NDI54 4 0.025 NDVI 2–7 0.023 
NDI54 6 0.025 NDVI 6–12 0.022 
NDVI 6 0.023 NDI54 10–11 0.020 
Band3 10 0.022 NDI54 3–8 0.020 
Band8 10 0.019 NDI54 2–10 0.018 
NDVI 10 0.017 Band12 3–10 0.018 
NDVI 7 0.017 Band12 4–11 0.017 

   Band3 10–12 0.017 
   NDVI 4–7 0.015 
   Band4 10–11 0.014 
   NDI54 10–12 0.014 
   NDI54 1–8 0.014 
   Band4 6–12 0.014 
   NDVI 3–7 0.010 
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Table 1. Feature information of the 40 features finally retained to feed the MLP model includ-
ing monthly features (band/spectral index and specific month) and seasonal dynamics features
(band/spectral index and related months).

Monthly Feature Seasonal Dynamic Feature
Band/Index Month Feature Importance Band/Index Month Feature Importance

NDI54 2 0.040 NDVI 2–6 0.063
Band12 6 0.035 NDI54 2–6 0.043
Band12 3 0.032 NDVI 2–5 0.041
Band11 6 0.031 NDI54 8–12 0.038
Band12 5 0.030 NDVI 4–6 0.031
NDI54 12 0.029 NDVI 7–12 0.031
NDI54 3 0.029 NDI54 2–5 0.029
Band2 10 0.026 NDI54 2–8 0.024

Band12 4 0.025 Band12 3–11 0.023
NDI54 4 0.025 NDVI 2–7 0.023
NDI54 6 0.025 NDVI 6–12 0.022
NDVI 6 0.023 NDI54 10–11 0.020
Band3 10 0.022 NDI54 3–8 0.020
Band8 10 0.019 NDI54 2–10 0.018
NDVI 10 0.017 Band12 3–10 0.018
NDVI 7 0.017 Band12 4–11 0.017

Band3 10–12 0.017
NDVI 4–7 0.015
Band4 10–11 0.014
NDI54 10–12 0.014
NDI54 1–8 0.014
Band4 6–12 0.014
NDVI 3–7 0.010

3.3. Comparing Faidherbia albida Canopy Cover Maps with Potential Occurrence Maps

A Faidherbia albida canopy map at 10-m resolution covering Senegal was generated
based on 3 years of Sentinel-2 data. To illustrate the mapping at the national scale, the per-
pixel mapping was aggregated to 1 hectare showing the percentage of Faidherbia albida cover
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(Figure 5A). Faidherbia albida trees are mainly distributed in the western cropland areas
(Figure 5A) where annual precipitation ranges from 300 to 600 mm. Faidherbia albida trees are
to a less extent also found in the croplands of the northern part of the country, where rainfall
is less than 300 mm/year. For most of the cropland areas, the percentage of Faidherbia albida
cover is in the range between 2–15%. Our remote sensing-based distribution agrees to some
extent with the potential occurrence map from ecological modelling (Figure 5B) in which
the potential occurrence is shown by SDM suitability values. While similar patterns are
shown in western Senegal, the southeast, the Cap Vert peninsula and the limited cropland
areas along the north-western coast do not match with our map.
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Figure 5. (A) Faidherbia albida cover map (%) at 1-hectare resolution from our classification. Included
are close-up maps showing detailed Faidherbia albida classification maps of different regions as white
polygons superimposed on images from Google Earth. (B) Faidherbia albida potential occurrence map
provided by Kindt [64].

The remote sensing-based map of Faidherbia albida cover was directly compared with
the SDM suitability score within different land use/cover types (Figure 6). The SDM map
at a 5-km resolution was resampled to 1 ha using the nearest neighbour. Faidherbia albida
trees mainly occur in areas with suitability values above 560 and are almost absent be-
low this threshold except in croplands where they occur even with SDM values of 300.
Faidherbia albida trees were barely found in the north/north-eastern shrub and open for-
est areas of Senegal (Figure 5), even though the SDM suitability was around 600. When
suitability values exceed 680, we observe that the high suitability score relates to low
Faidherbia albida cover (<0.25%). This discrepancy is linked to the Senegal land cover, which
is related to the near coastal areas around the Dakar peninsula (Figures 1 and 5).

By combing the woody cover map from Zhang et al. [49] and our results, we calculated
the relative contribution of Faidherbia albida trees to the overall woody plant cover per
hectare (Figure 7). The map of this relative contribution shows the degree of dominance of
Faidherbia albida among woody plant cover. The higher the contribution of Faidherbia albida
to the woody plant cover, the lower is the woody plant diversity. Furthermore, in areas
where woody cover is nonzero, the contribution of Faidherbia albida to cover as a func-
tion of all woody species cover is illustrated in Figure 7B. The relative contribution of
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Faidherbia albida in croplands is on average 7.23%, with several areas being dominated by
Faidherbia albida.
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Figure 6. Average Faidherbia albida cover (%) in relation to modelled suitability scores (intervals
of 20 units) for different land use/cover types. The land use/cover map of 2019 is provided by
Copernicus Global Land Service at 100-m resolution. Wetland, urban, water, bare vegetation and
closed forest types were not included in this comparison due to the limited number of observations.
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albida to canopy cover in croplands. The land use/cover map of 2019 is provided by Copernicus
Global Land Service at 100-m resolution.
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4. Discussion
4.1. Mapping Faidherbia albida

This study presents a method to estimate Faidherbia albida cover across Senegal
from Sentinel-2 spatiotemporal signatures at 10-m resolution. Previously, only Lelong
et al. [48] used very high resolution Worldview-3 imagery to map 7 tree species including
Faidherbia albida. Our approach was based on the assumption that the classification could
take advantage of the distinct and inverse phenological behaviour of Faidherbia albida trees
as compared to other tree species. However, we found that this phenological behaviour
was not seen in satellite time series from Sentinel-2. A possible explanation is that the
herbaceous layer growing below the canopy of Faidherbia albida trees during the non-leaf
season dominates the signal. It impedes the capacity of satellite time series to capture the
inverse phenology during the leaf-off period. As for the leaf-on period, the difference is also
unexpectedly small and varies with location and time. Since most remote sensing applica-
tions in mapping forest types or tree species rely on the phenological differences in satellite
time series between the target and the background [45], the mapping of Faidherbia albida
trees is more challenging than initially assumed.

Given this situation, we maximized the input capacity by generating a total of 936 fea-
tures, which include monthly and seasonal features of both multiple vegetative indices
and bands. Instead of directly using sparse temporal features and single vegetation in-
dices [43,65], we made use of recursive feature elimination to reduce data redundancy. The
accuracy stabilized when 40 features were included, mainly from the senescence month of
Faidherbia albida and including both spectral bands and vegetation indices [44,45]. Features
related to seasonal dynamics were most important, which aligns with the results of [43,66].
NDVI, NDI54 and the second SWIR band of Sentinel-2 are often picked as high-ranking
features, indicating the importance of the red, red edge and SWIR bands for tree species
mapping [29]. Additionally, the background reflectance causes different values for different
regions with Faidherbia albida trees (Figure 3A). This effect can be mitigated by using images
of seasonal changes in addition to monthly composites (Table 1).

We did not use a convolutional neural network (CNN) because CNNs rely on features
which are extracted by sliding windows within an image, and the widow size N is usually
larger than the tree canopy pixel (usually one pixel). Thus, the importance from a given
tree canopy pixel might be diluted on the extracted window’s feature. Contrastingly, the
input for the MLP is the labelled feature collection, which is derived from single pixels in
an image, which is considered as more suitable when using Sentinel-2 imagery.

In the past decades, mapping forest cover and type have achieved satisfactory out-
comes globally and operationally using remote sensing techniques [37,39]. Mapping tree
species at large scale has however only progressed slowly, mainly because the required
remote sensing datasets are expensive to acquire, such as LiDAR and other very high-
resolution data [35,40]. Furthermore, the Faidherbia albida agroforestry multipurpose trees
studied here grow in drylands where trees grow as individuals, and such trees outside
of forest have been underestimated [61]. As such, our study represents a first attempt
to conduct a national scale mapping of scattered non-forest tree species. It would be
interesting to further map the distribution of Faidherbia albida trees using higher spatial
resolution images like PlanetScope, which are now provided as a pre-processed product
in an analysis-ready data format of monthly composites of 4.7-m spatial resolution free of
charge from the Norwegian International Climate & Forests Initiative (NICFI). However,
PlanetScope data has a lower spectral resolution (only four classical bands of R, G, B and
NIR) as compared to Sentinel-2. The degraded spectral information may thus decrease
the mapping capacity. With a monthly temporal resolution and spatial resolution of 4.7 m,
recurrent CNN techniques could boost the mapping by interpreting temporal and textural
information of individual tree canopies simultaneously [67].
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4.2. Comparison with Ecological Niche Modelling Products

Our results show that Sentinel-2 image time series are able to map the actual distribu-
tion of Faidherbia albida trees, which is a significant advance as compared to SDM-based
potential species occurrence maps [64]. Our results indicate that Faidherbia albida trees are
mainly found in croplands where they are the dominating tree species. The relation in
Figure 6 showed that when the land suitability exceeds the threshold defined by the SDM
model, there is indeed often an observed occurrence of Faidherbia albida trees. The average
Faidherbia albida cover is always higher in croplands than for other land use/cover types
because farmers are well aware of the benefits of Faidherbia albida trees being an integral part
of agroforestry systems [68–70]. In the sparsely populated south-eastern part of Senegal
where land cover is mainly open woodland and shrublands, we did not predict to find any
Faidherbia albida, while the SDM model predicts a high suitability, likely because human
management was not carefully considered in the applied model.

5. Conclusions

A 10-m resolution Faidherbia albida canopy map was generated for Senegal based on a
time series of Sentinel-2 images from the period of 2017 to 2019, used to form 12 monthly
composites covering the phenological phases of the Faidherbia albida tree. Ground observa-
tions of tree species from two different regions in Senegal were used to generate a robust
model mapping the occurrence of Faidherbia albida trees. Compared to an existing map
showing the potential occurrence of Faidherbia albida trees from a suitability modelling
approach (species distribution modelling; SDM), our study took advantage of the unique
phenology of Faidherbia albida trees to separate this tree species from other trees. We showed
that the actual distribution does not always agree with the potential distribution. We also
showed that Faidherbia albida dominates tree cover in some cropland areas, supporting the
well-known benefits of the tree in agroforestry systems of West Africa (termed parklands).
Faidherbia albida is managed and utilised by farmers in different ways as this multi-purpose
tree does not only provide fuel wood and fodder like other species, but also affects crop
traits for improved productivity and yield by shedding leaves in the crop growing season.
The derived 10-m map of Faidherbia albida occurrence could be used as a base-map in
support of an empirically based understanding of the role of Faidherbia albida in parkland
ecosystems in relation to crop yields. Ultimately, this could serve as a vantage point for
spatially explicit analyses of the extent to which the use/management of this tree resource
is optimally implemented.
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https://www.mdpi.com/article/10.3390/rs14030662/s1, Figure S1: Averaged monthly (A) NDVI74,
(B) MCARI, (C)S2REP, (D) PSSRa, (E) EVI, (F) EVI2, (G) GNDVI, (H) MTCI values for sample pixels
of Faidherbia albida and other species in the regions of Nioro and Niakhar. Vertical lines represent the
standard deviation of the sample population. Overall, 1418 pixels were sampled and averaged over
the study period, including 57 Faidherbia albida pixels and 112 pixels with other tree species in the
Nioro region, and 459 Faidherbia albida pixels and 790 pixels with other species in the Niakhar region;
Table S1: Vegetation indices used in the study. Their formulation and the related spectral bands (band
numbering is referring to the Sentinel-2 sensor system); Table S2: Correlation coefficient of monthly
vegetation index of Faidherbia albida; Table S3: Correlation coefficient between vegetation index values
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test set of 40 features.
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