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Abstract: Grassland species diversity monitoring is essential to grassland resource protection and
utilization. “Spectral variation hypothesis” (SVH) provides a remote sensing method for monitoring
grassland species diversity at pixel scale by calculating spectral heterogeneity. However, the pixel
spectrum is easily affected by soil and other background factors in natural grassland. Unmanned
aerial vehicle (UAV)-based imaging spectroscopy provides the possibility of soil information removal
by virtue of its high spatial and spectral resolution. In this study, UAV-imaging spectroscopy data with
a spatial resolution of 0.2 m obtained in two sites of typical alpine steppe within the Sanjiangyuan
National Nature Reserve were used to analyze the relationships between four spectral diversity
metrics (coefficient of variation based on NDVI (CVNDVI), coefficient of variation based on multiple
bands (CVMulti), minimum convex hull volume (CHV) and minimum convex hull area (CHA)) and
two species diversity indices (species richness and the Shannon–Wiener index). Meanwhile, two
soil removal methods (based on NDVI threshold and the linear spectral unmixing model) were
used to investigate the impact of soil on species diversity estimation. The results showed that the
Shannon–Wiener index had a better response to spectral diversity than species richness, and CVMulti

showed the best correlation with the Shannon–Wiener index between the four spectral diversity
metrics after removing soil information using the linear spectral unmixing model. It indicated that the
estimation ability of spectral diversity to species diversity was significantly improved after removing
the soil information. Our findings demonstrated the applicability of the spectral variation hypothesis
in natural grassland, and illustrated the impact of soil on species diversity estimation.

Keywords: species diversity; alpine grassland; soil filtering; spectral diversity; imaging spectroscopy

1. Introduction

Grassland biodiversity is critical for the long-term restoration and support services
of ecosystem functions [1–3], and is directly related to human society [4,5]. However,
biodiversity is being lost due to climate change and human activities, and this trend is
likely to continue in the future [6,7]. Grasslands bear the brunt of biodiversity loss due to
ecosystem vulnerability and severe environmental pressure [8,9]. The Aichi target set in
response to the continuing loss of global biodiversity has not yet been fully achieved [10].
The biodiversity of grassland can be divided into three levels: genetic diversity, species
diversity and ecosystem diversity [11]. As the primary component of biodiversity, the
species diversity of grassland remains a top priority in biodiversity monitoring.

Species diversity refers to biodiversity at the species level and can be considered at least
from taxonomic, functional, and phylogenetic diversity perspectives [12–14]. In terms of
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taxonomic diversity, there are three measures based on scale dependence: α-diversity focuses
on the composition of species and distribution of each species within a community, while
β-diversity and γ-diversity represent the differences and synthesis between communities,
respectively [15–17]. α-diversity, or within-habitat diversity, is most commonly used in
regional species diversity monitoring and is usually demonstrated by four indicators,
including species richness [16,18], Shannon–Weiner index [19,20], Simpson index [21,22]
and Pielou evenness [23]. Among these, species richness is the number of different species,
for which it is easier to obtain an accurate value by ground sampling. The Shannon–
Wiener index and Simpson index have certain similarities, because both indices take
species uniformity into account. In addition, towards the grassland diversity estimation,
species richness and the Shannon–Wiener index are the more generally used indicators in
the ecological and remote-sensing literature. For example, Tilman et al. [24] proved the
diversity–stability hypothesis based on the variation of species richness during a decade
of data collection at Cedar Creek Natural History Area. Jochum et al. [25] used species
richness and the Shannon–Wiener index as indicators of taxonomic diversity to verify
that the results of biodiversity-ecosystem functioning experiments were realistic in the
real world.

A grassland species diversity survey is generally based on field measurements, which
usually obtain accurate information for small areas. However, it is time-consuming and
labor-intensive to cover large regions, and field data are prone to inconsistencies [26,27].
Remote sensing can provide spatiotemporal continuous data and assess species diversity
loss of all scales in a repeatable and rapid manner [28–30], which has been recognized as an
efficient tool in the global monitoring of biodiversity [31–34]. The technological advances
in airborne and UAV-based imaging spectrometers, which measure continuous spectral
coverage with high spatial resolution, provide great potential in monitoring grassland
biodiversity efficiently across large areas [32,35,36].

Monitoring species diversity by remote sensing can be divided into roughly two cate-
gories: identifying the species directly and estimating the spatial distribution of species
diversity indirectly based on habitat or relevant indicators [29,37]. Compared with direct
species identification methods limited to big-size species or nonmixed species, spectral
variation hypothesis (SVH), as the most representative indirect observation method, has
strong applicability in monitoring species diversity [38–41]. The spectral variation hypothe-
sis [38] assumes that the remotely sensed variation in spectral patterns is related to plant
species diversity. There were many SVH-based applications at the individual canopy level
of the forest, especially in combination with light detection and ranging (LiDAR) data,
both in terms of species and functional diversity estimation [42–45]. However, the main
challenge for monitoring grassland species diversity by remote sensing is the small size of
plants, structural heterogeneity, and highly mixed species. The complex canopy structure
of grassland makes it difficult to estimate species diversity at individual grass scale [46–49].
Therefore, spectral diversity was proposed for grassland species diversity estimation at
pixel scale [32,41,50–52].

Spectral diversity refers to the heterogeneity of the vegetation spectrum caused by some
characteristics of species, including physiological and biochemical components, phenological
characteristics and canopy structure [41,49]. Many spectral diversity metrics, such as coef-
ficient of variation (CV) [53], convex hull volume (CHV) or area (CHA) [32,51,52], spectral
angle mapper (SAM) [54], and distance from the spectral centroid [55], have been devel-
oped to monitor grassland species diversity. All the metrics are based on the principle
of condensing multidimensional spectral information of vegetation into a statistical mea-
sure [49]. However, whether spectral diversity works for estimating grassland species
diversity, depends on several factors, such as spectral resolution and band selection, the
chosen spectral diversity metrics and background disturbances such as soil, dead materials
and shadows [36,56,57].

Calculating spectral diversity metrics may use a single band or characteristic vegeta-
tion index (VI) or multiple spectral bands. For instance, Gould et al. [58] estimated vascular



Remote Sens. 2022, 14, 671 3 of 16

species richness based on variation in NDVI in the Hood River region. Gholizadeh et al. [32]
used averaged CV of 142 bands (427–914 nm) as a proxy of α-diversity to estimate grass-
land species diversity within the Central Platte River ecosystem. VIs can be obtained from
commonly-used satellite remote-sensing data and applied to monitor grassland species
diversity over a large geographical extent [55,59]. In contrast, spectral diversity metrics
based on multiple spectral bands take advantage of increased spectral information, but
may also produce the problem of data redundancy [37,60]. In addition, it should be noted
that spectral diversity metrics are vulnerable to interference from the soil information of
pixels, which will significantly increase the local spectral heterogeneity, thus leading to
species diversity estimation with higher values [37,52]. Even spectral diversity showed a
negative correlation with species diversity under the influence of soil, which is contrary to
the general knowledge [61].

One commonly used method for removing soil information is to set a threshold of
NDVI, such as Gholizadeh et al. [52], who selected pixels with an NDVI larger than 0.4 as
vegetation based on proximal imaging spectrometry data with 0.001 m spatial resolution,
while Zhao et al. [62] applied a threshold of 0.2 to UAV-imaging spectrometry data with
0.03 m spatial resolution. The spectral unmixing model is another method used for soil
removal, for example, Gholizadeh et al. [52] extracted vegetation information by the fully
constrained least squares spectral unmixing approach based on UAV-imaging spectroscopy
data with 0.75 m spatial resolution. Setting NDVI thresholds is relatively simple, but the
thresholds are not consistent and can result in a loss of nonsoil information by removing
the entire pixel. The spectral unmixing model may keep the vegetation information at
pixel scale, but the acquisition of the pure spectra of vegetation and soil in the image is
difficult [63]. Meanwhile, regardless of the methods, soil removal is also related to the
spatial resolution of observation.

Therefore, the objective of our study is to investigate the optimal spectral metrics to
monitor the species diversity of natural alpine grassland while considering the impact
of soil background. We compared two species-diversity indices, four spectral-diversity
metrics and two approaches of soil removal by using UAV imaging spectroscopy with
0.2 m spatial resolution. The results may provide a reference for the selection of parameters
in monitoring grassland species diversity by remote sensing under natural conditions.

2. Materials and Methods
2.1. Study Area

This study area includes two UAV flight regions (center coordinates: 34◦49′12′′N,
98◦25′12′′E and 34◦50′14′′N, 98◦19′23′′E) in Maduo county at the Sanjiangyuan National
Nature Reserve, Qinghai Province of China (Figure 1). Sanjiangyuan National Nature
Reserve is one of the most biodiverse areas in the world and there are 760 species of vascular
plants belonging to 241 genera and 50 families [64]. The average annual temperature is
about −4°C and the average annual precipitation is 303.9 mm, based on the meteorological
records of the monthly standard weather station dataset (1957–2015) [65]. Maduo county,
being the source of the Yellow River, is a high plain (altitude > 4000 m) with 80% acreage
of grassland and has been regarded as a key conservation area for grassland diversity.
Surveys show that this county is characterized by alpine meadow and alpine steppe, the
dominant species are Elymus dahuricus, Leontopodium leontopodioides, Kobresia myosuroides,
Potentilla chinensis, Oxytropis ochrocephala, etc. [66]. We set two UAV flight regions (No.1:
400 m × 300 m; No.2: 400 m × 400 m) with natural alpine steppe in Maduo county, where
complex species composition (more than 20 dominant species) ensured the heterogeneity
gradient of sample plots.
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Figure 1. The location of Sanjiangyuan National Nature Reserve (left), Maduo county (middle) with
land cover data with 10 m spatial resolution from ChinaCover2020 [67], and two UAV imaging
spectroscopy images (NIR: 860 nm, red: 660 nm, green: 560 nm) with 18 field-measured sample plots
and photographs (right).

2.2. Imaging Spectroscopy Data and Preprocessing

The imaging spectroscopy data were collected on 20 August 2018 from 11:00 to 14:00
local time under cloudless conditions in Maduo county using the M600 UAV platform
(DJI, Shenzhen, China). The grassland was in the growing season, which avoided spectral
heterogeneity caused by the death of species. We used the UAV platform with a ZK-
VNIR-FPG480 push-broom hyperspectral sensor (ZKYD Data Technology Co., Ltd., Beijing,
China), which provided a spectral range of 390–1020 nm with 2.3 nm spectral resolution and
a total of 270 spectral channels. We set the spatial resolution of the imaging spectroscopy
data and flight altitude as 0.2 m and 150 m, respectively. Therefore, detailed ground
information could be obtained, and the errors of ground sample distance caused by high
flight altitude could be minimized.

The preprocessing of imaging spectroscopy data consisted of three preliminary steps.
Spectral radiation calibration was performed as the first step to determine the central wave-
length and bandwidth of each band, as well as the corresponding relationship between the
spectral response and the true spectral radiance. Then, the reflectivity spectrum of grass
was calculated based on the spectral radiance and the reference spectrum of the reflectivity
whiteboard. The hyperspectral reflectance data containing geographic coordinate informa-
tion was finally obtained after geometric correction based on ground control points and the
curved surface spline function [68].

2.3. Field Measurements

The field measurements were conducted simultaneously with UAV-hyperspectral
image acquisition. We regularly set 9 sample plots (1 m × 1 m) in both flight regions
following a criterion that most dominant species within the flight regions should be in-
cluded. The central coordinate pairs of each plot were recorded through a Trimble GeoXH
3000 handheld GPS and differential correction was done based on a differentially corrected
global positioning system to minimize errors. The detailed survey for each sample plot
included grassland species, individual coverage and number of each species. A total of
18 sample plots and 22 grassland species were investigated and there was a gradient from
3 to 8 in the number of species for each sample plot. Since the height of most species in the
flight regions was about 5–10 cm, there was no significant vertical structure. The shadows
or species overlap would not interfere with the calculation of spectral diversity metrics.
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2.4. Species Diversity Indices

We used species richness and Shannon–Wiener index to represent species diversity
and calculated them within each sample plot of 1 m2. Species richness refers to the
total number of different grassland species. Shannon–Wiener index (H′) consists of two
components: species number and equitability or evenness of species distribution [23,59,69].
The Shannon–Wiener index was calculated based on the following formula:

H′ = −
n

∑
i=1

pi ln(pi) (1)

where n is the total number of different species in a sample plot; pi is the proportional
abundance of the species i; ln(pi) is the natural logarithm of this proportion.

Shannon–Wiener index gradually increases to the maximum value from zero, as the
species distribution within the plot changes from only one species to the same abundance
of all different species [70].

2.5. Spectral Diversity Metrics

CV, CHA and CHV were selected as the spectral diversity metrics in our study after
comprehensively analyzing the principle and applicability of several frequently used met-
rics. Among them, CV could be calculated by both characteristic vegetation index (CVNDVI)
and multibands (CVMulti), but CHA and CHV were necessarily based on multibands. It
should be noted that all spectral diversity metrics were calculated within a pixel set of 5× 5
in order to match the 1 m × 1 m ground sample plot.

CVNDVI was calculated based on the mean and standard deviation of NDVI (Equation (2))
of all the pixels within a sample plot (Equation (3)), while CVMulti was the mean of coeffi-
cients of variation for all bands from 390 nm to 1020 nm (Equation (4)).

NDVI =
ρ860 − ρ660
ρ860 + ρ660

(2)

CVNDVI =
std(NDVI)

mean(NDVI)
(3)

CVMulti =
∑1020

λ=390

(
std(ρλ)

mean(ρλ)

)
n

(4)

where NDVI was calculated based on central reflectance of near-infrared (860 nm) and
red (660 nm); std (NDVI) and mean (NDVI) are the standard deviation and mean value
of NDVI of all pixels in a ground sample plot, while std (ρλ) and mean (ρλ) are standard
deviation and mean value of reflectance at band λ; ρλ is the reflectance of band λ; n is the
number of bands, which was 270 in our study.

CHV is another metric of spectral diversity, which represents the minimum volume of
the convex hull formed by three-dimensional spectral information. The three-dimensional
spectral information is usually obtained by dimensionality reduction of n-dimensional
imaging spectroscopy data. The first three dimensions of principal component analysis
(PCA) could explain 85–90% of the total information according to the gravel figure, so
we used the first three principal components of the reflectance values to calculate CHV
(convhull, matlab) in our study.

CHA represents the minimum area of the convex hull in a two-dimensional space
formed by both the reflectance of each pixel and the mean reflectance of all pixels in one
sample plot [52]. It maximizes the spectral separation between the sample plot and each
pixel within this sample plot. The average value of CHA of all effective pixels represents
the CHA of the sample plot, which was calculated as follows:

CHAL =
∑m

K=1 CHA
(
RK,L, RL

)
m

(5)
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where CHAL is the spectral diversity of a sample plot; m is the number of effective pixels
of Lth plot; RK,L and RL, respectively, define two dimensions of the convex hull and RK,L
represents the Kth pixel in Lth plot, while RL is the mean spectrum of all pixels in Lth plot
and both are n × 1 vectors where n is band number; CHA

(
RK,L, RL

)
represents the area

between Kth pixel and the average of Lth plot and it nears to 0 when the spectra of one
pixel is extremely similar to the average spectra of sample plot.

2.6. Soil Filtering

We respectively applied two methods to filter soil information. One is setting NDVI
thresholds. In this study, we used three thresholds of NDVI (0.2, 0.3 and 0.4) based on the
previous studies [52,62]. Pixels with NDVI below the thresholds were removed and the
four spectral diversity metrics (i.e., CVNDVI, CVMulti, CHA and CHV) of each sample plot
were recalculated using the remaining pixels.

Another method is using the spectral unmixing model, which decomposes the mixed
pixel into different basic components (i.e., endmembers) to filter soil information. In general,
the linear spectral unmixing model considers the spectra of the mixed pixels as the linear
addition of the spectra of vegetation and soil according to their respective proportions
(Equations (6) and (7)).

For the pure soil selection, we marked three bare soil ground samples (0.5 m × 0.5 m)
in each flight region and collected the spectra of bare soil by ASD field spectroradiometers
(ASD Co., Alpharetta, GA, USA). Then we selected a total of 54 pixels from the UAV-
hyperspectral imagery that were similar to the field spectra of bare soil and calculated their
average spectrum as the pure soil spectrum for spectral unmixing model. Meanwhile, the
fractions for both vegetation and soil were obtained from the FVC (fractional vegetation
coverage) products based on dimidiate pixel mode [71,72]. Therefore, the pure vegeta-
tion spectrum of each pixel could be extracted by inverting the linear spectral unmixing
model [73].

Rj = Rveg,j Fveg + Rsoil,j Fsoil j = 1, 2, . . . , p (6)

1 = Fveg + Fsoil Fveg, Fsoil ≥ 0 (7)

where Rj is the reflectance of the mixed pixel in band j; Rveg,j is the pure reflectance for
vegetation components in band j and Rsoil,j is the pure reflectance of soil components in
band j; Fveg and Fsoil are the fractional coverage of vegetation and soil within the pixel and
their sum is equal to 1.

3. Results

The performance of the relationships between the two species diversity indices and
the four spectral diversity metrics before and after removing the soil based on two different
methods are listed as follows (Table 1).

3.1. Responses of Spectral Diversity to Species Diversity

The correlations between four spectral diversity metrics (CVNDVI, CVMulti, CHV and
CHA) and two species diversity indices (species richness and Shannon–Wiener index) are
shown in Figure 2. From the perspective of species diversity indices, Shannon–Wiener
index showed a significant positive correlation with all spectral diversity metrics (p < 0.05)
compared to species richness. Species richness just reveals how many species exist in
a certain region and cannot reflect the uniformity of the distribution of species, but the
uniformity can be indicated by Shannon–Wiener index based on the species richness
and their relative abundance (evenness). Therefore, the Shannon–Wiener index could
better respond to the spectral diversity, which is consistent with the previous study of
Oldeland [70]. Moreover, Figure 2a–d show the variation of spectral diversity with the
same species richness. For example, the differences between the maximum and minimum
CVMulti were 0.10 with six species richness and 0.11 with eight species richness, both of
them were higher than 0.02, which was the difference between the mean value of CVMulti



Remote Sens. 2022, 14, 671 7 of 16

with six and eight species richness. This might be a potential reason for the nonsignificant
relationships between species richness and spectral diversity metrics.

Table 1. The correlations between species diversity indices and spectral diversity metrics before and
after removing soil information based on two methods in terms of R2, p-value, RMSE and bias.

Spectral Diversity Soil Filtering Species Richness Shannon–Wiener Index
R2 p-Value RMSE Bias R2 p-Value RMSE Bias

CVNDVI

With soil 0.13 0.12 3.40 0.24 0.24 0.03 * 0.39 0.08
NDVI threshold 0.29 0.02 * 2.27 0.11 0.33 0.01 ** 0.17 0.07

Unmixing 0.28 0.007 ** 2.25 0.09 0.37 0.002 ** 0.08 0.04

CVMulti

With soil 0.10 0.17 3.76 0.31 0.26 0.03 * 0.15 0.07
NDVI threshold 0.34 0.02 * 1.89 0.08 0.41 0.006 ** 0.07 0.04

Unmixing 0.40 0.002 ** 1.74 0.07 0.61 <0.001 ** 0.04 0.02

CHA
With soil 0.19 0.07 2.94 0.17 0.28 0.003 ** 0.14 0.06

NDVI threshold 0.36 0.01 * 1.88 0.08 0.44 0.005 ** 0.07 0.03
Unmixing 0.40 0.005 ** 1.77 0.07 0.51 0.001 ** 0.06 0.03

CHV
With soil 0.16 0.08 3.24 0.20 0.24 0.04 * 0.17 0.07

NDVI threshold 0.24 0.04 * 2.40 0.12 0.37 0.009 ** 0.09 0.04
Unmixing 0.29 0.03 * 2.18 0.10 0.41 0.007 ** 0.08 0.03

Notes: *, 0.01 < p-value < 0.05, significant; **, p-value < 0.01, extremely significant. With soil represents spectral
diversity metrics before soil removal; NDVI threshold represents spectral diversity metrics after soil removal
based on NDVI threshold; unmixing represents spectral diversity metrics after soil removal based on linear
spectral unmixing model.

Although the Shannon–Wiener index had a better relationship with spectral diversity
than species richness, the performance was shown to be similar (Figure 2e–h, R2 from
0.24 to 0.28) within the four spectral diversity metrics. This indicated there was not much
difference for monitoring species diversity by these spectral diversity metrics and the
optimal spectral diversity could not be determined.

3.2. Impact of Soil on Spectral Diversity Metrics

We compared the relationships between the Shannon–Wiener index and spectral
diversity calculated after soil removal using two methods. For the NDVI thresholds of soil
removal, we finally used 0.4 for the following analysis due to its rigorousness for removing
soil information after comparing the results of those three thresholds (Table 2). Obviously,
the relationships between the Shannon–Wiener index and the four spectral diversity metrics
were all improved after removing soil information (Figure 3). However, by filtering soil
pixels based on NDVI threshold, the correlations between the Shannon–Wiener index and
the four spectral diversity metrics had R2 from 0.33 to 0.44. In contrast, by extracting
the vegetation information based on the inverted linear spectral unmixing model, the
relationships between the Shannon–Wiener index and the four spectral diversity metrics
had an R2 from 0.37 to 0.61, and CVMulti had the best performance (R2 = 0.61, Figure 3f).
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Table 2. The correlations between species diversity indices and spectral diversity metrics after
removing soil information based on three NDVI thresholds in terms of R2, p-value, RMSE and bias.

Spectral
Diversity

NDVI
Threshold

Species Richness Shannon–Wiener Index

R2 p-Value RMSE Bias R2 p-Value RMSE Bias

CVNDVI

0.2 0.27 * 0.03 * 5.16 0.11 0.33 * 0.01 * 0.17 0.08
0.3 0.27 * 0.03 * 5.15 0.11 0.33 ** 0.009 ** 0.18 0.08
0.4 0.29 * 0.02 * 5.15 0.11 0.33 ** 0.01 ** 0.17 0.07

CVMulti

0.2 0.27 * 0.03 * 3.98 0.10 0.41 ** 0.006 ** 0.08 0.04
0.3 0.28 * 0.03 * 3.90 0.10 0.41 ** 0.006 ** 0.08 0.04
0.4 0.34 * 0.02 * 3.57 0.08 0.41 ** 0.006 ** 0.07 0.04

CHA
0.2 0.28 * 0.03 * 4.13 0.10 0.42 ** 0.004 ** 0.08 0.03
0.3 0.33 * 0.02 * 3.86 0.09 0.40 ** 0.005 ** 0.09 0.04
0.4 0.36 * 0.01 * 3.53 0.08 0.44 ** 0.005 ** 0.07 0.03

CHV
0.2 0.22 * 0.03 * 6.04 0.13 0.35 ** 0.008 ** 0.08 0.04
0.3 0.24 * 0.02 * 5.74 0.11 0.35 ** 0.009 ** 0.08 0.04
0.4 0.24 * 0.04 * 5.76 0.12 0.37 ** 0.009 ** 0.09 0.04

Notes: *, 0.01 < p-value < 0.05, significant; **, p-value < 0.01, extremely significant.
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Figure 3. The relationship between Shannon–Wiener index and spectral diversity without soil
information. The left column indicates the relationship between Shannon–Wiener index and four
spectral diversity metrics after removing the soil based on the NDVI threshold (NDVI threshold is
0.4. (a–d); The right column represents the relationship between Shannon–Wiener index and four
spectral diversity metrics after removing the soil based on the linear spectral unmixing model (e–h).

Figure 4 shows that the median values of the 18 sample plots for the four spectral
diversity metrics generally decreased after removing the soil. It demonstrates that the
soil information might increase spectral heterogeneity to a certain extent, which leads to
weaker relationships between spectral diversity metrics and species diversity. However,
the maximum values of all spectral diversity metrics based on NDVI threshold had a slight
change as the 0.4 threshold might not be suitable for soil removing of all sample plots. By
contrast, the maximum values of spectral diversity metrics based on the linear spectral
unmixing model showed an apparent reduction. Since the vegetation information of each
pixel was extracted based on its various fractionals of vegetation coverage, rather than by a
uniform threshold for all pixels, the linear spectral unmixing model could be more suitable
for different grassland conditions. It demonstrated that the spectral diversity based on the
linear spectral unmixing model had better performance at measuring the Shannon–Wiener
index than when based on setting an NDVI threshold.
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Figure 4. The variation of four spectral diversity metrics between 18 sample plots before and after
soil information removal. Each box shows the maximum, the upper quartile, the mean, the lower
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Additionally, the relationships between species richness and spectral diversity changed
from nonsignificant to significant after soil removal (Table l), although the correlation
between them still did not perform as well as the Shannon–Wiener index. This result also
suggested that the soil information had a great effect on the response of spectral diversity
to species diversity.

Based on the above results and analysis, after removing soil information by the linear
spectral unmixing model, CVMulti was selected as the optimal spectral diversity metric
to map the Shannon–Wiener index in this study area. We set a moving window with
5 × 5 pixels in order to match the sample plot of ground (1 m × 1 m) and calculate the
regional CVMulti. Finally, the spatial distribution of the Shannon–Wiener index covering
two UAV flight regions with 1 m spatial resolution was mapped and is shown in Figure 5.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

Additionally, the relationships between species richness and spectral diversity 
changed from nonsignificant to significant after soil removal (Table l), although the cor-
relation between them still did not perform as well as the Shannon–Wiener index. This 
result also suggested that the soil information had a great effect on the response of spec-
tral diversity to species diversity. 

 
Figure 4. The variation of four spectral diversity metrics between 18 sample plots before and after 
soil information removal. Each box shows the maximum, the upper quartile, the mean, the lower 
quartile and the minimum. Each spectral diversity metric includes three conditions: with soil in-
formation (blue), without soil information, removed by setting NDVI threshold (red) and without 
soil information, removed by linear spectral unmixing model (green). 

Based on the above results and analysis, after removing soil information by the lin-
ear spectral unmixing model, CVMulti was selected as the optimal spectral diversity metric 
to map the Shannon–Wiener index in this study area. We set a moving window with 5 × 5 
pixels in order to match the sample plot of ground (1 m × 1 m) and calculate the regional 
CVMulti. Finally, the spatial distribution of the Shannon–Wiener index covering two UAV 
flight regions with 1 m spatial resolution was mapped and is shown in Figure 5. 

 
Figure 5. Predicted Shannon–Wiener index with a spatial resolution of 1 m in the natural grassland
of UAV flight region 1 (left) and UAV flight region 2 (right).



Remote Sens. 2022, 14, 671 11 of 16

4. Discussion
4.1. Methods for Grassland Species Diversity Estimation

Our findings demonstrated that the spectral variation hypothesis could be applied in
the natural alpine steppe, and there was a significant positive correlation between spectral
diversity and species diversity. We also highlighted that removing soil information in
high-resolution UAV imaging spectroscopy data could improve the performance of spectral
diversity metrics significantly, which was also observed in previous simulated and real-
world grassland diversity studies [37,52]. Mixed pixels of soil and grass are ubiquitous in
imaging spectroscopy data and soil information removal is a challenge. Compared with
filtering soil or soil-dominant pixels by setting a fixed NDVI threshold, it is more suitable
to remove soil information by the inverted linear spectral unmixing model (Figure 3).
However, the spectral determination of pure soil is difficult since it is not easy to find the
bare soil pixels in the natural alpine steppe, and the soil also has a variety of types over a
large region. Therefore, multitemporal and hyperspectral remote sensing data could be
considered in the future to extract each pixel with bare soil in the nongrowing season and
accurately distinguish soil types with more spectral detail [74].

We used all bands from 390 nm to 1020 nm to calculate the spectral diversity met-
rics of CVMulti (R2 = 0.61), which performed much better than the CV of single band
(R2 = 0.02~0.45) and CVNDVI (R2 = 0.37) to estimate the Shannon–Wiener index after soil
removal based on the linear spectral unmixing model (Figure 6). It indicated that the
multiple spectral bands could better explain the species heterogeneity than by a single
band or certain VIs. However, the redundant and highly correlated bands still need deep
analysis. For example, correlations and simple linear or random forest regression can be
used for selecting the most important and nonredundant bands and PCA may be applied
for extracting major axes to represent spectral heterogeneity. Additionally, the full spectral
range from visible light (380–780 nm) to near infrared (780–2500 nm) could be further
attempted to explore the effective band combinations.
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The spectral heterogeneity essentially reflects the differences of grassland species in
physiological and biochemical characteristics. Previous studies demonstrated that the many
biochemical characteristics of grassland, usually considered as functional diversity, could
be accurately estimated using remote sensing, such as chlorophyll a, b, β -carotene and
lutein by visible bands, leaf nitrogen content and carbon content by near infrared bands and
cellulose by shortwave infrared bands [75–78]. The ability of spectral diversity calculated
based on the bands which might be sensitive to specific biochemical characteristics even
exceeds that of NDVI for grassland diversity monitoring (Figure 6). With the relationships
among spectral diversity, functional diversity and species diversity of grassland being
further explored [35], the optimal functional components could also be used for indicating
the species diversity.

Besides the biochemical characteristics, the functional diversity of grassland also in-
cludes the structural characteristics [45,79]. The vertical canopy structure even would
mediate the link between spectral diversity and species diversity [80]. Although there
are still uncertainties for obtaining grassland canopy structures, several structural char-
acteristics of grassland have been estimated by terrestrial laser scanning. For instance,
Guimarães-Steinicke et al. [81] regarded mean height and LAI as metrics of vertical struc-
ture, community stand gaps, canopy surface variation and emergent flowers as metrics
of horizontal structure. Airborne or UAV-based LiDAR data could also be attempted to
estimate the canopy structure characteristics of grassland over large areas [82]. However,
the detection of grassland structure remains a challenge compared with forests, due to the
more complex canopy structure and the smaller size of individual plants.

In addition, for the methods of mapping the species diversity of grassland, we usually
consider the simple linear relationship between spectral diversity metrics and species
diversity. Nevertheless, when the fundamental biochemical, structural and spectral charac-
teristics related to the species diversity of grassland can be retrieved, a method of clustering
by machine learning would be an alternative approach to monitor grassland diversity by
remote sensing. For example, Zhao et al. [35] proposed a grassland species diversity esti-
mation model that integrated the optimal biochemical components as functional diversity
and spectral diversity based on the self-adaptive fuzzy c-means clustering algorithm.

4.2. Scales for Grassland Diversity Mapping

At the individual scale or leaf scale, spectral differences between species are enough
to distinguish one species from another. However, it is difficult, in natural grassland, to
separate individual tufts of different grassland species by some approaches applied in
forests, such as the improved watershed algorithm [83,84]. Currently, most studies on
grassland diversity mapping over a larger region were performed at pixel scale, just a few
studies used proximal imaging spectrometry with millimeter resolution to estimate the
species diversity of grassland, which was close to the individual scale [52,69]. Therefore,
the spatial resolution of the acquired image and the scale of window used for estimation
determine the accuracy of grassland species diversity mapping.

The commonly used Sentinel-2, Landsat TM and MODIS satellite data are mostly
applied to retrieve different grassland biophysical parameters and estimate grassland types,
communities or habitats by regression or classification model [85,86]. However, using these
satellite data to monitor grassland species diversity based on spectral variation hypothesis
is difficult, since the spectral variations are not just caused by species at such coarse spatial
resolution [40]. The UAV or airborne data with spatial resolution in sub-meters provide
the feasibility for estimating the α-diversity of the dominant species of grassland, which
could also bridge the gaps between ground and satellite observations [36]. However, the
mixture of several species within a pixel is the most common problem, even in this study
by 0.2 m UAV data. Additionally, the individual size and structure of grassland plants
also obviously varies between different grassland types, which exacerbates the problem of
species mixing. Therefore, the optimal spatial resolution for monitoring grassland diversity
at regional scale based on UAV or airborne still needs to be considered.
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For the window scale of grassland diversity mapping, we used 5× 5 pixels in this study
due to the 1 m × 1 m size of thefield sample plots. Then, the simple linear relationships
between spectral diversity and species diversity were demonstrated for species richness
less than 10 and a Shannon–Wiener index less than 2 in each window. However, the
spectral diversity could tend to reach saturation, due to the increasing species richness with
upscaling the window size, which might be similar to the empirical power-law relationship
between the species richness and area [87]. For example, Zhao et al. [35] found a tendency
of gradual saturation based on the spectral characteristics when the species richness of
grassland was above 17 within the estimation scale of 1.2 m× 1.2 m. Another study showed
a contrary result that there was no saturated trend even when the species richness reached
50 within the windows of 60 m × 60 m, based on airborne data [32]. In addition, the
window scale of diversity mapping is not only caused by the number of species, but also
related to the environmental heterogeneity. Therefore, the optimal window scale for species
diversity estimation in different study areas with different types of grassland and local
environmental factors needs further study in the future by setting a gradient of window
scale, especially for grassland with very high species richness.

5. Conclusions

In this study, we compared the relationships between four spectral diversity metrics
and two species diversity indices, and further assessed the impact of soil on species
diversity estimation based on UAV imaging spectroscopy in a natural alpine steppe in
the Sanjiangyuan National Nature Reserve of China. We proved that spectral diversity
metrics could be used to map grassland species diversity and the accuracy of estimation
was improved effectively after removing soil information by the linear spectral unmixing
model. Moreover, the Shannon–Wiener index and CVMulti were the better proxies of species
diversity and spectral diversity, respectively. This result is conducive to bridging the scale
gap for monitoring grassland species diversity from ground to near-ground by UAV data
and provides a reference for assessing the impact of soil on species diversity estimation.

The UAV imaging spectroscopy and LiDAR technologies make it possible to monitor
grassland species diversity at multiple perspectives and scales. These will also allow us
to develop various methods and understand the scale differences caused by grassland
itself and natural conditions. Further studies will explore the effectiveness of monitoring
grassland species diversity based on more vegetation characteristics, which could be re-
trieved by remote sensing, such as biochemical and structural characteristics. Additionally,
considering the variety of grassland types and their species, we suggest more attention
should be paid to the applicability of the window scale and spatial resolution for grassland
species diversity estimation, which would be a meaningful task for the accurate monitoring
of grassland species diversity at a national or even global scale.
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