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Abstract: The effects of the spatial resolution of remote sensing (RS) data on wildfire susceptibility 
prediction are not fully understood. In this study, we evaluate the effects of coarse (Landsat 8 and 
SRTM) and medium (Sentinel-2 and ALOS) spatial resolution data on wildfire susceptibility 
prediction using random forest (RF) and support vector machine (SVM) models. In addition, we 
investigate the fusion of the predictions from the different spatial resolutions using the Dempster–
Shafer theory (DST) and 14 wildfire conditioning factors. Seven factors are derived separately from 
the coarse and medium spatial resolution datasets for the whole forest area of the Guilan Province, 
Iran. All conditional factors are used to train and test the SVM and RF models in the Google Earth 
Engine (GEE) software environment, along with an inventory dataset from comprehensive global 
positioning system (GPS)-based field survey points of wildfire locations. These locations are 
evaluated and combined with coarse resolution satellite data, namely the thermal anomalies 
product of the moderate resolution imaging spectroradiometer (MODIS) for the period 2009 to 2019. 
We assess the performance of the models using four-fold cross-validation by the receiver operating 
characteristic (ROC) curve method. The area under the curve (AUC) achieved from the ROC curve 
yields 92.15% and 91.98% accuracy for the respective SVM and RF models for the coarse RS data. In 
comparison, the AUC for the medium RS data is 92.5% and 93.37%, respectively. Remarkably, the 
highest AUC value of 94.71% is achieved for the RF model where coarse and medium resolution 
datasets are combined through DST. 

Keywords: Sentinel-2; Landsat 8; SRTM; ALOS; heterogeneous data; forest fire; support vector 
machines (SVM); random forest (RF); susceptibility mapping; Dempster-Shafer theory 
 

1. Introduction 
Forests are envisaged as a vital natural resource that conserves stability in the 

environment. The forest’s condition is the proper environment indicator, primarily the 
shape and health [1]. Forests are considered a crucial part of the economy of a few 
communities living in the periphery of forests with social significance and fostering 
weather conditions [2]. Forests enclosed around 5.9 billion hectares of the land surface 
before industrialization and currently cover approximately 4 billion hectares that account 
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for 31% of the world’s land surface [3]. In recent times, wildfires are a grave problem that 
recurrently looms to extinguish a vast area of forests across the globe [4]. Wildfires have 
instigated severe destruction to ecosystems along with significant impairments to 
infrastructures and human lives. Major devastating wildfires in recent times occurred in 
Australia, the Amazon region, the United States [5], and different forest areas in Iran [1]. 
A wildfire is a disaster that can impact a community or ecosystem and can kill or severely 
injure wildlife, accounting for severe economic losses [6]. Wildfires have advanced into a 
very complex hazard, distressing habitats, people, and the economy. Forests are a 
valuable natural resource. Globally and in Iran, forests support the local communities’ 
economy. Wildfires can particularly affect young trees grown at the ground level, 
fostering deforestation. The frequency of forest fires has increased over the years. There is 
a need for far-reaching studies that support the monitoring and measures to mitigate the 
wildfires. 

The modeling and mapping of wildfire susceptibility depend on a multifaceted and 
multi-scaled system of wildfire factors, including slope, elevation, aspect, landcover, 
normalized difference vegetation index (NDVI), temperature precipitation, distance to 
roads, distance to rivers, village density, power wind speed, and wind speed. Landcover 
and NDVI can be easily derived from Landsat and Sentinel-2 satellite images with 
different resolutions. Topological features such as slope and aspect can be obtained from 
a digital elevation model (DEM). Moreover, the modeling and mapping accuracy of 
wildfire susceptibility highly depends on the size of the existing burned areas. In addition, 
as we are using global positioning system (GPS) points for training and accuracy 
assessment processes, proper DEM resolution is a prerequisite in wildfire susceptibility 
modeling and mapping. 

Similarly, the burned areas inventory points are important. The selection of 
appropriate spatial resolutions is increasingly addressed in literature [7–9]. However, the 
challenge of adequately representing hazard locations by a point feature as inventory 
together with image and raster data for training or testing the models needs to be 
investigated in greater detail.  

Several studies have mapped wildfire susceptibility in forest areas across the globe. 
Different spatial modeling strategies have been developed to simulate and predict the 
spatial pattern of wildfire probability in different geographical regions. Some of these 
studies use multi-criteria decision analysis (MCDA) to combine remote sensing 
information and the geographic information system (GIS) for wildfire susceptibility 
prediction (WSP). Eskandari and Miesel [10] used a knowledge-based analytical 
hierarchical process (AHP) to determine the importance of each wildfire conditioning 
factor. The weighting is typically derived from prior knowledge of different stakeholder 
groups, local communities, and academic experts’ weighted individual factors regarding 
wildfire susceptibility. These authors used AHP and fuzzy sets (fuzzy AHP) to predict 
high-risk wildfire regions in the Mazandaran Province, Iran. The fuzzy AHP compares 
the wildfire conditioning factors in an unbounded space representing uncertainty in the 
resulting WSP. Moreover, other models such as the evidential belief function model are 
applied for the WSP [11]. This model was used based on fourteen predicting variables and 
1162 wildfire points used for training and testing the model for WSPs in the Hyrcanian 
ecoregion, northern Iran. More recently, machine learning (ML) models have been 
extensively used to predict and analyze the spatial distribution of natural hazards like 
wildfires. ML models depend on the accessibility of the training data to train the model. 
Different ML techniques have particular advantages and drawbacks. The main advantage 
of integrating GIS models with ML models is usually a better performance of the resulting 
WSPs as well as a higher speed in data processing compared to conventional approaches 
like MCDA. ML models are state-of-the-art and have proven to be able to efficiently deal 
with non-linearity problems such as spatial simulation, modeling, and mapping, 
especially in natural hazard susceptibility mapping [12,13]. ML models have currently 
received more attention for WSPs. Kalantar et al. 2020 [14], in another instance, applied 
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the three ML models of boosted regression tree, support vector machine (SVM), and 
multivariate adaptive regression splines for the WSP using fourteen key indicators 
contributing to wildfires. Naderpour et al. [15] proposed a deep neural network for the 
WSP in the Northern Beaches region of Sydney, and the resulting WSP was then used for 
risk assessment in that area. Kim et al. 2019 [16] applied two ML models of random forest 
(RF) and maximum entropy (Maxent) to predict the locations of forest fires in South Korea. 
Their study yielded the highest wildfire probabilities around settlement areas. The study 
revealed that this hazard has a strong correlation with human-related variables. A 
comprehensive WSP study [17] evaluated several statistical approaches and ML models 
of an artificial neural network, multi-layer perceptron, DM neural, radial basis function, 
dmine regression, least angle regression, RF, support vector machine (SVM), self-
organizing maps, decision tree, and logistic regression. This study’s accuracy assessment 
revealed that RF represents the WSP with the highest accuracy of 88% area under the 
curve (AUC), followed by SVM with 79% AUC. As evident from the literature review, the 
resulting WSPs from the ML models were compared to each other to find the optimum 
model for this task. Although RF and SVM models have usually shown higher 
performance, there is no evidence that a particular method or approach is suitable for a 
specific hazard. Rather, the suitability of a method depends on the features of the study 
area, the availability of training data, and the spatial resolution of the data used [18]. Next 
to the choice of the WSP methodology, the spatial resolution of the remote sensing (RS) 
data in potential wildfire areas is essential, particularly in data-sparse conditions. The 
most used RS data for the WSP are optical data from satellite imageries along with DEM 
data. Some studies have evaluated RS data and resolutions for natural hazard assessments 
and susceptibility mapping, particularly the spatial resolution of DEMs. Mohammadi et 
al. 2020 [19] compared the impact of the spatial resolution of different DEMs derived from 
AIRSAR, ALOS-PALSAR, TanDEM-X, SRTM, and one generated from Sentinel-1 on the 
hydrological modeling in two different study areas in the Kurdistan Province, Iran, and 
in the Cameron Highlands, Malaysia. In addition, Chen et al. 2020 [20] evaluated the 
influence of the spatial resolution of seven DEMs ranging from 30 to 90 m for landslide 
susceptibility mapping. They applied statistical models, namely the entropy index, 
frequency ratio, and weight of evidence, and compared the performance of each model 
based on all applied DEMs. This study found that the highest accuracy was derived from 
70 m spatial resolution and concluded that a coarser spatial resolution does not necessarily 
result in the lower landslide mapping performance of susceptible areas. Therefore, there 
is no general rule on which type of ML model to use and what the ideal RS spatial 
resolution is [21]. 

Consequently, each natural hazard susceptibility mapping, including the WSP, is 
associated with uncertainty regarding prediction performance. This uncertainty is 
reflected in the resulting WSPs [22]. However, there is a considerable gap in the literature. 
While some studies evaluated uncertainty caused by the model performance in different 
natural hazard susceptibility mapping, we do not know whether the uncertainty in the 
resulting WSPs is caused by the model limitations or the spatial resolution of the data. 
Ghorbanzadeh et al. 2018 [23], for instance, applied a Monte Carlo simulation to evaluate 
the uncertainty of the predicted areas as highly susceptible to land subsidence by an 
analytical network process (ANP). Other studies that used the Dempster–Shafer theory 
(DST) of evidence for spatial modeling, event occurrence, and susceptibility mapping of 
natural hazards, including wildfires, have shown the DST’s capability to generate 
consistent wildfire probability maps. Their results confirm those of [16] in South Korea, 
where human-related factors like distance to settlements and high road density played an 
important role in wildfire occurrence. Mezaal et al. 2018 [24] applied this theory for 
combining the resulting predictions from three ML models of K-nearest neighbor, SVM, 
and RF for landslide areas. They employed the DST for fusion predictions from different 
ML models to produce a more accurate landslide map. Other authors used the DST to 
assess and map the susceptibility of other natural hazards. Nachappa et al. 2020 [25] used 
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it to optimize the flood susceptibility maps resulting from two different MCDA, namely 
the AHP and ANP, and two ML models, SVM and RF. DST could enhance the accuracy 
of MCDA and ML models. The best accuracy of 89.3% AUC was reached by combining 
the resulting susceptibility map from all four models. The result of flood susceptibility 
mapping using the DST technique was compared with frequency ratio and logistic 
regression models by Tehrany and Kumar, 2018 [26]. 

According to our literature review, although selecting the appropriate spatial 
resolution of the available Earth observation data is highly important in natural hazard 
studies, its application in WSP studies has received little attention. Specifically, the terrain 
characteristics derived from DEM significantly influence the WSP as the topography is 
correlated with fire size and duration, the direction of spread, fire line, and speed. 
Therefore, inspired by the literature mentioned above, this study evaluates the effects of 
coarse and medium spatial resolution RS data on the WSP. The main contributions include 
investigating the fusion of WSPs based on different spatial resolutions using the 
Dempster–Shafer theory and several wildfire conditioning factors. Figure 1 represents a 
summary of our proposed integration methodology and the working environment for 
each step. Except for the final steps of the methodology such as the fusion of WSP maps 
and accuracy assessment, the whole process was completed in Google Earth Engine 
(GEE). The proposed approach is applied to the actual situation of the whole forest area 
of the Guilan Province, Iran. Therefore, we aim to provide an in-depth assessment of the 
impact of the resolution of Earth observation data from different sources for wildfire 
susceptibility using GEE and machine learning approaches. Two ML models, SVM and 
RF, are trained and tested on these two datasets. We also compare which ML model and 
dataset is most suited for WSP. Additionally, we assess the application of the Dempster–
Shafer theory to optimize the resulting WSPs by combining the results from different 
datasets and models. 

 
Figure 1. The flowchart represents a summary of the integrated approach. The data preparation, 
preprocessing, multi-collinearity analysis, training of the applied machine learning models of the 
support vector machines and random forest, and the wildfire susceptibility prediction maps were 
performed in Google Earth Engine illustrated with the blue color. QGIS software was used to apply 
the Dempster–Shafer theory for data fusion, WSP optimization, and accuracy assessment. 
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2. Study Area 
The study area is the whole forestry area of Guilan Province, located in northern Iran 

(see Figure 2). The province has an international border through Astara with the Republic 
of Azerbaijan. It is bordered by Mazandaran Province from the east, Zanjan and Qazvin 
Provinces from the south, and Ardabil Province from the west. According to the statistics 
of this province, it is the tenth province in terms of population density, which includes a 
population density of 177 people per square kilometer. The rainfall is between 1200 and 
1800 mm in the coastal strip (Bandar Anzali and Astara) and reduces to less than 1000 mm 
in the Alborz mountainous areas in the south. The forests of Guilan cover a narrow area 
mainly in the northern slopes of this mountainous strip with a variety of species and 
animals. The potential of wood production and withstood activities of the local population 
have always been considered an important economic source for the local community and 
the government. The indigenous ranchers in the forest areas are rural people who are 
economically dependent on coal production. The activities of forest dwellers have altered 
the environment, and their activities are considered to be the major causes of wildfires in 
Guilan [27].  

 
Figure 2. The geographic location of the selected area under study, Guilan Province, is represented 
in the user interface of Google Earth Engine (GEE). 

3. Inventory and Conditioning Factors 
In this study, we identified wildfire locations using the moderate resolution imaging 

spectroradiometer (MODIS) thermal anomalies product and comprehensive field surveys 
using a GPS and detailed historical point records for a period of the recent ten years. All 
the fires that happened in our case study area in Guilan Province from 2009 to 2019 were 
acquired from MODIS hotspots available from https://modis.gsfc.nasa.gov/data/ 
(accessed on 10 December 2020). 

Based on the data availability, MODIS product, GPS, and historical records, 97 
wildfire locations were identified as a reliable and accurate inventory. These wildfire 
location points were then randomly classified into training and testing wildfire datasets 
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using four-fold cross-validation. The training wildfire datasets were used for model 
preparation and training, whereas the testing wildfire datasets were used for model 
performance assessment. Wildfire locations were represented as point features and 
needed to be converted to rasters with pixel sizes of 30 m and 10 m. This conversion of the 
wildfire location points to raster cells with different resolutions may considerably affect 
the WSP results [28]. Thus, in this work, we investigated the effect of the raster resolution 
on susceptibility mapping in conjunction with the algorithm used to transform landslide 
polygons into a raster structure. The different pixel sizes of 30 m and 10 m are represented 
in Figure 3. 

 
Figure 3. Illustration of converting a wildfire location (point) into a raster with different pixel sizes 
of 10 m and 30 m spatial resolution. 

Conditioning Factors with Different Spatial Resolutions  
Any assessment must select the causative or influencing factors that significantly 

impact the hazard assessment [29]. A wildfire is one of the most complex natural hazards 
in terms of severity, spread speed, coverage, and degrees of destruction. It is essential to 
identify the major conditional factors [30]. In this study, we identified 14 conditional 
factors that significantly influence the wildfire ignition and spread speed while 
considering the characteristics of the forest area of the Guilan Province, Iran, based on 
recommendations from previous studies on similar areas in nearby provinces. These 
conditioning factors have been chosen according to their relevance to the hazard as well 
as the study area characteristics. These conditional factors consist of four groups: 
topographical, meteorological/hydrological, vegetation, and anthropological factors. 
Topographical factors include elevation, slope, aspect, and plan curvature. They dominate 
the climatic situation, particularly the spatial distribution of temperature and 
precipitation, which control the life cycle of flora and fauna. Meteorological/hydrological 
factors include distance to rivers, the topographic wetness index (TWI), temperature, 
precipitation, mean wind power density (MWPD), and mean wind speed (MWS). The 
NDVI is a vegetation conditioning factor. It is known that in the Guilan Province, human 
activities of the local population and tourists cause ignitions and are responsible for 
wildfires [27]. Therefore, the essential anthropological conditional factors of distance to 
roads, village density, and landcover were selected for further analyses. Landcover has a 
profound influence on fire incidence [31]. 

The baseline map for extracting the topographical factors and some others like TWI 
is the DEM. In this study, for investigating the effect of the spatial resolution of the DEM 
on the WSP, two DEMs with different spatial resolutions were prepared from different 
sources. Our coarse DEM is the advanced spaceborne thermal emission and reflection 
radiometer (ASTER) global digital elevation model (GDEM) with an approximate 
resolution of 30 m, which is available from (https://asterweb.jpl.nasa.gov/gdem.asp) 
(accessed on 20 December 2020) (see Figure 4). The advanced land observing 
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satellite/phased array L-band synthetic aperture radar (ALOS/PALSAR) with 12.5 m 
spatial resolution can capture images under all-weather conditions and has day and night 
observation. It is extracted from https://vertex.daac.asf.alaska.edu/# (accessed on 20 
December 2020). 

Similarly, the NDVI and landcover factors were generated using Landsat-8 and 
Sentinel-2 satellite imagery with 30 m and almost 10 m spatial resolution, respectively (see 
Figure 5). The Landsat-8 is available from the United States Geological Survey (USGS) 
archive (http://earthexplorer.usgs.gov) (accessed on 20 December 2020), and Sentinel-2 is 
available from (https://scihub.copernicus.eu) (accessed on 20 December 2020) (see Table 
1). We resized the pixel size of ALOS DEM to the same as that of Sentinel-2 (10 m). All 
conditional factors were prepared to assess the WSP using ML models in the GEE 
platform. The wind-related factors of the MWPD and MWS are available from the wind 
global atlas archive (https://globalwindatlas.info/) (accessed on 20 December 2020). We 
obtained the distance to road and village density factors from Openstreetmap 
(https://www.openstreetmap.org/) (accessed on 20 December 2020). The conditional 
factors are represented in Figure 6, and Table 2 summarizes the literature review of the 
selected WSP factors and their significance. 

Table 1. Satellite data used for this study from the Earth engine data catalog. 

Dataset Resolution 
Landsat-8 30 m 
Sentinel-2 10 m 

SRTM 30 m 
ALOS PALSAR 12.5 m 
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Figure 4. Representation of the applied digital elevation models (DEMs) of (a) SRTM and (b) 
ALOS. 
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Figure 5. Conditioning factors derived from different DEMs and Landsat 8 and Sentinel−2 satellite 
images: (a) slope, (b) aspect, (c) plan curvature, (d) topographic wetness index (TWI), (e) landcover, 
and (f) normalized difference vegetation index (NDVI). 

Table 2. A summary of the literature review: significance of the selected conditioning factors for 
wildfire susceptibility prediction (WSP). 

Conditioning Factor Source Importance References 

Elevation 
ALOS  
SRTM  
 

The elevation is an essential feature of regional climate 
variations. The higher moisture in highlands prevents severe 
wildfires. 

[1,32] 

Slope ALOS 
SRTM 

This factor controls biodiversity and vegetation distribution. 
Additionally, fire fronts are faster on upward slopes. 

[31,33] 

Aspect 
ALOS 
SRTM 

Wildfire is distributed faster on east-facing slopes that receive 
more incoming solar radiation in mountainous areas. [1,14,34] 

Plan curvature ALOS 
SRTM 

This factor illustrates concavity or convexity of the 
topography, which is beneficial for assessing soil water 
content and distribution of vegetation.  

[14] 

TWI  ALOS 
SRTM 

This factor defines the aspect of steady-state soil wetness and 
is calculated as TWI = ln(α/tanβ) where α is the cumulative 
upslope drainage area for a given pixel, whereas tanβ is the 
slope angle at that pixel.  

[12] 

Landcover Sentinel-2 
Landsat 8 

Different landcover patterns have different impacts on 
wildfire distribution and risk. It is related to the interaction 
between the cover type and human activity.  

[17,35,36] 

NDVI Sentinel-2 
Landsat 8 

This index reflects the crown water content and the decrease 
of this index represents water stress, which provides more 
dry grass, brush, and trees (fuel) for wildfire, increasing its 
ignition probability and spread speed.  

[12] 

Distance to rivers GIS data 
Rivers are one of the entertaining human interests, and 
human activity directly relates to the wildfires. [34,37] 

Distance to roads Open street map This factor quantifies access to forest areas, anthropological 
movement, and human activities. 

[16,38] 

Temperature Meteorological 
data Radiant heat. [34,39] 

Precipitation 
Meteorological 
data 

Vegetation pattern and existing moisture that influence the 
speed of fire distribution. [12,36] 

Village density Open street map This index is used as a proxy for the amount of human 
activity. 

[31,34] 
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MWPD  Wind global atlas 
The mean wind power density (MWPD) measures the wind 
resource, which is also related to moistness content and 
oxygen.  

[35] 

MWS Wind global atlas 
The mean wind speed (MWS) is related to wildfires as the 
wind usually spreads the fire in the wind direction and 
makes it faster and more dangerous. 

[13,40] 
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Figure 6. The conditional factors considered in both datasets overlaid with the wildfire inventory 
points. The pixel size was resized based on the corresponding dataset. (a) Mean wind power density 
(MWPD), (b) mean wind speed (MWS), (c) precipitation, (d) temperature, (e) village density, (f) 
distance to rivers, (g) distance to roads, and (h) wildfire inventory. 
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4. Methodology 
4.1. Training and Testing Dataset Organization  

According to Ghorbanzadeh et al. (2018) [41], ML models result in a random output 
with little scientific value when the training and the test datasets are inappropriate. ML 
models often use a standard workflow that uses a training dataset to train the model and 
applies the trained model to predict phenomena like wildfire on unseen test data. One 
possible way to validate the results is based on a single hold-out dataset. This study used 
a four-fold cross-validation (CV) procedure for a more reliable model performance 
evaluation. The CV procedure removes dataset biases and prevents under/overfitting of 
the ML model in the optimization step [14]. This procedure was applied to appropriately 
prepare the dataset for training and testing the SVM and RF models. Therefore, the dataset 
d of wildfire inventory location/point was randomly partitioned into mutually exclusive 
four-folds of d1, d2, d3, and d4. Next, both ML models were run four times. For any time, 
one fold was not used for training and was reserved for validation. For example, when a 
model is run for the first time, the model is trained with d2, d3, and d4, while d1 is utilized 
to validate the model. Therefore, each time, 75% of the wildfire inventory points were 
used to train the model, and 25% of them were held out to validate the model performance 
(see Figure 7). Due to the amount of calculations in this study and the volume of our 
inventory dataset, the number of folds was selected as four. The CV procedure utilizes the 
training and test datasets and shall account for certain randomness associated with the 
resulting WSP. The whole procedure has been applied on both raster data sets with 30 m 
and 10 m pixel sizes. 

 
Figure 7. We used four-fold cross-validation (CV) for our wildfire inventory dataset. Each section 
represents a randomly selected fold of the inventory wildfire points. The sections with red color 
were used for testing, and those with blue color were used for training the ML models. 

4.2. Factor Analysis  
Factors in an ML model can be correlated. This training significantly affects the model 

performance [14]. The variance inflation factor (VIF) and quantitative tolerance methods 
were used to measure the spatial autocorrelation among the conditional factors that we 
used to generate WSPs. The tolerance is a broad form of a multiple correlation coefficient, 
which ranges from zero to one, and lower values refer to higher multi-collinearity. A high 
multi-collinearity between a variable and other independent variables means that the 
variable can also be predicted using the other variables [42]. At the same time, VIF refers 
to a measurement of the disagreement in a multivariate model using model variance with 
an individual variable. The degree of disagreement is obtained using a regression 
coefficient amplified due to collinearity in an ordinary least square regression [14]. The 
VIF, tolerance, and coefficient values have been calculated for both models of SVM and 
RF, aiming for the highest CV procedure accuracy. The coefficients that show the 
importance of conditional factors were standardized by Equation (1) [43]: 𝑊௦,(𝑘) = 𝑊(𝑘) − min 𝑊(𝑘)max𝑊(𝑘) − min 𝑊(𝑘) , 𝑘 = 1,2, 3, and 4 (1)



Remote Sens. 2022, 14, 672 14 of 31 
 

 

where 𝑊௦,(𝑘) is the standardized weight at kth model, k = 1, 2, 3, and 4 refer to SVM10, 
RF10, SVM30, and RF30; 𝑊(𝑘) is the derived weight by the kth model, and i is the index for 
the WSP conditioning factors.  

4.3. Google Earth Engine (GEE) Platform 
The Google Earth Engine (GEE) is a multi-petabyte public data catalog of commonly 

used geospatial and remote sensing data. The GEE particularly contains remote sensing 
images of the Earth’s surface captured by Landsat and Sentinel satellites. It also contains 
other datasets for landcover, as well as climate-related and environmental datasets. The 
collection is constantly updated at a rate of nearly 6000 satellite scenes per day from 
different sensors, typically provided within 24 h from the scene acquisition time. Users 
can add new datasets to the GEE from the public catalog or add their own dataset for 
further analysis using the REST interface. This way, high-performance computing has 
become possible for ordinary users, along with cloud-based computations for large 
petabyte data capacity [44]. Satellite data have been made freely available with global 
coverage, mainly geospatial and remotely sensed data through various agencies like 
NASA, the US Geological Survey, NOAA, European Space Agency, and others. This sharp 
increase in the availability of global-coverage remote sensing data is accompanied by the 
development of numerous precise tools for processing the geospatial and remote sensing 
data [45]. With all the easily accessible data from numerous sources, these resources’ 
captivating, complete benefit still entails effort and technical proficiency to derive 
significant and valuable results or outcomes. One of the most common hurdles faced is 
the management of information technology where the acquisition of data from multiple 
sources, storage of the enormous volumes of data derived from various sources, 
computational capabilities to deal with the vast data volumes, database management, and 
data processing frameworks restrict researchers or smaller organizations to make use of 
the freely available data to derive meaningful outcomes [46]. The GEE clearly lowers such 
barriers. Users can rapidly process vast amounts of remote sensing data without their own 
investments in computational capabilities, storage, and their own efforts to integrate data 
from multiple locations.  

The GEE is a cloud-based platform that allows one to access and analyze satellite and 
other geospatial data, including 40 years of historic Earth observation imagery. This 
renders it possible to perform comparisons and time-series analyses, usually for the entire 
globe, but it depends on the coverage of the particular satellite [47]. The main advantage 
of the GEE is the easy access to the (satellite) data archives and high-performance 
computing resources to process massive geospatial and remote sensing datasets that are 
processed and periodically updated. Additionally, the dissemination of results in the GEE 
is easy as the GEE can deploy user-developed algorithms without requiring proficiency 
in web application or programming. The GEE offers diverse satellite data that consumers 
can retrieve and incorporate into their applications, particularly Landsat, Sentinel-2, and 
NEXRAD. Landsat datasets are multispectral satellite images of the Earth’s surface from 
the United States Geological Survey (USGS) and National Aeronautics and Space 
Administration (NASA) with resolutions between 15 m and 60 m since 1982. Landsat-8 
satellite images are included for less populated areas but with lesser frequency. The 
Sentinel satellite images provided by the European Space Agency (ESA) have a resolution 
of 10–60 m. Sentinel-2 images with a resolution of 10 m are available with a frequency of 
5 days. The NEXRAD is a weather radar dataset derived from 160 high-resolution Doppler 
weather radars from the National Oceanic and Atmospheric Administration National 
Weather Service (NOAA-NWS), the Federal Aviation Administration (FAA), and the US 
Air Force. Next to the described remote sensing and geospatial data, climate and weather 
data (surface temperature, climate, atmospheric, weather), and geophysical (terrain, 
landcover, cropland) data, the GEE provides computational infrastructure for processing 
the data. It also provides APIs for connecting and making requests to GEE servers 
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(JavaScript and Python), and code editor, which is a web-based integrated development 
environment (IDE) for coding, prototyping, and visualizing the results [48]. 

4.4. Support Vector Machines (SVM) 
The support vector machine (SVM) is a supervised model, which is built on the 

statistical learning theory, also known as the maximum-margin classifier proposed by 
Vladmir Vapnik in 1995 ([49]. The SVM is a data mining approach that uses statistical 
learning theory and structural risk minimization theory to differentiate amongst two 
variants with a linear hyperplane [50]. The SVM can provide a good classification result 
when only a few training data samples are available. The main reason is that the closest 
samples can determine the position of a hyperparameter to the hyperplane [51]. Therefore, 
this model usually works better and shows higher performance than other ML models in 
the case of data scarcity [52]. The superlative hyperplane can be acquired when the 
splitting margins amongst the expressed classes of the problem are highest. The SVM, by 
nature, is a linear classifier. However, using the kernel trick, the SVM was generalized to 
nonlinear problems. This trick simply transforms the nonlinear data into a higher 
dimensional space where the data are linearly divisible. Thus, the SVM restructures the 
nonlinear domain into a linear one by creating a splitting hyperplane [53]. The sensitivity 
to the selection of the kernel function and setting the optimal parameters are considered 
the weaknesses of this model [54]. In our case, the radial basis function was selected 
following similar previous studies [17]. Therefore, a kernel width (γ) value of 0.95 was 
selected, and the regularization (C) parameter was set as 0.8 based on a test and trial 
process of previous studies. 

4.5. Random Forest (RF) 
The random decision forest algorithm was initially developed by applying the 

random subspace technique by Tin Kam Ho [55]. Later, the extension of this algorithm 
registered as ‘random forests (RF)’ was developed by Leo Breiman [56]. RF is an ML model 
where the input dataset is categorized to build an assortment of decision trees with a 
controlled variance or ideally an algorithm for classification and regression. The RF is a 
robust classifier in terms of accuracy in the case of lack of balance among the number and 
dimensionality of the training data sample at hand. RF has been widely used due to its 
ability to generate exceptional classification outcomes along with the increased processing 
speed [57]. It has also been widely applied in natural hazard spatial modeling since this 
ML model does not assume an underlying probability distribution for the data [51]. 

Furthermore, features are chosen arbitrarily while predicting at every phase. Each 
result is weighted based on the value derived from the votes. The majority of the votes 
are obtained based on the assessed decision trees’ outputs for the classification [58,59]. 
Uncertainty is a concern in each model. To overcome this issue in RF, it is recommended 
to use a single decision tree that yields greater prediction accuracy [60]. The critical 
practice in RF is to obtain a higher variance from diverse decision trees, which is essential 
in the classification technique. RF is considered as one of the top functioning non-
parametric ensemble learning models in susceptibility mapping and modeling. We set the 
maximum number of trees as 1000, which was chosen from a test and trial using values of 
(500, 1000, 1500, and 2000). However, the default value of 25 was considered for the 
number of variables in each split of the RF model. The applied RF model showed the best 
performance using the cutoff fraction value of 0.01 and the resampling process with 500 
repeats. 

4.6. Dempster–Shafer Theory (DST) 
The Dempster-Shafer Theory (DST) generalizes the Bayesian methodology known as 

a mathematical theory of evidence. It was introduced in the 1960s in the field of statistical 
inference by Arthur Dempster and developed later by Glenn Shafer into a general 
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framework for reasoning on epistemic uncertainty [61]. The DST offers an alternative 
means to the traditional probabilistic theory for general uncertainty and explicitly 
considers the probable unknown cause of the observed data. It also provides a robust 
framework that makes it possible to allocate a probability mass to sets or intervals as 
divergent to mutually exclusive single events [62]. This theory has been employed as a 
fusion algorithm to extract probability-based evidence enclosed in a dataset. This 
probability can be considered as the susceptibility of a phenomenon or existing of a 
geographical feature [63,64]. Therefore, the primary motivation for selecting the DST is its 
flexibility to characterize and integrate diverse types of evidence gained from different 
sources. The DST is an operative technique for modeling accuracy assessment which has 
a comparatively high degree of theoretical progress between the non-traditional theories 
for illustrating associated uncertainty within outputs. It starts by assuming a frame of 
discernment (Θ), which is a basic set of hypotheses in the case of some problem domains. 
All possible subsets of Θ subset are U, which has been named as the power set of Θ. In 
this theory, information is assigned with three fundamental functions that are denoted by 
(1) mass function (m) also called basic belief assignment or basic probability assignment, 
(2) the degree of belief function (Bel) which can be calculated exactly from a mass function, 
and (3) the degree of plausibility function (Pl). Bel can be observed as a lower bound for 
an unknown probability function P. Under a lower and upper probability interpretation, 
the plausibility Pl can be observed as an upper bound. The uncertainty interval or the 
probability domain can be represented by the interval [Bel, Pl], which is the uncertainty 
validated with the distinction between Bel and Pl values. Figure 8 shows graphically the 
relationships between Bel, Pl, and uncertainty.  

 
Figure 8. The general DST scheme illustrates the applied functions [61]. Reproduced with 
permission from Feizizadeh, Geoscience and Remote Sensing Letters; published by IEEE, 2018. 

The DST delivers an extension of the probability outline for measuring the associated 
uncertainty in any imprecise event of the probability P (Ml) in which the different methods 
Ml, l = 1, ..., n is accurate. The lower bound shows the degree of knowledge or belief that 
supports Ml and is represented by Bel (Ml). The upper bound refers to the probability of 
Ml, and named plausibility Pl (Ml) are calculated by Equations (2) and (3). 𝐵𝑒𝑙 (𝐴) =  𝑚(𝐵)⊆  (2)

𝑃𝑙 (𝐴) =  𝑚(𝐵)∩ஷ  (3)

The total amount of belief dedicated to a hypothesis A (A ⊆ U) with all subsets B 
(𝐵 ⊆ 𝐴) is denoted by Bel (A). The summation in Equation (3) is taking over all B∈ 2௵ 
with B ∩ 𝐴 ≠ 0, which takes into account all the elements related to A, either supported 
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by evidence or being unknown. The set of ɵ is mutually exclusive hypotheses and 
propositions, and the power set of ɵ is represented by 2௵ . ⌊𝐵𝑒𝑙 (𝐴), 𝑃𝑙 (𝐴)⌋ define the 
uncertainty interval for the subset of A, which has the following properties (Equations (4) 
and (5)): 

Bel(A) ≤ Pl(A) (4)

Pl(A) = 1 − Bel(Ā) (5)

where Ā is the negation of A and Bel (Ā) is named as the disbelief function. In contrast to 
the probabilistic theory that allocates a mass to each element of events, the theory of 
evidence or the bpa, makes m (A) on the set A of the P(U) power sets of the space U event, 
i.e., on a set of outputs rather than a single elementary event. This is a unique feature of 
the DST, which distinguishes it from other traditional probability theories. A mass 
function of the set of A or m (A) hypotheses measures the probability dedicated only to A 
and no subset of A [65]. Formally, a mass function is mapping the power set of U to [0, 1] 
and the mass of the empty set must be zero (Equation (6)): 

m: P(U) → [0, 1], m(φ) = 0 (6)

to solve implication problems, belief functions represent dissimilar pieces of evidence 
required to be combined in a meaningful way. The integration rules are a fundamental 
part of the DST. Generally, each part of the evidence is characterized by a separate belief 
function. The combined rules are then used sequentially to integrate these belief functions 
to obtain a belief function on behalf of all available evidence. 

The combination rule in the DST is for n sources of data. For each data with 1 ≤ i ≤ n, 
the probability masses mi (Bj) can be defined, where Bj  ∈ 2௵,  using the following 
equations: 

m(A) = m1(B1) ⊕ m2 (B2) ⨁  m3(B3) ….⨁ mn (Bn) (7)

m(A) = 
∑ ∏ (ೕ)సభಳభ∩ಳమ….ಳసಲ  (ଵି) , (8)

where K is a grade of the amount of conflict among the mass sets given in Equation (9): 

K = ∑ ∏ 𝑚(𝐵)ୀଵభ∩మ….ୀ  (9)

5. Results  
5.1. Multi-Collinearity Analysis among Conditional Factors 

We estimated the multi-collinearity among our WSP conditional factors in reducing 
repetitive spatial information in the training of the ML models. The results of the multi-
collinearity among the WSP conditional factors are shown in Figure 9. A factor’s VIF 
values of less than five and tolerance values of more than 0.1 mean no multi-collinearity 
[14]. According to the represented results in this figure, all applied conditional factors 
have acceptable VIF and tolerance values. Therefore, all these factors were considered for 
training the SVM and RF models. The factor elevation in RF30 and the perception in RF10, 
received the lowest VIF values of 1.012 and 1.014, respectively. 

In comparison, the factor NDVI yielded maximum SVM10 and RF10 VIF values of 1.196 
and 1.198, respectively. As expected, NDVI received the lowest tolerance values: 0.834 for 
SVM10 and 0.835 for RF10. The highest tolerance value of 0.988 was attributed to the 
elevation factor, which is still acceptable. The resulting coefficient values are shown in 
Figure 9. This figure illustrates that the two ML models with two different training data 
were consistent in conditioning factors, especially NDVI, TWI, landcover, and 
temperature. NDVI was the most crucial factor contributing to the WSP in Guilan 
Province, followed by TWI. Other factors such as wind speed, elevation, and precipitation 
yielded relatively low importance for the WSP mapping in this study area. Although TWI 
ranked high, its impact was very low when using SVM30. For SVM30, the factors wind 
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speed, and power wind speed yielded the highest importance values for training this 
model.  
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Figure 9. The multi-collinearity assessment and coefficient values for the applied WSP conditional 
factors in this study. 

5.2. Wildfire Susceptibility Prediction (WSP) Maps Using Machine Learning (ML) Models 
We investigated the performance of the four-fold CV on the two ML models. Overall, 

the map of the best performance of the models is represented in Figure 10. The WSP maps 
were generated using ML models of SVM and RF for two different spatial resolutions of 
10 m and 30 m data. The natural break algorithm classified the resulting WSPs into very 
low, low, moderate, high, and very high classes. The results of the classification are shown 
in Figure 10. Several current studies prove the expansion of successful ML models in 
spatially explicit wildfire modeling and mapping, e.g., [7,14,15,39,40]. Here, the two ML 
models of SVM and RF were evaluated. The models’ predictive abilities were compared 
using conditional factors from different spatial resolutions to estimate the spatially 
explicit WSP across a forestry area. Although the same ML models (with the same 
parameters) and exactly the same wildfire inventory dataset were used for the WSP, the 
results of using conditional factors with different spatial resolutions turned out to be sig-
nificantly different.  
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Figure 10. The resulting wildfire susceptibility prediction (WSP) maps from (a) SVM30, (b) SVM10, 
(c) RF10, (d) RF30. 

5.3. Dempster–Shafer Theory (DST) Optimization 
This study used DST to fuse the ML models’ resulting WSP maps trained based on 

the coarse (Landsat 8 and SRTM) and medium (Sentinel-2 and ALOS) spatial resolutions 
for Guilan Province. Through DST, we integrated the results from RF10 and SVM10 based 
on the 10 m medium spatial resolution as well as the resulting WSP maps from the 30 m 
coarse spatial resolution dataset for RF30 and SVM30. Moreover, we also integrated the 
results of one ML model trained with two different resolutions while considering the 
medium resolution as the base pixel size for data fusion. The resulting WSP maps from 
each ML model and each dataset have been considered as the initial data evidence to 
create a modeling hypothesis of the integration technique. This was processed through 
the represented wildfire susceptibility prediction value in every single pixel of the WSP 
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map, given the evidence of the probability and wildfire occurrence locations P(x)) of only 
the training inventory dataset. 

Consequently, we calculated the belief, plausibility, and confidence interval layers. 
The resulting pixel values ranging from 0 to 1 denote the susceptibility wildfire occurring 
probability for each pixel either 10 or 30 m. The belief value was calculated by ∀A∣A∈P(Θ): 
Bel (A) = ∑ X ⊆Aμ(X), where Bel (A) is a probability ranging from 0 to 1. The resulting 
belief value accounted for the area of a given pixel. Each pixel’s value was the wildfire 
susceptibility probability derived from both WSP maps involved in DST integration. In 
addition, we calculated the plausibility using ∀A∣A ∈ P(Θ): PI (A) =∑ X ∩ Aμ (X), where PI 
(A) is a probability value ranging from 0 to 1 [22,66]. Therefore, each pairwise WSP map 
was used for the DST integration process. The areas considered susceptible regions to 
wildfire using different spatial resolutions and ML methods were categorized into five 
susceptibility classes, from very low to very high. Class one refers to high and very high 
susceptibility. Thus, a DST-based WSP map can be considered the spatial distribution of 
the degree of support for the wildfire susceptibility [24]. The DST combined the majority 
of wildfire susceptible areas closer to the inventory dataset and then allocated them into 
the class of wildfire areas based on the DST (see Figure 11).  
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Figure 11. The resulting wildfire susceptibility prediction (WSP) maps from the DST technique by 
integrating (a) RF10 & 30, (b) SVM10 & 30, (c) SVM10 & RF10, (d) SVM30 & RF30. 

5.4. Cross-Validation (CV) 
As mentioned, we used a four-fold CV procedure for a more consistent evaluation of 

the performance of the applied ML models. Stepwise, 25% of the wildfire inventory 
dataset was a hold-out for validating the model. We used the ROC curve method, a 
common accuracy assessment approach to assess the performance of the SVM and RF 
models and the results of DST by investigating the conformity among the validation folds 
of the inventory dataset and the results of the used methods. The ROC curve method is 
typically applied to investigate the quality of a map. The plotted ROC curves indicate the 
trade-off between the false positive rate on the X and Y axis and the true positive rate on 
the Y axis. The area under the curve (AUC) is a measurement calculated by Equation (10): 

AUC = (ሾ𝑥ାଵ  1 − 𝑥ሿ ∗ ሾ𝑦  (𝑦ାଵ − 𝑦)/2ሿ)ୀଵ  (10)
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where, 𝑥 is the percentage of incorrectly predicted pixels for 𝑖, 𝑦 is the percentage of 
correctly predicted pixels for 𝑖, and the value of 𝑛 is referred on the number of whole 
pixels [67]. The resulting AUC values for a WSP map close to one indicate high accuracy 
of that map, whereas AUC values close to zero reveal that the prediction is random. Table 
3 provides linguistic explanations of the resulting values. Figure 12 shows the ROC curves 
and the AUC values for all resulting WSP maps based on the applied four-fold CV.  

Table 3. The linguistic representation of the area under the curve (AUC). 

AUC Values Linguistic Explanation 
1–0.90 Excellent 

0.90–0.80  Good 
0.80–0.70 Fair 
0.70–0.60  Poor 
0.60–0.50 Fail 

The AUC measurements for all ML-based WSP maps of medium and coarse spatial 
resolution yielded more than 89% accuracy for all applied folds. The highest accuracy was 
based on the SVM model trained with 10 m spatial resolution, with an AUC value of 
almost 96% (see Figure 12b). However, for the same fold and dataset, RF also reached a 
very high value of 95.38 (see Figure 12d). The lowest resulting AUC values for the SVM 
and RF models for the 30 m resolution data were 89.58% and 89.08%, respectively. In 
comparison, those of the 10 m resolution data were 90% and 92.08%, respectively. 
Although the resulting AUC values are not far from each other, training and testing the 
ML models based on the coarse (30 m) resolution data showed the weakest performance.  

We also performed an accuracy assessment for WSP maps based on the DST. This 
optimization could increase the accuracy of almost all of the resulting WSP maps (see 
Figure 12e–h). The highest AUC value was based on the application of the DST integrating 
the SVM and RF derived from the 10 m dataset, which yielded an accuracy of more than 
97.5% (see Figure 12h). The lowest AUC value of 91.06% was obtained from the fusion of 
the SVM results from the coarse and medium datasets with AUC values of 89.58% and 
90%, respectively (see Table 4). 
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Figure 12. The resulting ROC curves based on the four-fold CV for (a) SVM by coarse dataset 30 m, 
(b) SVM by medium dataset 10 m, (c) RF by coarse dataset 30 m, (d) RF by medium dataset 10 m, 
(e) DST using SVM results for coarse 30 m and medium 10 m datasets, (f) DST using RF results for 
coarse 30 m and medium 10 m datasets, (g) DST using results from SVM and RF-based on coarse 
dataset 30 m, (h) DST using results from SVM and RF-based on medium dataset 10 m. The corre-
sponding ROC curve of the highest value of AUC measurement in each four-fold is specified by 
orange color. 
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Table 4. The accuracy results for each fold of the applied cross-validation (CV) in percent. The 
obtained highest accuracy is bolded for each fold. 

Method AUC Fold 1  AUC Fold 2  AUC Fold 3  AUC Fold 4  AUC CV  
SVM10 92.59 91.44 95.98 90 92.5 
SVM30 91.6 91.67 95.77 89.58 92.15 
RF10 92.68 93.33 95.38 92.08 93.37 
RF30 89.08 89.58 94.78 94.59 91.89 

DST_ SVM10 & 30 92.88 92.4 96.26 91.06 93.15 
DST_ RF10 & 30 93.32 92.97 97.36 95.21 94.71 

DST_ SVM10 & RF10 93.12 94.51 97.55 93.13 94.57 
DST_ SVM30 & RF30 92.37 92.36 95.09 94.21 93.5 

Average of each fold 92.2 92.3 96.02 92.49 93.23 

6. Discussion  
Developing the best WSP methodology is a challenging task because of the associated 

spatial heterogeneity of the conditioning factors [14]. This challenge increases when the 
conditional factors stem from data with different spatial resolutions. Identifying potential 
wildfire zones is essential for a better understanding of the wildfire dynamics in wildfire-
prone regions. Literature studies revealed that the common ML models of SVM and RF 
are appropriated for modeling WSPs [14,15,39]. However, the accuracy of a resulting WSP 
map is directly related to the applied ML model’s performance, which highly depends on 
the characteristics of the input data and the inventory data. Therefore, it is crucial to eval-
uate these characteristics, such as the spatial resolution of the input data regarding their 
application in ML models’ training and testing. Many conditional factors in wildfire mod-
eling are typically derived from satellite imagery. In this study, two different input da-
tasets with coarse (Landsat 8 and SRTM) and medium (Sentinel-2 and ALOS) spatial res-
olutions have been used for WSPs in Iran’s Guilan Province using the SVM and RF mod-
els. Studies show that ML models perform better for susceptibility predictions and map-
ping different natural hazards than knowledge-based multi-criteria decision-making and 
statistical approaches [25]. 

Moreover, ML models are valuable decision support tools to simulate and expand 
the knowledge of wildfire risk management [1,17]. However, these models show various 
performances as they deal with data of different spatial resolutions [20]. In addition, the 
structure and nature of each ML model vary noticeably, resulting in different WSP maps. 
This can be problematic as these WSP maps shall be used by decision-makers and natural 
resource managers and shall enable them to develop and implement corresponding envi-
ronmental plans [25]. Furthermore, different ML models and datasets have been sepa-
rately used for WSP map production in different wildfire-prone regions. For example, to 
produce a wildfire susceptibility prediction map, Eskandari et al. [14] compared the per-
formance of the SVM model with some other ML models to produce WSP maps in the 
forests and rangelands of Golestan Province in northeastern Iran. The spatial resolution 
of the conditional factors was set to 30 m as they used ASTER DEM (30 m resolution), 
available from USGS (https://earthexplorer.usgs.gov) (accessed on 20 December 2020). 
Similar to this study, they used the DEM to determine their topographical factors, such as 
plan curvature and TWI, and the other conditional factors were resized based on that of 
the applied DEM. 

Therefore, comparative assessments are necessary to evaluate the performance of ML 
models in different conditions and to be able to evaluate the resulting WSPs. In our work, 
we applied a DST for integrating the ML model results from different spatial resolutions 
to produce optimized WSP maps. In addition, we analyzed the WSP results from different 
ML models, trained and tested by the same spatial resolution dataset aiming to achieve 
optimized WSP maps with higher accuracy. The resulting WSPs showed some sort of var-
iation when using a four-fold CV, but an apparent pattern that was similar for all CV 
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scenarios. The difference in the accuracy of the applied ML models was slight, with a 
maximum of 5.8 percentage points (between RF10 in the third fold and SVM30 in the fourth 
fold). This minor difference illustrates that the performance of different ML models is gen-
erally high with no outliers, even by using data with different spatial resolutions. How-
ever, using a dataset with medium (30 m) spatial resolution generally performed slightly 
better and resulted in WSP maps with higher accuracy in both ML models. Therefore, we 
expected that the DST optimization would produce the best results from integrating RF10 

and SVM10. This has happened for the third fold, with an overall result of 97.55%. How-
ever, the highest CV accuracy was obtained by integrating RF10 and RF30. This yielded 
about 0.15 percentage points more than the combination of RF10 and SVM10. The generated 
WSP maps were classified into five classes from very low to very high susceptibility of 
wildfire. The percentage of the area of each class is presented in Table 5. The RF10 model 
predicted the largest amount of areas falling into the class of very high susceptibility to 
wildfire with 11.22%. WSP maps from the integration of RF10 and SVM10 yielded an area 
of 9.74% for the class of very high susceptibility. The lowest percentage of this class was 
derived from SVM30, with the moderate class of 27.6%. 

Table 5. The percentage of the area of each wildfire susceptibility class. 

Method Very low  Low  Moderate  High  Very high  
SVM10 18.08 22.55 22.31 26.91 10.12 
SVM30 13.78 29.94 27.6 24.28 4.36 
RF10 28.6 20.31 21.05 18.8 11.22 
RF30 31.98 21.02 21.31 14.94 10.73 

DST_ SVM10 & 30 17.81 22.77 22.31 28.46 8.63 
DST_ RF10 & 30 23.9 26.37 24.01 19.8 5.89 

DST_ SVM10 & RF10 25.57 25.8 24.03 14.85 9.74 
DST_ SVM30 & RF30 20.96 23.22 27.14 20.06 8.5 

7. Conclusions 
The first goal of the presented study was to assess the use of wildfire susceptibility 

conditional factors with different spatial resolutions for WSP map production using two 
common ML models, namely the SVM and RF. The second goal was to evaluate if the DST 
can integrate the resulting WSP maps from different spatial resolution datasets while op-
timizing the accuracies of the derived WSP maps. This study showed that the RF model 
resulted in slightly higher accuracy than the SVM model. Moreover, the results for the 
study area of Iran’s Guilan Province demonstrate that the higher spatial resolution da-
tasets yielded slightly more accurate wildfire susceptibility maps. Additionally, the fusion 
of these results with those derived from medium spatial resolution could even produce 
more accurate WSP maps. The study also shows that it was possible to integrate WSP 
maps with a different spatial resolution. This could slightly increase the accuracy and re-
liability of the resulting map. We demonstrated that integrating the two ML models using 
the DST technique could further increase the accuracy for predictive modeling and map-
ping wildfire susceptibility. This optimization technique was indeed able to enhance the 
performance of the separate use of RF and the SVM through their combination. Our future 
work may focus on a similar methodology framework but using spatially explicit poly-
gons of burned areas as inventory data instead of commonly available points representing 
fire locations. 
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radar 

(ALOS/PALSAR)  

analytical hierarchical process (AHP) 

analytical network process (ANP) 

area under the curve (AUC) 

climate hazards group infrared precipitation with station data (CHIRPS) 
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National Oceanic and Atmospheric Administration National Weather 

Service 

(NOAA-NWS)  

Next-Generation Radar (NEXRAD)  

normalized difference vegetation index (NDVI) 

random forest (RF) 

receiver operating characteristic (ROC) 

remote sensing (RS) 

shuttle radar topography mission (SRTM) 

support vector machines (SVM) 

topographic wetness index (TWI) 

United States Geological Survey (USGS) 
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US Air Force (USAF) 

variance inflation factor (VIF) 

wildfire susceptibility prediction (WSP) 
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