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Abstract: The increasing availability and variety of global satellite products provide a new level of
data with different spatial, temporal, and spectral resolutions; however, identifying the most suited
resolution for a specific application consumes increasingly more time and computation effort. The
region’s cloud coverage additionally influences the choice of the best trade-off between spatial and
temporal resolution, and different pixel sizes of remote sensing (RS) data may hinder the accurate
monitoring of different land cover (LC) classes such as agriculture, forest, grassland, water, urban,
and natural-seminatural. To investigate the importance of RS data for these LC classes, the present
study fuses NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16 days; L) and
Sentinel-2 (10 m, 5–6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250
m, 16 days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m,
eight day)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills
regions’ cloud or shadow gaps without losing spatial information. These eight synthetic NDVI
STARFM products (2: high pair multiply 4: low pair) offer a spatial resolution of 10 or 30 m and
temporal resolution of 1, 8, or 16 days for the entire state of Bavaria (Germany) in 2019. Due to
their higher revisit frequency and more cloud and shadow-free scenes (S = 13, L = 9), Sentinel-2
(overall R2 = 0.71, and RMSE = 0.11) synthetic NDVI products provide more accurate results than
Landsat (overall R2 = 0.61, and RMSE = 0.13). Likewise, for the agriculture class, synthetic products
obtained using Sentinel-2 resulted in higher accuracy than Landsat except for L-MOD13Q1 (R2 = 0.62,
RMSE = 0.11), resulting in similar accuracy preciseness as S-MOD13Q1 (R2 = 0.68, RMSE = 0.13).
Similarly, comparing L-MOD13Q1 (R2 = 0.60, RMSE = 0.05) and S-MOD13Q1 (R2 = 0.52, RMSE = 0.09)
for the forest class, the former resulted in higher accuracy and precision than the latter. Conclusively,
both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest monitoring; however, the
spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent and faster
than that of S-MOD13Q1 with the 10-m spatial resolution.

Keywords: Landsat; Sentinel-2; NDVI; fusion; agriculture; grassland; forest; urban; water

1. Introduction

Over the past five decades, satellite remote sensing (RS) has become one of the most
efficient tools for surveying the Earth at local, regional, and global spatial scales [1]. Avail-
ability of multiple historical records and increasing resolutions of globally available satellite
products provide a new level of data with different spatial, temporal, and spectral resolu-
tions, creating new possibilities for generating accurate datasets for earth observation [2].
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However, the pre-process to find out the best scale for monitoring any specific land cover
(LC) class (such as agriculture, forest, grassland, etc.) is very time-consuming and needs
high computation power. Most of the freely available high spatial resolution products, such
as Landsat (30 m) and Sentinel-2 (10 m), hinder the accurate and timely-dense monitoring
of LC classes because of their significant data gaps due to cloud and shadow coverage [3,4].
A possible solution to fill those observation gaps could be resolved by the process of multi-
sensor data fusion, where a high spatial resolution product (high pair) is synchronized with
a coarse/low spatial resolution satellite product (low pair) with high revisit frequency [4].
The Moderate Resolution Imaging Spectroradiometer (MODIS) is the most suitable low
pair imagery, which has provided multi-spectral RS for monitoring different land use
classes with a daily or weekly revisit since 2001 [5,6]. Due to its high temporal availability,
spatial and temporal filtering methods could eliminate cloud-contaminated pixels with
high accuracy [7–9]; however, the effectiveness for fine-scale environmental applications is
relatively low and limited by the spatial resolution of 250 to 1000 m [4]. In addition, the
availability of multiple MODIS products with different spatial and temporal characteristics
complicates the decision-making to choose the best suitable low pair MODIS imagery for
data fusion.

Since 2006, many spatiotemporal fusion models have been developed. An important
initiative in fusion modeling was started by [10], who created the spatial and temporal
adaptive reflectance fusion model (STARFM) to blend data from MODIS and Landsat sur-
face reflectance. Since then, STARFM is one of the most widely used algorithms in literature
for detecting vegetation change over large areas [11–14]. However, its unsuitability for
heterogeneous landscapes and its ability to fuse Landsat and MODIS data encouraged the
development of design and usage of later fusion algorithms [15,16].

Unlike STARFM, most of the available fusion algorithms need special permissions
for their use. Due to its public availability of code and simplicity of design, the bench-
mark of improvement in many spatiotemporal algorithms, such as enhanced STARFM
(ESTARFM) [17], Flexible Spatiotemporal Data Fusion method (FSDAF) [18], the spatial
and temporal data fusion approach (STDFA) [19], the spatial and temporal adaptive algo-
rithm for mapping reflectance change (STAARCH) [20], the sparse representation-based
spatiotemporal reflectance fusion model (SPSTFM) [21], and the satellite data integration
(STAIR) [22], was based on the functioning of STARFM [23,24]. Most spatiotemporal fusion
models focus on the fusion of Landsat and MODIS data, and very few studies have tried to
research and deeply compare other RS data [18,25]. As Normalized Difference Vegetation
Index (NDVI) is the most widely acknowledged indicator in many RS applications, many
fusion algorithms are designed for blending different reflectance bands than focusing
on NDVI, which can be similarly effective and much faster [26–29]. For example, a Spa-
tiotemporal fusion method to Simultaneously generate Full length normalized difference
vegetation Index Time series (SSFIT) yields in better accuracy and efficiency as compared
to some typical spatiotemporal fusion models [30].

Thus, the present study tries to overcome the limitation of the most easily accessible
fusion algorithm: STARFM. The study checks the algorithm’s potential by replacing Landsat
with Sentinel-2, as STARFM is not only restricted to MODIS and Landsat data. Among
the wide range of available MODIS datasets, the study makes use of four different MODIS
products with different spatial and temporal resolutions such as MOD13Q1 (16-day, 250 m),
MCD43A4 (1-day, 500 m), MOD09GQ (8-day, 250 m), and MOD09Q1 (1-day, 250 m).
Concerning the suitability of STARFM for homogeneous landscapes, the study compares the
accuracy of synthetic products for six LC classes (agriculture, forest, grassland, semi-natural,
urban, and water) using a detailed and comprehensive LC map of Bavaria (Germany). In
brief, the present study compares the output of 8 (2 (high pair: Landsat and Sentinel-2) × 4
(low pair: MODIS)) different NDVI STARFM products on six LC classes in 2019 for the
entire state of Bavaria.
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2. Materials and Methods

The general workflow of the study is shown in Figure 1. Different combinations of low
spatial resolution (low pair) data (MOD13Q1 (16-day, 250 m), MCD43A4 (1-day, 500 m),
MOD09GQ (8-day, 250 m), and MOD09Q1 (1-day, 250 m)) and high spatial resolution (high
pair) data (Landsat 8 (16-day, 30 m) and Sentinel-2 (5–6-day, 10 m)) are used as an input
to STARFM. The fusion process generates eight synthetic NDVI products for Bavaria in
2019. Before data fusion, the input satellite data is preprocessed by removing the clouds
and shadows using quality assurance (QA) data (Figure 2). The NDVI of the raw satellite
data is calculated, and then the gaps by cloud and shadow removal were filled by linear
interpolation in the following steps. In the last stages of preprocessing, the input data is
reprojected, resampled, and masked using the LC map of Bavaria for 2019. The correlation
analysis and accuracy assessment of 8 synthetic NDVI products are done separately for
every LC class (agriculture, urban, forest, grassland, water, and natural-seminatural). The
high and low pair data sets are downloaded and preprocessed in Google Earth Engine
(GEE), and the fusion analysis is done in R (version 4.0.3) using RStudio at the University
of Wuerzburg, Germany.
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Figure 1. Flowchart of data used and processed to generate the synthetic NDVI time series using
STARFM; STARFM = Spatial and Temporal Adaptive Reflectance Fusion Model; NDVI = Normalized
Difference Vegetation Index; L-MOD09GQ = Landsat-MOD09GQ; L-MOD09Q1 = Landsat-MOD09Q1;
L-MCD43A4 = Landsat-MCD43A4; L-MOD13Q1 = Landsat-MOD13Q1; S-MOD09GQ = Sentinel-2-
MOD09GQ; S-MOD09Q1 = Sentinel-2-MOD09Q1; S-MCD43A4 = Sentinel-2-MCD43A4; S-MOD13Q1
= Sentinel-2-MOD13Q1; AA = Accuracy Assessment.
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Figure 2. The cloud-free scenes are available for (a) Landsat and (b) Sentinel-2. Nine cloud-free
scenes were collected for the Landsat data, and thirteen were collected for the Sentinel-2 data. The
maps show the NDVI values from -1 to 1 for the entire Bavaria during 2019.

2.1. Study Area

The study area of Bavaria is located between 47◦N and 50.5◦N, and between 9◦E and
14◦ E, in the southeastern part of Germany (Figure 3). The topography strongly influences
the region’s climate, with higher elevations in the south (northern edge of the Alps) and
east (Bavarian Forest and Fichtel Mountains). The mean annual temperature ranges from
−3.3 to 11 ◦C, but in most of the territory, the mean annual temperature ranges between
8 and 10 ◦C [31]. The mean annual precipitation sums range from 515 to 3184 mm, with
wetter conditions in the southern part of Bavaria. In 2019, the landcover was highly
dominated by forest (36.91%) and agriculture (31.67%) (based on LC map of Bavaria, 2019).
The agricultural areas are mainly found in the northwest and southwest of Bavaria, while
forest cover dominates towards the Alps and in the east of Bavaria. The other landcover
classes like grassland, urban, natural-semi natural, and water cover, 19.16%, 8.97%, 1.84%,
and 1.44%, respectively (based on LC map of Bavaria, 2019). Open grasslands and larger
water areas are primarily localized in the Alpine region and Alpine foothills. Bavaria is
divided into 96 counties, with Munich and Nuremberg constituting the most significant
metropolitan areas.
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Figure 3. The LC map of Bavaria is obtained by combining multiple inputs of Landcover maps such
as Amtliche Topographisch-Kartographische Informationssystem (ATKIS), Integrated Administration
Control System (IACS) Corine LC, into one map. Agriculture (peach green) dominates mainly in
the northwest and southeast of Bavaria, while forest and grassland classes (dark green and yellow,
respectively) dominate in the northeast and south. The enlargement shows the urban area of the
city Würzburg.



Remote Sens. 2022, 14, 677 6 of 25

2.2. Data

The study collected different satellite data with different spatial and temporal reso-
lutions. A brief description of the data used in the present study with their spatial and
temporal resolutions and references are shown in Table 1.

Table 1. A summary of the collected datasets. The satellite data used are Sentinel-2, Landsat 8,
and Moderate Resolution Imaging Spectroradiometer (MODIS) MOD09Q1, MOD09GQ, MCD43A4,
MOD13Q1; the Land Cover (LC) data is based covers six land use classes of Bavaria: agriculture,
forest, urban, water, natural-semi natural, and grassland.

Data Product Name Resolution Spatial-Temporal References

Satellite data

Sentinel Sentinel-2 10 m 5–6 days www.corpenicus.eu (accessed on 21 June 2021)
Landsat Landsat 8 30 m 16 days www.usgs.gov (accessed on 21 June 2021)

MODIS

MOD09GQ 250 m 1 day www.lpdaac.usgs.gov (accessed on 21 June 2021)
MOD09Q1 250 m 8 days www.lpdaac.usgs.gov (accessed on 21 June 2021)
MCD43A4 500 m 1 day www.lpdaac.usgs.gov (accessed on 21 June 2021)
MOD13Q1 250 m 16 days www.lpdaac.usgs.gov (accessed on 21 June 2021)

Vector
data

Land Cover
(LC)

LC Map of
Bavaria 2019 www.landklif.biozentrum.uni-wuerzburg.de

(accessed on 21 June 2021)

2.2.1. Satellite Data
High Spatial Resolution NDVI Products: High Pairs

For the spatio-temporal analysis, the study uses freely accessible spatially high-
resolution products from Landsat 8 Land Surface Reflectance Code (LASRC) and Sentinel-2
Copernicus program. The LASRC Tier 1 has a spatial resolution of 30 m on a Universal
Transverse Mercator (UTM) projection and provides seven spectral bands (coastal/aerosol,
blue, green, red, near-infrared (NIR), shortwave infrared (SWIR) 1, SWIR 2). The data is
atmospherically corrected using LASRC. The given quality assessment band “pixel_qa,”
generated using the C function of mask (CFMask) algorithm, removes snow (using the Bit
4 of pixel_qa), clouds (Bit 5), and cloud-shadows (Bit 3) via the snow, shadow, and cloud
masks. After preprocessing, the available snow-free, cloud-free, and shadow-free Landsat
images were acquired in 2019 for the state of Bavaria at the following day-of-year (DOY),
date respectively: 49 (18 February), 81 (22 March), 145 (25 May), 177 (26 June), 193 (12 July),
209 (28 July), 225 (13 August), 241 (29 August), and 289 (16 October) (Figure 2).

The study also uses Sentinel-2 data that allows for multi-spectral imaging with
12 spectral bands in 10–20 m spatial resolution, with global coverage and a five-day
revisit frequency. The surface reflectance data of Sentinel-2 is downloaded from the
Copernicus Open Access Hub and processed using the Google Earth Engine (accessed
on 2 August 2021) [32]. The data was computed by sen2cor, where the cloud-free im-
ages are produced using three quality assessment (QA) bands with QA60 bitmask band
containing cloud mask information. The data of Sentinel-2 is acquired at the following
DOY, date respectively: 49 (18 February), 81 (22 March), 97 (07 April), 113 (23 April),
145 (25 May), 177 (26 June), 193 (12 July), 209 (28 July), 241 (29 August), 257 (14 September),
273 (30 September), 289 (16 October), and 353 (19 December) (Figure 2).

Low Spatial Resolution NDVI Products: Low Pairs

Additionally, the study uses four different MODIS NDVI products, namely MOD09Q1,
MOD09GQ, MCD43A4, and MOD13Q1, with different spatial and temporal resolutions.
MODIS MCD43A4 version (V) 6 Nadir Bidirectional reflectance Distribution Function
(BRDF)-Adjusted Reflectance (NBAR) dataset that is produced daily using 16 days of Terra
and Aqua MODIS data at 500 m spatial resolution. Both the cloud cover and the noise are
removed from the quality index included in the product. The cloud gaps in the MODIS
data are filled using linear interpolation.

The MOD13Q1 V6 product provides an NDVI value per pixel basis with 250 m
spatial and 16-day temporal resolution. Based on the quality information (QA), pixels

www.corpenicus.eu
www.usgs.gov
www.lpdaac.usgs.gov
www.lpdaac.usgs.gov
www.lpdaac.usgs.gov
www.lpdaac.usgs.gov
www.landklif.biozentrum.uni-wuerzburg.de
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with the constraints were masked out. MOD13Q1 is a composed product, assigning the
pixel value with the minor rules and best viewing geometry to the first date of a 16 days’
time frame. Linear interpolation of all NDVI values was performed by taking the day
of acquisition (doa) science data set and the QA into account [33]. The 16-day data of
MOD13Q1 is acquired at the following DOY, date respectively: 1 (1 January), 17 (17 January),
33 (02 February), 49 (18 February), 65 (06 March), 81 (22 March), 97 (07 April), 113 (23 April),
129 (09 May), 145 (25 May), 161 (10 June), 177 (26 June), 193 (12 July), 209 (28 July),
225 (13 August), 241 (29 August), 257 (14 September), 273 (30 September), 289 (16 October),
305 (01 November), 321 (17 November), 337 (03 December), and 353 (19 December).

MOD09GQ V6 surface reflectance product provides an estimate of the surface spectral
reflectance as it would be measured at ground level in the absence of atmospheric scattering.
It provided bands 1 (red) and 2 (NIR) at a 250 m resolution in a daily gridded L2G product
in the sinusoidal projection, including quality control (QC) and five observation layers.
NDVI of the product is calculated by using the available surface reflectance bands.

MOD09Q1 V6 estimated the surface reflectance of bands 1 (red) and 2 (NIR) at 250 m
resolution and corrected for atmospheric conditions for 8 days’ time frame. Along with
the two-reflectance bands, the quality layer removes clouds and shadows. The 8-day
data of MOD09Q1 DOYs, and dates are acquired with an interval of 8 days starting from
1 (1 January) to 353 (19 December) with a total of 45 scenes.

2.2.2. LC Map of Bavaria 2019

The LC map of Bavaria is generated by combining Amtliche Topographisch-Kartographische
Informationssystem (ATKIS), Integrated Administration Control System (IACS), and Corine
LC (100m) at ArcGIS pro 2.2.0 (Figure 3). The ATKIS data describes the topographical
objects of the landscape in vector format, generated by the official surveying system in
Germany, and IACS generates all agricultural plots in European Union (EU) countries
by allowing farmers to graphically indicate their agricultural areas. Combining ATKIS,
IACS, and Corine LC aims to create an updated LC map of the entire Bavaria for 2019. The
features of each dataset are reclassified into pre-defined land use (sub) classes, such as,
agriculture (annual crops, perennial crops, and annual crop/managed grassland), forest
(deciduous, coniferous, and mixed forest), grassland (managed and permanently managed
grassland), urban (settlements and traffic), water, and natural-seminatural (small woody
features, wetland, unmanaged grassland, and succession area). Layers with the same land
use from different sources are combined into one layer. Selection of every LC class is based
on the priority of data sources, for instance, agriculture: IACS > ATKIS, forest: ATKIS,
grassland: IACS > ATKIS; urban: ATKIS, water: ATKIS, natural-seminatural: Corine LC >
IACS > ATKIS. However, if there are conflicts among the data sources or if there are holes
in the area (i.e., no information from both IACS and ATKIS), the gap is filled with Corine
LC. This study uses the LC map to mask the high and low pair data fusion inputs into six
LC classes before using them for the fusion process.

2.3. Method

The STARFM is used to fuse both Landsat and Sentinel-2 with four different MODIS
data sets to configure the best spatial, temporal time series with high spatial and temporal
resolution. Before applying the fusion algorithm, a single band of NDVI from every time
step has been generated from the reflectance bands of the Landsat, Sentinel-2, and MODIS
data. Before the data fusion, the MODIS daily NDVI dataset is reprojected and resampled
to Landsat and Sentinel-2 imageries using bilinear interpolation. The fused model is based
on the principle that low- and high-resolution products have the same NDVI values, which
are biased by a constant error due to their differences in data processing, acquisition time,
bandwidth, and geolocation errors. The algorithm states that if a high-low spatial resolution
image pair is available on the same DOY, this constant error can be calculated for each pixel
in the image. After that, these errors can be applied to the available MODIS dataset of a
prediction date to obtain a prediction image with the exact spatial resolution of Landsat, or
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Sentinel-2 respectively. According to [10], this is done in four steps: (i) The MODIS time
series is reprojected and resampled to the available corresponding high spatial resolution
imagery. (ii) Next, a moving window is applied to the high spatial resolution image to
identify the similar neighboring pixels. (iii) After that, the weight of Wijk is assigned to
each similar neighbor. (iv) Lastly, the NDVI of the central pixel is calculated.

After obtaining the STARFM time series, the study validates the received synthetic
product by dropping a single available high spatial resolution NDVI image during the
fusion process and comparing both actual (the dropped high spatial resolution NDVI) and
synthetic (STARFM NDVI) images of the same time zone [2]. The STARFM performs the
fusion process using Equation (1) for Landsat (L) and Sentinel-2 (S):

L(or S)
(

x w
2

, y w
2

, to

)
=

w

∑
i=1

w

∑
j=1

n

∑
k=1

Wijk

∗(M(xi, yi, to) + L(or S)(xi, yi, tk)−M(xi, yi, tk)),

(1)

where w is the size of the moving window, L (or S) (xw/2, y w/2, to) is the central pixel
of the moving window for the Landsat (Sentinel-2) image prediction at a time to, and x
w/2, y w/2 is the central pixel within the moving window, the spatial weighting function
Wi,j,k determines how much each neighboring pixel xi, yj in w contributes to the estimated
reflectance of the central pixel. (xi, yj, to) is the MODIS reflectance at the window location
(xi, yj) observed at to, while L (S) (xi, yj, tk) and M (xi, yj, tk) are the corresponding Landsat
(Sentinel-2) and MODIS pixel values observed at the base date tk [10]. The n counts for the
total number of input pairs of L (S) (xi, yj, tk) and M (xi, yj, tk), and each pair is supposedly
acquired on the same date. The size of the moving window is taken as 1500 m by 1500 m,
which is three times the size of the MODIS (MCD43A4) pixel (500 m), six times that of
the MODIS (MOD13Q1, MOD09Q1, and MOD09GQ) pixel (250 m), 50 times that of the
Landsat pixel (30 m) and 150 times that of the Sentinel-2 pixel [24]. The windows minimize
the effect of pixel outliers and are therefore used for predicting changes using the spatially
and spectrally weighted mean difference of pixels within the window area [10,20].

2.3.1. Correlations between Reference and Synthetic NDVI Time Series

The first step of the present study is a correlation analysis between STARFM NDVI
and the pre-processed Landsat and Sentinel-2 images to determine when and where the
synthetic NDVI product differs from the real-time satellite imagery. NDVI is one of the
most widely used vegetation indices in RS and is defined as follows [34,35]:

NDVI =
ρNIR− ρRed
ρNIR + ρRed

(2)

where ρNIR is the reflectance in the near-infrared band and ρRed is the reflectance in the
red band. The correlation coefficient is calculated by taking the square root of Equation (3),
where R is the coefficient of correlation. This process would signify the best performing
location and time for regions in Bavaria on eight different synthetic output results.

2.3.2. Regression Analysis between Reference and Synthetic NDVI Time Series

The STARFM NDVI data are validated with the pre-processed, cloud and shadow-free
Landsat and Sentinel-2 images acquired during the study period. From the predicted
NDVI (STARFM NDVI) and observed NDVI (Landsat/Sentinel-2 NDVI), the coefficient of
determination (R2) (Equation (3)) and root mean square error (RMSE) (Equation (4)) are
calculated. In the last steps, the final NDVI STARFM and the pre-processed Landsat and
Sentinel-2 products are masked with Bavarian LC (e.g., agriculture, forest, water, urban,
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grasslands, natural-seminatural), and the regression analysis between them is carried out
for each LC class.

R2 =
((∑ Pi − P ′)(Oi − O ′))2

(∑ Pi − P ′))2(∑ Oi − O ′))2 , (3)

RMSE =

√
1
n ∑n

1=1 (Oi − Pi)
2, (4)

where Pi is the predicted value, Oi is the observed value, P’ is the predicted mean, O’ is the
observed mean value, and n is the total number of observations. To check the significance of
the fusion products, the probability value (p-value) is calculated using a Linear Regression
Model (LRM) with the null hypotheses (H0) that there is no relationship between the
measured and synthetic NDVI values and an H1 that the relationship exists. To perform
this test, a significance level (also called alpha (α)) is set to 0.05. A p-value of less than 0.05
shows that a model is significant, and it rejects the H0 that there is no relationship.

3. Results
3.1. Correlations between Reference and Synthetic NDVI Time Series of Landsat and Sentinel-2

The reference and synthetic relationships show dependency on many factors, as
visualized in Figure 4 by the yearly mean correlations between actual and synthetic NDVI
products of Landsat and Sentinel-2 after individually fusing with multiple MODIS products.
The factors show the impact of high temporal frequency and more cloud-free scenes of the
high pair product on the quality of the fusion process. For example, the NDVI products
L-MOD09Q1 and L-MOD09GQ result in lower positive correlation coefficients than S-
MOD09Q1 and S-MOD09GQ. Almost all MODIS products show higher correlations when
combined with Sentinel-2 than with Landsat, except the synthetic product L-MOD13Q1,
which showed similar positive correlations as S-MOD13Q1.

Comparing the synthetic products based on their respective MODIS product used
in the fusion process, L-MOD13Q1 and S-MOD13Q1 have shown the median correlation
coefficient (refers to R2 in Equation (3)) of 0.81 and 0.87, respectively (Figure 4). The S-
MCD43A4 positively correlated slightly better than L-MCD43A4 with a median correlation
of 0.81 and 0.76, respectively. L-MOD09GQ and L-MOD09Q1 both resulted in a median of
less than 0.70; however, the values of S-MOD09GQ and S-MOD09Q1 lie between 0.70 to
0.75. This considerable variation in these two products could be due to the high temporal
frequency and availability of cloud-free scenes of Sentinel-2 than Landsat.

On comparing the fusion products based on the available DOYs, the DOY 209 showed
the highest correlation with Landsat and Sentinel-2 synthetic products (Figure 5). For the
maximum values, Sentinel-2 based fusion showed a high correlation for DOYs 49 and 289;
however, for the DOYs from 183 to 241, Landsat shows higher correlation values than
Sentinel-2. This suggests that the STARFM performs better for Landsat when the number
of consecutive cloud-free scenes is higher.

3.2. Statistical Analysis between Reference and Synthetic NDVI Time Series of Landsat and
Sentinel-2

For eight different synthetic products, the STARFM performed significantly for every
synthetic output (having a p-value < 0.05); this rejects the H0 of the linear regression model
that there is no correlation between the reference and synthetic NDVI. After generating the
scatter plots, all synthetic products’ R2, and RMSE values are analyzed. The histograms
compare different MODIS products when fused with Landsat and Sentinel-2 on a DOY-
basis (Figure 6). Both L-MOD13Q1 and S-MOD13Q1 result in high R2 (0.74 and 0.76) and
low RMSE (<0.11) compared to L/S-MCD43A4, L/S-MOD09GQ, and L/S-MOD09Q1. For
L-MCD43A4, L-MOD09GQ, and L-MOD09Q1, the R2 (0.69, 0.56, 0.45) and RMSE (0.12, 0.14,
0.15) values vary in an order of higher accuracy. However, for Sentinel-2, this trend is more
accurate and homogenous with R2 and RMSE of 0.71 and 0.11 (S-MCD43A4), 0.68 and 0.12
(S-MOD09GQ), 0.67 and 0.12 (S-MOD09Q1).
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Compared on a DOY-basis, the synthetic L-MOD13Q1 and S-MCD13Q1 show the top
edge in almost all the DOYs. The L-MOD13Q1 and L-MCD43A4 result in closer R2 and
RMSE; however, S-MCD43A4, S-MOD09GQ, S-MOD09Q1 result in similar accuracies. The
vast contrast in the accuracies of Landsat and Sentinel-2 is seen in DOYs 49 and 289 with
the synthetic product of L/S-MOD13Q1 with an R2 of 0.62, 0.76, and RMSE of 0.12, 0.10,
respectively. On comparing the accuracies of Landsat and Sentinel-2 for all fused pairs,
synthetic products generated with Sentinel-2 resulted more accurately and precisely than
Landsat, respectively (Figure 7).
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S-MCD43A4 (g) L-MOD13Q1, and (h) S-MOD13Q1, NDVI time series for 2019 respectively. The 
average correlation is calculated by taking the mean of dropped scenes used for calculating the ac-
curacy assessment of the eight synthetic NDVI products. The legend of the spatial correlations 
(High: 1 (Green) to Low: −1 (Purple)) is provided at the top right of figure (h). The median correla-
tion coefficient (R) is given at the top of each figure. The correlation coefficient refers to R² (see 
Equation (3)). Surf.  

On comparing the fusion products based on the available DOYs, the DOY 209 
showed the highest correlation with Landsat and Sentinel-2 synthetic products (Figure 5). 
For the maximum values, Sentinel-2 based fusion showed a high correlation for DOYs 49 
and 289; however, for the DOYs from 183 to 241, Landsat shows higher correlation values 
than Sentinel-2. This suggests that the STARFM performs better for Landsat when the 
number of consecutive cloud-free scenes is higher. 

Figure 4. The average spatial correlations between the reference Landsat and Sentinel-2 NDVI with
synthetic (a) L-MOD09Q1, (b) S-MOD09Q1, (c) L-MOD98GQ, (d) S-MOD09GQ, (e) L-MCD43A4,
(f) S-MCD43A4 (g) L-MOD13Q1, and (h) S-MOD13Q1, NDVI time series for 2019 respectively. The
average correlation is calculated by taking the mean of dropped scenes used for calculating the accu-
racy assessment of the eight synthetic NDVI products. The legend of the spatial correlations (High:
1 (Green) to Low: −1 (Purple)) is provided at the top right of figure (h). The median correlation coef-
ficient (R) is given at the top of each figure. The correlation coefficient refers to R2 (see Equation (3)).



Remote Sens. 2022, 14, 677 12 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 26 
 

 

  
(a) (b) 

Figure 5. The day of the year (DOY) based comparison of correlation coefficients between synthetic 
NDVI time series and the reference NDVI values obtained from (a) Landsat and (b) Sentinel-2 with 
different MODIS products. The correlation coefficient refers to R² (see Equation (3)). 

3.2. Statistical Analysis between Reference and Synthetic NDVI Time Series of Landsat and 
Sentinel-2 

For eight different synthetic products, the STARFM performed significantly for every 
synthetic output (having a p-value < 0.05); this rejects the H0 of the linear regression model 
that there is no correlation between the reference and synthetic NDVI. After generating 
the scatter plots, all synthetic products’ R², and RMSE values are analyzed. The histograms 
compare different MODIS products when fused with Landsat and Sentinel-2 on a DOY-
basis (Figure 6). Both L-MOD13Q1 and S-MOD13Q1 result in high R2 (0.74 and 0.76) and 
low RMSE (<0.11) compared to L/S-MCD43A4, L/S-MOD09GQ, and L/S-MOD09Q1. For 
L-MCD43A4, L-MOD09GQ, and L-MOD09Q1, the R2 (0.69, 0.56, 0.45) and RMSE (0.12, 
0.14, 0.15) values vary in an order of higher accuracy. However, for Sentinel-2, this trend 
is more accurate and homogenous with R2 and RMSE of 0.71 and 0.11 (S-MCD43A4), 0.68 
and 0.12 (S-MOD09GQ), 0.67 and 0.12 (S-MOD09Q1). 

 
(a) (b) 

Figure 5. The day of the year (DOY) based comparison of correlation coefficients between synthetic
NDVI time series and the reference NDVI values obtained from (a) Landsat and (b) Sentinel-2 with
different MODIS products. The correlation coefficient refers to R2 (see Equation (3)).

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 26 
 

 

  
(a) (b) 

Figure 5. The day of the year (DOY) based comparison of correlation coefficients between synthetic 
NDVI time series and the reference NDVI values obtained from (a) Landsat and (b) Sentinel-2 with 
different MODIS products. The correlation coefficient refers to R² (see Equation (3)). 

3.2. Statistical Analysis between Reference and Synthetic NDVI Time Series of Landsat and 
Sentinel-2 

For eight different synthetic products, the STARFM performed significantly for every 
synthetic output (having a p-value < 0.05); this rejects the H0 of the linear regression model 
that there is no correlation between the reference and synthetic NDVI. After generating 
the scatter plots, all synthetic products’ R², and RMSE values are analyzed. The histograms 
compare different MODIS products when fused with Landsat and Sentinel-2 on a DOY-
basis (Figure 6). Both L-MOD13Q1 and S-MOD13Q1 result in high R2 (0.74 and 0.76) and 
low RMSE (<0.11) compared to L/S-MCD43A4, L/S-MOD09GQ, and L/S-MOD09Q1. For 
L-MCD43A4, L-MOD09GQ, and L-MOD09Q1, the R2 (0.69, 0.56, 0.45) and RMSE (0.12, 
0.14, 0.15) values vary in an order of higher accuracy. However, for Sentinel-2, this trend 
is more accurate and homogenous with R2 and RMSE of 0.71 and 0.11 (S-MCD43A4), 0.68 
and 0.12 (S-MOD09GQ), 0.67 and 0.12 (S-MOD09Q1). 

 
(a) (b) 

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 26 
 

 

  
(c) (d) 

Figure 6. The statistical comparison shows R2 and RMSE values of different NDVI STARFM prod-
ucts obtained using (a,c) Landsat (L) and (b,d) Sentinel-2 (S) with varying products of MODIS, re-
spectively. Different colors show the R2 and RMSE values with four different MODIS products: 
MCD43A4 (orange), MOD09GQ (blue), MOD09Q1 (green), and MOD13Q1 (purple). 

Compared on a DOY-basis, the synthetic L-MOD13Q1 and S-MCD13Q1 show the top 
edge in almost all the DOYs. The L-MOD13Q1 and L-MCD43A4 result in closer R2 and 
RMSE; however, S-MCD43A4, S-MOD09GQ, S-MOD09Q1 result in similar accuracies. 
The vast contrast in the accuracies of Landsat and Sentinel-2 is seen in DOYs 49 and 289 
with the synthetic product of L/S-MOD13Q1 with an R2 of 0.62, 0.76, and RMSE of 0.12, 
0.10, respectively. On comparing the accuracies of Landsat and Sentinel-2 for all fused 
pairs, synthetic products generated with Sentinel-2 resulted more accurately and precisely 
than Landsat, respectively (Figure 7). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. The statistical comparison shows R2 and RMSE values of different NDVI STARFM products
obtained using (a,c) Landsat (L) and (b,d) Sentinel-2 (S) with varying products of MODIS, respectively.
Different colors show the R2 and RMSE values with four different MODIS products: MCD43A4
(orange), MOD09GQ (blue), MOD09Q1 (green), and MOD13Q1 (purple).
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resulted in very low RMSE (~0.08) despite having rather low R2 values.

Figure 7. The scatter plots compare the accuracies of reference Landsat and Sentinel-2 products with
synthetic (a) L-MCD43A4, (b) S-MCD43A4, (c) L-MOD98GQ, (d) S-MOD09GQ, (e) L-MOD09Q1,
(f) S-MOD09Q1, (g) L-MOD13Q1, and (h) S-MOD13Q1 products, respectively. The values of the
statistical parameters, such as R2 and RMSE are displayed at the top of each plot. Every plot contains
a solid 1:1 line that is used to visualize the correlation of pixels between the reference and synthetic
NDVI values.
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3.3. Statistical Analysis between Reference and Synthetic NDVI Time Series of Landsat and
Sentinel-2 Based on Land Use Classes

Tables 2 and 3 show the accuracy and precision of eight different synthetic products
categorized on LC classes such as agriculture, forest, grassland, seminatural-natural, urban,
and water at different DOYs. The urban and water classes resulted in the higher R2 and
lower RMSE with Landsat and Sentinel-2 than other land use classes. Both classes within
S-MCD43A4, S-MOD09GQ, and S-MOD09Q1 resulted in higher mean R2 values more than
0.75 and lower mean RMSE of ~0.08 (urban) and ~0.12 (water), respectively. Both with
L-MOD13Q1 and S-MOD13Q1, the class of agriculture resulted with high R2 (0.62, 0.68) and
low RMSE (0.11, 0.13) compared to other STARFM products. In addition, the mean R2 and
RMSE for agriculture in S-MCD43A4, S-MOD09GQ, and S-MOD09Q1 are nearly similar
with values 0.66 and 0.14, respectively. The forest class in L-MOD13Q1 showed the higher
accuracy (R2 = 0.60, RMSE = 0.05) than S-MOD13Q1 (R2 = 0.52, RMSE = 0.09). MOD09GQ
and MOD09Q1 performed better with Sentinel-2 than Landsat. Even though the water
class resulted in high R2 with both high-resolution products, the RMSE of the same is quite
high (>0.10) with all MODIS products. On the contrary, the forest class resulted in very low
RMSE (~0.08) despite having rather low R2 values.

3.4. Visualization of Resulted Synthetic Products Obtained from Different MODIS Imageries

The spatial visualization of the products MOD13Q1, Landsat, L-MOD13Q1, Landsat
minus L-MOD13Q1, Sentinel-2, S-MOD13Q1, Sentinel-2 minus S-MOD13Q1 at DOY 193
is shown in Figure 8a–g, respectively. Figure 8d,g show the slight overestimation and
underestimation of NDVI values with the synthetic product (L/S-MOD13Q1) is subtracted
from its respective reference high-resolution products (Landsat or Sentinel-2). Figure 8h
shows the spatial location of 10,000 random points that compares eight synthetic products
with their respective low pair (MODIS) and high pair (Landsat or Sentinel-2) products
by considering the mean values at different DOYs (Figure 9). Figure 9a–h shows the line
plot comparison of eight synthetic products along with their interquartile comparison of
NDVI values.

Both L-MOD13Q1 and S-MOD13Q1 show a slight overestimation and underestima-
tion of NDVI values compared to the reference Landsat and Sentinel-2 NDVI values at
different DOYs. The median NDVI values of L-MOD13Q1 and S-MOD12Q1 lie close to
their respective high pair product. However, the difference in median values of synthetic
products from their high pair products increases from L/S-MCD43A4, L/S-MOD09GQ, and
L/S-MOD09Q1, respectively. The mean NDVI values (Figure 9a,c) and median (Figure 9b,d)
of L-MOD09GQ and L-MOD09Q1 lie close to their low pair MOD09GQ and MOD09Q1
products than the Landsat. However, the products S-MOD09GQ and S-MOD09Q1 lie closer
to Sentinel-2. This might be the reason that the accuracies of S-MOD09GQ and S-MOD09Q1
resulted higher than that of L-MOD09GQ and L-MOD09Q1.
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Table 2. The DOY-based statistical analysis (R2 and mean RMSE) between the synthetic NDVI (for four different MODIS products) and reference Landsat (L) NDVI
in Bavaria for every LC class such as agriculture (31.67%), urban (8.97%), water (1.44%), forest (35.91%), seminatural-natural (1.84%) and grassland (19.16%), in 2019.
The percentage represents the number of pixels in each LC class from the total number of pixels (n = 7,83,48,322). A legend table of R2 values are shown at top right
of the table. The mean RMSE values are shown in white color.

NDVI
Product LC Class

DOY

49 81 145 177 193 209 225 241 289 Mean
R2

Mean
RMSE

L-MOD13Q1 Agriculture 0.41 0.49 0.66 0.65 0.62 0.79 0.81 0.64 0.48 0.62 0.11 R2

Urban 0.35 0.46 0.67 0.81 0.85 0.85 0.85 0.86 0.71 0.71 0.07 0.00–0.25
Water 0.44 0.55 0.64 0.72 0.79 0.71 0.74 0.83 0.74 0.68 0.13 0.26–0.50
Forest 0.49 0.53 0.60 0.46 0.67 0.69 0.72 0.69 0.50 0.60 0.05 0.51–0.75

Seminatural-natural 0.59 0.64 0.72 0.64 0.81 0.81 0.81 0.81 0.35 0.69 0.07 0.76–1.00
Grassland 0.30 0.35 0.35 0.45 0.66 0.68 0.68 0.58 0.50 0.51 0.11

L-MCD43A4 Agriculture 0.21 0.45 0.46 0.62 0.64 0.74 0.74 0.61 0.48 0.55 0.11
Urban 0.14 0.18 0.62 0.77 0.86 0.81 0.85 0.81 0.79 0.65 0.07
Water 0.48 0.50 0.67 0.59 0.79 0.74 0.74 0.74 0.79 0.67 0.13
Forest 0.45 0.36 0.31 0.40 0.64 0.56 0.50 0.45 0.45 0.46 0.06

Seminatural-natural 0.14 0.32 0.58 0.48 0.76 0.71 0.77 0.71 0.64 0.57 0.07
Grassland 0.28 0.18 0.13 0.34 0.64 0.67 0.64 0.53 0.32 0.41 0.11

L-MOD09GQ Agriculture 0.18 0.22 0.46 0.26 0.59 0.61 0.64 0.58 0.36 0.43 0.13
Urban 0.12 0.17 0.56 0.55 0.69 0.61 0.67 0.74 0.72 0.54 0.10
Water 0.38 0.48 0.59 0.55 0.64 0.62 0.55 0.69 0.71 0.58 0.18
Forest 0.45 0.37 0.22 0.17 0.32 0.27 0.23 0.31 0.14 0.28 0.09

Seminatural-natural 0.20 0.46 0.61 0.56 0.59 0.59 0.67 0.49 0.48 0.52 0.10
Grassland 0.22 0.15 0.14 0.25 0.52 0.52 0.52 0.46 0.25 0.34 0.12

L-MOD09Q1 Agriculture 0.24 0.23 0.38 0.32 0.45 0.56 0.41 0.53 0.30 0.38 0.15
Urban 0.14 0.16 0.50 0.52 0.45 0.52 0.44 0.64 0.67 0.45 0.13
Water 0.42 0.41 0.59 0.46 0.49 0.41 0.45 0.69 0.67 0.51 0.21
Forest 0.45 0.32 0.17 0.29 0.23 0.25 0.23 0.30 0.45 0.30 0.10

Seminatural-natural 0.24 0.46 0.49 0.46 0.36 0.37 0.53 0.58 0.45 0.44 0.12
Grassland 0.20 0.42 0.59 0.32 0.45 0.38 0.40 0.46 0.18 0.38 0.12
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Table 3. The DOY-based statistical analysis (R2 and mean RMSE) between the synthetic NDVI (for four different MODIS products) and reference Sentinel-2 (S) NDVI
in Bavaria for every LC class such as agriculture (31.67%), urban (8.97%), water (1.44%), forest (35.91%), seminatural-natural (1.84%) and grassland (19.16%), in 2019.
The percentage represents the number of pixels in each LC class from the total number of pixels (n = 70,51,34,896). A color legend follows the same trend as in Table 2.

NDVI
Product LC Class

DOY

49 81 97 113 145 177 193 209 241 257 273 289 353 Mean
R2

Mean
RMSE

S-
MOD13Q1

Agriculture 0.49 0.74 0.85 0.76 0.50 0.60 0.66 0.85 0.74 0.69 0.74 0.71 0.46 0.68 0.13
Urban 0.45 0.71 0.85 0.88 0.86 0.86 0.79 0.90 0.90 0.90 0.92 0.86 0.76 0.82 0.08
Water 0.53 0.62 0.72 0.77 0.79 0.86 0.81 0.86 0.86 0.85 0.88 0.86 0.79 0.79 0.11
Forest 0.67 0.85 0.79 0.94 0.40 0.53 0.18 0.66 0.29 0.42 0.42 0.34 0.23 0.52 0.09

Seminatural-natural 0.55 0.71 0.90 0.86 0.83 0.81 0.67 0.86 0.72 0.77 0.86 0.79 0.56 0.76 0.11
Grassland 0.18 0.37 0.69 0.66 0.45 0.22 0.44 0.74 0.58 0.64 0.72 0.61 0.35 0.51 0.11

S-
MCD43A4

Agriculture 0.49 0.74 0.85 0.71 0.46 0.60 0.59 0.85 0.74 0.69 0.74 0.69 0.44 0.66 0.14
Urban 0.69 0.61 0.85 0.85 0.86 0.86 0.79 0.90 0.88 0.89 0.90 0.85 0.76 0.82 0.08
Water 0.38 0.48 0.71 0.74 0.76 0.86 0.81 0.85 0.85 0.83 0.88 0.83 0.76 0.75 0.12
Forest 0.42 0.76 0.74 0.45 0.28 0.53 0.15 0.62 0.28 0.42 0.41 0.30 0.14 0.42 0.11

Seminatural-natural 0.64 0.67 0.74 0.66 0.64 0.76 0.53 0.83 0.69 0.76 0.85 0.76 0.52 0.69 0.10
Grassland 0.64 0.53 0.62 0.53 0.35 0.20 0.44 0.72 0.56 0.64 0.72 0.59 0.34 0.53 0.11

S-
MOD09GQ

Agriculture 0.71 0.76 0.83 0.71 0.49 0.40 0.61 0.83 0.72 0.69 0.74 0.69 0.44 0.66 0.14
Urban 0.42 0.61 0.85 0.85 0.86 0.85 0.79 0.88 0.88 0.88 0.90 0.85 0.74 0.80 0.09
Water 0.42 0.53 0.72 0.72 0.76 0.83 0.83 0.83 0.86 0.85 0.88 0.85 0.76 0.76 0.12
Forest 0.37 0.77 0.74 0.46 0.23 0.36 0.18 0.42 0.26 0.41 0.40 0.28 0.14 0.39 0.11

Seminatural-natural 0.86 0.77 0.71 0.64 0.66 0.72 0.67 0.77 0.69 0.76 0.83 0.72 0.50 0.72 0.10
Grassland 0.67 0.53 0.61 0.55 0.36 0.20 0.42 0.66 0.53 0.64 0.71 0.56 0.31 0.52 0.11

S-
MOD09Q1

Agriculture 0.64 0.76 0.83 0.69 0.46 0.40 0.62 0.79 0.72 0.69 0.74 0.69 0.45 0.65 0.14
Urban 0.69 0.64 0.85 0.85 0.83 0.85 0.81 0.85 0.88 0.88 0.90 0.83 0.64 0.81 0.08
Water 0.36 0.50 0.72 0.74 0.76 0.85 0.79 0.74 0.85 0.83 0.88 0.85 0.76 0.74 0.12
Forest 0.45 0.77 0.74 0.42 0.20 0.48 0.16 0.35 0.26 0.42 0.42 0.27 0.14 0.39 0.11

Seminatural-natural 0.69 0.76 0.72 0.64 0.61 0.76 0.52 0.71 0.67 0.74 0.85 0.72 0.49 0.68 0.11
Grassland 0.66 0.50 0.61 0.55 0.34 0.24 0.44 0.62 0.53 0.64 0.74 0.58 0.32 0.52 0.13



Remote Sens. 2022, 14, 677 17 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 26 
 

 

3.4. Visualization of Resulted Synthetic Products Obtained from Different MODIS Imageries 
The spatial visualization of the products MOD13Q1, Landsat, L-MOD13Q1, Landsat 

minus L-MOD13Q1, Sentinel-2, S-MOD13Q1, Sentinel-2 minus S-MOD13Q1 at DOY 193 
is shown in Figure 8a–g, respectively. Figure 8d,g show the slight overestimation and un-
derestimation of NDVI values with the synthetic product (L/S-MOD13Q1) is subtracted 
from its respective reference high-resolution products (Landsat or Sentinel-2). Figure 8h 
shows the spatial location of 10,000 random points that compares eight synthetic products 
with their respective low pair (MODIS) and high pair (Landsat or Sentinel-2) products by 
considering the mean values at different DOYs (Figure 9). Figure 9a–h shows the line plot 
comparison of eight synthetic products along with their interquartile comparison of NDVI 
values. 

 
Figure 8. Image-wise comparison of STARFM and real-time NDVI values from (a) MOD13Q1,
(b) Landsat, (c) L-MOD13Q1, (d) Landsat minus L-MOD13Q1 (difference) (e) Sentinel-2,
(f) S-MOD13Q1, and (g) Sentinel-2 minus S-MOD13Q1 (difference), on DOY 193 (12th July 2019). The
figure (h) shows the spatial location of 10,000 random points in Bavaria used to draw line and bar
plots in Figure 9 for comparing the mean NDVI values on DOYs basis for the eight different synthetic
NDVI products.
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Figure 9. The line and bar plots show the DOY-based and inter-quartile-range based comparison of
STARFM generated NDVI values with their respective high-resolution input (Landsat (L) or Sentinel-
2 (S)) and low-resolution input (a,b) MOD09Q1 (c,d) MOD09GQ, (e,f) MCD43A4, (g,h) MOD13Q1
respectively. The comparison is based on the mean values extracted for 10,000 random points (whose
spatial location is shown in Figure 8h) taken for entire Bavaria.
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4. Discussion
4.1. Quality Assessment of Data Fusion

The study investigates the capability of the STARFM [10] over the Bavarian state of
Germany to generate the synthetic NDVI time series of 2019 by testing different high
(Landsat (L) (16-day, 30 m) and Sentinel-2 (S) (10 m, 5–6 day)) and low (MOD13Q1
(16-day, 250 m), MCD43A4 (1-day, 500 m), MOD09GQ (1-day, 250 m), and MOD09Q1
(8-day, 250 m)) spatial resolution products. NDVI is considered the most effective and
widely acknowledged vegetation index among other vegetation indices. Various studies
with spatiotemporal data fusion have used NDVI as their primary input for different appli-
cations such as phenology analysis [5,30,36,37], yield and drought monitoring [2,38–40],
forest mapping [20,41], and biophysical parameter estimation [40,42–44]. However, many
spatiotemporal fusion algorithms are based on reflectance fusion, which needs more com-
putation power than the NDVI fusion.

The study uses the strategy “index-then-blend” (IB), which generates the NDVI from
both high pair and low pair images before they are blended for the data fusion [26]. On the
contrary, many studies first blend the reflectance of the individual MODIS and Landsat
data sets and then generate the NDVI using the “blend-then-index” (BI) approach [37,45].
Ref. [26] has conducted a theoretical and experimental analysis that states if the predicted
NDVI values are lower than the input Landsat values, IB performs better and vice versa.
Among 10,000 randomly selected points in the entire Bavaria, some predicted higher
NDVI values, and the remaining plots predicted lower; therefore, both BI and IB errors are
expected to be small [26]. Additionally, the IB approach has less computation cost than BI,
as it blends only one band: the NDVI. Therefore, the present study decided to perform the
IB approach’s fusion analysis.

Many studies have started using the combined use of Landsat and Sentinel-2 for RS
applications [46–49]. The 16-day temporal resolution of Landsat is not fine enough to
monitor a variety of landscape changes. The recent launch of new satellite missions such as
Landsat 9, Sentinel-2A, or Sentinel-2B can ensure a much higher temporal sampling rate
that could grab an image every 2–5 or 8–16 days when sensor bands are combined, similarly
concerning the spectral information. Even though the NASA Harmonized Landsat and
Sentinel-2 (HLS) project produces temporal dense reflectance product at 30 m, the cloud
and shadow gaps in both datasets would still exist [50,51]. Moreover, the limit of HLS to
some selected test sites and the wasted spatial information at 10 m must still be borne in
mind. However, the STARFM algorithm is convenient to be applied on any test site without
losing the spatial resolution of respective high pair data.

In this study, four MODIS products with different spatial and temporal resolutions are
fused with Landsat and Sentinel-2 to test the best suitable pair for the NDVI time series of
Bavaria in 2019. An advantage of combining MODIS with high spatial resolution products
is to generate synthetic results, which exceed the physical limitations of Landsat/Sentinel-
2 and contain more information than the original input images [52,53]. For example,
Sentinel-2 and MODIS can be fused to generate a dataset with high spatial resolution (10 m)
with daily/8-day temporal resolution. In the past, many studies have used the simple
temporal filtering methods to fill the cloud and shadow generated gaps in satellite inputs
by interpreting the intensities at a certain pixel position over time [54–56]. For example,
the simplicity of the linear interpolation method could still capture changes over time if
the changes follow a linear trend. However, to examine the real-time trends in different RS
applications, the data fusion methods resulted more prominently in filling those gaps with
a real-time multi-sensor information, which can reduce the uncertainties in the synthetic
data [56,57]. This study investigates factors responsible for the accuracy assessment of the
eight synthetic products generated by STARFM. These factors state that the high temporal
frequency and more cloud-free scenes of the respective high pair (Landsat/Sentinel-2)
would impact the overall accuracy of the fusion process [2]. Due to the low temporal
frequency of Landsat data (16 days) and higher cloud cover, the synthetic product obtained
using different MODIS outputs is not as accurate as Sentinel-2 (5–6 days) [3,4]. For example,
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the availability of 13 cloud-free scenes of Sentinel-2 in 2019 result in higher accuracy of S-
MOD09GQ (R2 = 0.68, RMSE = 0.12) and S-MOD09Q1 (R2 = 0.65, RMSE = 0.13), as compared
to L-MOD09GQ (R2 = 0.56, RMSE = 0.13) and L-MOD09Q1 (R2 = 0.45, RMSE = 0.15), with
nine partially available cloud-free scenes of Landsat. Similarly, the spatial correlation of the
obtained synthetic product is higher when Sentinel-2 data is used as an input with MODIS
products than Landsat, respectively. However, Sentinel-2 shows higher accuracy, its spatial
resolution of 10 m consumes more storage and increases the computing load.

Among the MODIS products, MCD13Q1 and MCD43A4 showed higher accuracy
and higher positive spatial correlation with both Landsat and Sentinel-2. However, with
a frequency of one day, MCD43A4 with 500 m spatial resolution makes the data storage
heavier with more run-time than MCD13Q1 with 250 m spatial and 16 days revisit. More-
over, MCD13Q1 is a high-quality product employed in more than 1700 peer-reviewed
research articles (Google Scholar), and its fewer cloud contaminated pixels resulted in
higher accuracy in data fusion [58–60]. In addition, comparing the better product between
MCD13Q1 and MCD43A4 also depends on the requirement. The required product will be
selected accordingly if the need is to generate a time series with a daily or 16-day frequency.
On the other hand, L/S-MOD09GQ and L/S-MOD09Q1 result in higher accuracy with
Sentinel-2 than Landsat. This justifies that high pair product plays a significant role in the
accuracy assessment of any synthetic product. Moreover, L-MOD09GQ and L-MOD09Q1
showed a weak spatial correlation with their reference Landsat images. Contrarily, the
opposite was true for S-MOD09GQ and S-MOD09Q1. The obtained R2 and RMSE of these
synthetic products obtained through the STARFM are comparable to those obtained by
other studies [10,23,61]. Comparing the accuracy, storage, and processing time required
between L/S-MOD09GQ and L/S-MOD09Q1, the former is not only more accurate, but it
also needs less storage and lower computation power due to its 8-day temporal resolution.
However, high cloud coverage and gaps put them on the least accurate NDVI synthetic
products list.

4.2. Quality Assessment of Data Fusion based on Different Land Use Classes

To evaluate the suitability of the STARFM for homogenous landscapes, this study
individually runs the algorithm for six different land use classes: agriculture, forest, urban,
water, grassland, and seminatural-natural. The spatial correlation of other classes greatly
influences the used high pair product. The data fusion results of the study indicate that
the STARFM can successfully fuse MODIS with both Landsat and Sentinel-2 [4,62]. On
average, synthetic time series with Sentinel-2 showed more positive correlations than
Landsat. However, comparing accuracy assessments based on different low pair products
used, each class varied differently. Almost every synthetic product is accurate and precise
for the water and urban classes with a high to low variation from L/S-MOD13Q1, L/S-
MCD43A4 L/S-MOD09GQ, and L/S-MOD09Q1. This might be because the values of these
classes remain similar throughout the year; however, for agriculture, synthetic products
obtained using Sentinel-2 resulted in higher accuracy than Landsat. This could be because
the chances of mixed pixels are lesser for agricultural fields with lower spatial resolution.
Exceptionally, L-MOD13Q1 resulted in similar accuracy and preciseness as S-MOD13Q1
for the agriculture class. This justifies that both products are suitable for the application
of agricultural monitoring. The only difference separating them is their computation
power and data storage. S-MOD13Q1 needs high processing power and time with high
storage capacity due to its 10-m spatial resolution. Similarly, comparing L-MOD13Q1 and
S-MOD13Q1 for the forest class, the former resulted in higher accuracy than the latter.
Therefore, this proves that both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural
and forest monitoring; however, L-MOD13Q1 has the upper hand due to its fast and easy
processing with less storage requirement. Besides that, the present study compares the
synthetic NDVI products generated from the STARFM, where NDVI is mostly considered
as a suitable parameter for the applications of forest, grassland, and agriculture [35,39].
However, this study recommends to include other indices, such as Normalized Difference
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Built-up Index (NDBI) and Normalized Difference Water Index (NDWI) for the applications
of urban and water, respectively [63,64]. Moreover, many studies have suggested more
improvements in the respective fusion algorithm [3,17,20].

4.3. Visualization of the NDVI Synthetic Products

In the visualization process, 10,000 random points were randomly chosen to extract the
NDVI values in Bavaria, and their mean values at different DOYs were used to compare the
eight synthetic products with their respective low pair (MODIS) and high pair (Landsat or
Sentinel-2) products. For products L-MOD13Q1, L-MCD43A4, S-MOD13Q1, S-MCD43A4,
S-MOD09GQ, and S MOD09Q1, the mean values obtained lie close to their respective
high-resolution product. Therefore, the accuracy of these products is higher. The closer the
synthetic product with its separate spatial resolution, the higher the accuracy. However,
for the products L-MOD09GQ and L MOD09Q1, the obtained NDVI values lie close to
their MODIS data; this could be due to the quality of their respective MODIS products and
Landsat images.

5. Conclusions

The present study compares the performance of eight NDVI synthetic products gen-
erated using the STARFM for the entire state of Bavaria in 2019. The output of the fusion
model is obtained by inputting two high pairs (Landsat (L) (16-day, 30 m) and Sentinel-2
(S) (10 m, 5–6 day)) and four low pairs (MOD13Q1 (16-day, 250 m), MCD43A4 (1-day,
500 m), MOD09GQ (1-day, 250 m), and MOD09Q1 (8-day, 250 m)). Due to the suitability of
STARFM for homogenous landscapes, the study compares the eight different outputs 1)
on Bavarian level, and 2) on six different land use classes level, namely agriculture, forest,
grassland, urban, water, and natural-seminatural.

The study found that the higher revisit frequency and more cloud and shadow-free
scenes of the respective high pair product can impact the synthetic product’s spatial
correlation and accuracy. For example, the availability of 13 cloud-free scenes of Sentinel-2
(5–6 days) in 2019, result in higher accuracy of S-MOD09GQ (R2 = 0.68, RMSE = 0.12) and S-
MOD09Q1 (R2 = 0.65, RMSE = 0.12), as compared to L-MOD09GQ (R2 = 0.56, RMSE = 0.14)
and L-MOD09Q1 (R2 = 0.45, RMSE = 0.15), with 9 partially available cloud-free scenes of
Landsat (16 days). Conclusively, it also states that the synthetic products obtained using
Sentinel-2 are more accurate than products obtained using Landsat. Therefore, Sentinel-2
could be used as an input high pair product for the STARFM. The study also compares the
synthetic NDVI products based on their respective low pair input used in the blending
process. This resulted that L/S-MOD13Q1 (R2 = 0.74/0.76, RMSE = 0.11/0.10) showed
higher spatial correlation than L/S-MCD43A4 (R2 = 0.69/0.71, RMSE = 0.12/0.11), L/S-
MOD98GQ, L/S-MOD09Q1. This concludes that the MOD13Q1 is the best suitable low
pair product because of its higher quality. Moreover, due to its temporal resolution of 16
days, the fusion process takes less computation time to produce the synthetic RS product,
even at a large scale.

On comparing the synthetic NDVI products on different land use classes, the urban and
water classes resulted in the higher R2 (>0.75) and lower RMSE (0.08, and 0.12, respectively)
with both Landsat and Sentinel-2 than the other land use classes. For agricultural and
forest classes, both L-MOD13Q1 and S-MOD13Q1 showed higher accuracy than the other
products. With bothL-MOD13Q1 and S-MOD13Q1, the class of agriculture resulted with
an R2 of 0.62, and 0.68 and RMSE of 0.11, and 0.13, and the forest class with an R2 of
0.60, and 0.52 and RMSE of 0.05, and 0.09, respectively. Conclusively, both L-MOD13Q1
and S-MOD13Q1 are suitable for agricultural and forest monitoring; however, the spatial
resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent and
faster than that of S-MOD13Q1 with the 10-m spatial resolution. From an application
perspective, both products (L-MOD13Q1 and S-MOD13Q1) could be further tested for the
RS application of crop yield estimation.
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