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Abstract: Synthetic aperture radar (SAR) frequently suffers from radio frequency interference (RFI)
due to the simultaneous presence of numerous wireless communication signals. Recently, the nar-
rowband RFI is found to possess the low-rank property benefiting from stable frequency occupancy,
hence the reconsideration of RFI suppression as a joint sparse and low-rank optimization problem.
The existing methods either use the non-sparse useful signal itself as the sparse regularizer, or employ
the nuclear norm to approximate the rank function, which punishes all singular values with the
same penalty via singular value thresholding (SVT), resulting in the improper punishment problem.
Hence, both are consequentially subject to performance limitation. In this paper, a novel dictionary-
based nonconvex low-rank minimization (DNLRM) optimization framework is proposed for RFI
suppression, which concurrently considers the improvements for both the sparse regularizer and
the low-rank regularizer. For the former, an over-completed dictionary is constructed, for which the
sparse coefficient acts as the sparse regularizer. For the latter, the rank function is more accurately
approximated by innovatively introducing the nonconvex function, for which the supergradient
is synchronously used to generate the weighted penalty, thus solving the improper punishment
problem. The derivation of the closed-form solution and the convergence analysis are described in
detail. Additionally, the adaptive selection scheme for the model parameter is uniquely proposed for
further ensuring the practicality of the DNLRM framework. The superiority of the proposed method
is demonstrated via not only the RFI-free real SAR data combined with the measured RFI, but the
RFI-contaminated real SAR data.

Keywords: synthetic aperture radar (SAR); radio frequency interference (RFI) suppression; dictionary-
based nonconvex low-rank minimization (DNLRM); supergradient-based weighted penalty; adaptive
selection scheme

1. Introduction

Synthetic aperture radar (SAR) is an active remote sensing instrument that has been
widely used for Earth observation with the special capability of working all-time and
all-weather [1,2]. Due to the increasingly complex electromagnetic environment, SAR
frequently suffers from radio frequency interference (RFI). RFI can cause degradation to
image quality, which appears as misty streaks in the imaging result. The RFI-contaminated
SAR images can even affect subsequent operations, such as polarimetry, interferometry,
and target detection [3–6], thus highlighting the importance of RFI suppression.

Recently, for narrowband RFI suppression, the previous literature has put forward
plenty of effective methods, which can be divided into three categories, namely nonpara-
metric methods [7–13], parametric methods [14–16], and semiparametric methods [17–23].
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The common nonparametric methods include the notched filtering (NF) method [7,8],
the eigen-subspace projection (ESP) method [9,10], and the LMS filtering method [11–13].
The NF method is convenient for implementation, but in a severe RFI environment, the
accompanying discontinuous spectrum will introduce artifacts into the SAR images. The
singular value decomposition (SVD)-based ESP method suppresses RFI by constructing
and separating the RFI subspace, but the RFI remnants or loss of useful signals occurs
if the singular values belonging to the RFIs are misclassified. The LMS filtering method
can cause the large distortion of signal phases then results in asymmetrical sidelobes [13].
Additionally, it may face greater challenges when the spectrum of different interferences is
interconnected, which is often the case in complex electromagnetic environments [3].

As for the parametric methods, modeling the narrowband RFI as a sum of several
sinusoids, many researches concentrate on estimating both the amplitudes and frequencies
of the sinusoids to represent RFI more precisely. To date, the representative researches
include the complex empirical mode decomposition method [14], the RELAX method [15],
and the iterative adaptive method [16]. From the view of information capture, the above
parametric methods can achieve a better RFI suppression performance for having gained
more information about RFI than the nonparametric methods. However, this is based
on the degree by which the parametric model matches the actual RFI-contaminated SAR
signal, since the non-sinusoidal useful signal results in the occurrence of side effects on the
estimation and the acquirement of the sinusoid-like RFI.

The newly proposed semiparametric methods especially consider the low-rank prop-
erty of a two-dimensional RFI matrix, which is generated by stacking multiple pulses along
the azimuth [17–23]. The low-rank property benefits from the fact that RFI usually occupies
constant frequencies within the SAR working band for a period of time, which ensures its
high degree of correlation in azimuth. Some of the existing literature models RFI as the
low-rank matrix, meanwhile, the useful SAR signal is directly regularized as the sparse part,
which also exists for the purpose of protection [22,23]. The above modeling framework is
the classic form of robust principal component analysis (RPCA), which is widely used in
background acquisition [24], image denoising [25], and moving target detection [26]. Re-
cently, the consideration of RPCA pioneers the usage of the low-rank characteristics of RFI
for signal separation. At the same time, there are also corresponding deficiencies, which are
mainly reflected in two aspects. Firstly, it is inappropriate to directly use the useful signal
itself as a sparse regularizer, which is, however, the case in most of the literature [18–20]. For
a common pulse compression SAR system, such as the linear frequency modulation (LFM)
SAR, the LFM signal is considered in the transmitter. If the LFM-based useful signal, which
is noise-like and thus non-sparse, is directly used as the sparse regularization without pulse
compression, the performance of the optimization model is inevitably limited. Secondly,
the low-rank models proposed in most of the literature [17–19,21] approximate the rank
function of the two-dimension RFI matrix with the sum of all the singular values, namely
the nuclear norm. The corresponding low-rank minimization problem can be solved by
the singular value thresholding (SVT) algorithm, whereas for the nuclear norm, the SVT
algorithm punishes all the singular values with the same penalty [27,28]. This is evidently
not in conformity with the reality that larger singular values, which stand for RFIs, should
be less punished. Generally, there are two disadvantages once the same penalty has been
used. If the penalty is large, to a certain extent, the over-punishment of RFI occurs and the
interference pattern is left in the imaging result due to the residual RFIs. If the penalty is
small enough, the under-punishment of useful signals occurs and part of the useful signal
is included into RFIs, resulting in a significant reduction in the final imaging quality.

For the former sparsity-related problem, one possible solution is to construct an over-
completed dictionary from the discrete time-shifted versions of the transmitted signal [17,21,29].
Therefore, with the corresponding dictionary, the sparse coefficient is used for the sparse
regularization, while the improper punishment is still ignored in the researches mentioned
above. In order to approximate the rank function more accurately and solve the improper
punishment problem concerning the latter low-rank-related issue, the reweighted nuclear norm
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(RNN) method [20] firstly considers a scheme to calculate the weighted penalties based on the
reciprocal of the singular values. Nevertheless, the theoretical basis for the rank approximation
is not explicitly presented, and the influence of the weighting function on the updating of
the low-rank matrix is not clearly analyzed. Furthermore, the non-sparse useful signal is
directly used as the sparse regularization and, thus, the restricted performance. Moreover,
the preceding studies barely investigated the combination of simultaneously using the over-
completed dictionary and approximating the rank function in a more accurate way, let alone
analyzing the behavior of the weighting function in the punishment operation.

Considering the above problems, to mitigate the limitation of RFI suppression perfor-
mance caused by inaccurate modeling, the dictionary-based nonconvex low-rank minimiza-
tion (DNLRM) framework is innovatively proposed in this paper to more accurately model
the entire RFI suppression problem, with the reason being twofold. Firstly, nonconvex
functions are introduced to approximate the rank function more accurately. Note that this
is the first attempt to suppress RFIs using nonconvex functions. The improper punishment
problem in terms of singular values can be overcome by treating larger ones with smaller
penalties. Noteworthily, the supergradient of the nonconvex function is directly related to
the calculation of the weighted penalty [30–33]. Secondly, an over-completed dictionary
constructed by the discrete time-shifted versions of the transmitted signal is considered.
Therefore, the corresponding sparse coefficient, rather than the useful signal itself, is used
as the sparse regularizer for better modeling and protection. The constructed dictionary is
inspired by [17,21,29], but is also combined with nonconvex functions for the first time, then
further applied to our new framework. Benefitting from the discrimination for different
singular values, the obtained low-rank matrix can better represent RFIs, and the useful
signal protected by the sparser regularization has better fidelity with less residual RFIs.
In addition, after an in-depth analysis of the behavior of the weighting function in the
punishment operation, the adaptive selection scheme for the model parameter in DNLRM
(ADNLRM) is uniquely proposed, based on a modified boxplot. Adaptively searching the
optimal parameter for weighting functions without human intervention, ADNLRM can
further improve the practicality of the proposed framework.

In conclusion, the main contributions of this paper are embodied in the following
three aspects:

(1) The DNLRM framework is innovatively proposed to solve the inaccurate model-
ing problems and unify the preceding similar methods. The alternating direction
method of multiplier (ADMM)-based detailed derivation for the closed-form solution
is provided, along with the convergence analysis.

(2) Different nonconvex functions and the corresponding supergradients are originally
introduced into RFI suppression to overcome the improper punishment problem.
Additionally, ADNLRM is uniquely proposed for adaptively selecting the optimal
parameter, which improves the applicability for varying RFI suppression missions.

(3) The artificial combination of the RFI-free real SAR data with the measured RFI are
considered alongside the RFI-contaminated real SAR data, to further verify the practi-
cability of the proposed methods in a realistic environment.

The remainder of this paper is organized as follows. Section 2 reviews the RFI-
contaminated SAR signal model and basic optimization frameworks. The proposed
DNLRM framework with the corresponding formula derivation, and the adaptive se-
lection scheme (ADNLRM) are described in Section 3. Section 4 presents the optimization
framework analysis. Section 5 reports the experiment results and discussions. Finally,
Section 6 summarizes the conclusions and presents future prospects in the discipline.

2. Materials
2.1. Signal Model

In the stop-and-go model, SAR mounted on the moving platform sends and receives
signals at each azimuth position. Benefiting from its high two-dimensional matching gain,
SAR can obtain high-resolution images of the target scene and clearly display the details
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of the objects of interest. On the other hand, as an active microwave system, SAR often
shares the working frequency bandwidth with other forms of electromagnetic signals. The
presence of RFI seriously affects the quality of SAR imaging, which is certainly detrimental
to the implementation of SAR image interpretation.

In a crowded electromagnetic environment, SAR may always receive mixed data consisting
of the useful signal x(t, η), RFI l(t, η), and noise n(t, η), which can be formulated as:

y(t, η) = x(t, η) + l(t, η) + n(t, η) (1)

where y(t, η) represents the received signal, and t and η are, respectively, the fast time and
the slow time. The useful signal and RFI overlap in the time domain, thus they are difficult
to separate directly. Therefore, it is necessary to find a suitable domain where their energy
is separated from each other to effectively perform RFI separation and suppression. The
signal form of x(t, η) is relevant to the transmitted signal. For a linear frequency modulation
(LFM) SAR system, x(t, η) is the corresponding LFM signal. Meanwhile, narrowband RFI
can usually be modeled as the sum of R sinusoid-like components as:

l(t, η) =
R

∑
r=1

Ar(t, η) exp(j2π frt + jφr(t, η)) (2)

where Ar(t, η) is the complex envelope, fr is the carrier frequency, and φr(t, η) is the initial
phase of the rth sinusoid RFI component. This concise model proves to be suitable to
describe narrowband RFI.

If the received signals are stacked along the azimuth, the corresponding two-dimensional
SAR data matrix can be obtained. The received signal Y ∈ CNr×Na , with Nr and Na respec-
tively denoting the samples along range and the number of pulses along azimuth, can thus
be formulated as:

Y = X + L + N (3)

where X, L, and N are, respectively, the useful signals, RFI, and additive white Gaus-
sian noises in the matrix form. Considering the signal from the perspective of the two-
dimensional matrix, we can further extract the signal property, which cannot be revealed
by the traditional one-dimensional analysis. Therefore, under the premise of accurately
exploring the signal property and appropriately establishing the optimization model, the
RFI suppression mission can be reconsidered as a matrix separation problem.

2.2. Optimization Frameworks

Once the two-dimensional SAR data matrix is transformed into the range–frequency
and azimuth–time domains, thin and bright stripes appear along the azimuth time, as
shown in Figure 1a. Such a high correlation in the azimuth time is the fundamental source
for RFI being low-rank. The available low-rank property of RFI, benefiting from its stable
frequency occupancy, indicates the singular values’ precipitously dropping down, as shown
in Figure 1b. The amplitudes of the singular values were normalized based on the Frobenius
norm of the RFI matrix. Additionally, the normalized RFI spectrum of a certain azimuth
pulse marked in the red ellipse is shown in Figure 1c, which reveals its complexity and
diversity. The extraction of the low-rank component can be obtained by a minimization of
the rank function. Additionally, the sparsity of the useful signal X should be regularized by
an l0 norm for protection purposes [22,23]. To sum up, the RFI separation is accomplished
via the following optimization:

min
L,X

rank(L) + τ‖X‖0

s.t.‖Y−X− L‖2
F < δ

(4)

where rank (·) means the rank function, τ acts as a weighting factor between the low-rank
RFI and the useful signal, ‖ · ‖0 denotes the l0 norm, ‖ · ‖F denotes the Frobenius norm, and
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δ is a fairly small positive number. As mentioned in [17,21], the useful signal is noise-like
and non-sparse, thus not suitable for sparse regularization directly. One alternative scheme
considers the sparsity under the over-completed dictionary, Dx ∈ CNr×K, constructed by
the time-shifted version of the transmitted signal [29,34], where K represents the number
of atoms in the dictionary. Therefore, the corresponding optimization is modeled as:

min
L,A

rank(L) + τ‖A‖0

s.t.‖Y−DxA− L‖2
F < δ

(5)

where A is the corresponding sparse coefficient of the useful signal under dictionary Dx.
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For the NP-hard peculiarity of the above optimization, the rank function and l0 norm
are usually relaxed to the nuclear norm ‖ · ‖∗ and the l1 norm ‖ · ‖1 respectively, thus
resulting in the following optimization:

min
L,A
‖L‖∗ + τ‖A‖1

s.t.‖Y−DxA− L‖2
F < δ

(6)

Such an optimization can be solved by the ADMM method [35,36], which successively
decomposes and deals with the L subproblem and the A subproblem. For the L subproblem
in the form of the nuclear norm, the SVT algorithm is used to generate a closed-form
solution. However, different singular values are treated with the same penalty level, which
can result in an incomplete RFI separation. As large singular values belong to the RFIs, they
need less punishment. Therefore, a dictionary-based nonconvex low-rank minimization
optimization framework is proposed and described in detail in Section 3.

3. Methods

In this section, the nonconvex regularizer and the corresponding supergradient are
firstly analyzed in a comparative manner. Subsequently, the proposed DNLRM framework
is described in detail, including the establishment of the framework and the ADMM-
based derivation of the closed-form solution. Furthermore, after carefully considering
the relation between the weighting function and singular values, the adaptive selection
scheme ADNLRM for the model parameter is originally provided to further ensure the
practicability of the proposed framework.

3.1. Nonconvex Regularizer

Inspired by [30], which suggests that the nonconvex sparse optimization usually
outperforms convex models and summarizes several common nonconvex functions, the
nonconvex regularizer is innovatively introduced into the RFI suppression mission under
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our specific consideration. Figure 2a shows the nonconvex functions for approximating
the rank function with the corresponding supergradients illustrated in Figure 2c. The
definitions of the considered nonconvex functions are formulated as:

Lp = λxγ

Logarithm = λln(x + γ)
(7)

and the corresponding supergradients are:

lp = λγxγ−1

logarithm = λ
x+γ

(8)
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Figure 2. Curve comparison: (a) illustrates the different functions for approximating the rank
function, and the dense region in the red square is enlarged into (b). (c) Shows the corresponding
supergradients where λ = 1, γ = 0.5, and the curves in the red rectangle are enlarged into (d).

In fact, any non-zero singular value, whatever the value is, should only increase the
rank by 1. However, for the nuclear norm, the rank function is approximated as the sum
of all the singular values, where the contribution of a non-zero singular value to the rank
function directly depends on its value. As a result, the nuclear norm is often dominated
by large singular values, and thus far from the true rank (see the difference between the
orange line and the red line shown in Figure 2a), whereas for the nonconvex functions,
such as Lp and Logarithm, the value slowly increases as the argument intensifies. Their
values are closer to 1, that is to say, they can approximate the true rank more accurately. An
enlarged view of the densely curved area within the red rectangle of Figure 2a is illustrated
in Figure 2b, which shows the trend of different curves more clearly. Furthermore, as
revealed in Figure 2c, the supergradient of a nonconvex function has the monotonically
nonincreasing property. It plays a central role in the subsequent algorithm analysis for the
guarantee of large singular values receiving small penalties.

Notice the enlarged area in Figure 2d corresponding to the red rectangle in Figure 2c;
the blue curve lies under the green one when the argument is greater than the intersection
(see the red point), while the opposite behavior occurs when the argument is smaller than
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the intersection. The mentioned phenomenon implies that the supergradient of Logarithm,
which corresponds to the blue curve, can provide further smaller penalties for the larger
singular values than that of Lp. This also means that, for Logarithm, the penalties of the
larger singular values vary more extensively from those of the smaller ones, thus resulting
in a more appropriate punishment to both RFI and the useful signal. Furthermore, note
that the values of the orange line always stay the same in Figure 2c, which explains the
invariant penalty of the nuclear norm. Additionally, the blue curve, representing Logarithm
in Figure 2a, presents a smaller difference with the true rank than the green one representing
Lp, which also predicts a better rank approximation performance.

3.2. The Proposed DNLRM Framework

In order to provide the singular values with a more appropriate punishment, the
DNLRM framework for RFI suppression is proposed as:

min
L,A

∑
i

W(σi(L)) + τ‖A‖1

s.t.‖Y−DxA− L‖2
F < δ

(9)

where σi(·) is the ith singular value that follows σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0, N = min(Nr, Na).
W(·) is a nonconvex function that operates on the singular values to achieve a more
accurate approximation of the true rank. Note that if W(σi(L)) = σi(L), then ∑i W(σi(L))
degenerates to the nuclear norm ‖L‖∗, and Formula (9) degenerates to Formula (6). As
for the over-completed dictionary Dx ∈ CNr×K, shown in Figure 3, it is constructed from
the time-shifted version of the transmitted signal s(t). In our LFM SAR situation, the
transmitted signal, s(t), can be specifically described by the LFM signal. K represents the
number of atoms in the dictionary, and each atom is constructed as s(t− k∆t). Generally,
to ensure that the constructed dictionary can effectively represent the entire image scene, K
should be preset as the number of range bins. Moreover, ∆t denotes the time resolution,
which affects the accuracy and computation burden during the optimization process.
Referring to the preceding literature [29,34], on the premise of not introducing too much
computation burden and concurrently matching the system bandwidth, ∆t is chosen as
1/Fr, where Fr denotes the system sampling rate.
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By introducing the Lagrange multiplier, Z, Formula (9) can be rewritten as:

min
L,A

∑
i

W(σi(L)) + τ‖A‖1 + 〈Z, Y−DxA− L〉+ µ

2
‖Y−DxA− L‖2

F (10)
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where 〈·, ·〉 represents the inner product and µ is a hyperparameter in the Lagrange multi-
plier framework.

To solve the above optimization problem, ADMM is used to disassemble it into the
following two subproblems:

Lk+1 = argmin
L

∑
i

W(σi(L)) +
µk
2

∥∥∥∥L−
(

Y−DxAk +
Zk
µk

)∥∥∥∥2

F
(11)

Ak+1 = argmin
A

τ‖A‖1 +
µk
2

∥∥∥∥DxA−
(

Y− Lk+1 +
Zk
µk

)∥∥∥∥2

F
(12)

then, followed with the update of the Lagrange multiplier:

Zk+1 = Zk + µk(Y−DxAk+1 − Lk+1) (13)

and the hyperparameter:
µk+1 = min(αµk, µmax) (14)

where α is the step size for updating µ, and µmax is the preset upper bound of µ. The
solutions of the L subproblem and the A subproblem will be described in detail in the
following sections.

3.3. ADMM-Based Solution Derivation for the DNLRM Framework

To solve the L subproblem (11), we can substitute it with

Lk+1 = argmin
L

∑
i

ω(σi(L))σi(L) +
µk
2

∥∥∥∥L−
(

Y−DxAk +
Zk
µk

)∥∥∥∥2

F
(15)

where ω(σi) ∈ ∂W(σi) and ∂W(σi) mean the set of all the supergradients at σi. If W(·) is
differentiable at σi, then∇W(σi) is the unique supergradient. Since σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0,
along with the monotonously nonincreasing property of the supergradient, the following
equation can be obtained:

0 ≤ ω(σ1) ≤ ω(σ2) ≤ · · · ≤ ω(σN) (16)

The acquisition of (15), as well as the definition and property of the supergradient, can
be referred to [30]. Note that Equation (16) is the primary condition that we expect to solve
the L subproblem.

Then, based on the Von Neumann’s trace inequality [20], a weighted SVT (WSVT) is
considered to obtain a closed-form solution as [37]:

Lk+1 = UkSω(·)/µk

(
ΣY−DxAk+Zk/µk

)
Vk

H (17)

where Uk and Vk are, respectively the left and right singular matrices of Y−DxAk + Zk/µk,
and the diagonal elements of matrix ΣY−DxAk+Zk/µk

are the corresponding singular values.
Sω(·)/µ(·) means the generalized soft-thresholding operator

Sω(·)/µ(Σ)i,i = sign(Σii)max
{(
|Σii| −

ω(σi)

µ

)
, 0
}

(18)

Notably, to make the solution (17) feasible, the weighting function ω(·) should meet the
condition required in WSVT, which is the same in Equation (16). This means that the larger
singular values correspond to the smaller weights. As expected, when the supergradient of
a nonconvex function is chosen as the weighting operator, the monotonically nonincreasing
property shown in (16) guarantees that the solution (17) can be well obtained.
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Taking the aforementioned factors into consideration, the nonconvex functions are in-
troduced to approximate the rank function more accurately instead of the nuclear norm. In
our RFI suppression mission, such a dramatic change of the supergradient-based weighting
function allows the penalties of the larger singular values to vary more broadly from the
smaller ones. This explains why we chose the nonconvex functions for the rank function
approximation, and the corresponding supergradients for the weighted penalty calculation.

For the A subproblem (12), firstly, we define

ξ(A) =

∥∥∥∥DxA−
(

Y− Lk+1 +
Zk
µk

)∥∥∥∥2

F
(19)

and then approximate it via the second-order Taylor expansion as:

ξ(A) ≈ ξ(Ak) + 〈∇ξ(Ak), A−Ak〉+
β

2
‖A−Ak‖2

F (20)

where β is a parameter related to the spectrum radius ρ(DH
x Dx) and satisfies β > ρ

(
DH

x Dx
)

[19].
Note that the dictionary, Dx, of the useful signal can be designed in advance according to the
SAR system parameters, so both Dx and β can be calculated offline to reduce the computation
time. Therefore, Formula (12) can be rewritten as:

Ak+1 = argmin
A

τ‖A‖1 +
µkβ

2

∥∥∥∥∥∥A−

Ak −
DH

x

(
DxAk −

(
Y− Lk+1 +

Zk
µk

))
β

∥∥∥∥∥∥
2

F

(21)

Such a form of optimization can be solved by the well-known soft-thresholding
algorithm, and the closed-form solution is as follows [38,39]:

Ak+1 = S τ
µk β

Ak −
DH

x

(
DxAk −

(
Y− Lk+1 +

Zk
µk

))
β

 (22)

where
Sδ(P)i,j = sign

(
Pi,j
)
max

{(∣∣Pi,j
∣∣− δ

)
, 0
}

(23)

with sign(Pi,j) being same the modified shrinkage manner as Pi,j/
∣∣Pi,j

∣∣ for the complex
matrix. Finally, as a termination condition of the optimization when a satisfactory solution
is available, the following relationship needs to be satisfied:

‖Y− L−DxA‖F
‖Y‖F

< ε (24)

where ε represents the fairly small positive number, such as 1× 10−4, that is chosen in this
paper. To sum up, the whole process is tabulated as the pseudocode in Algorithm 1 for the
purposes of an intuitive view.

Once L∗ and A∗ are successively obtained, they are used for RFI suppression. Generally,
there are two ways to suppress RFI, of which the first one is by directly using the recovered
useful signal DxA∗ to represent the output SAR signal after RFI suppression. The second
one considers the RFI suppression result as subtracting the recovered RFI from the raw data,
namely Y− L∗. The second way, analyzed in [21], shows a more robust RFI suppression
performance; similarly, in the present paper, we also considered such a proper way to
suppress RFI. With the separated useful signal matrix, SAR imaging is subsequently
carried out. Finally, based on the imaging result with RFI suppression, the evaluation is
considered for quantitatively describing the performance. The corresponding flowchart of
the processing procedure is illustrated in Figure 4.
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Algorithm 1 The DNLRM-Based RFI Suppression Algorithm

Input:
Data Matrix: Y, Dx;
User Parameter: τ, ε, α, µ, λ, and β.

Output: Solution L∗ and A∗.
Initial L0, A0, Z0, and ω(·).
Repeat

solve the L subproblem by

Lk+1 = UkSω(·)/µk

(
ΣY−DxAk+Zk/µk

)
Vk

H ;

solve the A subproblem by

Ak+1 = S τ
µk β

(
Ak −

DH
x

(
DxAk−

(
Y−Lk+1+

Zk
µk

))
β

)
;

update Zk+1 = Zk + µk(Y−DxAk+1 − Lk+1);
update µk+1 = min(αµk, µmax).

Until ‖Y− L−DxA‖F/‖Y‖F < ε
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3.4. The Proposed Adaptive Selection Scheme for Parameter λ

As previously described, WSVT is used for solving the L subproblem, and the cor-
responding closed-form solution is represented in (17). In our DNLRM framework, the
weighting function, ω(·), is substituted by the supergradients of different nonconvex
functions. As for the mentioned supergradients, there are two influential parameters, λ
and γ. The former proportionably affects the weighted values, whereas the curvature of
the weighting curve is determined by the latter. In general, to make the singular values
belonging to the RFIs obtain a smaller penalty, and the ones corresponding to the useful
signal simultaneously deserve the larger penalty, γ is chosen as 0.5 in our experiments for
a proper and balanced performance. Once γ is chosen, the parameter λ will ultimately de-
termine the multiples of the weighting functions. Recall the relationship shown in (18); the
generalized soft-thresholding operator needs to compare with the ω(·)-related threshold.
If ω(·) becomes, large to a certain extent, even the large singular values will be excessively
punished. Such a situation can still lead to the over-punishment of RFIs. Conversely, if
ω(·) is so small that all the singular values cannot receive enough of a penalty, then there
is less of a presence of a useful signal, which causes severe degradation to the imaging
result. Therefore, the appropriate value of ω(·), determined by parameter λ, is crucial to
the implementation of the proposed DNLRM method.

In considering these facts, a modified boxplot based adaptive selection scheme of
parameter λ is proposed in the present paper, which can be regarded as an outlier de-
tection problem. For outlier detection, the 3σ rule and Z-score method are based on the
assumption that data obeys the normal distribution, but the actual data does not always
fit the distribution as expected. Their criteria for judging the outliers are directly based
on the mean value and the standard deviation of the data. However, both of them are of
such small tolerance, that the outliers themselves can have a great impact on them. On the
contrary, the boxplot merely depends on the actual data itself, without assuming whether
the data obeys a particular distribution. The boxplot judges the outliers via the quartile and
the inter quartile range (IQR), which are more robust [40], thus more effective in terms of
identifying the outliers. According to [41], a boxplot consists of the maximum, minimum,
upper quartile (Q1), median (Q2), and lower quartile (Q3). The location of Q1 can be
calculated as i(M + 1)/4, where index i stands for the ith quartile and M represents the
sequence length, namely the number of singular values in our RFI suppression mission. Q2
and Q3 are then similarly obtained. Subsequently, IQR is calculated by subtracting Q1 from
Q3, which denotes the main body of the sequence with the elements having similar values.
Therefore, a value is detected as the outlier once it is larger than the threshold Q3 + 3IQR.

The above calculation is the traditional detection mode used for the boxplot-based
outliers, which is not appropriate if directly introduced into our adaptive selection scheme.
Therefore, we improved it to fit our RFI suppression mission. Recall that the core idea of
the proposed DNLRM method is to obtain the weighted penalty for singular values via the
supergradient of the nonconvex function. In order to make the supergradient weighted
penalties work effectively, the penalty curve needs to reach the order of magnitude of
the singular values. Fortunately, the parameter λ can be used to raise the weighted
value proportionally, then the core problem becomes the determination of the appropriate
proportion. As considered above, the threshold Q3 + 3IQR can be used to set the boundary
to distinguish the strong RFIs. Based on this, we suggest extending the boundary along
the decreasing direction of the singular values for better distinguishing the performance
for two reasons. The first one lies in that the threshold Q3 + 3IQR only considers the
extremely strong outliers, namely the strong RFIs, whereas the relatively weaker RFIs
may fall into the acceptable interval, which require further identification by the threshold
extension. The second one is closely related to the proposed DNLRM method. As shown
in Figure 5, the orange curve represents the supergradient-based penalty curve with the
threshold Q3 + 3IQR, where the small singular values are protected but the larger ones are
still over punished. After the threshold extension, the intersection of the singular value
curve and the orange curve moves down (see the yellow star), and the green penalty curve
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is obtained. Accordingly, the penalties for the large singular values are further reduced and
sufficient punishment for the small ones is ensured simultaneously. Through the threshold
extension, the phenomenon that singular values of relatively weaker RFIs diffuse into the
ones belonging to the useful signal is also considered.
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Specifically, we recommend the following quantitative threshold extension scheme:

Γ = Q3 + 3IQR− meanσ

medianσ
IQR (25)

where meanσ and medianσ are the mean and the median of the singular values of
Y− DxA + Z/µ. Both are calculated before performing WSVT (17). The rationality of
the above scheme is twofold. First, IQR represents the interval where the sequence values
remain stable, so it can be considered as the proper baseline for threshold extension. The
second one lies in that the ratio of the mean to the median, which can express the fluctuation
of a sequence at a moderate level. Furthermore, as the signal-to-interference ratio (SIR)
decreases, both of them become larger while the numerator changes more dramatically,
hence the increasing ratio and the correspondingly more relaxed threshold shown in (25).
Importantly, the concomitancy between SIR and the threshold is worth considering. When
the RFI level increases, meaning a lower SIR, the singular values of relatively weaker RFIs
become larger. This results in a more distinct diffusion, which demands a more relaxed
threshold. Therefore, the statistics-based threshold extension (25) is needed to better adapt
to the varying RFIs. Notice the enlarged area in Figure 5; the green curve obtained with a
threshold extension, according to (25), is reduced appropriately compared with the orange
one with no threshold extension. Correspondingly, the benefits are twofold. For the larger
singular values, they further obtain a smaller penalty, and thus a better separation of strong
RFIs. For the singular values slightly smaller than the intersection, they are fortunately
reconsidered. The corresponding relatively weaker RFIs can be extracted from what will
otherwise be pigeonholed to the useful signal. Finally, a transferring function, T(·), is used
to adjust the threshold, Γ, for specific supergradient-based weighting functions to obtain
the target parameter:

λ = T(Γ) = T
(

Q3 + 3IQR− meanσ

medianσ
IQR

)
(26)

Recall (8): assuming that γ = 0.5, we have T(Γ) = 2
√

Γ for lp, and T(Γ) = Γ for
logarithm. This can be accordingly generalized to other possible weighting functions.
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The parameter obtained from the above modified boxplot is considered as the initial
value λ0 for the subsequent adaptive fine search, to finally obtain the optimal λ∗. Specifi-
cally, based on the obtained initial value, λ0, the step size for the adaptive fine search is
chosen as one order of magnitude less than λ0 (i.e., λ0/10). Firstly, take one positive step,
obtaining λ0 + λ0/10, then obtain the corresponding metric and compare this with that of
λ0. The search will continue in the current direction if the obtained metric is better than
that of the initial λ0, otherwise the opposite direction will be pursued. Therefore, the search
direction for the optimal value and the corresponding step size are obtained. Afterwards,
the metric corresponding to the current λk obtained each time is compared with that of the
last choice λk−1. If a better result is obtained, the search will continue for λk+1; if worse,
the last result of λk−1 is considered as the better one. Successively, based on λk−1, λle f t
and λright will be obtained with ±0.5 times the step size. Their corresponding metrics are
then calculated and compared with that of λk−1 to determine the final optimal parameter
λ∗. Note that there is no human intervention needed in the entire searching process. Both
the effectiveness and convenience of the adaptive selection scheme are reflected in the
subsequent experiments.

4. Results

In this section, a series of experiments were conducted to verify the effectiveness and
practicability of the proposed framework. First, we considered adding the measured RFI
into the RFI-free real SAR data, which originally did not contain interference, to analyze
the influence of different SIRs on several mentioned methods. Necessarily, the sparse scene
and the dense scene were both considered to synthetically compare the RFI suppression
performance. The sparse scenes refer to those imaging scenes with fewer scattering points,
but containing obvious bright spots. On the contrary, those imaging scenes with relatively
homogeneous and densely distributed scattering points were considered as dense scenes. In
order to quantitatively evaluate the recovered images after RFI suppression, the normalized
mean square error (NMSE) was used as the metric, which is formulated as:

NMSE = 20 · log10

∥∥S− Ŝ
∥∥

F
‖S‖F

(27)

where S and Ŝ are the imaging results, respectively, obtained from the original RFI-free
real SAR data and the RFI suppression result when it was interfered with by RFIs. The
images are generated via the ωKA imaging algorithm. As can be seen from the definition
of NMSE, it considers the difference between the processed image and the reference one, so
a smaller value represents a better RFI suppression performance. In addition, considering
that the purpose of RFI suppression is to improve the image quality of the SAR image, both
the image entropy and image contrast were also used to quantitatively analyze the image
quality after RFI suppression. The image entropy is defined as:

H = −
I

∑
i=1

Pi · log(Pi) (28)

where P is the normalized histogram of the SAR image and I is the gray level. Additionally,
referring to [42], the image contrast can be modeled as:

C =

√√√√√√√
Na
∑

na=1

Nr
∑

nr=1
(|F(na, nr)| −mean(|F(na, nr)|))2

mean
(
|F(na, nr)|2

) (29)

where F(na, nr) presents a certain point in the SAR image and mean(·) denotes the mean
value of the analyzed image. When an image becomes blurred due to the interference, the
corresponding image entropy increases, indicating a worse image contrast. Accordingly,
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after RFI suppression, the image quality can be improved, which corresponds to a smaller
image entropy and a larger image contrast. Subsequently, to further verify the performance
of the proposed DNLRM method in the actual situation, experiments for suppressing the
RFI-contaminated real SAR data were also carried out. The RFI-contaminated data means
that RFIs were already contained in the received signal when collecting the data in real
time, rather than the artificial combination of the RFI-free data with the measured RFI. The
above two experimental configurations are the most realistic and referential ones, which
provide a powerful illustration of the performance of different RFI suppression methods.
Finally, the influence of the model parameter of the DNLRM method on RFI suppression
performance was analyzed.

4.1. RFI-Free Real SAR Data with Measured RFI

To verify the outstanding performance of the proposed DNLRM method, sufficient
experiments are conducted in this section. The RFI-free real SAR data was combined with
the measured RFI to generate the interfered data for analysis. Meanwhile, the power of
RFI was adjusted appropriately so that SIR, respectively, reached −20 dB, −15 dB, and
−10 dB. Moreover, for a more comprehensive analysis of the RFI suppression performance,
both the sparse scene and the dense scene with the figure size of 1536 × 2048 were under
consideration. The specific parameters related to the RFI-free real SAR data are listed in
Table 1, which are from the RADARSAT-1 SAR system.

Table 1. Parameters related to the RFI-free real SAR data.

Parameter Value

Pulse Width 41.74 µs
Sensor Velocity 7062 m/s

Carrier Frequency 5.3 GHz
Signal Bandwidth 30.11 MHz

Sampling Frequency 32.32 MHz
Pulse Repetition Frequency 1256.98 Hz

4.1.1. RFI Suppression Analysis for the Sparse Scene

In this section, the influence of RFI on sparse scene is analyzed, and the performance
of the different RFI suppression methods is compared. Figure 6a illustrates the RFI-free
SAR imaging result with the range and azimuth, respectively, lying along the horizontal
direction and vertical one. The scene of the port and several ships is clearly visible, and
so are the enlarged parts. Once RFI with a certain SIR, −20 dB here, is added to the
RFI-free data, the imaging result is shrouded by the misty streaks, making the target
scene completely unrecognizable, as shown in Figure 6b. To mitigate the effects of RFI,
several methods, namely the NF method, ESP method, RNN method, DLRM method, the
proposed DNLRM method with the nonconvex function selected as Lp and Logarithm, and
the corresponding ADNLRM method, are used for the performance comparison. Note
that the hyperparameters τ and µ not only act as tradeoff factors, but also participate in
calculating the penalty. Therefore, both play an important part in the implementation of the
optimization related methods, including our proposed method. In our experiments, τ and
µ are, respectively, chosen as 1/

√
max(Na, Nr) and 200/‖Y‖2

F according to [20]. Moreover,
α and µmax are, respectively, 1.2 and 1 × 106.
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Taking the case of −20 dB SIR as the example, detailed comparisons are analyzed as
below. After being processed by the NF method, there are not only spectrum fractures, but
also a large amount of remaining RFI sidelobes, which still leaves the imaging result blurred
in severe RFI remnants, as shown in Figure 7c. The ESP method suppressed the RFI by
constructing the RFI subspace, onto where the received signal was projected to separate RFI
from the useful signal. Due to the fact that RFIs are a combination of many components with
varying amplitudes, the subspace is often difficult to accurately classify. The orthogonality
of subspace is consequently difficult to guarantee, which causes distinct streaks, shown in
Figure 7d, due to the residual RFI. Figure 7e, processed via the RNN method, illustrates a
large performance improvement compared with the first two. The low-rank property of
RFI is exploited and the over-punishment problem is also considered by introducing the
weighted penalty associated with the reciprocal of singular values, whereas in the RNN
method, the non-sparse useful signal is directly used as the sparse regularization. The
insufficient protection of the useful signal leads to the serious trailing of the imaging targets,
as clearly shown in the enlarged area in Figure 8e, which still leaves room for performance
improvement. On the contrary, the DLRM method intelligently uses the over-completed
dictionary, in which the useful signal has a sparser representation, and the corresponding
sparse coefficients are employed for regularizing the useful signal. Unfortunately, the over-
punishment problem is not considered and the singular values are treated with the same
penalty when updating low-rank matrices. As a result, parts of the RFIs are decomposed
into the useful signal matrix, resulting in the imaging result shrouded in the noise-like
residual RFIs, as shown in Figure 7f. In Figure 7g, the proposed DNLRM method reveals a
superior RFI suppression performance with few RFI remnants and higher signal fidelity.
The reason lies in the fact that the proposed DNLRM method simultaneously considers
the appropriate sparse regularization with the usage of the over-completed dictionary and
the more reasonable punishment scheme for the singular values. Here, larger singular
values are treated with smaller penalties via the supergradient of the chosen nonconvex
function. Furthermore, Figure 7g,h display a similar performance, and it is difficult to
tell the difference using the naked eye. This is because their processing flows are both
based on the proposed DNLRM method, except for choosing different nonconvex functions.
Specifically, Figure 7g is obtained with Lp, thus Lp-DNLRM, and Figure 7h is obtained with
Logarithm, thus Log-DNLRM. The negative correlation between the supergradient and the
singular values guarantees the small penalties of the large singular values, which ensures
fewer RFI remnants. Further, the results of the proposed adaptive selection scheme shown
in Figure 7i,j are, respectively, based on Lp and Logarithm, thus the Lp-ADNLRM and
the Log-ADNLRM. In addition to the superior RFI suppression performance, the trailing
phenomenon is accordingly reduced, which can be clearly seen from the enlarged figures in
Figure 8. Moreover, compared with DNLRM using the corresponding nonconvex function,
ADNLRM can also achieve considerable performance while no human intervention is
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needed for searching parameter λ. This facilitates the adaptation to varying RFI suppression
tasks. To observe the difference more clearly, the area within the red rectangle in Figure 7
is zoomed in to the corresponding position in Figure 8. The quantitative comparison of
RFI suppression performance is listed in Tables 2–4. After a comprehensive evaluation, the
proposed method achieves satisfactory performance improvement.
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Table 2. Sparse scene: NMSEs under different SIRs with various methods. 

Figure 7. Sparse scene: imaging results with SIR being −20 dB. Both (a,b) are the imaging results
acquired by the RFI-free real SAR data before and after being interfered with by the measured
RFI, respectively. The imaging results after RFI suppression are obtained with (c) the NF method,
(d) the ESP method, (e) the RNN method, (f) the DLRM method, (g) the Lp-DNLRM method, (h) the
Log-DNLRM method, (i) the Lp-ADNLRM method, and (j) the Log-ADNLRM method.
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Table 2. Sparse scene: NMSEs under different SIRs with various methods.

SIR

NMSE (dB)

NF [7] ESP [9] RNN
[20]

DLRM
[17] Lp-DNLRM Log-DNLRM Lp-ADNLRM Log-ADNLRM

−10 dB −8.84 −8.27 −11.15 −6.15 −11.18 −11.24 −11.18 −11.24
−15 dB −4.65 −6.99 −9.88 −8.95 −10.23 −10.32 −10.24 −10.32
−20 dB 0.01 −4.95 −8.72 −6.27 −9.48 −9.55 −9.48 −9.56
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Table 3. Sparse scene: image entropy under different SIRs with various methods.

SIR

Image Entropy

NF [7] ESP [9] RNN
[20]

DLRM
[17] Lp-DNLRM Log-DNLRM Lp-ADNLRM Log-ADNLRM

−10 dB 3.46 3.50 3.25 2.80 3.23 3.24 3.24 3.24
−15 dB 3.83 3.57 3.26 3.23 3.23 3.24 3.25 3.24
−20 dB 4.39 3.77 3.29 3.60 3.24 3.26 3.24 3.24

Table 4. Sparse scene: image contrast under different SIRs with various methods.

SIR

Image Contrast

NF [7] ESP [9] RNN
[20]

DLRM
[17] Lp-DNLRM Log-DNLRM Lp-ADNLRM Log-ADNLRM

−10 dB 499.58 498.91 512.71 498.83 513.68 513.90 513.70 513.89
−15 dB 460.35 487.28 504.70 499.14 508.34 508.70 508.20 508.81
−20 dB 407.20 467.15 495.95 472.52 503.13 503.67 503.15 503.83

4.1.2. RFI Suppression Analysis for the Dense Scene

Comparative experiments for the dense scene are considered here. The imaging result
of the RFI-free data shown in Figure 9a,b illustrates the image when it’s contaminated by
RFI with the SIR being adjusted to −20 dB. The size of the figures is 1536 × 2048. Due to
the presence of strong RFIs, the texture information of the target city area is completely
invisible. The enlarged area, which is originally an area of water, only presents the severe
RFI stripes after being contaminated.
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Figure 9. Dense scene: imaging results of (a) RFI-free real SAR data and (b) SAR data interfered by
measured RFI. The size of the figures is 1536 × 2048.

For RFI mitigation, the methods and parameter configurations mentioned earlier in
the sparse scene are used here. The −20 dB case shown in Figure 10 is used as the example
for a detailed analysis, and the area within the red rectangle is enlarged in Figure 11. By
comparison, it is obvious that there are still many streaks left in the imaging results after
the use of the traditional NF and ESP methods. The NF method can suppress parts of
obvious RFI with greater power, but fails to deal with the complex interferences. As a result,
as shown in Figure 10c, the imaging result is still covered by severe RFI. As for the ESP
method, the subspace is firstly constructed based on the RFI-contaminated received signal.
Then, based on the amplitude difference in the singular values, respectively, corresponding
to the RFI and useful signals, the separation of their subspaces is completed. However,
the complexity and diversity of RFI makes it difficult to achieve an accurate subspace
separation, resulting in the inevitable RFI remnants shown in Figure 10d. Furthermore, the
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optimization-based RNN method and DLRM method have made some improvements, but
so not solve the problem of insufficient RFI suppression due to their respective inaccurate
regularization. The former RNN method considers the low-rank property of RFI for the
signal description on one hand; on the other hand, the weighted penalty is also employed
by means of the reciprocal of singular values. Nevertheless, noise-like and non-sparse
nature of the useful signal are not given proper consideration. As shown in Figure 10e,
the direct usage of the non-sparse useful signal, as the sparse regularization leaves it, is in
need of further optimization. For the latter DLRM method, the over-completed dictionary
was considered to ensure the useful signal a sparser expression. Unfortunately, the SVT
algorithm with the constant penalty was used to solve the low-rank minimization issue.
The neglected improper punishment problem leads to parts of the RFIs being left in the
useful signal, which results in the image still being surrounded by the noise-like RFIs,
as illustrated in Figure 10f. Conversely, because both the appropriate selection of sparse
regular and the logical punishment of the singular values are concurrently taken into
account, the proposed DNLRM method achieves a considerably improved performance.
Respectively obtained with the nonconvex functions of Lp and Logarithm, Figure 10g,h
obtained a more sufficient RFI suppression performance while properly protecting the
useful signals. Moreover, benefiting from the proposed adaptive searching scheme for λ,
the considerable performance of DNLRM can be automatically obtained by ADNLRM,
where the parameter searching process requires no human participation. Notably, this
is true in both cases of the nonconvex function Lp and Logarithm, which verifies the
robustness of the ADNLRM and is revealed in Figure 10i,j, respectively, with Lp-ADNLRM
and Log-ADNLRM. The above performance comparisons are shown in greater detail in
the enlarged view in Figure 11. As can be observed in Figure 11, the outline of the area
of water gradually emerges with the improving performance, and the noise in the dark
area accordingly decreases. Among all the mentioned methods, the Log-ADNLRM method
achieves the most outstanding RFI suppression result, as shown in Figure 11j, which is
closest to the ground truth. It is worth noting that the scatterers in the dense scene are more
densely distributed than those in the sparse scene, thus presenting a more severe influence
on each other in the optimization process. For a quantitative analysis, see Tables 5–7. In a
comprehensive view, the proposed method is verified to be superior.
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Figure 10. Dense scene: imaging results with SIR being −20 dB. Both (a,b) are the imaging results
acquired by the RFI-free real SAR data before and after being interfered with by the measured
RFI, respectively. The imaging results after RFI suppression are obtained with (c) the NF method,
(d) the ESP method, (e) the RNN method, (f) the DLRM method, (g) the Lp-DNLRM method, (h) the
Log-DNLRM method, (i) the Lp-ADNLRM method, and (j) the Log-ADNLRM method.
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Figure 11. Dense scene: imaging results of the corresponding enlarged area in Figure 10 with SIR
being −20 dB.

Table 5. Dense scene: NMSEs under different SIRs with various methods.

SIR

NMSE (dB)

NF [7] ESP [9] RNN
[20]

DLRM
[17] Lp-DNLRM Log-DNLRM Lp-ADNLRM Log-ADNLRM

−10 dB −5.94 −5.75 −9.61 −6.24 −9.36 −9.47 −9.37 −9.47
−15 dB −1.50 −4.27 −8.60 −7.27 −8.64 −8.81 −8.64 −8.80
−20 dB 3.25 −1.77 −7.55 −3.59 −7.92 −8.13 −7.96 −8.13

Table 6. Dense scene: image entropy under different SIRs with various methods.

SIR

Image Entropy

NF [7] ESP [9] RNN
[20]

DLRM
[17] Lp-DNLRM Log-DNLRM Lp-ADNLRM Log-ADNLRM

−10 dB 4.31 4.31 4.07 3.65 4.04 4.05 4.03 4.04
−15 dB 4.67 4.37 4.07 4.08 4.02 4.02 4.01 4.02
−20 dB 5.25 4.57 4.07 4.43 3.97 4.00 3.99 4.02

Table 7. Dense scene: image contrast under different SIRs with various methods.

SIR

Image Contrast

NF [7] ESP [9] RNN
[20]

DLRM
[17] Lp-DNLRM Log-DNLRM Lp-ADNLRM Log-ADNLRM

−10 dB 284.96 286.08 305.03 292.56 304.47 305.12 304.69 305.22
−15 dB 257.08 275.95 300.34 291.89 301.21 302.56 301.46 302.46
−20 dB 235.35 257.82 294.58 267.77 298.21 299.33 298.11 299.13

4.1.3. RFI Suppression Analysis against Different SIRs

In this section, the RFI suppression performance with various methods under different
SIRs are analyzed. For the sparse scene, the quantitative metrics can refer to Tables 2–4.
Similar comparisons for the dense scene are quantitatively shown in Tables 5–7. As the
SIR decreases, the details of the imaging scene gradually deteriorate, and the SAR image is
gradually dominated by RFI streaks leaving little valuable information. After performing
RFI suppression with several methods, we obtain different levels of RFI suppression
performance against the varying SIRs.
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For the lateral comparison, comprehensively considering the evaluation results under
the three metrics, namely NMSE, image entropy, and image contrast, the proposed method
was verified to achieve a superior RFI suppression performance. Meanwhile, there were
some detailed issues that need to be stated. Compared to the other mentioned methods, the
performance improvement of DNLRM-related methods increased with the decrease in SIR.
However, in a larger SIR, the advantages of the proposed method were not obvious enough.
Taking RNN as the example, the reasons can be explained in the following three aspects.
Firstly, due to the direct usage of the non-sparse useful signal as the sparse regularization
in the RNN method, distortion correspondingly occurs in the recovered useful signal, and
certain jitters appear in the spectrum. Larger SIR, for instance −10 dB, corresponded to
the moderate interference, the spectrum of the processed signal was thereby less affected
when suppressing RFI, and the influence of RNN processing on the recovered signal was
relatively smaller. As the SIR worsened, the received signal was covered by more severe
RFI, and its overall spectrum was increasingly affected. When pursuing a more adequate
suppression of severe RFI, the signal spectrum will also be more seriously damaged due
to the direct usage of the non-sparse useful signal in RNN, which brings nonnegligible
errors to the recovered useful signal. Secondly, for moderate RFI, there were fewer large
singular values diffusing into the ones that belonged to the useful signal. The RFIs were
therefore easier to distinguish from the useful signal, even though the useful signal was
not in its sparser form in the RNN. Finally, the core consideration in RFI suppression
was to suppress the RFI as much as possible on the premise of protecting useful signals.
However, the measured RFI signal was a mixture of interference signals and other noise
signals obtained from the actual complex electromagnetic environment, which contained
RFI with less low-rank properties and uncontrollable noise. These uncontrollable factors
correspondingly influence the performance of RFI suppression. Additionally, although
DLRM can achieve lower image entropy in larger SIR, the other two metrics are obviously
worse than the proposed method, and the visual effect of the RFI suppression result using
the DLRM method is also inferior. These results are due to the improper punishment
problem caused by the usage of the constant penalty in DLRM. Furthermore, ADNLRM
can achieve a similar considerable performance as DNLRM. Meanwhile, considering the
advantage of not requiring human intervention, ADNLRM is more practical and suitable
for the actual variable RFI environment.

For a longitudinal comparison, the three employed metrics showed a general trend
of gradual deterioration with the decline in SIR, and there are two reasons accounting for
this phenomenon. On one hand, the signal obtained in the listen-only mode was actually
the combination of RFIs and the noise from the real-time working environment. With
the decrease in the SIR, the noise accordingly increased, making the image after the RFI
suppression still different from the original RFI-free imaging result. On the other hand,
notice the fact that the measured RFI was a mixture of various forms of interference in
practice, which was possibly not strictly low-rank. This caused the diffusing of larger
singular values along the decreasing direction, making the low-rank decomposition more
challenging, and, thus, the RFI remnants. Consequently, for the decreasing SIR, the energy
of the residual RFIs and noise gradually increased. The difference between the original
image and the RFI suppression result was accordingly expanded, hence the worse metrics.
Notably, review Figure 5 that shows the threshold extension for the diffusion effect; the
RFIs not being strictly low-rank was partly taken into account in the proposed ADNLRM
method. The superiority lying in the implementation principle of ADNLRM method
ensured its RFI suppression performance. The above laws are applicable to both the sparse
case and the dense case. Furthermore, overall, the latter presented a worse performance for
the more serious interactions of the densely distributed scatterers.

4.2. RFI-Contaminated Real SAR Data

In order to further verify the practicability of the proposed method, the experiments
based on the RFI-contaminated real SAR data are analyzed here. Unlike the previous case,
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the RFI-contaminated data means that the SAR signal was already contaminated by the
RFIs when receiving the echoes, rather than the combination of the RFI-free data with the
measured RFI. Such a situation represents the most realistic electromagnetic environment.
The RFI-contaminated SAR data was acquired via a P-band airborne SAR system from
the Aerospace Information Research Institute of Chinese Academy of Sciences, with the
system parameters listed in Table 8. In reality, there were many wireless communication
devices operating within the frequencies around P-band. Once an SAR system is affected
by the electromagnetic interference, there are severe RFI streaks overlaying the imaging
result, as shown in Figure 12a, making it difficult to distinguish the scene information, let
alone the subsequent operations. The size of the imaging result is 1638 × 4096. Notably,
there is a large difference in the range resolution and azimuth resolution, and to make the
height-to-width ratio of the imaging results closer to the actual scene, the figures have been
reduced by 0.4 times in azimuth.

Table 8. Parameters of the P-band airborne SAR system.

Parameter Value

Pulse Width 15 µs
Sensor Velocity 97 m/s

Carrier Frequency 450 MHz
Signal Bandwidth 90 MHz

Sampling Frequency 100 MHz
Pulse Repetition Frequency 250 HzRemote Sens. 2022, 14, x FOR PEER REVIEW 23 of 33 
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Figure 12. Performance comparison of the different methods for the RFI-contaminated real SAR data.
(a) is the imaging result acquired by the RFI-contaminated real SAR data, with a size of 1638 × 4096.
The imaging results after RFI suppression are obtained with (b) the NF method, (c) the ESP method,
(d) the RNN method, (e) the DLRM method, (f) the Lp-DNLRM method, (g) the Log-DNLRM method,
(h) the Lp-ADNLRM method, and (i) the Log-ADNLRM method.

Note that there was no access to the original clean data for the RFI-contaminated
case, thereby NMSE couldn’t be considered for the performance evaluation, in the present
study. Instead, the metric of the ratio of signal-to-noise (SNR) was used for an effective
evaluation. Specifically, for the RFI suppression results, the energy of the dark background
with less scattering information (marked by a yellow rectangle in Figure 12) is chosen as
the measurement of the noise, while the useful signal is measured by the energy of the
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intercepted feature-rich area (marked by a blue rectangle in Figure 12). Calculating the
energy in the form of variance, SNR is defined as:

SNR = 10 · log10

(
σ2

s
σ2

n

)
(30)

where σ2
s and σ2

n respectively represent the variance of the selected useful signal region
and the noise area. Clearly, a larger SNR means less residual interference energy, thus a
better RFI suppression result. Meanwhile, image entropy and image contrast were also
considered to analyze the image quality. After RFI suppression, the improved image quality
indicated corresponding smaller image entropy and larger image contrast.

To obtain the original appearance of the contaminated SAR image, a series of methods
were used for suppressing RFIs with the corresponding performance shown in Figure 12.
For a clearer visual comparison, the area marked in a red rectangle is enlarged in Figure 13.
After being processed by the NF method and the ESP method, the imaging results can
present the outline of the target scene, but with nonnegligible RFI remnants and noise.
The improved imaging result is obtained via the RNN method, but there are still residual
RFI streaks, as can be seen in Figure 13d. Additionally, the imaging result in Figure 13e
appears to be shrouded in noise-like residual RFIs, which was obtained by the DLRM
method associated with the improper punishment problem. Furthermore, as shown in
Figure 13f,g, the imaging results, which are, respectively, obtained via the proposed Lp-
DNLRM and Log-DNLRM, demonstrate further improvements to the performance with
fewer RFI streaks and noises. Finally, based on the introduced adaptive scheme, the optimal
performance were automatically obtained. Figure 13h,i illustrate the RFI suppression results
via Lp-ADNLRM and Log-ADNLRM, respectively. The above experiments demonstrated
the effectiveness and superiority of the proposed method, even in the realistic environment.
The quantitative performance analysis is shown in Table 9, showing that the proposed
method has the optimal comprehensive performance.
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Table 9. Performance analysis for the RFI-contaminated real SAR data.

Methods RFI NF [7] ESP [9] RNN
[20]

DLRM
[17] Lp-DNLRM Log-DNLRM Lp-ADNLRM Log-ADNLRM

SNRs 2.00 9.38 8.72 10.24 9.13 10.49 10.43 10.49 10.49
Entropy 4.76 3.15 3.25 3.23 3.19 3.06 3.03 3.04 3.04
Contrast 1403.72 2112.08 2036.97 2110.87 2063.75 2169.41 2163.64 2171.19 2162.62

In addition, to illustrate the applicability of the proposed method to varying RFI sup-
pression missions, another set of comparative experiments based on the RFI-contaminated
real SAR data was carried out. The imaging results are shown in Figure 14 and enlarged to
Figure 15, and the quantitative comparison is correspondingly listed in Table 10. The mean-
ings of the marked boxes in Figure 14 are the same as those in Figure 12. The experimental
results here have similar RFI suppression comparison results to the previous experiment,
indicating that the proposed method can achieve a better RFI suppression performance
and adapt to different RFI situations in reality, which further verifies its practicability.
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(a) is the imaging result acquired by the RFI-contaminated real SAR data, with a size of 1638 × 4096.
The imaging results after RFI suppression are obtained with (b) the NF method, (c) the ESP method,
(d) the RNN method, (e) the DLRM method, (f) the Lp-DNLRM method, (g) the Log-DNLRM method,
(h) the Lp-ADNLRM method, and (i) the Log-ADNLRM method.

Table 10. Performance analysis for the RFI-contaminated real SAR data.

Methods RFI NF [7] ESP [9] RNN
[20]

DLRM
[17] Lp-DNLRM Log-DNLRM Lp-ADNLRM Log-ADNLRM

SNRs 0.28 5.36 5.23 6.18 5.33 6.25 6.31 6.33 6.31
Entropy 4.63 2.88 2.95 2.61 2.89 2.50 2.54 2.54 2.56
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4.3. Model Parameter Analysis

The regularity of parameter λ in the weighting function for affecting the RFI suppres-
sion performance is further unearthed in this section. The relationship between λ and
NMSEs at different SIRs for the sparse scene is simulated and illustrated in Figure 16, where
the noteworthy information is threefold. Firstly, for the optimal NMSE values of the three
SIRs, they become worse with the deterioration of SIR. The reasons are clearly explained
when analyzing the RFI suppression performance against the different SIRs evaluated
earlier. Secondly, as the SIR decreases, the value of the optimal parameter λ marked by red
arrows in Figure 16 concomitantly decreases. The reason for this is that a worse SIR means
a more serious RFI, which increases the corresponding singular values belonging to the
RFIs. To more thoroughly separate the RFIs from the useful signal, the penalty threshold
must naturally be smaller for fewer RFI remains, thus a decreasing optimal parameter λ.
Finally, the optimal performance is achieved only at the sole optimal parameter λ. There
are two reasons accounting for this. The first is that when λ is small, the penalty for the
useful signal is accordingly insufficient, namely the under-punishment of the useful signal.
This results in the fact that part of the useful signal is divided into RFIs. As for the second
reason, once λ increases to a certain extent, the over-punishment of large singular values
occurs, thus the incomplete separation of RFIs. Both of them will cause a degradation
to the image quality, leading to higher NMSEs. Without the loss of generality, the above
regularities can fit in both Lp and Logarithm, which are, respectively, shown in Figure 16a,b.
In addition, note that the selection of parameter λ is related to the target scene and the
corresponding RFI level. Therefore, to make the DNLRM method more intelligent and
practical, our adaptive scheme for parameter λ is further proposed, as described earlier.
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5. Discussion
5.1. Convergence Analysis

In order to further verify the effectiveness of the proposed DNLRM framework, the
convergence is theoretically analyzed here. The main idea of the proof is as follows, which
is inspired by [30,31] and modified to specifically fit our optimization model. Firstly,
prove that the sequence {Lk, Ak, Zk} generated by the proposed DNLRM framework is
bounded. Secondly, the Karush–Kuhn–Tucker (KKT) conditions are deduced to be satisfied.
Finally, the accumulation point of the bounded sequence {Lk, Ak, Zk} is proved to be the
corresponding stationary point of the original problem. The specific derivation results can
be seen in Appendix A.

5.2. Computational Complexity Analysis

In this section, the computational complexity of the mentioned optimization-based
approaches is analyzed. Suppose that Nr > Na, then for the RNN algorithm [20], one
SVD operation with O(Nr N2

a ), one vector inversion with O(Na), and one soft-thresholding
operation with O(2Nr Na) are needed. Therefore, the total computational complexity of the
RNN algorithm is O(Nr N2

a + Na + 2Nr Na). As for the original dictionary-based low-rank
minimization (DLRM) framework [17], it takes one SVD operation with O(Nr N2

a ), which
is accompanied by one additional matrix multiplication related to the dictionary Dx with
O(KNr Na) to update the low-rank matrix. In addition, one soft-thresholding operation
with O(2Nr Na) is needed, which contains two additional matrix multiplications with
O(2KNr Na) to update the sparse matrix. Therefore, the total computational complexity
reaches O(Nr N2

a + 3KNr Na + 2Nr Na). The proposed DNLRM algorithm has the same
computational complexity as the DLRM algorithm, except for one lightweight operation for
calculating the weighed penalty with O(Na), so we obtain a total computational complexity
with O(Nr N2

a + 3KNr Na + 2Nr Na + Na). As for the adaptive selection scheme, ADNLRM,
it is implemented based on DNLRM. The modified boxplot-based threshold extension is
first conducted to obtain the initial value, which is needed only once outside the loop.
Then, in the fine searching process, the number of corresponding searches determines the
final computational work, where the complexity of each attempt is the same as DNLRM.
The related computational complexities are listed in Table 11. In summary, the proposed
DNLRM algorithm effectively improves the RFI suppression performance at the cost of a
lightweight increase in the computational complexity.
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Table 11. Comparison of computational complexity.

Metric
Algorithms

RNN [20] DLRM [17] DNLRM

Computational Complexity O(NrNa2 + Na + 2NrNa) O(NrNa2 + 3KNrNa + 2NrNa) O(NrNa2 + 3KNrNa + 2NrNa + Na)

5.3. Relationship with Preceding Optimization Frameworks

Considering the priority of low rank, a series of optimization frameworks were pro-
posed whereas, in most cases, the updating of low-rank RFI matrix was obtained via an SVT
operation that treated all the singular values with the same penalty, thus resulting in the
improper punishment. Moreover, the useful signal, which was noise-like and non-sparse,
can also cause degradation to performance once directly used as the sparse regularization.
To overcome these problems, the DNLRM framework was proposed in this paper by intro-
ducing the supergradient of the nonconvex function for calculating the weighted penalty.
As a result, the larger singular values can be treated by correspondingly smaller penalties
and vice versa. Here, we further emphasized the relationship and difference between the
DNLRM framework and some preceding ones.

On one hand, when Dx is ignored and the rank function is approximated by the
Logrithm function, namely W(σi(L)) = λln(σi(L) + γ) with ω(σi(L)) = λ/(σi(L) + γ),
the DNLRM framework degenerates to:

min
L,X

∑
i

λ
σi(L)+γ

σi(L) + τ‖X‖1

s.t.‖Y−X− L‖2
F < δ

(31)

which represents the RNN algorithm. RNN considers the over-punishment problem, but
the non-sparsity of the useful signal is not taken into account. The useful signal itself is
directly used to act as sparse regularization, hence the restricted recovery performance.
When the over-punishment problem is further ignored with W(σi(L)) = σi(L), in other
words, the rank function is approximated by the nuclear norm, then the DNLRM framework
further degrades to

min
L,X
‖L‖∗ + τ‖X‖1

s.t.‖Y−X− L‖2
F < δ

(32)

which is the classic RPCA form. When updating the low-rank matrix, the invariable penalty
is considered via the SVT operation, which causes the improper punishment problem and
the following incomplete RFI separation. On the other hand, if Dx is considered but the
rank function is still approximated by the nuclear norm, then the DNLRM framework
converts back into the DLRM framework, that is:

min
L,A
‖L‖∗ + τ‖A‖1

s.t.‖Y−DxA− L‖2
F < δ

(33)

where the improper punishment problem is likewise ignored.
Through the above analysis, as a result of simultaneously considering both the im-

proper punishment problem and the non-sparsity of the useful signal, the proposed
DNLRM framework outperforms the frameworks mentioned for comparison, especially
in severe RFI situations. Compared with the preceding optimization methods mentioned
in the manuscript, our method realizes the unification of them and further develops the
strengths. Notably, this paper mainly focuses on the narrowband interference with a low
rank, and there are two issues worth considering. For the first issue, although only nar-
rowband interference was analyzed in this paper, the proposed method can also be used
for effectively solving wideband interference once it satisfies the low-rank property. For
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the second issue, the RFI suppression performance was related to the degree to which the
interference satisfied the low-rank property, regardless of being narrowband or wideband.

6. Conclusions

In this paper, a novel DNLRM method was proposed to more effectively suppress
RFIs while guaranteeing the fidelity of the useful signal. Both the appropriate sparse
regularization of the useful signal and the accurate low-rank approximation of RFIs were
simultaneously considered. Innovatively, the advantages of the combined usage of the
over-complete dictionary and the nonconvex approximating function were demonstrated
theoretically and experimentally. Additionally, the mechanisms of over-punishment and
under-punishment were analyzed adequately, and the corresponding solutions with ap-
propriate penalties were provided. Subsequently, the role of weighted penalty based on
the super-gradient in singular value punishment was revealed in detail. Afterwards, an
adaptive selection scheme for the model parameter was proposed to adapt to different
chosen nonconvex functions and the varying severity of RFIs, effectively and conveniently.
Sufficient experiment results proved the superiority and practicability of the proposed
method, especially those including the case of RFI-contaminated real SAR data, which
reflected the most actual electromagnetic environment. Moreover, the proposed method
was based on the low-rank assumption on RFI, whose degradation can affect the processing
performance accordingly. Furthermore, as the dimension of the SAR data matrix increased,
the computational efficiency of the algorithm could be gradually limited, which will be
further studied in future work.
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Appendix A. Convergence Analysis of the Proposed DNLRM Method

In Section 5.1, the main idea and detailed steps of convergence analysis for the pro-
posed DNLRM method are presented, and the following is the specific proof process.

Lemma A1. Lagrange multiplier sequence {Zk} is bounded.

Proof of Lemma A1. The augmented Lagrangian can be written as

L(L, A, Z; µ) = ∑
i

ωiσi(L) + τ‖A‖1 + 〈Z, Y−DxA− L〉+ µ

2
‖Y−DxA− L‖2

F (A1)

then taking the partial derivative of the augmented Lagrangian with respect to A, we obtain

∂AL (Lk+1, A, Zk; µk)|Ak+1
= ∂A(τ‖A‖1)|Ak+1

+ DH
x µk

(
DxAk+1 − Y + Lk+1 − Zk

µk

)
= ∂A(τ‖A‖1)|Ak+1

−DH
x (µk(Y−DxAk+1 − Lk+1) + Zk)

= ∂A(τ‖A‖1)|Ak+1
−DH

x Zk+1

(A2)
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Considering that Ak+1 is the optimal solution of the A subproblem, Ak+1 satisfies the
first order optimal condition, namely

0 ∈ ∂A(τ‖A‖1)|Ak+1
−DH

x Zk+1 (A3)

Meanwhile, ∂A(τ‖A‖1)|Ak+1
is bounded and Dx is an over-completed dictionary con-

structed from the discrete time-shifted versions of the transmitted signal with a finite value,
so {Zk} is bounded.

Lemma A2. When
∞
∑

p=1

((
µp + µp−1

)
/µ2

p−1

)
< ∞, the low-rank matrix sequence {Lk} and the

sparse matrix sequence {Ak} are both bounded.

Proof of Lemma A2. Based on the updating formulas shown in Section 3.2, the following
derivation can be obtained:

L(Lk+1, Ak+1, Zk; µk) ≤ L(Lk+1, Ak, Zk; µk)
≤ L(Lk, Ak, Zk; µk)

= L(Lk, Ak, Zk−1; µk−1) + 〈Zk − Zk−1, Y−DxAk − Lk〉+
µk−µk−1

2 ‖Y−DxAk − Lk‖2
F

= L(Lk, Ak, Zk−1; µk−1) +
1

µk−1
‖Zk − Zk−1‖2

F +
µk−µk−1

2µ2
k−1
‖Zk − Zk−1‖2

F

= L(Lk, Ak, Zk−1; µk−1) +
µk+µk−1

2µ2
k−1
‖Zk − Zk−1‖2

F

(A4)

keep iterating along this way, then we obtain:

L(Lk+1, Ak+1, Zk; µk) ≤ L(L1, A1, Z0; µ0) +
k
∑

p=1

µp+µp−1

2µ2
p−1

∥∥Zp − Zp−1
∥∥2

F

≤ L(L1, A1, Z0; µ0) + U ·
k
∑

p=1

µp+µp−1

2µ2
p−1

(A5)

where U denotes the upper bound of
∥∥Zp − Zp−1

∥∥2
F since {Zk} is bounded, known from

Lemma A1. Once
∞
∑

p=1

((
µp + µp−1

)
/µ2

p−1

)
< ∞, the right-hand side of (A5) is bounded,

thus L(Lk+1, Ak+1, Zk; µk) is bounded. Simultaneously, define Θ = ∑i ωk+1
i σi(Lk+1) +

τ‖Ak+1‖1, then

L(Lk+1, Ak+1, Zk; µk) = Θ + 〈Zk, Y−DxAk+1 − Lk+1〉+
µk
2 ‖Y−DxAk+1 − Lk+1‖2

F

= Θ +
〈

Zk, Zk+1−Zk
µk

〉
+ µk

2

∥∥∥Zk+1−Zk
µk

∥∥∥2

F
= Θ + 1

µk

(
〈Zk, Zk+1〉 − ‖Zk‖2

F

)
+ 1

2µk

(
‖Zk+1‖2

F + ‖Zk‖2
F − 2〈Zk, Zk+1〉

)
= Θ + 1

2µk

(
‖Zk+1‖2

F − ‖Zk‖2
F

) (A6)

Recall that L(Lk+1, Ak+1, Zk; µk) and {Zk} are bounded and µk is incremental, therefore
{Lk} and {Ak} are both bounded. �

Theorem A1. Let {Lk, Ak, Zk} be the sequence generated by the proposed DNLRM framework
with {L∗, A∗, Z∗} being a corresponding accumulation point, then {L∗, A∗, Z∗} is a stationary

point of the original problem once
∞
∑

p=1

((
µp + µp−1

)
/µ2

p−1

)
< ∞.

Proof of Theorem A1. {Lk, Ak, Zk} is bounded when
∞
∑

p=1

((
µp + µp−1

)
/µ2

p−1

)
< ∞, which

is known from Lemma A1 and Lemma A2. Therefore
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∃{L∗, A∗, Z∗} ∈ {Lk, Ak, Zk}
s.t. lim

k→∞
{Lk, Ak, Zk} = {L∗, A∗, Z∗} (A7)

where {L∗, A∗, Z∗} represents the accumulation point. Meanwhile, considering the updated
formula of Z shown in (13), we have

lim
k→∞

(Y−DxAk+1 − Lk+1) = lim
k→∞

(
Zk+1 − Zk

µk

)
(A8)

As {Zk} is bounded, the following equation holds:

lim
k→∞

(Y−DxAk+1 − Lk+1) = Y−DxA∗ − L∗ = 0 (A9)

Moreover, Lk+1 is the optimal solution of the L subproblem, therefore so that the
following first order optimality condition holds:

0∈ ∂LL(L, Ak, Zk; µk)|Lk+1

= Gk+1 − µk

(
Y−DxAk+1 − Lk+1 +

Zk
µk

)
= Gk+1 − Zk+1

(A10)

Additionally, since the selected W(·) is nonconvex and ωk+1
i ∈ ∂W(σi(Lk+1)), we

obtain −ωk+1
i ∈ ∂(−W(σi(Lk+1))), where −W(·) is nonconcave. Based on the nonconcave

property of−W(·), consider the upper semi-continuous property of the subdifferential [43],
then ∃ −ω∗i ∈ ∂(−W(σi(L∗))). Therefore, ∃ω∗i ∈ ∂(W(σi(L∗))) and

{
ωk

i

}
converge to ω∗i .

Accordingly

∃G∗ ∈ ∂L

(
∑

i=1
ω∗i σi(L∗)

)
s.t.

lim
k→∞

(Gk+1 − Zk+1) = G∗ − Z∗ = 0
(A11)

Recall (A3) when proving Lemma A1, and review the relationship between the accu-
mulation point and the corresponding sequence, from which we obtain:

∂A(τ‖A∗‖1)−DH
x Z∗ = 0 (A12)

To sum up, as shown in (A9), (A11), and (A12), the accumulation point {L∗, A∗, Z∗}
meets the KKT condition related to the augmented Lagrangian function L(L, A, Z; µ), so
{L∗, A∗, Z∗} is a stationary point of the original problem (10). �
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