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Abstract: Yunnan province in China has rich forest resources but high forest fire frequency. Therefore,
a better understanding of the relationship between climate change and forest fires in this region is
important for forest fire prevention. This study used the Gravity Recovery and Climate Experiment
(GRACE) terrestrial water storage change (TWSC) data to analyze the influence of climate change
on forest fires in the region during 2003–2016. To improve the accuracy and reliability of GRACE
TWSC data, we used the generalized three-cornered hat (GTCH) and the least square method to
fuse TWSC data from six GRACE solutions. The spatiotemporal variation of forest fires during
2003–2016 was investigated using burned area data. Then, the relationship between burned area
and hydrological and climatic factors was analyzed. The results indicate that more than 90% of
burned areas are located in northwestern and southern Yunnan (NW and S). On the seasonal scale,
forest fires are mainly concentrated in January–April (dry season) and the burned area is negatively
correlated with precipitation (correlation coefficient r = −0.83 (NW) and −0.51 (S)), relative humidity
(r = −0.79 (NW) and −0.92 (S)), GRACE TWSC (r = −0.57 (NW) and −0.73 (S)) and evapotranspira-
tion (r = −0.90 (NW) and −0.35 (S)). However, the burned area has no significant correlations with
the above four factors on the interannual scale. The composite analysis suggests that the extreme
climate affects precipitation, evapotranspiration and TWSC in this region, thereby changing water
storage of the air in this region, leading to the formation of an environment prone to forest fires. Such
conditions have led to an increase in the burned area in the above region. We also found that the
difference between TWSC in high- and low-fire years is much greater than the precipitation in the
same period. The above results show that GRACE satellites can detect the influence of climate change
on forest fires in Yunnan province.

Keywords: GRACE; forest fire; Yunnan; climate change; three-cornered hat method; fusion

1. Introduction

Forest fires are serious natural disasters, which have caused enormous damage to
human society, ecological environments and economic development [1]. According to
statistics, there were more than 139,000 forest fires in North America each year, with a
total area of 4.2 million hm2 [2]. In 2019, the Amazon rainforest fire continued to burn for
more than 21 days, and the burned area exceeded 1 million hm2. It has caused serious
damage to the local ecological environment and may be a greater influence on the local and
global climate [3]. During 2019–2020, the wildfire in Australia killed at least 33 people and
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about 1 billion animals, and the affected area was more than 10 million hm2. The heavy
smoke caused by the wildfire lasted for several weeks and blocked many cities including
Sydney, and the local ecological environment was severely damaged [4]. Therefore, it is of
great significance to study the driving factors of forest fires for effectively controlling the
occurrence of forest fires.

Forest fire occurrence is driven by many factors including weather condition [5],
human activities [6], fuel characteristics [7], fire management [8], land use changes [9] and
climate changes [10,11]. Among these, climate change is a key factor contributing to forest
fires [12,13], which mainly affects forest fires in two ways. On the one hand, climate change
affects the occurrence of forest fires by changing the dryness of combustibles through
temperature, precipitation (PPT), evapotranspiration (ET), etc. [14–16]. On the other hand,
climate change can change the composition, properties and biomass of combustibles by
affecting the structure and growth of vegetation, which affects the behavior of forest
fires [17–19]. Swetnam et al. [20] and Jones et al. [21] indicate that the large-scale climate
model of Pacific Decadal-scale oscillations and strong El Niño/La Niña events is closely
related to the frequency and severity of forest fires. The severity of forest fires has a
certain correlation with abnormal ocean surface temperature and Palmer Drought Severity
Index [5,22,23]. Gillett et al. [24] indicate that the increase in the area of burned areas
in Canada from 1920 to 1990 is related to the trend of regional warming over the same
period. Heyerdahl et al. [25] explain that the frequency of forest fires in inland forests
is synchronized with the changes in the dry and wet climates in spring and summer.
Westering et al. [26] analyzed the influence of climate change in the western United States
on forest fires. The results show that the increase in average temperature and the extension
of dry periods have increased the number of forest fires in the western United States by
nearly three times, and the burned area has increased by nearly six times. Pausas et al. [27]
studied the relationship between climate change and forest fires in the Iberian Peninsula
from 1950 to 2000. The results show that the summer temperature and PPT are significantly
related to the frequency of forest fires and the fire area in the same period.

In 2002, the Gravity Recovery and Climate Experiment (GRACE) was implemented to
detect the changes of Earth’s gravity field on medium and long scales [28]. These changes
mainly come from terrestrial water, so it is generally considered that Earth’s surface mass
changes detected by GRACE are equivalent to terrestrial water storage change (TWSC) [29].
As an important part of the regional water cycle, TWSC can not only reflect the water
balance relationship between water inputs (such as, PPT, snowfall, etc.) and water outputs
(such as runoff, ET, etc.) but also was used to evaluate the influence of climate change
on regional hydrological changes [30,31]. Therefore, it is feasible to use GRACE TWSC to
study the influence of climate change on forest fires.

Yunnan province is one of the major forest regions and the most frequent and hardest-
hit region of forest fires in China [32]. There is high forest coverage rate and rich forest
resources. Forest fires in this region are characterized by a long fire-prevention period,
complex terrain and difficulty in fighting the fires. During 1996–2008, there were 135.8 thou-
sand forest fires that occurred, 0.1358 million hm2 of forest burned, 67 people died from
fighting fires and 142 people were burned [33]. Yunnan is located on a plateau with complex
topography; there are significant regional differences and vertical changes in climate, and
regional climate changes are inconsistent [32]. Therefore, studying the relationship between
forest fires and climate change will help to scientifically understand the laws of temporal
and spatial changes of forest fires in this region, and provide scientific data support for
government departments’ forest fire prevention and macro decision making.

However, there are few studies about using GRACE TWSC to detect the influence of
climate change on forest fires [34,35]. In particular, research about Yunnan province has
not been reported in the literature to the best of our knowledge. Due to the differences
between different GRACE solutions, it may lead to unreliable results [36]. Therefore, we
first used the generalized three-cornered hat method (GTCH) to evaluate the uncertainly of
six GRACE solutions in this paper, then the least squares method was used to integrate the
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TWSC results from the above GRACE solutions. Moreover, the fusion result was used to
investigate the climatic characteristics of Yunnan province. Finally, the connection between
climate change and forest fires was analyzed. This paper is organized as follows. In
Sections 2–4, the study area, data and study methods are introduced separately. Section 5
presents the spatial and temporal distribution of fire burned area, the climate change
characteristics in Yunnan and the analysis results of the influence of climate change on
forest fires. The discussion and conclusion are provided in Sections 6 and 7, respectively.

2. Study Area

Yunnan is located in Southwest China, approximately at 21◦–30◦N and 97◦–106◦E,
with a total area of about 390,000 km2 (see Figure 1). This region is a mountainous plateau
region: most of the region is mountainous, and the overall terrain tends to be higher in the
west and lower in the east [32]. Warm in winter and cool in summer, all seasons are like
spring. There are also complex vegetation types and rich forest resources in this region.
Because it is located at the intersection of frigid and tropical zone plant regions, plants of
the frigid, warm and hot zones have grown. In addition, the distribution of vegetation in
this region has obvious horizontal zonality. From north to south, the vegetation types are
cold-temperate coniferous forest, subtropical semi-humid evergreen broad-leaved forest,
subtropical monsoon evergreen broad-leaved forest, tropical monsoon forest and tropical
rainforest [37].

Figure 1. Digital elevation model of Yunnan.

3. Data
3.1. GRACE Data

To obtain monthly 1◦ × 1◦ gridded TWSC data, we used four GRACE RL06 spherical
harmonic (SH) solutions provided by the Center for Space Research at the University
of Texas at Austin (CSR), Helmholtz–Centre Potsdam–German Research Centre for Geo-
sciences (GFZ), Jet Propulsion Laboratory (JPL) and Institute of Geodesy at Graz University
of Technology (ITSG), respectively. Before calculating the gridded TWSC data, we needed
to perform several types of preprocessing on the four SH solutions. Firstly, C20 of SH
coefficients have been replaced with those of satellite laser ranging [38]. The degree-1
coefficients have been replaced using the results from Swenson et al. [39]. To minimize the
effects of high-frequency and correlated errors, the combined filtering (300 km Fan filter
and de-striping method P3M6) has been applied for smoothing the SH solutions [40]. To
reduce the signal attenuation effect caused by order truncation and filter smoothing, the
GRACE TWSC data was corrected by using the scale factor approach [41].
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In this study, we also obtained the monthly 1◦ × 1◦ global gridded TWSC data derived
from two Mascon solutions provided by CSR and JPL. The JPL Mascon is Release 06 Version
1.0 with the coastal resolution improvement filter [42], and the CSR Mascon is Release 06
Version 2.0 [43]. Unlike SH solutions, Mascon solutions do not require additional processing
and can be directly read and used. A number of measures have been taken to improve
the accuracy of Mascon solutions. Firstly, the C20 coefficients have been replaced with
the solutions from SLR. Secondly, the degree-1 coefficients have been estimated using the
results of TN-13a [44] and the approach of Sun et al. [45] and Swenson et al. [39]. Thirdly,
the ice rebound correction has adopted ICE6G-D model [46].

Therefore, the four SH solutions and two Mascon solutions were used to obtain
monthly GRACE TWSC gridded data in Yunnan from January 2003 to December 2016 in
this study. For convenience, the four SH solutions and two Mascon solutions are termed
CSR-SH, GFZ-SH, JPL-SH, ITSG-SH, CSR-M and JPL-M.

3.2. Burned Area Data

The monthly global gridded burned area data from January 2003 to December 2016
was provided by the Global Fire Emission Database Version 4.1s (GFED4.1s) [47,48] in our
study, which was used to estimate the fire-affected area during forest fires in Yunnan. The
GFED4.1s product is a collection of multiple satellite detection data, including the Moderate-
resolution Imaging Spectroradiometer (MODIS), the Tropical Rainfall Measuring Mission
(TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer
(ATSR) family of sensors [49]. This database with spatial resolution 0.25◦ × 0.25◦ provides
four components: burned area, carbon emissions, biosphere fluxes and other ancillary
data sets.

3.3. In Situ PPT Data

The monthly gridded PPT data with spatial resolution 0.5◦ × 0.5◦ from January 2003
to December 2016 was provided by the China National Meteorological Science Data Center
in our study. The datasets come from the monthly PPT data at national-level stations
nationwide from 1961 to the present, which were collected and compiled by the China
National Meteorological Information Center.

3.4. Evapotranspiration (ET) Data

We used the ET gridded data with spatial resolution 0.25◦ × 0.25◦ from January 2003
to December 2016 derived from the Global Land Evaporation Amsterdam Model (GLEAM)
3.5a [50,51] in our study. The model is a set of algorithms that separately estimate the dif-
ferent components of land evaporation: transpiration, bared-soil evaporation, interception
loss, open-water evaporation and sublimation. Additionally, GLEAM provides surface and
root-zone soil moisture, potential evaporation and evaporative stress conditions.

3.5. Relative Humidity Data

To further investigate the relationship between humidity changes in air and forest
fires, we used the relative humidity gridded data derived from the National Centers for
Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis 2 project. The
data are provided by Physical Sciences Laboratory at the National Oceanic and Atmospheric
Administration (NOAA). The NCEP-DOE Reanalysis 2 project is using a state-of-the-art
analysis/forecast system to perform data assimilation using past data from 1979 through
the previous year [52], and the temporal coverage of the data are 4-times daily, daily and
monthly. In our study, we used the monthly relative humidity gridded data with spatial
resolution 2.5◦ × 2.5◦ from January 2003 to December 2016.

3.6. Atmospheric Column Water Vapor

To investigate the role of water storage in regulating air and fuel moisture, the global
atmospheric column water vapor monthly gridded observations with spatial solutions
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1◦ × 1◦ were used in our study, which are derived from the Atmospheric Infrared Sounder
(AIRS) [53]. In our study, the monthly atmospheric column water vapor gridded data were
used from January 2003 to December 2016.

3.7. Extreme Climate Index

Since PPT and ET of Yunnan are affected by the El Niño-Southern Oscillation (ENSO)
and the Indian Ocean Dipole [40,54], we included the above two extreme climates into the
analysis scope when studying the influence of climate change on forest fires in Yunnan.
The monthly Niño 3.4 index data indicate the magnitude of ENSO, which is provided by
the National Oceanic and Atmospheric Administration (NOAA). The Indian Ocean Dipole
Model Index (DMI) is defined as the difference in the average sea surface temperature
anomaly between the Tropical Western Indian Ocean and the Equatorial Southeast Indian
Ocean [55]. The monthly DMI data were also provided by NOAA. The above index data in
our study are from January 2003 to December 2016.

4. Method
4.1. Fusing Different Datasets

Due to discrepancies in different GRACE TWSC datasets, inconsistent results may
appear, which may confuse the analysis results. Hereafter, to minimize the discrepancies
caused by different datasets and improve the reliability of the results, we used the GTCH
method to estimate the relative uncertainties of the six GRACE TWSC datasets, and fused
them according to their uncertainties using the least square method.

4.1.1. The GTCH Method

This method can estimate relative covariances of different datasets without a priori
knowledge as long as there are at least three datasets [56,57]. Suppose there are several
different observation series, denoted by xi, i correspond to different data. Each observation
series can be expressed as:

xi = x̂ + εi, i = 1, 2, · · · , N (1)

where x̂ is the real signal, εi is the error of the i observation series (0 means white noise)
and N is the number of observation series. Since the true signal cannot be obtained, any
observation series was selected as the reference signal, and the choice of the reference series
does not influence the final results [58]. Then, the difference series between the remaining
observation series and the reference series was calculated [59].

yi = xi − xR = εi − εR, i = 1, 2, · · · , N − 1 (2)

where xR is the reference observation series and εR is the errors of reference observation
series. The TWSC series derived from the JPL Mascon solution was selected as the reference
series. N − 1 difference series were stored in the following matrix.

Y =


y11 y12 · · · y1(N−1)
y21 y22 · · · y2(N−1)

· · · · · · . . . · · ·
yM1 yM2 · · · yM(N−1)

 (3)

where M is the number of observations in the series. The covariance matrix of difference
series is:

S = cov
(
yiN , yjN

)
=


s11 s12 · · · s1(N−1)
s21 s22 · · · s2(N−1)

· · · · · · . . . · · ·
s(N−1)1 s(N−1)2 · · · s(N−1)(N−1)

(i, j = 1, 2, · · · , N − 1) (4)
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where cov(◦) is the covariance operator. si,j is the variance estimate (i 6= j) or covariance
estimate (i = j), that is, the variance or covariance estimate of difference series between
the TWSC series derived from different GRACE solutions and the reference series. The
unknown noise covariance matrix R was introduced, and its relationship with S is [60]:

S = J•R•JT (5)

where the matrix J is:

JN−1,N =


1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 0 −1

 (6)

The matrix R is:

RN,N =


r11 r12 · · · r1N
r12 r22 · · · r2N
...

...
. . .

...
r1N r2N · · · rNN

 (7)

From Equation (5), the following relationship can be obtained:

rij = sij − rNN + riN + rjN (8)

Both R and S are real symmetric matrices by definition. There are N× (N + 1)/2 unknown
parameters for R, but there are only N × (N − 1)/2 equations for S. Therefore, Equation (5)
is underdetermined. As a results, the remaining N free parameters need a reasonable way
to obtain a unique solution [60].

To guarantee the positive definiteness of R, Galindo and Palacio [61] proposed an im-
portant constraint on the solution space for free parameters based on the Kuhn–Tucker the-
orem.

H2(r1N , · · · rNN) =
H1(r1N , · · · rNN)

K
> 0 (9)

where K = N−1
√
|S|, which is introduced for a better numerical solution. H1(r1N , · · · rNN)

is given by [62]:

H1(r1N , · · · rNN) =
|R|
|S| = rNN −

[
r1N − rNN , · · · , r(N−1)N − rNN

]
S−1

[
r1N − rNN , · · · , r(N−1)N − rNN

]T
(10)

This condition constrains the free parameters in the solution domain, but it is still
not enough to obtain the unique solution of the free parameters [59]. It is necessary
to give the optimal selection criteria to obtain the unique parameter solution. Tavella
and Premoli [58] proposed that the determination of the free parameters is based on the
minimum “global correlation” of all observation series and the positive definiteness of R.
Therefore, the following objective function was defined and minimized to determine the
free parameters [61].

F1(r1N , · · · rNN) =
1

K2

N

∑
i<j

r2
ij (11)

In order to make the initial value within the constraints, the initial value of the iterative
calculation was set to [58]{

r0
iN = 0, i < N

r0
NN = 1

2s∗ , s∗ = [1, · · · , 1]S−1[1, · · · , 1]T
(12)
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Minimize the objective function (Equation (11)) to obtain a set of free parameter solu-
tions under constraints (Equation (9)), that is, the variance of the uncertainty of different
observation series. Other unknown elements in R can be obtained by Equation (8).

4.1.2. Data Fusion

We applied the GTCH method to estimate the relative covariance of TWSC derived
from six GRACE datasets. Then we fused the six TWSC results by taking a weighted
average of them [44].

TWSC =
N

∑
i=1

pi•TWSCi (13)

where TWSCi and pi are the TWSC results derived from the individual GRACE solu-
tion and its corresponding weight, respectively. The weights were determined based on
estimated variances.

pi =
1/rii

N
∑

n=1
1/rnn

(14)

where rii(i = 1, 2, · · · , 6) is the variance of the ith TWSC time series estimated by the GTCH
method. The above process was performed grid by grid until we fused the six datasets on
all the grid nodes.

4.2. Composite Analysis

In the climate change research, composite analysis was used to explore the salient
characteristics of certain special years [63]. In our study, we first standardized the time
series of burned area. Then, the special years were selected according to the rule of greater
than 0.5 times or less than 0.5 times the standard deviation based on the standardized time
series of burned area, which were marked as high- and low-burned area years, respectively.
Finally, the average of meteorological and hydrological elements of these special years were
compared with the ones of all years to analyze the difference of these elements during high-
and low-burned area years.

4.3. Pearson Correlation Analysis

In our study, we used the Pearson correlation analysis to evaluate the relationship
between two sets of data. In statistics, the covariance of two sets of data is generally divided
by the standard deviation of the corresponding data series to obtain the Pearson correlation
coefficient [4]. For xi(i = 1, 2, · · · , n) and yj(j = 1, 2, · · · , n) two sets of time series, the
Pearson correlation coefficient r can be estimated by the following expression:

r =

n
∑

i=1,j=1
(xi − x)

(
yj − y

)
√

n
∑

i=1
(xi − x)2

√
n
∑

j=1

(
yj − y

)2
(15)

where n is the number of observations in the time series xi and yj. x and y are the average
values of the time series xi and yj during the study period. The value range of r is between
−1 and 1.

4.4. Time Series Analysis

The time series of observation signals contains the long-term change trend, accelera-
tion, seasonal change (annual change and semi-annual change) and residual signal. The
corresponding signals can be extracted from the linear fitting model. The decomposition is
expressed as follows [64,65]:

TWSC(t) = a0 + a1(t− t0) + a2(t− t0)
2 + a3 cos(2πt) + a4 sin(2πt) + a5 cos(4πt) + a6 sin(4πt) + ε (16)
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where TWSC(t) is the time series of TWSC; t is the time; t0 is the midpoint of the entire
research period; ε is the error and other signal; and a0, a1, a2, a3, a4, a5 and a6 are the un-
known parameters. a0 is constant term, a1 is long-term trend change, a2 is the acceleration,
a3 and a4 are annual terms and a5 and a6 are semi-annual terms.

5. Results
5.1. GRACE Solutions Fusion

Figure 2 shows the spatial distribution of uncertainties of six GRACE-based TWSC
results estimated by the GTCH method in Yunnan. It can be seen that the uncertainties of
TWSC results derived from the four SH solutions are smaller than those of two Mascon
solutions. Specifically, the uncertainties of TWSC results from the four GRACE SH solutions
are smaller than 4 cm, while TWSC results from the two GRACE Mascon solutions show
uncertainties greater than 4 cm in most regions. Except for GFZ-SH, the regions with greater
uncertainty are mainly concentrated in western Yunnan. Specifically, the uncertainty of
TWSC results from two GRACE Mascon solutions are higher than 6 cm in the above region.

Figure 2. The spatial distribution of uncertainties of TWSC results derived from CSR-SH (a), GFZ-SH
(b), JPL-SH (c), ITSG-SH (d), CSR-M (e) and JPL-M (f) solutions estimated by the GTCH method.

To evaluate the overall uncertainty of six GRACE solutions, we sorted the grid values
of certainty in the study region in ascending order and took the median one to represent
the overall uncertainty in this region. The results are presented in Table 1. The six GRACE
solutions were sorted in ascending order of the uncertainty of TWSC results, and their
arrangement is GFZ-SH (2.63 cm), CSR-SH (2.66 cm), ITSG-SH (3.02 cm), JPL-SH (3.40 cm),
JPL-M (4.62 cm) and CSR-M (5.11 cm). It can be seen that the results of GFZ-SH and CSR-SH
are very close. In our study, we estimated only the relative accuracy. If you want absolute
accuracy, you need ground truth data.



Remote Sens. 2022, 14, 712 9 of 25

Table 1. Uncertainties of TWSC results derived from six GRACE solution and fusion result estimated
by the GTCH method.

GRACE
Solution CSR-SH GFZ-SH JPL-SH ITSG-SH CSR-M JPL-M Fusion

Result

Median(cm) 2.66 2.63 3.40 3.02 5.11 4.62 0.85

Based on the variances of six GRACE-based TWSC results estimated by the GTCH
method, we fused these six results to yield the fused results. From Table 1, we found that
the uncertainty of the fusion result is much smaller than the ones of six single solutions.
Figure 3 shows the spatial distribution of uncertainties of the fusion result. Comparing
Figures 2 and 4, we found that all the uncertainties of fusion result are lower than 1.5 cm,
while the ones of six single solutions are all higher than 2 cm. This suggests that the
accuracy of the fusion result has been significantly improved.

Figure 3. The spatial distribution of uncertainties of TWSC results derived from fusion model.

Figure 4. The time-series of TWSC derived from six GRACE solutions and fusion results.

Figure 4 shows the time series of TWSC results derived from six GRACE solutions and
the fusion result in the study region. It can be seen that TWSC time series from six GRACE
solutions and the fusion result have the similar magnitude. However, the magnitudes of
TWSC time series from Mascon solutions are smaller than the ones from SH solutions. The
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fusion result is close to the TWSC results from SH solutions, because the uncertainties of
the TWSC results from SH solutions are smaller than the ones of Mascon solutions, so the
weights of SH solutions are larger than the ones of Mascon solutions in the fusion process.
To further evaluate the fusion result, we calculated the correlation coefficients between the
fusion result and the TWSC results from six single solutions (see Table 2). From Table 2,
among six solutions, the correlation coefficient between the fusion result and CSR-SH is
the highest (0.9968), followed by GFZ-SH, JPL-SH, ITSG-SH and CSR-M. The smallest one
is JPL-M (0.9741). Therefore, the similar magnitude and high correlation suggest that the
fusion result has good consistency with TWSC results from six GRACE solutions.

Table 2. The correlation coefficients between fusion results and TWSC results from six
GRACE solutions.

GRACE Solution CSR-SH GFZ-SH JPL-SH ITSG-SH CSR-M JPL-M

Correlation coefficient
for fusion results 0.9968 0.9949 0.9943 0.9889 0.9754 0.9741

5.2. Spatial and Temporal Distribution of the Burned Area

Figure 5 shows the spatial distribution of monthly average burned area from 2003
to 2016 across Yunnan. From the figure, we found that the forest fires were mainly con-
centrated in northwest (NW), southern (S) and central Yunnan. Among the three regions,
the region with the longest forest fire duration and the largest accumulation of burned
area is region NW, followed by region S, and finally the central region. In region NW
(25◦–30◦N and 97◦–101◦E), the high-fire months are February, March, October, November
and December and the burned areas in most regions are larger than 18 ha, while the low-fire
months are August and September and the burned areas in this region are smaller than
4 ha. In region S (21◦–24◦N and 98◦–104◦E), the high-fire months are February, March,
April and December and the burned areas in most regions are larger than 4 ha, while the
low-fire months are May, June, Auguest and October and the burned areas in most regions
are smaller than 4 ha. There were no fires in June or October. In the central region, the
forest fires only appeared in March, April and May. The largest burned area occurred in
April. Except for the above three regions, there are fewer forest fires in other regions, and
forest fires are mainly concentrated in region NW and S. The burned area in region NW
is larger than the one in region S. Therefore, we focused on the above two regions in the
following research.

Figure 6 shows the monthly average burned area during 2003–2016 in Yunnan, regions
NW and S, and the percentages of burned area of regions NW and S divided by the ones in
Yunnan. The maximum monthly average burned area (85,446 ha) and the minimum one
(4110 ha) in Yunnan appeared in March and September, respectively; forest fires are mainly
concentrated in winter and spring (January, February, March and April). The monthly
burned areas in the high-fire months are more than 50,000 ha, which are much higher
than those of other months. The maximum and minimum monthly burned areas in region
NW appear in January and September, respectively; forest fires are mainly concentrated in
autumn and winter (November, December, January and February). The monthly burned
areas in these high-fire months are higher than 20,000 ha, while the ones in other months are
lower than 14,000 ha. The largest proportion of burned area (82.06%) occurs in November,
and the smallest one (13.15%) occurs in April. The average is 48.03%. In region S, the
maximum monthly burned area appears in March, while the minimum one appears in
September and October; forest fires are mainly concentrated in winter and spring (February,
March and April). The monthly burned areas in these high-fire months are higher than
11,000 ha, while the ones in other months are lower than 5000 ha. The largest proportion of
burned areas in Yunnan (26.25%) occurred in March, and the smallest one (3.16%) occurred
in November. The average value is 12.62%.
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Figure 5. The spatial distribution of the monthly burned area averaged from 2003–2016 across Yunnan.
(a–l) represent the results from January to December, respectively. (NW: Northwestern; S: Southern).

Figure 6. The monthly average of burned area from 2003–2016 for Yunnan (scarlet, YN), region NW
(light red) and S (Orange) and the percentage of monthly average burned area of region NW and S in
the one of Yunnan (green line: NW, blue line: S).
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According to the above numerical results, the low-fire months in the three regions are
June, July, August and September. However, there is a significant difference between region
NW and other two regions in the high fire months. Except for region NW, the temporal
distribution of burned areas in Yunnan and region S are similar on the seasonal scale. This
may be because region NW belongs to part of the Qinghai–Tibet Plateau. Therefore, its
climatic characteristics are quite different from other parts of Yunnan [33]. According to the
results of burned area percentage, it can be seen that regions NW and S are the regions that
are more prone to forest fires in Yunnan, which is consistent with the results of Figure 5.

Figure 7 shows the temporal evolution of annual burned area for the period 2003–2016
in Yunnan, regions NW and S. According to composite analysis, the high and low burned
years in three regions were determined. In Yunnan, the high-fire years are 2004, 2005, 2006,
2007 and 2009, while the low ones are 2008, 2012, 2014 and 2016. In region NW, 2003, 2006,
2007, 2009 and 2010 are the high-fire years, and 2004, 2008, 2011, 2012, 2013 and 2016 are
the low fire years. In region S, the high-fire years are 2004, 2006, 2009, 2011 and 2015, while
the low ones are 2007, 2008, 2010, 2012, 2014 and 2016.

Figure 7. The temporal evolution of annual burned area normalized anomalies (red solid line) for
the period of 2003–2016 in Yunnan (a), region NW (b) and S (c). The purple dashed line denotes
the ±0.5 standard deviation. The normalized anomalies mean that the time series of burned area
was standardized.

Comparing Figure 7a–c the common high-fire years of three regions are 2006 and 2009,
while the common low-fire years are 2012 and 2016. It can be seen that the interannual
variation of forest fires in Yunnan is different from those in regions NW and S. Comparing
Figure 7b,c, the common high-fire years of region NW and S are 2006 and 2009, while
the common low-fire years are 2008, 2012 and 2016. 2004, 2011 and 2015 are the low-fire
years in region NW, but they are the high-fire years in region S. 2010 is the high-fire year
in region NW, but it is the low-fire year in region S. This indicates that the interannual
variation of forest fires in region NW is different from that in regions S. This may be related
to differences in climate and vegetation types in these regions. There are semi-arid and
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semi-humid climates in region NW, and the vegetation types in the region are mainly
subtropical evergreen broadleaf and coniferous forest and boreal coniferous forests, while
region S has a humid climate and its vegetation type is tropical seasonal rainforest [32,33].

5.3. The Relationship between Meteorological Factors and Burned Area
5.3.1. Long-Term Trend Change

To analyze the influence of climate change on forest fires in Yunnan, we estimated the
spatial distribution of the long-term trend changes of GRACE TWSC, PPT, ET and burned
area (Figure 8). We found that there is no significant trend in TWSC in most of Yunnan, and
only regions NW and S show significant trend changes. Among them, TWSC in region NW
shows a decreasing trend, while the one in region S shows an increasing trend. The long-
term trend changes of PPT are consistent with the ones of GRACE TWSC in most regions,
but there are significant differences in region S and western Yunnan. In regions NW and S
only, there are significant growth changes in ET. Combining Figure 8a–c, it can be seen that
due to the influence of climate change in region NW, no change in PPT and ET increased,
so TWSC shows a decreasing trend, which creates a natural environment prone to forest
fires. In addition, the increase in ET may reduce the water content of the vegetation itself,
making the vegetation easier to burn. In region S, there is also a decrease in PPT and an
increase in ET. However, TWSC shows an increasing trend. This may be related to the main
stream of the Mekong River flowing through this region. The annual runoff of this river
ranks ninth in the world, and runoff is an important part of TWSC [40]. From Figure 8d, we
found that, similar to TWSC, PPT and ET, only regions NW and S have significant change
trends in burned areas. The burned area shows a decreasing trend in most of these two
regions. This is closely related to the active forest fire prevention measures adopted by the
local government [66,67]. However, the burned area shows an increasing trend in some
local regions, such as parts of western, northwest and southern Yunnan.

5.3.2. Seasonal Variations

Figure 9 shows the seasonal variations of TWSC, PPT, ET, relative humidity and
burned area in region NW (a–d) and S (e–h) from 2003 to 2016. In the figure, PPT, ET,
relative humidity and burned area data are the related change values (with the average
value deducted). In Figure 9a, the monthly average TWSC in region NW is 1.61 cm, the
maximum one (470.13 cm) appears in August and the minimum one (−359.99 cm) occurs
in March. The monthly average burned area in region NW is approximately 0 ha, the
maximum one (20,463.01 ha) occurs in January and the minimum one (−10,836.32 ha)
appears in September. We found that the burned area change is positive in the months
with the negative TWSC (from July to October), while the it is negative in the months
with the positive TWSC (from December to March). The correlation coefficient between
burned area and PPT on the seasonal scale was estimated and its value is −0.57 (see
Table 3). This explains that burned area and TWSC have a strong negative correlation on
the seasonal scale.

The season with the most PPT is summer, followed by autumn and spring, and the
least is winter (Figure 9b). The maximum and minimum PPT are 291.72 cm (July) and
−161.51 cm (December), respectively. When the monthly PPT is negative, the monthly
burned area is positive, vice versa. This suggests that there is a strong negative correlation
between PPT and burned area (−0.83, see Table 3). In Figure 9c,d, the maximum ET and
humidity are 262.76 cm (July) and 11.37% (August), respectively, while the minimum ones
are 270.42 cm (December) and −13.72% (March), respectively. It can be seen that there are
positive burned areas in the negative ET and relative humidity months (from November
to March), while there are negative ones in the positive ET and relative humidity months
(from April to September, ET; from June to October, relative humidity). The correlation
coefficient results also support the above conclusion (burned area and ET, −0.90; burned
area and humidity relatively, −0.79; Table 3).
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Table 3. The correlation coefficients between burned area (BA), PPT, ET, relative humidity (RH) and
TWSC on the seasonal scale in region NW.

Correlation
Coefficient BA TWSC PPT ET RH

BA 1 −0.57 0.83 −0.90 −0.79
TWSC −0.57 1 0.67 0.36 0.89

PPT −0.83 0.67 1 0.89 0.81
ET −0.90 0.36 0.88 1 0.62
RH −0.79 0.89 0.81 0.62 1

Figure 8. The spatial distribution of long-term trend change of GRACE TWSC (a), PPT (b), ET (c) and
burned area (d).
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Figure 9. The seasonal variation of burned area (ha), TWSC (cm), PPT (cm), ET (cm) and relative
humidity (%) from 2003 to 2016 in the region NW (a–d) and S (e–h). The seasonal variation was
obtained by subtracting the average of the corresponding months for all years from the data for each
month. The four figures above the blank dotted line are for region NW, and the four ones below are
for region S.

We also compared the monthly burned area with monthly TWSC, PPT, ET and relative
humidity in region S (Figure 9e–h). In this region, the maximum burned area (16,750.48 ha)
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appears in September, while the minimum one (−5202.83 ha) occurs in March. We can see
that there are similar relationships between burned area and TWSC, PPT, ET and relative
humidity. In other words, like in region NW, the positive burned areas generally occur in
the months with negative TWSC, PPT, ET and relative humidity, while the negative ones
appear in the months with positive TWSC, PPT, ET and relative humidity. From Table 4,
the correlation coefficients between burned area and TWSC, PPT, ET and relative humidity
are −0.73, −0.51, −0.35 and −0.92, respectively. However, we found that the correlation
between burned area and ET is weaker than the one in region NW. Relative to region NW,
the correlations between burned area and TWSC and relative humidity are stronger, while
the one between burned area and PPT are weaker. The three above correlation coefficients
are smaller than −0.5.

Table 4. The correlation coefficients between burned area (BA), PPT, ET, relative humidity (RH) and
TWSC on the seasonal scale in region S.

Correlation
Coefficient BA TWSC PPT ET RH

BA 1 −0.73 −0.51 0.35 −0.92
TWSC −0.73 1 0.37 0.24 0.82

PPT −0.51 0.37 1 0.96 0.67
ET −0.35 0.24 0.96 1 0.52
RH −0.92 0.82 0.67 0.52 1

According to Figure 9, Tables 3 and 4, we analyzed the relationship between forest fires
and climate change in regions NW and S. The climate of Yunnan belongs to the Subtropical
Plateau Monsoon Climate, and the dry and rainy seasons in Yunnan are relatively distinct.
According to Figure 9b,f, the rainy season is from May to September and the dry season is
from October to April in the two regions. From May, PPT begins to become positive and
increase gradually. During the same period, ET also begins to increase as the temperature
rises. The increase in PPT and ET lead to an increase in water vapor in the air, so relative
humidity in the two regions rises in June (see Figure 9d,h). Similarly, TWSC also starts to
increase in this month (see Figure 9a,e). The environment at this time is not conducive to the
occurrence of fire. Therefore, the burned area is at a negative value during the rainy season.

The turning point appears in October. From October, PPT and ET begin to become
negative. The relative humidity also becomes negative from November (NW) and January
(S), and TWSC begins to become negative in December (NW) and January (S). The burned
area begins to become positive in November (NW) and February (S). We found that there are
significant relationships between climate change and forest fires in the two regions. Firstly,
PPT and ET decrease due to climate change (from rainy season to dry season); 1–3 months
later, the relative humidity and TWSC begin to fall and become negative. Immediately
after, the burned area begins to increase. The correlation coefficients results (Tables 3 and 4)
show that the increase in PPT and ET causes an increase in relative humidity, and then the
increase in relative humidity is reflected in TWSC. TWSC and relative humidity have a
stronger negative correlation with burned area.

5.3.3. Interannual Variance

Figure 10 shows the interannual variations of TWSC, PPT, ET, relative humidity and
burned area in region NW (a–d) and S (e–h) from 2003 to 2016. From these figures, the
burned area has no significant correlation with TWSC, PPT, ET and relative humidity. In
Figure 10a, the years with the opposite change direction in PPT and burned area are only
2003, 2006, 2008, 2009, 2014 and 2016, and there is no significant rule from the change
range of the two. The same situation also appears between burned area and ET (see
Figure 10b,c). From Figure 10d, it can be seen that, except for 2004 and 2010, the change
direction of burned area and relative humidity are opposite. This shows that there is a
significant negative correlation (−0.64, Table 5) between the two in the interannual scale.
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From Figure 10e, we found that the years with the opposite change direction in PPT and
burned area in region S are greater than the ones in region NW, which are 2004, 2005, 2006,
2008, 2009, 2012, 2013, 2014 and 2016. This suggests that the negative correlation between
TWSC and burned area in region S is stronger than that in region NW. The results of Table 5
also verify this point (−0.15 in region NW and −0.44 in region S). In Figure 10f–h, the
burned area has no significant correlation with PPT, ET and relative humidity.

Figure 10. The interannual variation of burned area (ha), TWSC (cm), PPT (cm), ET (cm) and relative
humidity (%) from 2003 to 2016 in the region NW (a–d) and S (e–h). The interannual variation was
obtained by subtracting the average of all years from the data for each year. The four figures above
the blank dotted line are for region NW, and the four ones below are for region S.
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Table 5. The correlation coefficients between burned area (BA), PPT, ET, relative humidity (RH) and
TWSC on the interannual scale in region NW and S.

Correlation
Coefficient Region TWSC PPT ET RH

BA
NW −0.15 −0.08 −0.27 −0.64

S −0.44 0.03 0.02 −0.11

Overall, the correlations between burned area and TWSC, PPT, ET and relative hu-
midity in the seasonal scale are much stronger than that in the interannual scale. Except
for burned area and ET in region S, the burned area has a strong correlation with TWSC,
PPT, ET and relative humidity in the seasonal scale. This indicates that climate change has
a strong influence on forest fires in Yunnan on a seasonal scale.

5.3.4. Climate Change before and during Extreme Forest Fire Months

To further study the relationship between climate change and forest fires in Yunnan, we
compared the DMI, ENSO, PPT, ET, TWSC, water vapor column (Vcol), relative humidity
(RH) and burned area in high- and low-fire years. Figure 11 shows the differences in
monthly average of DMI, ENSO, PPT, ET, TWSC, Vcol, RH and burned area in high- and
low-fire years.

From Figure 11, we found that the change trends of the above seven variances have
considerable differences before and during the high-fire months. The differences between
DMI and ENSO in high- and low-fire years mainly concentrate in June–October in region
NW, while the ones in region S concentrate in July–January. The low PPT level appears
from June to December in region NW, while it occurs from July to February in region S. The
increase in ET starts in July in region NW, while the ET has no significant change in region S.
Correspondingly, the water storage deficit in region NW and S appear from July to January
and from September to March, respectively, which is basically the same as the time period
with low PPT level. We also found that the water vapor column begins to decrease with
water storage deficit. In region NW and S, the low water vapor column starts in September
and lasts until February. As the water vapor column decreases, the relative humidity also
decreases. The low relative humidity level in region NW and S appears from December
to March and from January to March, respectively. This time period basically coincides
with the high-fire months in the two regions. The maximum correlation coefficients and lag
months between the different variable are shown in Table 6.

Table 6. The maximum correlation coefficients and lag months between different variables shown
in Figure 11.

Variables
Correlation Coefficients Lag Months

NW S NW S

DMI vs. PPT 0.65 0.65 0 1
ENSO vs. PPT 0.84 0.49 4 1
PPT vs. TWSC 0.63 0.50 0 1
ET vs. TWSC −0.30 −0.56 0 0

TWSC vs. Burned area −0.70 −0.87 5 6
TWSC vs. RH 0.49 0.45 4 5

TWSC vs. Vcol −0.61 −0.57 2 5
RH vs. Burned area −0.73 −0.42 4 2

Vcol vs. Burned area −0.61 −0.38 3 4
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Figure 11. Monthly evolution of Yunnan climate before and during extreme forest fire months. The
differences between monthly average of PPT, ET, TWSC, Vcol, RH and burned area in high- and
low-fire years (blue line: region NW, red line: region S).

Combining Figure 11 and Table 6, we plotted the figures on a series of climatic and
hydrological changes before forest fires (Figure 12). In region NW, the correlation coef-
ficients between DMI and PPT and ENSO and PPT are 0.65 and 0.84, respectively. This
shows that DMI and ENSO have an important influence on PPT. When DMI is negative, as
the sea temperature of East Indian Ocean increased, the water vapor transport from the
Bay of Bengal weakened, resulting in a decrease in PPT in Southwest China (including
Yunnan) [68]. Similarly, when the La Ninã event happened (ENSO is negative), due to the
strengthening of East Asian monsoon, the PPT belt moved northward, resulting in less
PPT in Southwest China [40,69]. When ENSO events and Indian Ocean Dipoles appeared
together, low PPT was strengthened [70]. However, the influence of ENSO on PPT in
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region NW is much greater than that in region S (correlation coefficient r = 0.84 and 0.49).
With low PPT and high ET, TWSC experienced an abnormal decrease, because PPT and
ET are the important input and output of the regional TWSC. In region NW, PPT has a
stronger correlation (0.63) with TWSC than ET (−0.30). However, the situation is opposite
in region S and the correlation coefficients between PPT and ET and TWSC are 0.50 and
−0.56, respectively. Four to five months later, the atmospheric water vapor and relative
humidity began to decrease, which caused the climatic condition in the forest to trend to be
dry, and the water content in the vegetation also decreased [71,72]. This provides powerful
conditions for the occurrence and spread of forest fires. The correlation coefficients between
relative humidity and atmospheric water vapor and burned area are −0.73 and −0.61 in
region NW, respectively. They are −0.42 and −0.38 in region S, respectively. Before the
high-fire months, GRACE TWSC has an abnormal change. This explains that TWSC has a
strong connection with forest fires (correlation coefficients between TWSC and burned area
are −0.70 (NW) and −0.87 (S), lag months are 5 (NW) and 6 (S)). Overall, GRACE TWSC
may be useful to reflect the influence of climate change on forest fires in Yunnan.

Figure 12. A series of climatic and hydrological changes before forest fires.

To further verify the response of GRACE TWSC to climate change before forest fires,
we calculated the monthly average of GRACE TWSC and PPT in region NW and S for
high- and low-fire years, respectively. From Figures 13 and 14, we found that there is
no significant difference between PPT in high- and low-fire years in region NW and S.
However, comparing Figure 13a,b, GRACE TWSC shows the different performance in
region NW in high- and low-fire years, which in high-fire years is significantly lower
than that in low-fire years. This situation is particularly noticeable in the southern region.
GRACE TWSC is lower than −9 cm in this region in high-fire years, while it is higher
than −6 cm in low-fire years, and this significant difference is more pronounced in region
S. Comparing Figure 14a,b, GRACE TWSC is lower than −4 cm in most of region S in
high-fire years, and higher than −3.5 cm in low-fire years. Therefore, it can be seen that
GRACE TWSC reflects climate change before forest fires in the two regions better than PPT.
This is because climate change affects not only PPT, but also other hydrometeorological
elements, GRACE TWSC includes soil moisture, runoff, snow water, vegetation canopy
water, groundwater, etc. Among them, soil moisture and vegetation canopy water are
more sensitive to changes in relative humidity and water vapor in the air [35,73]. Overall,
GRACE satellites can detect the influence of climate change on forest fires in Yunnan.



Remote Sens. 2022, 14, 712 21 of 25

Figure 13. The spatial distribution of GRACE TWSC and PPT for the differences between high- and
low-fire years in region NW. The monthly average GRACE TWSC in high- and low-fire years (a,b)
and the monthly average PPT (c,d).

Figure 14. The spatial distribution of GRACE TWSC and PPT for the differences between high- and
low-fire years in region S. The left and right column show the monthly average of GRACE TWSC
(a,b) and PPT (c,d) in high- and low-fire years, respectively.

6. Discussion

The changes of forest fires in Yunnan have significant seasonality (Figure 6), and
forest fires are mainly affected by wet and dry climates [32]. In Yunnan, the dry season
is from November to April of the following year, and the rainy season is from July to
September [33]. The forest fires in this region are mainly concentrated in the dry season.
The high-fire months in region NW and S are November–February and February–April,
respectively. In the dry season, the decrease in PPT causes the ET of forest vegetation to
decrease, thus atmospheric water vapor drops to a lower level (Figure 11) [73]. When the
atmospheric water vapor is at a low level, the relative humidity is also relatively small
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(Figure 11). The lower relative humidity level creates a climatic condition more favorable
for forest fires [74].

From a geographical point of view, most of the burned areas in Yunnan are mainly
concentrated in region NW and S (Figure 5). By analyzing the relationship between climate
change and forest fires in the two regions, we found that there is a difference in the influence
of climate change on forest fires in the different regions. From Tables 3 and 4, in region NW,
the strongest correlation with burned area is ET (−0.90), followed by PPT (−0.83), relative
humidity (−0.79) and GRACE TWSC (−0.57). However, in region S, according to the order
of correlation with burned area, the order is relative humidity (−0.92), GRACE TWSC
(−0.73), PPT (−0.51) and ET (−0.35). The reason for the above difference between the two
regions may be the regional climate types. Region NW belongs to semi-dry and semi-wet
climate, and region S belongs to a wet climate [74]. The biggest feature of semi-dry and
semi-wet climate is that ET is relatively stronger with less PPT. The huge ET and lower PPT
levels cause the water storage of local vegetation to be lower [15,16], resulting in a higher
number of combustibles, which in turn increases the possibility of forest fires [25,32]. The
wet climate is mainly characterized by humid air and abundant PPT, and the vegetation
in region S is dominated by tropical rainforests. Therefore, relative humidity in the air
is the main factor affecting forest fires [35]. ET is an important output item of TWSC,
while relative humidity has an important influence on vegetation canopy water and soil
moisture [71].

Our study found that less GRACE TWSC appeared before forest fires in Yunnan, which
is related to climate change. Therefore, GRACE TWSC data may be used to predict the risk
of forest fires [35]. From Figures 13 and 14, GRACE TWSC can better reflect local climate
change before forest fires than PPT. It can provide a new way of thinking and methods for
forest fire prevention.

7. Conclusions

To detect the influence of climate change on forest fires in Yunnan, we used GCTH
and least square method to fused TWSC results from six GRACE solutions to improve the
accuracy and reliability of TWSC results, and analyzed the relationship between climate
factors, GRACE TWSC and burned area. The results show that the temporal distribution
of burned area has a significant seasonality, and climate factors and GRACE TWSC have
a strong correlation with burned area on the seasonal scale. GRACE TWSC changed
significantly in the first few months of forest fires, and it can reflect local climate change.
Therefore, GRACE TWSC can well reflect local climate change before forest fires occur.

Our research results will provide a new research method for the influence of climate
change on forest fires in Yunnan, and provide strong data support for local governments to
formulate forest fire prevention measures.
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