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Abstract: Global warming has exerted widespread impacts on the terrestrial ecosystem in the past
three decades. Vegetation is an important part of the terrestrial ecosystem, and its net primary
productivity (NPP) is an important variable in the exchange of materials and energy in the terrestrial
ecosystem. However, the effect of climate variation on the spatial pattern of zonal distribution of NPP
has remained unclear over the past two decades. Therefore, we analyzed the spatiotemporal patterns
and trends of MODIS NPP and environmental factors (temperature, radiation, and soil moisture)
derived from three sets of reanalysis data. The moving window method and digital elevation
model (DEM) were used to explore their changes along elevation gradients. Finally, we explored
the effect of environmental factors on the changes in NPP and its elevation distribution patterns.
Results showed that nearly 60% of the global area exhibited an increase in NPP with increasing
elevation. Soil moisture has the largest uncertainty either in the spatial pattern or inter-annual
variation, while temperature has the smallest uncertainty among the three environmental factors.
The uncertainty of environmental factors is also reflected in its impact on the elevation distribution
of NPP, and temperature is still the main dominating environmental factor. Our research results
imply that the carbon sequestration capability of vegetation is becoming increasingly prominent in
high-elevation regions. However, the quantitative evaluation of its carbon sink (source) functions
needs further research under global warming.

Keywords: net primary productivity (NPP); global warming; digital elevation model (DEM); uncertainty

1. Introduction

Since the nineteenth century, the global near-surface temperature has continued to
increase according to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC). The temperature in the last 10 years after 2000 resulted in the
hottest 10 years in history, and 1983–2012 was the hottest 30 years in the past 800 years.
The widespread impact of global warming has caused a series of negative ecological
consequences, such as drought [1,2], melting [3], rising sea levels [4], and frequent extreme
climates [5,6]. The accelerating global warming has become a major challenge that is
restricting the sustainable development of human society [7–9].

Vegetation is an important part of the terrestrial ecosystem and plays a crucial role
in sequestering carbon and mitigating climate change [10]. The vegetation ecosystem is
found to be more vulnerable and sensitive to climate change than the other ecosystems.
As a variable that reflects the efficiency of vegetation fixation and conversion of light
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energy, net primary productivity (NPP) is widely used in the monitoring of vegetation
dynamics [11,12]. It is related to life activities such as vegetation growth, development,
and reproduction, and it also provides an indispensable material basis for the life activities
of other biological members in the entire ecosystem. Most of the studies focus on the
spatiotemporal changes in NPP [13,14] and the impact of climate and human activities
on NPP [15,16], modeling organic carbon storage with NPP as input data, and changes in
carbon sources and sinks of the terrestrial ecosystem [12,17–19]. Studies on the changes
in NPP with increasing elevation gradients (EG) are mainly conducted in local regions,
and all come from instantaneous surveys [20–24]. Therefore, we still lack the knowledge
and a full picture of the changes in NPP along EG at the global scale.

Typically, NPP declines with increasing elevation, which can largely be explained
by the decreasing temperature as elevation increases [20,22]. However, the impact of
temperature on the NPP of vegetation may be more significant in high-elevation areas with
the intensification of global warming [25,26], because the warming rate in high-elevation
areas is often greater than that in low-elevation areas [25,27]. Thus far, the warming rate
has been intensifying at the global scale for decades [26,28–30], which is likely to cause
a completely different spatial pattern of NPP on EG [31]. A few studies have focused on
determining the spatial pattern of changes in vegetation greenness along EG in recent
years [29,32,33], and their results indicated that the signal of the vegetation greenness
increases with increasing elevation is found at the global scale and regional scale. However,
vegetation greenness is not completely equal to vegetation productivity, and it does not
directly participate in the process of the carbon cycle. This situation raises a scientific
question as to whether the elevation pattern of NPP has changed under the influence of
global warming.

Considering the importance of the effect of environmental variation on vegetation
NPP, and the defects and gaps in current scientific research, we analyzed the inter-annual
variation of MODIS NPP product (MOD17A2HGF, version 6.1) and environmental factors
(air temperature, solar radiation, and soil moisture that derived from the reanalysis data of
ERA5, MERRA2, and NCEP2). We calculated the changes in NPP, temperature, radiation,
and soil moisture along EG by using the digital elevation model (DEM), which was also
used to verify whether the elevation pattern of NPP has been altered under environmental
variation. Furthermore, we analyzed the effect of environmental factors on the spatiotem-
poral changes and elevation distribution of the NPP from 2001 to 2020. We hope that
the results of this study can provide references for the evaluation of terrestrial ecosystem
carbon source and sink functions and the improvement and development of carbon cycle
models. This study will contribute to our understanding of the impact of environmental
factors on the elevational distribution of NPP in recent decades and will help us formulate
strategies for mitigating climate change. We also expect that the outcomes of this study can
provide references for the evaluation of terrestrial ecosystem carbon sink (source) functions
and the improvement of current carbon cycle models.

2. Materials and Methods
2.1. Datasets
2.1.1. NPP Data

The NPP data used in this study come from the MODIS (Moderate Resolution Imaging
Spectroradiometer) remote sensing product of MOD17A3HGF Version 6.1 [34], which will
be generated at the end of each year when the entire yearly 8-day MOD15A2H is available.
MOD17A3HGF has two data fields named Npp_500m and Npp_QC_500m, which represent
NPP data and their quality control (QC). The poor-quality inputs were cleaned from the
8-day leaf area index and the fraction of photosynthetically active radiation based on the
QC label for every pixel. The data type of Npp_QC_500m is an unsigned 1-byte integer
(uint8) with a valid range from 0 to 100 (Units = 100%). Finally, we use the QC file to select
pixels with good quality to participate in the analysis. The annual NPP, with a spatial
resolution of 500 m, is derived from the sum of all 8 days of NPP in a certain year from 2001
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to 2020. We further converted the coordinate system to World Geodetic System 1984 and
resampled the spatial resolution to 0.008◦ (≈1 km) by using the bicubic method to match
the resolution of the DEM data.

2.1.2. DEM Data

The Shuttle Radar Topography Mission (SRTM) is a joint project between the National
Geospatial-Intelligence Agency and the National Aeronautics and Space Administration.
The SRTM30_PLUS DEM dataset with a spatial resolution of 30-arc second (≈1 km) was
developed by the Scripps Institute of Oceanography, University of California San Diego [35].
The coordinate system is the World Geodetic System 1984. The land data are based on the
1 km averages of topography derived from the United States Geological Survey (USGS)
SRTM30 (30 arc-sec) grided DEM data product created with data from the NASA SRTM [36].
Global 30 Arc-Second Elevation (GTOPO30) data are used for high latitudes where SRTM
data are not available. GTOPO30 is a global DEM with a horizontal grid spacing of
30 arc seconds (approximately 1 km) [37]. SRTM has been extensively used and provides
a good representation of the topography [38], which performs better than Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation
Model (GDEM) (the spatial resolution is 500 m) in terms of micro-topography, hydrologic-
network and structural information characterization [39,40]. Considering the high quality
of the SRTM data and the computational efficiency of the data, we chose SRTM30_PLUS as
the DEM data in this study.

2.1.3. Reanalysis Data

We selected three sets of reanalysis data (Table 1) to study the spatiotemporal changes
of environmental factors (temperature, radiation, and soil moisture), their distribution
along EG, and the uncertainties of the correlation between environmental factors and NPP.
The three sets of reanalysis data are the fifth generation of European ReAnalysis (ERA5),
the recent Modern-Era Retrospective Analysis for Research and Applications version 2
(MERRA2), and National Centers for Environmental Prediction Reanalysis 2 (NCEP2).
These reanalysis data can completely cover the data period of MODIS NPP and contain
three kinds of environmental factor data at the same time. In data processing, we convert
the unit of temperature from K to ◦C by subtracting 273.15, and the unit of radiation
was converted from W/m2 to MJ/m2 because the unit of absorbed photosynthetically
active radiation is MJ/m2 in the NPP simulation. Therefore, we can intuitively observe the
magnitude of the spatial distribution of radiation. The soil moisture has different names in
each reanalysis dataset, and we selected the variables with similar meanings and consistent
units. Furthermore, we supplemented the monthly data with mean annual temperature
(MAT), radiation (MAR), and soil moisture (MASM) raster data. Then, we extracted these
environmental data from 2001 to 2020 for analysis. To keep the coordinate system of the
reanalysis datasets consistent with the DEM, we set the resolution of the MERRA2 and
NCEP2 data to 0.5◦ and 1.875◦, respectively. After that, we upscaled the DEM data to match
them, and then performed the moving window operation. We explain the reason for this
in Section 2.2. However, trend and correlation analysis were performed at the resolution
of 0.008◦ to keep the data resolution consistent throughout the main text, and also to be
consistent with the NPP data.

2.2. Calculation of the Changes in NPP and Environmental Factors along EG

The changes in NPP along EG (NPPEG) were calculated in three steps that are the same
as those for the change of environmental factors along EG [29,32,33]. Step 1: We selected
a 9 × 9 moving window to traverse the DEM and NPP (or environmental factors) raster
data (Figure 1). The size of the moving window determines the amount of data used for
analysis for each moving step. A previous study indicated that the difference caused by the
window size is extremely small and recommended choosing a window size of 9 × 9 for
calculation [29,33]. We also tested the window sizes of 5, 7, 9, and 11, and then expanded
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the size of the moving window to 19, 29, 39, and 49. We found that the changes in the
areas of positive NPPEG were 0.0039% from the window size of 5 to 11, while the changes
in the areas were reached 1% from the window size of 19 to 49. Therefore, we followed
the recommendation of previous studies and chose a window size of 9 × 9 for the study.
Step 2: The data extracted by the moving window have two dimensions. Thus, we need to
reduce the dimensions and arrange them in pairs for linear regression analysis. A 9 × 9
moving window contains 81 data after dimensionality reduction. Step 3: We assign the
regression coefficient obtained by linear regression analysis to the center pixel of the moving
window and traverse the entire raster data accordingly to obtain the distribution map of
the change of the variable along EG. The statistical significance of the slope is tested by a
t-test. It should be noted that we set the NPP value of the ocean to no data. Therefore, when
the moving window contains pixels of the ocean, the center pixel of the moving window
will be filled with no data. In addition, we upscaled the DEM data to match the original
resolution of environmental factors derived from three reanalysis datasets, such that we
can avoid the regression analysis was established between the same environmental factors
(coarser grid) and different DEM data (fine grid) in a moving window.

Table 1. Summary of reanalysis data products used in this study.

Name Category Timespan Spatial
Resolution

Temporal
Resolution References Data Acquisition

ERA5

Temperature (K)

1981–present 0.1◦ × 0.1◦ Monthly [41]
https://cds.climate.

copernicus.eu (accessed
on 10 December 2021)

Radiation (W/m2)

Volumetric soil
water (m3 m−3)

MERRA2

Temperature (K)

1980–present 0.5◦ × 0.625◦ Monthly [42]

https:
//disc.gsfc.nasa.gov/

(accessed on
10 December 2021)

Radiation (W/m2)

Water root zone
(m3 m−3)

NCEP2

Temperature (K)

1979–present 1.875◦ × 1.904◦ Monthly [43]
https://psl.noaa.gov/

(accessed on
10 December 2021)

Radiation (W/m2)

Volumetric Soil
Moisture (m3 m−3)

Figure 1. Schematic diagram of the calculation of the NPP or environmental factors changes along
EG. We take a 3 × 3 window as an example.

https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
https://psl.noaa.gov/
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2.3. Trend Analysis

We use the ordinary least squares regression method [15,44–46] to determine the
variation of NPP and environmental factors in time series:

Slope =
n×∑n

i=1 i × (VAR)i − (∑n
i=1 i)(∑n

i=1(VAR)i)

n×∑n
i=1 i2 − (∑n

i=1 i)2 , (1)

where VAR can be NPP, MAT, MAR, MASM, and their changes along EG; i is the se-
quence number of the year (from 2001 to 2020); n represents the total number of years.
The significance of the trend was determined by the T-test.

2.4. Correlation Analysis

We use Pearson correlation analysis to calculate the correlation between NPP and
environmental factors (MAT, MAR, and MASM). The correlation coefficient (r) of the two
variables can be calculated by Equation (2).

rxy =
∑n

i=1(xi− x)(yi− y)√
∑n

i=1(xi− x)2 ∑n
i=1(yi− y)2

, (2)

The correlation coefficient between NPP and MAT was taken as an example. Variables
xi and yi denote the NPP and MAT in year i, respectively; x and y are the mean values of
NPP and MAT from 2001 to 2020, respectively.

3. Results
3.1. Trends of NPP and Environmental Factors

NPP exhibited an increasing trend (1.75 gC/m2/yr) from 2001 to 2020 (Figure 2a),
which was almost below the mean value for the first 10 years, and above the mean value
for the next 10 years. The trends of the three kinds of reanalysis data showed that MAT was
significantly increased. However, ERA5 was significantly decreased, while both MERRA2
and NCEP2 showed significant increasing trends. By contrast, the trends of MAR exhibited
a decreasing trend, but only MERRA2 was statistically significant (Figure 2b–d). The spatial
pattern of mean annual NPP is consistent with our perception that tropical forests have the
highest NPP, while NPP is relatively low in alpine and arid regions (Figure 3a). The spatial
pattern of the NPP trend showed that 70.63% of the global areas (16.21% were statistically
significant) presented an increasing trend from 2001 to 2020, which were mainly found
in central and western Canada, parts of central and northern China, central and southern
South America, and central Africa (Figure 3b). By contrast, the regions with a decreasing
trend of NPP occupied 29.37% of the global areas, and 3.02% of them were statistically
significant, which were mainly distributed in northern South America.

The uncertainties of the trend of environmental factors were reflected in the spatial
distribution (Figure 3.2). MAT showed a significant increasing trend in high−latitude re-
gions of Asia and Europe, but opposite trends were found in central Africa (Figure 3.2a,d,g).
The consistency of the positive trend of MAT accounted for 56.80% of the global area,
whereas the areas with a negative trend accounted for 7.28%, mainly in northeastern North
America, the Iranian plateau, and parts of the region across central India (Figure 3.2 j).
Strong spatial heterogeneities are observed in the spatial pattern of MAR trends of the three
sets of reanalysis data (Figure 3.2b,e,h). The inconsistent trends of MAR accounted for 61%
of the global area. By contrast, the consistency of negative trends (27.55%) was greater
than that of positive trends (11.65%). It is difficult to find areas where the MASM trend is
consistent (Figure 3.2c,f,i), and MASM trends are inconsistent across most regions of the
globe (73.84%) (Figure 3.2l). We found similar spatial patterns of MAT, MAR, and MASM
(Figure 5). MAT is lower in high−elevation areas (Figure 5a,d,g). However, the cold climate
of the Qinghai–Tibet Plateau is not reflected in NCEP2 MAT data (Figure 5g). Therefore,
we speculated that the NCEP2 MAT probably fail to capture the temperature distribution.
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The higher uncertainty of MAT includes western North America, the Andes in South Amer-
ica, Greenland, the Mongolian Plateau, and the Qinghai–Tibetan Plateau (Figure 5j). MAR
in high latitudes is lower than that in other regions (Figure 5b,e,h), which is highly uncertain
in Greenland and the Sahara Desert (Figure 5k). MASM has relatively high values in the
high latitudes of the northern hemisphere, the eastern United States, southeastern China,
and tropical forests (Figure 5c,f,i). By contrast, it is lower in the western United States,
the Mongolian plateau, the Sahara Desert, southern Africa, and Australia. The higher
uncertainty of MASM is mainly found in the high latitudes of the northern hemisphere,
eastern China, and tropical forests (Figure 5l).

Figure 2. Trend of the NPP (a), MAT, MAR, and MASM (b–d) anomaly from 2001 to 2020. The dashed
straight lines denote the trendlines in subfigure (a). Asterisks (**) denote that the slope is statistically
significant at the 0.01 level.

Figure 3. Spatial pattern of global NPP (a) and its trend (b) from 2001 to 2020. The frequency of the
uncertainty value is in the left of each subfigure. The regions with black dots in (b) indicate that the
trend is statistically significant at the 0.05 level.
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Figure 4. Spatial patterns of the trends of MAT (a,d,g), MAR (b,e,h), MASM (c, f,i) (derived from
ERA5, MERRA2, and NCEP2), and their spatial consistencies (j,k,l) from 2001 to 2020. The frequency
of the uncertainty value is in the left of subfigures (j,k,l). The regions with black dots indicate that
the trend is statistically significant at the 0.05 level. “Pos” and “Neg” denote the regions with the
positive and negative agreement, respectively. “Non” denotes that the regions have not reached an
agreement (the same meaning thereafter).

3.2. Elevational Distribution of NPP and Environmental Factors

Changes in NPP and its slope along EG (NPPEG and NPPslope
EG ) are shown in Figure 6.

The positive NPPEG accounted for 59.98% of the global area, and 31.32% of them reached
a significance level of 0.05. The positive NPPEG was scattered around the Great Lakes,
the eastern foothills of the Andes, the eastern Brazilian plateau, the sub−Saharan African
continent, the Indochina Peninsula, and eastern Australia. By contrast, the region with
negative NPPEG accounted for 40.02%, and the significantly negative region occupied
11.18%. These regions are mainly found in northeastern North America, southern South
America, and Central Asia (Figure 6a). The NPPslope

EG showed strong spatial heterogeneity
during the study period (Figure 6b), and there is no obvious spatial distribution feature
exists. The region with positive NPPslope

EG accounted for 53.88%. By contrast, 46.12% of the

global area had negative NPPslope
EG .
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Figure 5. Spatial patterns of the MAT (a,d,g), MAR (b,e,h), MASM (c,f,i) (derived from ERA5,
MERRA2, and NCEP2), and their spatial consistencies (j,k,l) from 2001 to 2020.

Figure 6. Spatial pattern of the changes in NPP (a) and its slope (b) along EG from 2001 to 2020.
The value frequency is in the left of each subfigure. The regions with black dots indicate that the
trend is statistically significant at the 0.05 level.

The spatial pattern of MAT, MAR, and MASM along EG (MATEG, MAREG, MASMEG)
is shown in Figure 7. MATERA5

EG and MATERA2
EG follow the natural law that temperature

decreases with the increase in elevation, and the area of the two reached 84.36% and
83.67% (Figure 7a,d), with the statistically significant area even reaching up to 78.57% and
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74.35%, respectively. By contrast, only 32.90% of the area of MATNCEP2
EG conforms to the

natural law, which indicates that the temperature data of NECP2 are likely to be wrong in
elevational distribution (Figure 7g). Therefore, we excluded NCEP2 when calculating the
spatial uncertainty of MAT. The results showed that the spatial consistency of MATERA5

EG
and MATMERRA2 reached 78.84%. MAREG does not show obvious spatial distribution
characteristics (Figure 7b,e,h), and the areas with positive MAREG (59.73%) were larger
than those with negative MAREG (40.27%). The spatial consistency of the MAREG is
39.06%, which is mainly distributed in central and eastern North America, most of Europe,
and central and western Russia. However, the inconsistent regions still accounted for
most of the global area (Figure 7k). The areas with positive MASMEG have strong spatial
heterogeneity, although it occupied (64.09 ± 7.02)% of the global area (Figure 7c,f,i), and the
spatial inconsistency of MASMEG is up to 62.73% (Figure 7l).

Figure 7. Spatial patterns of MAT (a,d,g), MAR (b,e,h), MASM (c,f,i) (derived from ERA5, MERRA2,
and NCEP2) along EG and their spatial consistencies (j,k,l) from 2001 to 2020. The frequency of the
uncertainty value is in the left of subfigures (j,k,l).

We further investigated the spatial pattern of changes in the slope of MAT, MAR,
and MASM along EG (MATslope

EG , MARslope
EG and MASMslope

EG ) (Figure 8). The positive

and negative MATslope
EG accounted for 52.03% and 47.97% of the global area, respectively

(Figure 8a,d,g). The area with consistent changes of MATslope
EG accounts for 56.28% of the

global area, and the remaining regions are highly uncertain (Figure 8j). The areas with
positive MARslope

EG occupied (45.50 ± 3.00)% of the global area, which is less than that of
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negative MARslope
EG (54.50 ± 3.00)% (Figure 8b,e,h). Anyway, MARslope

EG is highly uncertain

in most of the global area (68.11%) (Figure 8k). The areas of positive MASMslope
EG (51.49%)

are slightly more than that of negative MASMslope
EG (48.51%) (Figure 8c,f,i). The inconsistent

region covered up to 72.09% of the global area (Figure 8l).

Figure 8. Spatial patterns of the slope of MAT (a,d,g), MAR (b,e,h), and MASM (c,f,i) (derived from
ERA5, MERRA2, and NCEP2) along EG and their spatial consistencies (j,k,l) from 2001 to 2020.
The frequency of the uncertainty value is in the left of subfigures (j,k,l).

3.3. Effect of Environmental Factors on the Elevational Distribution of NPP

Figure 9 illustrates spatial patterns of the dominating environmental factor on the
changes in NPP from 2001 to 2020. ERA5 data showed that MAT and MAR seem to be the
dominating factors on the changes in NPP in the north of 30◦N, central and northern parts
of South America, central Africa, and Southeast Asia, whereas MASM mainly affects the
changes in NPP in the central and eastern United States, the eastern part of the Brazilian
plateau, southern Africa, and Australia (Figure 9a). By contrast, the effects of environmental
factors of MERRA2 on the changes in NPP have a clear spatial distribution pattern. MAT
mainly affects the changes in NPP in the Qinghai–Tibet Plateau and parts of central South
America. MAR is the dominant factor in the high latitudes of the northern hemisphere,
southern South America, and Southeast Asia. MASM has a wider range of influence,
including southern North America, Eurasia from 30◦N to 60◦N, the Indian peninsula, most
of Africa, and Australia (Figure 9b). The MAT and MAR of NCEP2 are the dominant factors
in the changes in NPP in the north of 30◦N. MAR is also the main environmental factor that
affects NPP changes in northwestern South America, central Africa, and Southeast Asia.
The areas where MASM presented a dominant environmental factor include most of the
United States, northern South America and most of Brazil, the southern edge of the Sahara
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Desert and southern Africa, most of Eurasia from 30◦N to 60◦N, the Indian Peninsula,
and Australia (Figure 9c). MASM has the highest spatial consistency (25.15%). These
regions are mainly distributed in the United States, eastern and southern South America,
southern Africa, Eastern Europe, Central Asia, parts of East Asia, India, and Australia,
followed by MAR (9.74%) and MAT (7.70%), which can be found in high latitudes in the
northern hemisphere (Figure 9d).

Figure 9. Spatial patterns of the effect of MAT, MAR, and MASM derived from ERA5 (a), MERRA2
(b), and NCEP2 (c) on the changes in NPP and their spatial consistencies (d) from 2001 to 2020.

We found that NPP has an obvious turning point at the elevation of 3050 m and
divided the elevation into high and low gradients based on the turning point (Figure A1
in Appendix A). Then, we explored the impact of environmental factors on NPP in high−
and low−elevation areas (Figure 10a). The three kinds of reanalysis datasets showed that
MAT still maintained the highest R2 in the three environmental factors. We further fitted
the regression equation curve and uncertainty range of NPP and environmental factors
(Figure 10). The effect of MAT on NPP is linear and non−linear at low and high elevations,
respectively (Figure 10a). The R2 between MAT and NPP exceeds 0.9 and is statistically
significant at the 0.01 level. In general, the uncertainty of the effect of MAT on NPP
gradually decreases as the temperature increases, and it decreases more at low elevations.
The effect of MAR on NPP is nonlinear at both low and high elevations (Figure 10b). NPP
increases as MAR increases at low elevations, whereas opposite trends were observed at
high elevations. The uncertainty of the impact of MAR on NPP gradually decreases with
the increase in MAR at low elevations. By contrast, the uncertainty does not decrease
significantly as the MAR decreases at high elevations (Figure 10c). We found a linear and
nonlinear effect of MASM on NPP at low and high elevations, respectively. NPP increases
as MASM increases at low elevations. However, the upper and lower limits of uncertainty
trend toward the opposite direction. The same situation occurs at high elevations that larger
uncertainty of the effect of MASM on NPP, and MASM remains stable with the increase in
NPP (Figure 10d). The R2 of all fitted equations is statistically significant at both high and
low elevations.
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Figure 10. Regression curves, functions, and their R2 between NPP and environmental factors.
(a) represent R2 between NPP and environmental factors. The regression curves and functions can be
found in (b–d). Subscript L of R2 means low elevations, and H means high elevations, and ** denotes
the R2 is significant at the 0.01 level.

4. Discussion
4.1. Elevational Patterns of Environmental Factors and NPP

In this article, we use the moving window method to explore the changes in NPP and
environmental factors along EG at the global scale. Unlike field surveys, this method is
based on remote sensing and DEM data, which can quickly and economically monitor the
changes of variables along EG. In addition, the moving window method used in this article
is intended to investigate the change of NPP and environmental factors at the relative
EG within the moving window, which is different from the studies on the absolute EG
conducted through a field survey. The accuracy of this method can be indirectly proved by
the natural law that the temperature decreases with the increase in elevation. Nearly 80%
of the regions showed a decrease in temperature with increasing elevation, and more than
70% of the regions are statistically significant. This result means that the moving window
method can effectively monitor the change of the variable in the EG and has high accuracy.
Undeniably some regions (although very few) have a local micro-climate, the temperature
of which will not decrease with the increase in elevation. We can also evaluate the data
quality of temperature based on the natural law of temperature–elevation and the moving
window method. For example, NCEP2 fails to capture the elevation distribution of MAT
because it is contrary to the natural law that the temperature decreases with the increase in
elevation. Unfortunately, we are still unable to assess the data quality of radiation and soil
moisture because the spatial distributions of the reanalysis data and their trends are highly
uncertain, and there is no corresponding natural law to follow. Typically, NPP decreased
with increasing elevation (negative NPPEG) because of the limitation of low temperature.
However, we found that the areas with positive NPPEG accounted for 59.98% of the global
area, which means the elevation pattern of NPP in our perception has changed. The spatial
pattern of NPP slope demonstrated that, compared with NPP in low-elevation areas, NPP
in high-elevation areas has a higher increase rate, and this phenomenon has become more
common worldwide.

4.2. Uncertainty of Environmental Factors and Their Effect on NPP

We found that MAR and MASM had larger uncertainties than MAT in the inter-
annual variations and the spatial distribution along EG. Such a large uncertainty makes
it difficult to assess their effect on the changes in NPP and further forms a lower spatial
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correlation consistency. Factors affecting MAR mainly include cloud height, thickness,
shape, and aerosols. [47]. The factors that affect soil moisture include soil texture [48],
the data assimilation process [49], the sample size of observation data [50], and land use
type [51].

We found that the effect of radiation on NPP is nonlinear regardless of whether it is
in high- or low-elevation regions. The positive correlation between NPP and radiation
in low-elevation is likely to be that, as the elevation increases, temperature and water
inhibit the photosynthesis of plants, thereby reducing the use of photosynthetically active
radiation. Moreover, the radiation available for plants decreases, thereby forming a non-
linear positive correlation between NPP and radiation. However, the non-linear negative
correlation between radiation and NPP in high-elevation regions suggests that radiation is
not the main driving force for changes in NPP. We suppose that radiation cannot be fully
utilized by plants in high-elevation areas, and temperature is still the main environmental
factor that determines changes in NPP along EG. The effect of soil moisture on NPP shows
a non-linear positive correlation in low elevation areas, but it is highly uncertain because
of the large differences in the trend of soil moisture among ERA5, NCEP2, and MERRA2.
Anyway, the positive correlation between NPP and soil moisture has also been confirmed
in the arid region [52], whereas soil moisture in high-elevation areas is higher than that in
low-elevation areas, it has not caused an increase in NPP. Therefore, we hold the view that
soil moisture determines the lower limit of NPP, and the upper limit of NPP is determined
by both soil moisture and temperature.

Overall, the temperature is still the dominating climate factor that determines the
spatial patterns of NPP along EG, and it is generally positively correlated with NPP
whether in high- or low-elevation areas. However, NPP is more sensitive to temperature in
low-elevation areas, which indicates that temperatures are more conducive to vegetation
photosynthesis in this region. By contrast, the temperature gradually decreases with
the increase in high-elevation, and the photosynthesis of vegetation is also limited by
low temperature. Thus, NPP appears to rise first and gradually stabilizes. The effect of
temperature on NPP along EG has been confirmed in regional-scale studies [53,54].

4.3. Implications for Carbon Cycle

NPP is the source of energy in the carbon cycle of the terrestrial ecosystem. Our re-
search shows that nearly 60% of the global area exhibits an increase in NPP with increasing
elevation, which means that vegetation in high-elevation areas plays an increasingly promi-
nent role in absorbing atmospheric CO2 and mitigating climate change. However, this
increase in NPP is caused by global climate change, especially the increase in tempera-
ture in high mountain areas [33], which improves the photosynthesis capacity of plants.
However, when the temperature exceeds the optimal temperature of the plants, it will
inhibit the photosynthesis of plants, and even cause the death of local species because
they cannot adapt to the rapid warming. This kind of research on vegetation degradation
caused by warming has been widely reported [12]. What we want to emphasize is that
this phenomenon of increasing NPP with elevation may be beneficial to CO2 fixation in the
short term, and an uncontrolled increase in temperature will inevitably lead to vegetation
degradation and even ecosystem collapse. The increase in temperature will also cause
the increase in plant autotrophic respiration and soil heterotrophic respiration, and the
CO2 produced by the respiration process is directly discharged out of the vegetation–soil
system. With the high degree of uncertainty in soil respiration, much uncertainty exists in
the quantitative evaluation of the carbon source and sink functions of the ecosystem.

Environmental factors have a strong influence on the terrestrial carbon cycle. Tem-
perature is the basic input data to establish its impact on the soil carbon cycle. In this
study, the difference in the spatial distribution of ERA5 and MERRA2 temperature is very
small. However, the algorithm for the effect of temperature on the decomposition of soil
organic carbon (shown as a nonlinear positive correlation effect) has slight differences.
The differences in the algorithms are reflected in space, mainly located in high latitude
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areas and the Qinghai–Tibet Plateau with great uncertainty. This condition means that
the uncertainty of the temperature algorithm in the alpine region will greatly affect the
decomposition of soil organic carbon in the carbon cycle, which in turn affects the spatial
distribution of soil organic carbon storage in the alpine region, leading to distortions in the
evaluation of the carbon source and sink functions of these regions.

Numerous studies have shown that soil moisture is crucial to the carbon cycle process
of terrestrial ecosystems [55–57]. However, the three sets of reanalysis data show that
the spatial distribution of soil moisture has great uncertainty. Similarly, there are large
discrepancies in the algorithm for the effect of soil moisture on the decomposition of soil
organic carbon. The spatial uncertainty of soil moisture involved tropical rain forests and
the Sahara Desert [17]. The fundamental reason is that the understanding of the effect of soil
moisture on the decomposition of soil organic carbon varies, especially as to whether high-
humidity environments will inhibit the decomposition of soil organic matter. An anaerobic
environment created by high humidity will inhibit the decomposition of soil organic matter
in the carbon cycle model, which will lead to the accumulation of soil organic carbon (high
soil organic carbon), and vice versa, leading to the decomposition of soil organic carbon
(low soil organic carbon). The uncertainty of the original input data of soil moisture and
the algorithm makes it difficult for us to evaluate its effect on the carbon cycle. Considering
the importance of soil moisture in the carbon cycle of terrestrial ecosystems, we propose
that future studies need to further strengthen the observation of soil moisture and improve
its simulation accuracy to more accurately assess the carbon source and sink functions of
terrestrial ecosystems.

5. Conclusions

This study analyzed the spatiotemporal changes of the MODIS NPP product and
environmental factors (temperature, radiation, and soil moisture data derived from the
reanalysis data ERA5, MERRA2, and NCEP2) and their distribution along EG. We also
identified the spatial uncertainty of environmental factors and their effects on the elevation
distribution of NPP. We found that nearly 60% of the global area presented an increase
in NPP with increasing elevation, which implied that the elevation pattern of NPP has
changed, and the carbon sequestration capacity of vegetation is increasing elevation. How-
ever, soil respiration is likely to increase as well. Quantitatively evaluating the carbon sink
(source) function of vegetation remains to be further studied in high-elevation regions.
The temperature of NCEP2 failed to capture the alpine environment of the Qinghai–Tibet
Plateau, and it does not clearly show the natural law that the temperature decreases with
the increase in elevation. Soil moisture has the largest areas of spatial consistency in affect-
ing the spatiotemporal changes in NPP among the three environmental factors. However,
its spatial pattern and variation are the most uncertain among the three environmental
factors, even though it is essential to the carbon cycle of terrestrial ecosystems. NPP has
obvious elevation differentiation with an elevation of 3060 m as the demarcation point,
which divides the elevation into low and high. MAT is the main driving force that affects
the elevation distribution of NPP, with its effect on NPP exhibiting a significant linear and
nonlinear positive correlation at low and high elevations, respectively. The results of this
study are expected to contribute to our understanding of the changes in NPP along EG and
provide references for the development of terrestrial ecosystem carbon cycle models.
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Appendix A

Figure A1. Changes in NPP and environmental factors along EG from 2001 to 2020. The elevation
of 3060 m is used to distinguish high and low elevation (the vertical black solid line in Figure (a–j)).
The dashed line represents the average value of the variables at high and low elevations. The shaded
areas with different colors in each figure represent ±1 SD.
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