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Abstract: The dike-pond system (DPS) is the integration of a natural or man-made pond and crop
cultivation on dikes, widely distributed in the Pearl River Delta and Jianghan plain in China. It plays
a key role in preserving biodiversity, enhancing the nutrient cycle, and increasing crop production.
However, DPS is rarely mapped at a large scale with satellite data, due to the limitations in the
training dataset and traditional classification methods. This study improved the deep learning
algorithm Cascade Region Convolutional Neural Network (Cascade R-CNN) algorithm to detect the
DPS in Qianjiang City using high-resolution satellite data. In the proposed mCascade R-CNN, the
regular convolution layer in the backbone was modified into the deformable convolutional layer,
which was more suitable for learning the features of DPS with variable shapes and orientations.
The mCascade R-CNN yielded the most accurate detection of DPS, with an average precision (AP)
value that was 2.71% higher than Cascade R-CNN and 11.84% higher than You Look Only Once-v4
(YOLOv4). The area of oilseed rape growing on the dikes accounted for 3.42% of the total oilseed
rape planting area. This study demonstrates the potential of the deep leaning methods combined
with high-resolution satellite images in detecting integrated agriculture systems.

Keywords: dike-pond detection; high-resolution satellite; deep learning algorithm; Cascade R-
CNN; YOLOv4

1. Introduction

The dike-pond system (DPS) is the integration of agriculture and aquaculture. It is
characterized by a natural or man-made pond and dikes on which crop, vegetables, or
fruit trees are cultivated [1]. The DPS is the traditional agriculture system in the low-lying
and watery areas in South Asia [2,3]. In China, DPSs are concentrated in the Pearl River
Delta, Yangtze River Delta, and bank regions of great lakes [4]. The Huzhou Mulberry-dike
and Fish-pond system in China was designated a globally important agriculture systems
project (GIAHS) by the Food and Agriculture Organization of the United Nations (FAO)
in 2017. The DPS plays a key role in preserving biodiversity [5], enhancing the nutrient
cycle [6], and increasing crop production [2]. Accurately identifying the DPS and mapping
their spatial distributions are significant for understanding the environmental impacts of
the integrated agricultural systems.

Remote sensing provides a unique alternative for mapping the spatial distribution of
DPSs at large scales. However, DPS is usually classified as aquaculture ponds or wetland,
derived from optical remote sensing images or radar images [7–10]. Very few studies have
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been devoted to identifying DPS from satellite images, because the small sizes and the
complex compositions of crops and water bodies make them difficult to map with medium-
or coarse-resolution remote sensing images and conventional classifiers. Li et al. [11]
analyzed the trends of DPS between 1978 and 2016 in Shunde district of South China,
using the time series of Landsat images and declassified intelligence satellite photographs
from before the 1980s. Liu and Li [12] mapped DPS dynamics during 1949–2020 in the
Guangdong-Hong Kong-Macao Greater Bay Area, using topographic maps from 1949,
Landsat images, and high-resolution satellite images. Both studies focused on analyzing
the spatial-temporal dynamics of DPS. The classification of DPS has mainly relied on
medium-resolution satellite data and the object-oriented classification method, ignoring
the relation between the dike and the pond.

Mapping DPS with remote sensing techniques requires identification of a pond with
a regular or irregular shape and crops grown on the dikes as a whole target. This special
landscape is difficult to automatically identify using conventional classifiers, such as ran-
dom forest (RF) or support vector machine (SVM) algorithms. The conventional classifiers
have limitations in detecting objects. Firstly, these classifiers need several moving windows
with varying sizes to locate the target in the image, resulting in redundant windows and
low efficiency. Secondly, these classification methods cannot effectively extract deep-level
features and identify complex objects from remote sensing images. DPS is an integrated
agricultural system, in which the pond and vegetation have contrast spectral characteristics
but have a spatial connection. The conventional classification methods conducted on pixels
or objects struggle to extract the features of the spatial relationship between water and
vegetation and identify DPS as a target.

Recent advances in deep learning algorithms have provided great opportunities for
automatically identifying targets on high-resolution remote sensing images [13]. Deep
learning is a hierarchical feature learning method that uses multi-layer neural networks.
Convolutional neural networks (CNNs) are one of the most successful network architec-
tures in deep learning methods through end-to-end learning. CNNs have demonstrated
competitive abilities in classifying agricultural landscapes from remote sensing images at
the pixel or object level [14–17]. However, few relevant studies have evaluated CNN-based
object detection methods in agricultural applications, because of the complex properties
of agricultural targets and the lack of annotated datasets, such as ImageNet, to meet the
requirements of deep learning methods. Li et al. (2020) [18] and Chen et al. (2021) [19]
detected agricultural greenhouses from high-resolution satellite data using the You Look
Only Once-v3 (YOLO-v3) and CNN, respectively.

Despite the limited number of studies, deep learning methods have great potential for
directly recognizing complex agricultural landscapes as targets. In addition to extracting
complicated features in DPS, the algorithm used to identify DPS also needs to deal with
irregular shapes and different orientations. The objective of this study was to develop
a new architecture based on the state-of-art cascade region-based convolutional neural
network (R-CNN) to detect the DPS from high-resolution satellite images. The novelty of
the proposed method is that it is adaptive to the irregular shapes of DPSs and can provide
a more accurate bounding box in the DPS detection. Based on the derived DPS map, we
analyzed the spatial distribution of DPSs and quantified the area of oilseed rape growing
on dikes, which is usually overlooked in remote mapping of cropland or the statistical data.
This study was conducted in Qanjiang City, Hubei Province, China, where DPSs are widely
distributed. The DPS in Qianjiang is characterized by a combination of winter oilseed rape
growing on dikes and an aquaculture pond.

2. Materials and Methods
2.1. Study Area

The study area was Qianjiang City, a sub-prefecture-level city in South-Central Hubei
province, China that covers an area of 200,400 ha. Qianjiang is located on the Jianghan
Plain, and has abundant water resources, including rivers, lakes, and ponds (Figure 1). In
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total, 6 lakes are scattered throughout the city, with a total area of 1800 ha. Qianjiang has a
humid subtropical climate, with an annual (1988–2017) temperature of 16.6 °C and annual
precipitation of 1162 mm [20].
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Figure 1. Location of the study area and photos of dike-pond systems (DPSs).

Aquaculture plays a very important role in the economy of Qianjiang. The total
aquaculture area was 9195 ha in 2019. Oilseed rape (Brassica napus L.) is the main winter
crop in Qianjiang. It is widely grown on the dikes of aquaculture ponds, and in spring,
when oilseed rape blossoms, DPSs are easier to identify (Figure 1).

2.2. Data

In total, 5 high-resolution satellite images from Gaofen-1 (GF-1) and Gaofen-2 (GF-
2) that covered the entire study area with cloud cover less than 10% were downloaded
from China Centre For Resources Satellite Data and Application (http://www.cresda.com/
CN/, accessed on 12 August 2021). GF-1 and GF-2 were launched by the China National
Space Administration on 26 April 2013 and 19 August 2014, respectively. GF-1 carries
2 panchromatic (PAN) and multispectral (MS) cameras, with a spatial resolution of 2 and
8 m for the PAN and MS bands, respectively. GF-2 also employs 2 PAN and MS cameras,
capable of collecting images with a spatial resolution of 0.81 and 3.24 m at nadir in the PAN
and MS bands, respectively. Approximately 80% of the study area was covered by 1 scene
from GF-1 obtained on 8 March 2020, and the rest of the area was covered by 4 scenes from
GF-2 obtained on 27 March 2018 due to the limited data availability.

The selected GF-1 and GF-2 images were orthorectified and projected onto the Albers
equal-area conic projection. The MS images were registered to the PAN images using
polynomial warping with automatically generated tie points. The red, green, and blue (RGB)
bands of the MS data were used with the corresponding PAN images using the nearest-
neighbor diffusion-based pan-sharpening algorithm [21]. All the RGB composites were
resampled to a spatial resolution of 2 m using the cubic convolution resampling method.

To train and validate the deep learning model, the regions of interest (ROIs) of
416 × 416 pixels containing the DPSs were cropped into tiles with 50% overlap. We labeled
1006 sample tiles, containing a total of 5903 targets. Eighty percent of the samples were
used to train the deep learning models, and the remaining samples were used to validate
the models.

http://www.cresda.com/CN/
http://www.cresda.com/CN/
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2.3. Methods

Object detection methods can be categorized into two types: two-stage methods and
one-stage methods. For two-stage methods, object detection is treated as a multi-task
learning problem that combines classification and bounding box regression. On the one
hand, two-stage methods typically require a heavy computational load. On the other hand,
one-stage methods require only a single pass through the neural network and predict
all the bounding boxes in one run. One-stage methods have recently become popular,
mainly because of their computational efficiency. In this study, we improved the two-stage
algorithm Cascade R-CNN to provide a more accurate detection of the DPS. The Cascade
R-CNN based on feature pyramids network (FPN) and ResNet-101 backbone and popular
one-stage algorithm YOLOv4 were applied for comparisons. After detecting DPSs in the
study area, the bounding boxes were converted to vector data, and the number of bounding
boxes represented the number of DPS.

2.3.1. Modified Cascade R-CNN

Cai and Vasconcelos proposed Cascade R-CNN, a multi-stage extension of the R-
CNN [22]. Cascade R-CNN incorporates high-quality object detectors to improve the
detection accuracy by beating the overfitting problem at training and quality mismatch
at inference. A study showed that Cascade R-CNN, based on the ResNet-101 and FPN
backbone, was observed to have outperformed several two-stage (e.g., Faster R-CNN) and
one-stage detectors (e.g., YOLOv2) on the MS-COCO2017 dataset [22].

In this study, we used a Cascade R-CNN based on ResNeXt-101 and FPN backbone. In
a remotely sensed image, DPSs are variable in shape and position. To improve the ability to
learn deformable features, we modified ResNeXt-101 by replacing the regular convolutional
layer with the deformable ConvNet v2 (DCNv2). DCNv2 is developed from DCNv1, which
allows the grid sampling locations to swim with respect to the feature map when learning
a spatial offset. However, DCNv1 suffers from the problem of irrelevant image content.
DCNv2 is adaptive to an object’s structure and is more powerful in focusing on pertinent
image regions than DCNv1 [23]. ResNeXt-101+DCNv2 extracts the features of four different
scales. The FPN recursively fuses features from higher levels to the current level.

The fused features are divided into four stages: one Region Proposal Network (RPN)
and three detectors. The sampling of the first detection stage followed the procedures by
Ren et al. [24]. In the following stages, resampling was implemented by simply using the
regressed bounding boxes from the previous stage [22]. These 3 detectors were trained with
an interaction over union (IoU) thresholds of 0.5, 0.6, and 0.7, respectively, to find a good
set of close false positives for training the next stage. At each stage, the Cascade R-CNN
included a classifier and a regressor optimized for the IoU threshold. The architecture of
the modified Cascade R-CNN (mCascade R-CNN) is illustrated in Figure 2.

2.3.2. YOLOv4

In addition, the one-stage algorithm YOLOv4 was applied to detect DPSs for compari-
son, because it is one of the most popular target detection methods with high speed and
accuracy. YOLOv4, an evolution of the YOLOv3, is a real-time object detection algorithm
that recognizes different objects in a single frame. YOLOv4 generally includes three parts,
namely the backbone, neck, and head networks. The backbone network is mainly used to
extract image features, and the neck network can enhance the image features. The head
network conducts classifications and regressions based on the features derived from the
backbone and neck networks.

The image features were extracted using the CSPDarknet53 module in YOLOv4. CSP-
Darknet53 uses DenseNet and Cross Stage Partial connection (CSP) to enhance the learning
ability of CNN and reduce model calculations and memory costs while maintaining ac-
curacy. The RGB sample tiles with a size of 416 × 416 × 3 were used as the input, and
3 outputs were generated after passing through CSPDarknet53. The sizes of the 3 feature
outputs were 76 × 76 × 256, 38 × 38 × 512, and 19 × 19 × 1024. The neck network in



Remote Sens. 2022, 14, 717 5 of 11

YOLOv4 used Spatial Pyramid Pooling (SPP) and PANet to generate feature pyramids.
SPP used 3 sliding kernels, namely 5 × 5, 9 × 9, and 13 × 13, to convolve the candidate
images, and then applied multi-scale max pooling to obtain the same dimensions of the
feature map. PANet extracted and integrated features at various scales. The feature maps
of different scales output by PANet were spliced, and after the convolution operation, three
heads of the different scales were obtained. Classifications and regressions were applied to
the three heads to predict the bounding box and the confidence level. The architecture of
YOLOv4 used in this study is presented in Figure 3.
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Figure 2. Architecture of the modified Cascade region-based convolutional neural network (mCas-
cade R-CNN). “Conv” is backbone convolutions, “F” is feature image, “P” is feature image fused
by feature pyramid network (FPN), “FC” is fully connected layer, “B” is bounding box, and “C”
is classification.
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2.3.3. Evaluation of Model Performance

To evaluate the performance of mCascade R-CNN, Cascade R-CNN, and YOLOv4, we
calculated the mean average precision based on the validation dataset. The mean average
precision value is the area under the precision–recall curve of all classes. In this study, we
only identified the DPS, and hence, the mean was not necessary. Average precision (AP)
was calculated as follows:

AP =
∫ 1

0
P(R)dR (1)

where P represents the precision rate and R represents the recall rate.
The precision rate is the proportion of predicted positives that are actually positive,

and the recall rate is the proportion of observed positive samples that are correctly predicted
as positive. Precision and recall are expressed as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP is the number of real positive samples, FP is the number of false positive samples,
and FN is the number of false negative samples.

2.4. Classification of Oilseed Rape

SVM was applied to classify pixels into oilseed rape and other land cover types. The
SVM model was trained using a Gaussian radial basis function. Blue, green, red, and
near-infrared bands were used as the inputs. Oilseed rape pixels were easily identified
during the flowering stage. To train the model, 23,300 samples were used, and to validate
the model, 9988 samples were used.

2.5. Kernel Density Estimation

Kernel density estimation (KDE) is a non-parametric estimation of probability density.
It generates a smooth density probability surface, and provides a clear visualization of the
spatial distribution of sample points (Brunsdon, 1995). The built-in kernel density tool in
ArcGIS 10.5 was applied to calculate the density probability of the DPSs at a resolution and
bandwidth of 100 m and 1 km, respectively.

3. Results
3.1. DPS Identification Accuracy

Figure 4 compares the accuracy of DPS detection using the 3 deep-learning algorithms.
The AP value of the mCascade R-CNN is 2.71% higher than that of Cascade R-CNN and
11.84% higher than that of YOLOv4, indicating that mCascade R-CNN provides a more
accurate identification of DPS, whereas YOLOv4 has a weaker detection effectiveness.

Figure 5 provides a subset of the DPS identification results to visually assess the
detection performance of the 3 methods. Cascade R-CNN and mCascade R-CNN identified
more DPSs than YOLOv4. When zooming in on the bounding boxes, we found that
the bounding box of mCascade R-CNN had less overlap and fit to the DPS more than the
Cascade R-CNN. A more accurate bounding box facilitates the extraction of the oilseed rape
growing on the dikes. However, all three methods showed difficulties in identifying ponds
full of aqua plants and ponds with narrow dikes, and ponds with oilseed rape growing on
only one side. As mCascade R-CNN provided the most accurate identification of the DPS,
the following analyses were conducted on the results generated by the mCascade R-CNN.
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convolutional neural networks (mCascade R-CNN). Image subset of the DPS detection results (a) and
the zoom-in showing the accuracy of the bounding boxes (b).

3.2. Spatial Distribution of DPS

The mCascade R-CNN detected 2975 DPSs based on the number of bounding boxes in
the study area. Figure 6 illustrates the KDE of the detected DPS. The KDE values range
from 0 to 10, indicating an uneven spatial distribution of the DPSs. Hotspots are distributed
in the middle and southwestern parts of Qianjiang City, distant from the urban area.



Remote Sens. 2022, 14, 717 8 of 11

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 12 
 

 

. 

Figure 5. Dike-pond systems (DPSs) detected by You Look Only Once v4 (YOLOv4), Cascade re-

gion-based convolutional neural networks (Cascade R-CNN), and modified Cascade region-based 

convolutional neural networks (mCascade R-CNN). Image subset of the DPS detection results (a) 

and the zoom-in showing the accuracy of the bounding boxes (b). 

3.2. Spatial Distribution of DPS 

The mCascade R-CNN detected 2975 DPSs based on the number of bounding boxes 

in the study area. Figure 6 illustrates the KDE of the detected DPS. The KDE values range 

from 0 to 10, indicating an uneven spatial distribution of the DPSs. Hotspots are distrib-

uted in the middle and southwestern parts of Qianjiang City, distant from the urban area. 

 

Figure 6. Kernel density estimation (KDE) of the dike-pond systems (DPSs) in Qianjiang City. 

3.3. Oilseed Rape Planting Area in the DPS 

Figure 7 demonstrates the winter oilseed rape map derived from the high-resolution 

satellite image using the SVM classification method. The overall classification accuracy 

was 99%. The total oilseed rape planting area was 14,433 ha in the study area. According 

to the results of mCascade R-CNN, the area of oilseed rape growing on the dikes of ponds 

was 493 ha, accounting for approximately 3.42% of the total oilseed rape area. 

Figure 6. Kernel density estimation (KDE) of the dike-pond systems (DPSs) in Qianjiang City.

3.3. Oilseed Rape Planting Area in the DPS

Figure 7 demonstrates the winter oilseed rape map derived from the high-resolution
satellite image using the SVM classification method. The overall classification accuracy
was 99%. The total oilseed rape planting area was 14,433 ha in the study area. According to
the results of mCascade R-CNN, the area of oilseed rape growing on the dikes of ponds
was 493 ha, accounting for approximately 3.42% of the total oilseed rape area.
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4. Discussion

DPS is a typical eco-agricultural landscape that is distributed in plains or deltas
covered by dense waterways. There is a lack of studies devoted to mapping DPS at a large
scale using satellite data due to the complex combination of ponds and crops growing on
dikes. The spatial distribution, ecological function, and environmental impact of DPSs
cannot be quantitatively evaluated without an accurate map of DPSs. This study developed
the mCascade R-CNN to identify the DPS as a target, achieving an AP value of 80.90%.
In previous studies, the overall accuracy of the DPS classification reached 90% and even
higher [11,12]. However, the overall accuracy cannot be compared with AP. The accuracy
evaluates the performance of the classifier across all classes when all classes are of equal
importance. However, this study aimed to identify the DPS, and thus the AP was used
instead of the overall accuracy. The AP value not only assesses the accuracy of the target
detections, but also takes into account the accuracy of the bounding box. Moreover, the
accuracy assessment of the DPS classification studies was based on a small sample size,
which is not comparable to the over 1000 samples used for the validation in this study.

The improvements of the mCascade R-CNN over the baseline were not only in the
accuracy of the target detection, but also in the accuracy of the bounding box. A more accu-
rate bounding box facilitates better estimation of the crop area within the DPS. However,
we found that ponds with very narrow dikes are difficult to identify because the features
may be weakened in such cases. The performance could be improved in several ways,
such as by increasing the sample sizes, replacing the horizontal bounding box with an
oriented bounding box, or testing other advanced deep learning methods. For example,
non-maximum suppression is an integral part of the object detection algorithm, but it leads
to a missed detection when the bounding boxes significantly overlap with each other. In
the detection of DPS, we noticed that one or two were missed occasionally in a row of DPSs.
The soft-non-maximum suppression decays the detection scores of all other objects as a
continuous function of their overlap with the detection box [25], and may improve the
accuracy in rows of DPS.

Crops, vegetables, or fruit trees growing on dikes are usually overlooked because of
their small areas and fragmented distribution. In the study area, oilseed rape growing on
the dikes accounted for 3.42% of the total oilseed rape area. However, the actual growing
area on the dikes is higher than 3.42% due to the uncertainty in the DPS identification and
the accuracy of the bounding box. Until 2019, the average cultivated land area per farmer
was approximately 0.35 ha [26]. With the increasing demand for agricultural production in
China, integrated agriculture systems, such as the crop-fishery-(livestock) system, provide
an effective way to balance the limited cultivated land and higher profits from fisheries.
As machine learning and computer vision techniques have developed rapidly in recent
years, identifying and quantifying crops growing in integrated agriculture systems is more
feasible and accurate, which compensates our knowledge of the agricultural and economic
conditions of smallholders.

Integrated agriculture systems have developed rapidly in the recent decade with
the advancements in new agricultural technology, loss of labors to the cities, and rural
revitalization policies, which will drive spatiotemporal change in the DPSs. This study
focused on developing a deep learning method to identify DPS, and thus the analyses were
conducted on one-date satellite images. Future studies will analyze the spatiotemporal
change of the DPSs at the larger scale based on multi-temporal satellite images. In the
study area, DPS is mainly composed of a pond and oilseed rape plant, but it has diverse
compositions in other regions, such as the Pearl River Delta. The proposed model could be
applied to other regions, but it needs large quantities of training samples for the model to
learn the different compositions of DPSs. Furthermore, farm ponds are more vulnerable
to pollution than larger water bodies [27]. The map of the DPS provides a basic dataset to
evaluate the impact of the runoff from dikes on the ponds.
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5. Conclusions

This study proposed the mCascade R-CNN algorithm to detect the DPS in Qianjiang
City using high-resolution satellite data. The mCascade R-CNN modified the regular
convolution layer in the backbone of Cascade R-CNN into a deformable convolutional
layer, which was more suitable for learning the features of DPSs with variable shapes
and orientations. The mCascade R-CNN algorithm yielded the most accurate detection
of DPS, with an AP value that was 2.71% and 11.84% higher than Cascade R-CNN and
YOLOv4, respectively. Based on the DPS map derived from the mCascade R-CNN model,
KDE analysis illustrated that the DPS was distributed unevenly in the spatial area. The
hotspots of the DPS were located in the middle and southwestern parts of the study area.
The area of oilseed rape growing on the dikes accounted for 3.42% of the total oilseed rape
planting area. This study demonstrates the potential of deep leaning methods combined
with high-resolution satellite images in detecting integrated agricultural systems. Mapping
DPS at a large scale would facilitate the quantification of the environmental-economic
benefits of integrate agriculture systems, and provide valuable data sources to support
agricultural management of small holders.
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