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Abstract: The study of vegetation phenology has great relevance in many fields since the importance
of knowing timing and shifts in periodic plant life cycle events to face the consequences of global
changes in issues such as crop production, forest management, ecosystem disturbances, and human
health. The availability of high spatial resolution and dense revisit time satellite observations, such
as Sentinel-2 satellites, allows high resolution phenological metrics to be estimated, able to provide
key information from time series and to discriminate vegetation typologies. This paper presents
an automated and transferable procedure that combines validated methodologies based on local
curve fitting and local derivatives to exploit full satellite Earth observation time series to produce
information about plant phenology. Multivariate statistical analysis is performed for the purpose
of demonstrating the capacity of the generated smoothed vegetation curve, temporal statistics,
and phenological metrics to serve as temporal discriminants to detect forest ecosystems processes
responses to environmental gradients. The results show smoothed vegetation curve and temporal
statistics able to highlight seasonal gradient and leaf type characteristics to discriminate forest types,
with additional information about forest and leaf productivity provided by temporal statistics analysis.
Furthermore, temporal, altitudinal, and latitudinal gradients are obtained from phenological metrics
analysis, which also allows to associate temporal gradient with specific phenophases that support
forest types distinction. This study highlights the importance of integrated data and methodologies
to support the processes of vegetation recognition and monitoring activities.

Keywords: plant phenology; phenological metrics; vegetation; EO time series analysis; temporal
discriminant; forest ecosystems; land surface phenology; Sentinel-2

1. Introduction

Since the 1990s, under the boost of phenology networks establishment and monitoring
programs initiatives, the interest in phenology has significantly increased [1–4]. Plant
phenology studies the succession of plant cycle phases (e.g., leaf unfolding, flowering,
blooming, leaf fall) and their development in relation to abiotic and biotic factors [5] espe-
cially with regard to meteorological components such as temperature, rainfall, humidity,
radiation, exposure [6,7]. The role of phenology as a bioindicator of climate change, has
been acknowledged by the World Meteorological Organization (WMO) and the Intergovern-
mental Panel on Climate Change (IPPC) [6,8], and the shifts in the timing of phenological
stages due to climate changes have been widely recognized [9–15]. Phenology tracks
annually recurring events in ecosystems such as plant germination, flowering, growth,
and fruit maturation. Since these events are triggered predominantly by temperature,
phenology has emerged as a key asset in identifying current fingerprints of climate change
in nature, especially since recent warming is mirrored by significantly advancing spring
events [15]. At the same time, the seasonal life cycle events throughout the year have great
relevance in many fields, such as biodiversity (e.g., detection of ecosystem disturbances),
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cultivated species of agricultural interest (e.g., timing of management activities), forestry
(e.g., monitoring forest health), and in relation to human health (e.g., providing pollen
information) [2,16,17].

Nowadays, it is possible to identify time shifts and seasonal changes thank to a
large amount of data set available, in some cases time series of phenological observations
date back to the 19th century [18] and more [19]. This has fostered the establishment
of phenological networks throughout the world, mainly based on field observations of
standard growth stages of plant cycles [20], such as budburst or leaf senescence. However,
ground phenology detection has some shortcomings as it is labor intensive, it involves
limited geographic extents, and a limited number of species investigated [21–23]. On the
other hand, major advances in near-surface remote sensing and satellite remote sensing
have supported the developments of new methodologies of data collection and analysis
from a regional to a continental scale [21,24,25]. Especially satellite remote sensing increases
the range of the scale of analysis moving from plant species phenological phases to the
detection of land surface phenology at the landscape scale [26,27]. It enables to investigate
the spatio-temporal patterns of plant phenology and their relationship with environmental
variability and climatic drivers.

The detection of phenological events by satellite remote sensing needs a dense time
series of data for the purpose of being able to ascertain rapid phenological changes and
to overcome the problem of cloud covered images [25,28]. To this end they made a strong
contribution the Advanced Very High Resolution Radiometer (AVHHR) and Moderate
Resolution Imaging Spectrometer (MODIS/Terra) sensors, providing a global coverage of
very high temporal (twice daily and daily, respectively) and coarse-to-moderate spatial
(1 km and 250 m, respectively) resolution observations for more than 20 years and over large
geographic regions [29–32]. At present, Sentinel-2 satellites provide global acquisitions of
high resolution (10–20 m) and high-revisit frequency (5 days) multispectral images enabling
more detailed-scale phenological studies [33,34].

Phenology can be investigated by exploiting the optical response of vegetation through
the seasonal variations of spectral and biophysical indices [35–37] by analyzing the veg-
etation index time series. Vegetation indices are the basic information for phenological
researches, e.g., by analyzing the vegetation index time series to derive information [38–42],
by assessing temporal statistics [43,44], or by estimating phenological metrics (as the onset
of greenup, the length of the growing season, and the offset of the season) [45–47].

There are various methods to estimate the phenological metrics from vegetation index
time series, namely threshold-based methods, smoothing functions, empirical equations,
rate of change, change detection, phenology matching, simulation-based methods, and
derivatives of vegetation greenness curves [22,25,48–51]. Data smoothing plays a key role in
the estimation of phenological metrics, since it simplifies vegetation index time series curves
using empirical methods, curve fitting method or data transformation methods [25]. The
successful retrieval of phenological metrics depends on the availability of robust algorithms
that are capable of processing vegetation time series while minimizing atmospheric noise
and sensor-related errors [52]. The aim is to extract key information from the curve of
phenological time series, such as the slope of the curve or the length of the plateau, and
link them to a specific phenological response.

In view of climate change mitigation and adaptation measures to be adopted by
different countries, high resolution phenology trends will contribute to improve a number
of monitoring activities, such as ecological status, environmental conditions, climate change
impacts on ecosystems, detailed land-use/land-cover mapping, the estimation of carbon
storage, vegetation responses to disturbances, cropland practices, and urban ecosystem
assessments [53]. Along with the availability of high resolution satellite time series and
proven methodologies to extract temporal information from satellite acquisitions, comes
the need for procedures to generate high resolution Earth observation derived phenological
metrics that could serve a wide range of applications. In the last decade, Sentinel-2 MSI
satellite sensors have contributed significantly in encouraging vegetation investigations
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which have led to develop methods and products [34,54,55]. In particular, the availability
of high spatial resolution and dense revisit time satellite observations, opened the way
to high resolution phenological metrics estimation, representing a promising tool for the
study of terrestrial ecosystems and species-specific phenology. Phenological metrics are
able to synthetize key information from time series and can be used to discriminate forest
typologies on the basis of the observation and measuring of the ecosystem processes
responses to environmental gradients.

An automated and transferable procedure that combines available validated method-
ologies to exploit full satellite Earth observation time series to produce rapid and updated
information about plant phenology, without any a priori information and without an ex-
cessive simplification of the temporal curve, is here presented. The aims of this study are:
(i) to present a procedure to estimate phenological metrics and temporal statistics from
high spatial resolution satellite images, exploiting a dense and smoothed time series of the
Leaf Area Index (LAI); (ii) to investigate if smoothed vegetation curve, temporal statistics,
and phenological metrics may contribute as temporal discriminants to characterize forest
ecosystems in Italy.

2. Materials and Methods
2.1. Study Area

Italy is situated in the Mediterranean basin and covers about 300,000 km2 (Figure 1).
It is characterized by two main mountain ranges (the Alps and the Apennines), hilly
zones, river valleys, and a coastline of about 7600 km. The physiography and geographical
position have led to it having heterogeneous features in terms of climate (ranging from
a Mediterranean climate in the south and along the coastline, to a Temperate climate in
the north and in the mountains) and in terms of land use along latitudinal and elevation
gradients [56,57].

Land use is mainly represented by agricultural (52%), natural (43%) and artificial
(5%) areas. Most of the natural areas are forests (28%) which are diversified into multiple
habitat types.

2.2. Forest Habitat Types

The European Vegetation Archive (EVA) dataset [58,59] was used in this work. The
archive includes georeferenced vegetation plots with species list and cover abundance. The
sub-dataset used in this study takes into account vegetation plots smaller than 200 m2 and
with a geographic localization accuracy ranging from 0.1 to 30 m. Following the EUNIS
(European Nature Information System) II and III level hierarchical classification nomen-
clature [60] 14,385 plots from the EVA dataset were selected and classified (Table 1) [61].
Figure 1 shows the spatial distribution of forest stands along the Italian peninsula at II
level EUNIS classification. These forest types at EUNIS level II were used to estimate the
smoothed vegetation curve and the temporal statistics, while regarding the phenological
metrics estimate, only deciduous broadleaved forest types (T1) at EUNIS III level were
considered from the vegetation plot records of the archive, since for the evergreen forest
types is more difficult to identify the timing of the onset of greenness and senescence due
to the lower temporal fluctuation of the vegetation index time series [61,62] and snow
prevalence during wintertime in mountain ecosystems [55], hiding evergreen forests.
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Figure 1. Overview of the study area showing location of PhenoCam sites used for validation and the
spatial distribution of forest types plots classified using EUNIS level II classification (T1: broadleaved
deciduous forest; T2: broadleaved evergreen forest; T3: needleleaved evergreen forest and, T34:
needleleaved deciduous forest). PhenoCam data source: https://phenocam.sr.unh.edu/webcam
(accessed on 11 March 2021).

Table 1. Forest types selected according to EUNIS II and III level classification nomenclature.

EUNIS Code Level II EUNIS Code Level III Description Plots

T1 Broadleaved deciduous forest habitat 8328

T11 Temperate Salix and Populus riparian forest 1027
T15 Broadleaved swamp forest on non-acid peat 772

https://phenocam.sr.unh.edu/webcam
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Table 1. Cont.

EUNIS Code Level II EUNIS Code Level III Description Plots

T17 Fagus forest on non-acid soils 2404
T18 Fagus forest on acid soils 614

T19 Temperate and sub-Mediterranean thermophilous
deciduous forest 1389

T1A Mediterranean thermophilous deciduous forest 815
T1B Acidophilous Quercus forest 147

T1C Temperate and boreal mountain Betula and P. tremula
forest on mineral soils 32

T1D Southern European mountain Betula and P. tremula forest
on mineral soils 36

T1E Carpinus and Quercus mesic deciduous forest 260
T1F Ravine forest 541
T1G A. cordata forest 291

T2 Broadleaved evergreen forest habitat 3776

T3 Needleleaved evergreen forest habitat 2281

T34 * Needleleaved deciduous forest habitat
Temperate subalpine Larix, P. cembra and P. uncinata forest 461

* This class has been examined separately from T3 EUNIS level II class since it belongs to needleleaved deciduous
plant functional type.

2.3. Satellite Data

Sentinel-2 (S2) satellite acquisitions acquired during the year 2019, with cloud cover
lower than 90%, were gathered for the study area (around 7000 images, 61 granules,
9 Terabyte of data stored). The high spatial resolution (10 m, 20 m and 60 m), the high revisit
time (5 days with two satellites), and the 13 spectral bands (from the visible to shortwave
infrared) are the characteristics of the S2 Multi-Spectral Instrument (MSI) sensor. The
images, distributed by Theia (MUSCATE format) as the bottom of the atmosphere (BOA)
reflectance, orthorectified, terrain-flattened and atmospherically corrected with MACCS-
ATCOR Joint Algorithm (MAJA) [63,64], were processed for spatial resampling of the
spectral bands at 20 m and masked for invalid pixels (cloud, cloud_cirrus, cloud_shadow,
topographic_shadow, snow, edge, and sun_too_low).

2.4. Satellite Data Processing

Figure 2 shows the overall data processing workflow. The LAI biophysical index,
defined as half of the total green leaf area per unit ground surface area, was calculated from
the S2 images using the biophysical processor [65,66] available in SNAP software version 7.
From the LAI time series temporal variables were calculated, spatially co-registered using
the AROSICS algorithm [67], in order to deal with weak spatial coherence of S2 time
series processed using processing baselines 01.xx and 02.xx [68], and stacked in a large
multidimensional datacube [68]. Then the LAI time series were temporally smoothed and
daily interpolated. Complementary temporally explicit information defined “weights”,
were generated in order to account for residual sub-pixel cloud contamination [69] and
later updated during the data processing. weights values were derived from MSI B2 spectral
band centered at 492 nm, and assigned following the rules: weights = 0.1 for B2 > 0.25;
weights = 0.5 for B2 > 0.18 and B2 ≤ 0.25; weights = 1.0 for B2 ≤ 0.18.
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Figure 2. Flowchart of the main phases of the procedure to generate phenological metrics datasets
and to perform multivariate statistical analysis. White ellipse refers to input data, grey boxes refer to
data processing phases, black ellipses refer to output products.

The temporal smoothing and gap-filling aim to produce a vegetation index time series
with evenly spaced timesteps, by means of a pixel-based approach consisting of four steps:
(i) small drops removal; (ii) daily interpolation; (iii) weighted second-order polynomial
local fitting; and (iv) Whittaker smoother. First, small drops in the temporal series were
removed using a two-pass moving window filter. Daily interpolation was then performed
with the R cran “stinepack” package [70], that use the Stineman algorithm [71] a method
leading to much less tendency for “spurious” oscillations than traditional interpolation
methods based on polynomials, such as splines. weights information was then updated
with value “0.1”, assigned to interpolated missing values. Later, a weighted second-order
polynomial local fitting using a moving window ranging over 7 non-missing temporal
observations was used to apply a fine smoothing to the time series. The determination of
weights for each time step in the time series, like the application of Savitsky–Golay filter,
allows to produce an upper vegetation index envelope, reducing the small drops [72].

A first-order weighted Whittaker smoother [73,74] was finally applied in order to
smooth the vegetation time series; in particular, the initial and final time series observation
falling outside polynomial fitting local window, using the R cran ‘ptw’ package [75].
Lambda value used for the smoothing was set to 10 days, after performing a sensitivity
analysis to tune this value and produce consistent results when smoothing time series with
a different S2 revisit time of 2–3 days (multiple orbit acquisitions on few tiles) or 5–10 days
(not shown).
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After the smoothing procedure, the LAI daily time series were used to estimate the
phenological metrics (Table 2) using the method described in [76]: the annual temporal
statistics, specifically average (LAI_avg), minimum (LAI_min), maximum (LAI_max), delta
(LAI_delta), standard deviation (LAI_std), and the seasonal temporal statistics, specifi-
cally winter average (LAI_djf_avg), winter minimum (LAI_djf_min), winter maximum
(LAI_djf_max), summer average (LAI_jja_avg), summer minimum (LAI_jja_min), summer
maximum (LAI_jja_max).

Table 2. List and description of the estimated phenological metrics used. Time field reports the units
used for the estimation (x-axis in Figure 2); Value field specify if vegetation index is computed for the
corresponding phenological metric (y axis in Figure 2). DoY: day of year, VI: vegetation index.

Phenological metric Time Value Acronym Description

Start of Season date, DoY VI SoS Minimum VI value before the onset of photosynthesis
Start of Growing

Season date, DoY VI SGS Beginning of measurable photosynthesis in the
vegetation canopy

greenup VI rate greenup Maximum positive slope of the curve during the onset of
photosynthesis

Peak of Season date, DoY VI PoS Maximum level of photosynthetic activity in the canopy
during the growing season

End of Growing
Season date, DoY VI EGS Beginning of significant degradation of chlorophyll

revealing various accessory pigments

senescence VI rate senescence Maximum negative slope of the curve during the
chlorophyll degradation

End of Season date, DoY VI EoS End of measurable photosynthesis in the
vegetation canopy

Amplitude VI Amp Maximum increase in canopy photosynthetic activity
above the baseline

Plateau slope VI rate plateau_slope Slope during the maturity phase

Duration of Season days DoS Length of photosynthetic activity during the
growing season

Length of Maturity
Plateau days LMP Length of photosynthetic activity during the

maturity phase
Seasonal Time

Integrated index VI STI Canopy photosynthetic activity across the entire growing
season calculated as daily integration of VI values

Plant phenology is characterized by phenophases that follow each other, from dor-
mancy (or sowing in agriculture practices) through the start of season (characterized by
the onset of greening with leaf unfolding), peak (or heading), maturity phase, flowering,
senescence (characterized by curtailing of chlorophyll production that reveals various
accessory pigments), leaf fall, and finally, dormancy.

The method to estimate phenological metrics is based on a combination of local
maxima in the first derivative [22,76] (Figure 3). It first identifies the vegetation peak,
corresponding to absolute maximum time series value. Peak is used to initialize the
identification of maximum increase (temporarily happening before the peak) and maximum
decrease (temporarily happening after the peak) of time series first derivative. Maximum
greenup rate (hereafter greenup) and maximum senescence rate (hereafter senescence)
are defined as slopes of recovery and senescence lines tangent to the time series. The
intersections among these lines and baseline and maxline identify the four phenophases
in the original formulation (UD: upturn date; SD: stabilization date; DD: downturn date;
RD: recession date) [76]. Starting from these phenophases, phenological metrics were
extracted (Figure 3). Dates were expressed as absolute number of days (i.e., DoS and LMP
phenological metrics) or as both calendar date and day of year (DoY).
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Figure 3. Smoothed LAI time series with estimated phenological metrics.

2.5. Phenological Metrics Accuracy Assessment

In order to verify the accuracy of the estimated phenological metrics with ground
phenology observations [51,77], the resulting S2 estimates were compared with the digital
images of the PhenoCam network observations (https://phenocam.sr.unh.edu/webcam/,
accessed on 11 March 2021) available for natural ecosystems in the study area (Figure 1,
Table 3). The PhenoCam Dataset V2.0 is a fully processed, quality-controlled, and curated
data set which is made freely available through the ORNL DAAC [78,79]. The daily 90th
percentile of Green Chromatic Coordinate (GCC90), a vegetation index derived from Phe-
noCam photographic images that quantifies the greenness relative to the total brightness,
has been used as reference time series and processed with the same procedure used to
analyze S2 time series, starting from temporal smoothing processing step. Accuracy of
the estimated phenological metrics was assesses by computing the Mean Error (ME), the
Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the correlation
coefficient (r) between reference field data and S2 estimates. Since phenological metrics
were derived from different time series (i.e., GCC90 and LAI), with a nonlinear relationship,
only date estimates (expressed as DoY or absolute number of days) were compared for all
the available PhenoCam time series in the period 2016–2020.

Table 3. PhenoCam network sites.

Site Name Ecosystem Type Longitude Latitude Elevation

torgnon-ld Deciduous Needleaved Forest 7.5609 45.8238 2091
torgnon-nd Grassland 7.5781 45.8444 2160

montebondonegrass Grassland 11.0458 46.0147 1550
montebondonepeat Peatland 11.0409 46.0177 1563

S2 acquisitions available in the period 2016–2020 were collected for location correspon-
dent to PhenoCam sites, in order to generate multi-year time series for the comparison with
ground observations.

2.6. Multivariate Analysis

Discriminant Function Analysis (DFA), Canonical Correlation Analysis (CCA) and
Linear Discriminant Analysis (LDA) were selected to analyze the contribution of the
three generated datasets (the smoothed vegetation curve, the temporal statistics, and the
phenological metrics) to the characterization of forest habitat types (Table 1). The DFA is a
statistical method that separates objects into classes by performing a multivariate analysis

https://phenocam.sr.unh.edu/webcam/
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to highlight the differences among groups, namely the categorical response variable, and
the variables needed to describe these differences, namely the predictors [80]. Four different
forest habitat classes were considered for DFA analysis, corresponding to the broadleaved
deciduous (T1), broadleaved evergreen (T2), needleleaved evergreen (T3) and needleleaved
deciduous (T34) plant functional types. The CCA was used to explore the relationship
between two sets of variables combining them in order to extract the variance of the data
matrix by a limited number of independent axes (i.e., “canonical roots”, or “roots”) [81].
Linear Discriminant Analysis (LDA) is a dimensionality reduction technique, to reduce
the number of dimensions in a dataset while retaining as much information as possible,
providing the best possible separation between the groups [82].

The georeferenced points of vegetation plots were used to perform a spatial query
over the variables generated from satellite time series, and precisely all the plots (14,385)
over the smoothed vegetation curve and temporal statistics, and the T1 plots (8328) over
the phenological metrics.

The data analysis was performed according to the following steps:

1. Regarding the smoothed vegetation curve and the temporal statistics variables (pre-
dictors), a DFA was executed to identify the variables able to discriminate the forest
types (response variables) at the EUNIS II level;

2. As for the phenological metrics, a two steps analysis was performed for T1 EUNIS
III level classes. Since the presence of two sets of variables, firstly a CCA was run
on the phenological metrics dataset illustrated in Table 2 and constituted of 10 vari-
ables of LAI values and 9 variables of date values. The resulting independent and
representative axes were then used to perform a LDA to discriminate the deciduous
broadleaved forest types.

The analyses were performed using GDAL libraries, R programming language and
libraries, QuantumGIS, SeNtinel Application Platform (SNAP), NetCDF Operators, and
Climate Data Operators software.

3. Results

Figure 4 shows the spatial distribution maps of four phenological metrics estimated
from S2 observations acquired during year 2019 for the Italian national territory. Temporal
statistics related to LAI winter minimum (Figure 4a) clearly show higher values in the
Alps region, corresponding to evergreen needleleaved forest (dominated by European
Spruce, Silver Fir and Larch), and the distribution of evergreen broadleaved forests along
the western coast of the peninsula (dominated by evergreen oaks), in southern regions and
in Sardinia island. LAI average values (Figure 4b) show higher values for broadleaved
forests and largest greenup rate (Figure 4c) is higher in central Apennines.

Results of the statistical analysis, conducted to compare the phenological metrics
estimated from S2 time series with reference field data estimated from PhenoCam time
series, located in the Alpine region, are reported in Table 4. Figure 5 shows the distribution
of phenological metrics dates estimated from ground observation and from S2 time series.

Two EGS dates clusters can be observed in Figure 5, likely related to the differences
between tree species and grasslands, the latter characterized by an early yellowing phase.
PoS DoY estimated from S2 generally occurs later than the PhenoCam estimated one. This
may be related to higher GCC90 signal saturation than LAI, and result in higher error
metrics (Table 4) as compared to other assessed phenological metrics. Error metrics for
DoS and LMP, estimated from a pair of phenological metrics estimates, may be higher
than others due to the uncertainties in both greenup and senescence phenophases, that can
increase error.

Figure 6 shows the results of multivariate analysis. Regarding the smoothed vegetation
curve, the first two factors (F1 and F2) explain the 91.4% of the total variance (Figure 6a)
for the EUNIS II level forest types and the 44.3% of the total variance for the EUNIS III
level forest types (Figure 6b). In Figure 6a, the F1 (72.6% of the total variance) reveals a
seasonal gradient with the deciduous forest types placed in the negative side of F1 and
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the evergreen in the positive one. The F2 instead (18.9% of the total variance) shows a
differentiation of leaf types with the broadleaved located in the negative side of F2 and the
needleleaved in the positive one. Figure 6b shows a similar separation between deciduous
and evergreen alongside the F1, and broadleaved and needleleaved alongside F2, except
for T33 (Mediterranean mountain Abies forest) that is a mixed forest type.

Figure 4. Maps of selected phenological metrics estimated for the study area (year 2019). (a) LAI
winter minimum; (b) LAI average; (c) Largest Greenup rate; (d) End of Growing Season date.

Table 4. Accuracy assessment results for the comparison of phenological metrics estimated from
ground PhenoCam GCC90 time series and S2 LAI time series. ME: Mean Error, MAE: Mean Absolute
Error, RMSE: Root Mean Square Error, r: correlation coefficient. SGS: Start of Growing Season, PoS:
Peak of Season, EGS: End of Growing Season, EoS: End of Season.

ME MAE RMSE r

SGS 6.35 14.47 17.71 0.6758
PoS −26.94 26.94 27.56 0.8804
EGS −1.18 14.59 18.06 0.8555
EoS −13.41 14.82 20.5 0.7645

greenup −3 17.94 22.19 0.4079
senescence −8.59 18.47 24.04 0.6242
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Figure 5. Phenological metrics dates (expressed as DoY) derived from the GCC90 time series on
the x-axis plotted against the estimates from S2 LAI on the y-axis. The dashed black line shows the
1:1 relationship.

As for the temporal statistics, F1 and F2 explain the 99.6% of the total variance
(Figure 6c) for the EUNIS II level forest types and the 87.5% of the total variance for
the EUNIS III level forest types (Figure 6d). The distribution of the forest types with respect
to the four quadrants of the DFA biplot is in line with what was reported for the LAI time
series. Indeed, it is possible to recognize the same gradients in Figure 6c,d. Differently from
the LAI time series biplots, that does not clearly express evident gradients, it is possible
to find the contribution of the temporal statistics to the forest types discrimination. In
Figure 6c, the F1 (94.4% of the total variance) reveals the summer productivity (LAI_max,
LAI_jja, and LAI_std) and discriminates the deciduous forest types with T1 and T34 located
in the negative side of the F1. T2, which represents the forest type with the maximum
availability in terms of number of days of photosynthetic surface, is instead discriminated
by LAI_avg and LAI_djf_max. The biplot of Figure 6d indicates a leaf-type productivity
with T2 forest types located in the positive side of F1 (75.6% of the total variance) and in
the negative side there are T3 and T1 forest types.

Regarding the phenological metrics, the output of the CCA consists of two sets of
independent axes: SET1 axes for time values (DoY) and SET2 axes for LAI values. The
results of the LDA are shown in Figure 6e,f. LD1 and LD2 explain the 81.5% of the
total variance (Figure 6e), whereas LD2 and LD3 explain the 57.7% of the total variance
(Figure 6f). In Figure 6e, LD1 (48.5% of the total variance) shows a temporal gradient
with SET1_SCORE1, SET1_SCORE2, and SET1_SCORE3 that discriminate forest types
characterized by a shorter growing season located in the right side of LD1. LD2 (33% of the
total variance) is an expression of LAI values and discriminates the altitudinal gradient of
broadleaved deciduous forests with beech and alder forest at the bottom of the biplot, and
beech and oak at the top. Moreover, mesophilous forest types are located on the top side of
the biplot. In Figure 6f, LD1 (48.5% of the total variance) shows a similar temporal gradient
as in Figure 6e, whereas LD2 (9.2% of the total variance) indicates a latitudinal gradient
with the alpine forest types located on the top side of the biplot (T18, T1C, and T15).
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Figure 6. Biplots showing results of multivariate analysis. (a) Distribution of centers of gravity (black
squares) for the EUNIS level II forest classes and LAI daily time series daily (colored dots) according
to the first two DFA factors; (b) distribution of centers of gravity (black squares) for the EUNIS
level III forest classes and LAI daily time series (colored dots) according to the first two DFA factors;
(c) distribution of centers of gravity (black squares) for the EUNIS level II forest classes and LAI
temporal statistics (colored dots) according to the first two DFA factors; (d) distribution of centers of
gravity (black squares) for the EUNIS level III forest classes and LAI temporal statistics (red dots)
according to the first two DFA factors; (e) distribution of centers of gravity (black squares) for the
deciduous broadleaved (T1) forest classes and the sets of independent axes derived from CCA (red
dots) according to the first two LDA factors; (f) distribution of centers of gravity (black squares) for
the deciduous broadleaved (T1) forest classes and the sets of independent axes derived from CCA
(red dots) according to the first and the third LDA factors.
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To sum up, a smoothed vegetation curve accounts for seasonal gradient and leaf type
discrimination, whereas temporal statistics results, although showing the same gradients,
enhance forest-type discrimination, highlighting forest productivity and leaf productivity
features. Phenological metrics outcomes allow to enrich the information provided by
the previous two analyses by associating a temporal gradient with specific phenophases
that support forest-type distinction. Furthermore, altitudinal and latitudinal gradients
also arise.

4. Discussion

Development of Earth observation data analytics allows to analyze and systemati-
cally extract diverse sets of information from a variety of large datasets, including those
observing and measuring the response of environmental and ecosystem processes. Earth
observation derived phenological metrics represent a promising tool to monitor ecological
status, environmental conditions, climate change impacts on ecosystems, cropland prac-
tices, and more accurately forecast crop yields. Trends of phenological shifts in both spatial
and temporal scales, with consequent impact on ecosystem functioning, could be identified
using high resolution satellite derived phenological metrics.

Land-surface phenology has been estimated in the last decades from medium spatial
resolution high revisit time satellite observations, that allow observing on regional to global
scales but have a limited representativeness for phenological changes at ecosystem or
species-level. S2 satellites, with a high spatial resolution and 5 days revisit time, opened the
way to high resolution phenological metrics estimation, and represents a promising tool for
a variety of ecological analyses, including for example the study of terrestrial ecosystems
and species-specific phenology [22]. The LAI vegetation index estimated from satellite
observations has been selected as source information to derive phenological metrics since
it represents a biophysical parameter, and it is less affected by signal saturability in areas
with high vegetation coverage. Alternatively, NIRv [83] and kNDVI [84] vegetation indices
can be considered since they have low signal saturability in comparison to commonly used
NDVI and EVI vegetation indices.

Retrieving plant phenology from time series of satellite Earth observation vegetation
indices has been widely investigated and applied in the past two decades. USGS EROS and
Copernicus initiatives [54,85] contributed to the development of operational products for
landsurface phenology monitoring. TIMESAT, an algorithm implementing least-squares
methods for processing time series of Earth Observation data, has been largely used to
estimate phenophases. The implemented Savitzky–Golay filtering works very well with
time series relatively unaffected by noise, while the asymmetric Gaussians, classified
as semi-local method, force the data into the fixed functional form and they are able to
follow also more complex behaviors, such as a rapid increase followed by a decreasing
plateau [86]. The asymmetric Gaussian method has been found to be less sensitive to noise
and to give better predictions for the beginnings and ends of the seasons [86]. The enhanced
TIMESAT algorithm, using the third derivative, is relative stable in determining greenup
and senescence, no matter whether vegetation index is changing quicker or slower [32].

Among the existing methodologies, the ones used in this study to temporally smooth
time series and to estimate phenology metrics have been selected considering requirements
and previous works in literature. The requirement for a generalized procedure, that can be
applied to other vegetation indices and other satellite sensors, is the use of methods without
any a priori information. Keeping smoothed temporal signal as close as possible to actual
observations requires the use of a local curve fitting, to avoid an excessive simplification
of the temporal curve methodologies and to allow less altered estimates for some of the
phenological metrics (e.g., plateau_slope and STI). Finally, the use of a co-registration
method to improve high spatial resolution satellite observations is advisable. The proposed
procedure uses local curve fitting and local derivatives to identify phenophases, operating
without thresholds or a priori information. Signal filtering is a very important processing
step because it makes the vegetation time series interpretable to retrieve phenological infor-
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mation. The methodology temporally interpolates S2 time series in order to homogenize
seasonal trajectories of vegetation indices. All the available satellite observations need to be
optimally used, even if heavily hampered by clouds. In this study, the removal of invalid
pixels (e.g., clouds, topographic shadows) prior the analysis assumes a key role in reducing
factors affecting the quality of observations, that typically results in reducing vegetation
indices values. The selection of S2 dataset with rigorous cloud detection algorithm [87],
the use of weighted smoothing procedure and the temporal image co-registration enhance
vegetation indices time series integrity.

Phenophases are estimated using the method presented in [76] and implemented in
Phenopix R package, which offers a suite of standardized and reproducible processing code,
designed for the extraction of phenological information from time-lapse digital photogra-
phy of vegetation cover [22]. The method allows the extraction of greenup and senescence
maximum rate date from time series smoothed using local curve fitting, diversely from
other methodologies based on derivatives of the vegetation index seasonal trajectory that re-
quire extremely smoothed time series. The proposed approach distinguishes between Start
of Season (SoS)–End of Season (EoS) and Start of Growing Season (SGS)–End of Growing
Season (EGS) metrics, as compared to similar approaches. The start and the end of growing
season is intended to represent seasonal bounds of photosynthetic tissues development
phases. Diversely, the end of season comes at the end of the period of leaf-mineral nutrient
remobilization during leaf senescence, when the plant is curtailing chlorophyll production
revealing various accessory pigments, determining yellowing or browning of leaves, and
consequently, driving the starting of fall foliage [61]. Vegetation normally changes more
quickly during greenup than senescence [32], as noticeable from Figure 4. SoS phenological
metric is of particular interest in the agriculture field since it represents the timing when
vegetation index is at minimum before the onset of greenness. It should be related to
pre-sowing plowing, a soil management practice that deals with soil preparation for a new
crop, also utilized as post-harvest weed infestation control.

In forest ecosystems, minimum LAI is likely dependent on both evergreen overstory
and/or understory species within a mixed-forest pixel [35]. The effect of deciduous under-
story species may affect surface reflectance very early in the growing season before growth
of overstory canopy occurs. As a result, an early detection of onset of greenness for tree
species within a mixed-forest pixel can be estimated [35]. To reduce such effect, amplitude
metric is computed considering the difference between vegetation peak and vegetation
baseline, in order to eliminate the effect of evergreen species on the minimum vegetation
index value.

The association between the estimated phenological metrics dates and ground obser-
vations was evaluated. To assess the accuracy of the phenological retrievals, ground-truth
information on phenological transition dates would be required [88]. Although subjective
ocular estimates were shown to have a close match to remote sensing indices, they are
time-consuming as they require the frequent presence of an observer in the field [89]. To
overcome this, the use of digital cameras that automatically take several pictures per day,
with a strong focus on forest ecosystems [21], allows to collect time series of greenness
chromatic coordinates, that can then be subjected to similar phenology extraction methods
as for satellite imagery to identify phenological transition dates [22]. Validating phenology
metrics derived from satellite data product may be difficult due to vegetation heterogene-
ity [32]. Data quality and phenology retrieval methods can be source of uncertainties in
phenological metrics estimates [90], and its accuracy remains to be validated globally. Error
metrics calculated using ground observations resulted in a MAE of about 15 days for the
various metrics analyzed. This is consistent with accuracy reported in other studies [34,91]
and can be caused by many error sources. For example, the use of different indices to
estimate phenological metrics, LAI and GCC90 with the latter more affected by signal
saturability (Figure A1), may have contributed to generate differences in the estimated
values. In fact, previous research studies demonstrated that phenological metrics derived
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from NDVI and EVI for the same geographic area are not in 100% agreement with each
other [32].

Forest plant communities, together with their own typical floristic composition, show
exclusive phenological dynamics recognizable by vegetation indices time series [42]. Both
vegetation indices time series [42,61] and land surface phenological metrics [61,92] has
been successfully used to classify plant communities and natural habitats, discriminating
vegetation patterns dominated by species with similar phenology features. Multivariate
statistical analysis conducted in this research study allowed to understand how the three
generated datasets (the smoothed vegetation curve, the temporal statistics, and the phe-
nological metrics) have the capacity to serve as temporal discriminants to detect forest
ecosystems processes responses to environmental gradients. Results from multivariate
analysis demonstrate how temporal statistics and phenological metrics are representative
of the time-related variability, can synthetize key information from satellite time series,
reducing data dimensionality, and thus can be used as temporal discriminants for for-
est ecosystems classification and mapping. Specifically, smoothed vegetation curve and
temporal statistics are able to highlight seasonal gradient and leaf-type characteristics to
discriminate forest types, with additional information about forest and leaf productivity
provided by temporal statistics analysis. Furthermore, temporal, altitudinal, and latitudinal
gradients are obtained from phenological metrics analysis, which also allows to associate
temporal gradient with specific phenophases. High spatial resolution smoothed time series
and phenological metrics open up to the provision of novel temporal information about
forest phenology anomalies and useful monitoring system to scrutinize spatio-temporal
patterns of forest disturbance [62].

In the frame of ecosystem monitoring (e.g., conservation status), and specifically for
grassland management in agricultural areas (e.g., fodder), the systematic capturing of
cutting times would be highly relevant for the surveillance of areas granted by EU fund-
ing programmes [93], under policies on rural development through funding and actions
(EU’s Common Agricultural Policy-PAC). The capacity of mapping crop types using high
spatial resolution phenological metrics estimated using the proposed procedure has been
demonstrated in [94] for heterogeneous, small, and fragmented agricultural systems. In the
context of crop-type mapping and the monitoring of agricultural practices, synthesizing
information to fewer phenological metrics would facilitate image data processing, for
example, image segmentation by reducing time series dimensionality.

While inter-annual variability of phenological metrics can be evaluated even at a local
scale, and analysis on continental scales can detect spatial variability in phenology across
climate gradients. In fact, vegetation phenology is highly sensitive to climate conditions
and is a climate change fingerprint [15]. Warm and cold spells, which are not single extreme
events but can be regarded as a compound extreme, such as a persistence of weather
conditions, have impacts on the onset of phenological seasons, that differed strongly
depending on species, phase and timing of the event [15]. Phenology also controls many
feedbacks of vegetation to the climate system by influencing the seasonality of albedo,
surface roughness length, canopy conductance, and fluxes of water, energy, CO2 and
biogenic volatile organic compounds [95]. Knowledge of how geo-morphological and
bio-climatical conditions affect phenological behavior is valuable information to model the
potential effects of climate change and to estimate the future adaptation of plant growing
in different geographical areas.

The proposed approach has been demonstrated using S2 LAI time series. Other
vegetation indices and other satellite sensors or virtual constellation of sensors can be
used to estimate phenological metrics with the presented procedure. New perspectives
concerning monitoring of plant phenology can benefit from dense time series generated
from virtual constellations, such as the Harmonized Landsat and Sentinel-2 (HLS) dataset
initiative, or synergies with Synthetic Aperture Radar (SAR) sensors satellite observations.
SAR time series have a strong seasonal signal in VH radar backscattering coefficient [96], as
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well as the ratio between VV and VH coefficients, that allows the monitoring of phenology
in deciduous forests independently of the cloud cover [97].

5. Conclusions

Earth observation derived phenological metrics to represent a promising tool to mon-
itor ecological status, environmental conditions, climate change impacts on ecosystems,
cropland practices, and more accurately forecast crop yields. The proposed automated
and transferable procedure combines available validated methodologies to exploit full
satellite Earth observation time series without any a priori information, to produce rapid
and updated information about plant phenology. Estimated phenological metrics have
been validated using in situ PhenoCam observations with satisfactory results.

This study shows that integrated data and methodologies based on plant phenology
may be an effective tool to generate Earth Observation derived temporal discriminants, very
useful to characterize forest ecosystems, and may help the processes of vegetation recogni-
tion and classification, in addition to support monitoring activities of natural ecosystems
and agro-forestry systems.
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Appendix A

Figure A1. Comparison of PhenoCam GCC90 time series with the corresponding S2 LAI time series
for the period 2016–2020 in the four Italian PhenoCam sites. (a) torgnon-ld site; (b) torgnon-nd site;
(c) montebondonegrass site; (d) montebondonepeat site.
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