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Abstract: Building change detection plays an imperative role in urban construction and development.
Although the deep neural network has achieved tremendous success in remote sensing image building
change detection, it is still fraught with the problem of generating broken detection boundaries and
separation of dense buildings, which tends to produce saw-tooth boundaries. In this work, we
propose a feature decomposition-optimization-reorganization network for building change detection.
The main contribution of the proposed network is that it performs change detection by respectively
modeling the main body and edge features of buildings, which is based on the characteristics that
the similarity between the main body pixels is strong but weak between the edge pixels. Firstly, we
employ a siamese ResNet structure to extract dual-temporal multi-scale difference features on the
original remote sensing images. Subsequently, a flow field is built to separate the main body and
edge features. Thereafter, a feature optimization module is designed to refine the main body and
edge features using the main body and edge ground truth. Finally, we reorganize the optimized main
body and edge features to obtain the output results. These constitute a complete end-to-end building
change detection framework. The publicly available building dataset LEVIR-CD is employed to
evaluate the change detection performance of our network. The experimental results show that the
proposed method can accurately identify the boundaries of changed buildings, and obtain better
results compared with the current state-of-the-art methods based on the U-Net structure or by
combining spatial-temporal attention mechanisms.

Keywords: building change detection; feature decomposition; feature optimization; feature reorganization

1. Introduction

Image change detection denotes the process of recognizing specific differences between
multi-temporal images [1,2], which is a key technique for many applications, such as
disaster assessment [3,4], land cover change detection [5,6], urban expansion monitoring [7],
and so on.

As an important part of the blueprint of cities, the demolition, construction and ex-
pansion of buildings are closely related to human existence. It is of great significance
to timely and accurately obtain the change information of buildings for human devel-
opment. With the rapid development of remote sensing imaging technology, massive
remote sensing images can be used for building change detection following high-precision
co-registration [8]. Building change detection based on remote sensing images has become
an area of immense research interest. Research on related change detection methods has
also made great progress, from the early pixel-based building change detection methods
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to the methods combining object-oriented analysis, as well as the methods employing
only the spectral features to the methods combining spectrum, morphological index [9]
and other features [10,11]. Although the traditional pixel-level and object-level methods
have achieved fruitful research results, there are still many shortcomings in the accuracy
and integrity of detection results due to the limited expression capacity of artificial design
features and the accuracy of segmentation results.

In recent years, with its unique deep feature expression capacity, deep learning has
provided new ideas for remote sensing image processing including semantic segmenta-
tion [12,13], object detection [14,15], image matching [16,17], etc. Many remote sensing
image change detection methods based on deep learning have been proposed. Among
them, the methods [18,19] that introduce deep learning into the traditional change detection
process to extract features fail to make full use of the end-to-end structure, resulting in low
detection efficiency. Therefore, fully convolutional networks (FCN) [20] are introduced
into change detection, owing to their ability to perform pixel-level prediction, and build an
end-to-end change detection mode. Although the end-to-end architecture improves the
detection efficiency, the down-sampling operation in FCN will degrade the accuracy of the
pixels’ spatial location, making it difficult to obtain regular building boundaries. A series of
enhanced deep learning methods have been proposed. For example, the encoder-decoder
structure represented by U-Net [21] can recover spatial location information as much as
possible through up-sampling and deconvolution operations to improve the accuracy of
detection results. The methods represented by attention models can enhance the identi-
fiability of the network for changed and unchanged pixels through spatial and channel
attention, which can optimize the detection effect of building boundaries [22–24].

The building change detection methods based on deep learning have obtained good
detection results. However, they improve the internal consistency of the object by mod-
eling the global information of the image, or optimize the edge detection effect by fusing
multi-scale features. All these methods do not take into consideration the strong similarity
between main body pixels and the great difference between edge pixels. Saw-tooth bound-
aries are easily generated in detection results, and multiple adjacent buildings are easily
identified as a single building.

Herein, based on the successful application of the decoupling idea [25] in semantic
segmentation, we introduce a feature decomposition strategy into building change detec-
tion, and add the feature optimization structure on this basis. Then, a fast and effective
building change detection framework based on the feature decomposition-optimization-
reorganization network (FDORNet) is proposed. FDORNet first decomposes the main
body and edge features, and trains the network with the multiple supervision strategy. A
feature optimization structure is used to optimize the main body and edge features and
reduce the irrelevant information in the original image. Finally, a complete building change
detection process is formed by feature reorganization and up-sampling operation. The
main contributions of this paper are as follows:

(1) We propose a novel framework, namely, feature decomposition-optimization-
reorganization network (FDORNet) for building change detection. In our work,
we model the main body and edge features of buildings separately based on the
characteristics that the similarity between the main body pixels is strong but weak
between the edge pixels.

(2) We introduce the decoupling idea into building change detection and employ the
feature optimization structure to refine the main body and edge features, which
greatly improves the accuracy of the boundary detection of changed buildings.

This paper is structured as follows: Section 2 introduces related work on change
detection. Section 3 describes the proposed FDORNet in detail, and Section 4 introduces the
experimental details and the building change detection datasets employed. Subsequently,
experimental results are presented in Section 5. Finally, we conclude with a recommenda-
tion for future work.
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2. Related Work
2.1. Traditional Change Detection Methods

The current traditional change detection methods are mainly pixel-based and object-
based. Next, we will introduce the traditional change detection algorithms from these
two aspects.

2.1.1. Pixel-Based Methods

Pixel-based change detection methods denote a process to determine change informa-
tion pixel by pixel. The most commonly used algebraic methods include image difference,
image ratio, change vector analysis (CVA) [26], etc. The threshold in algebraic methods
needs to be specified when obtaining the final change detection results. The detection re-
sults are greatly affected by spectral difference since only the image spectral feature is used.
Therefore, researchers have propounded many improved methods from the dimensions of
threshold selection and feature utilization.

(Semi-)automatic threshold methods can surmount the limitations of the empirical
threshold selection methods. Chen et al. [27] apply the double-window flexible pace search
(DFPS) to CVA. Bruzzone et al. [28] determine the pixels to be changed and unchanged
through the histogram of the difference map, and then use the EM algorithm to determine
the optimal threshold. (Semi-)automatic threshold methods can improve the universality
of the algorithm, but it is more complex.

To make full use of the image information, combining multiple features has become
an important vehicle for improving the performance of change detection. The spectrum,
texture, and context information of images are obtained through sliding windows, and
the characteristics of ground objects are described more effectively. Li et al. [29] propose a
method that combines spectral features and texture difference measurement to optimize
change detection results. Mishra et al. [30] introduce local information and optimize
detection results by employing fuzzy c-means and Gustafson–Kessel clustering.

2.1.2. Object-Based Methods

Object-based change detection methods consider homogeneous objects as the ba-
sic analysis unit, which can comprehensively utilize the shape and edges features, and
effectively smoothen the salt-and-pepper phenomenon in pixel-based methods.

Object-based methods can be divided into post-classification comparison methods and
direct comparison methods. The post-classification comparison methods first classify the
dual-temporal images at object level, and then analyze the results based on the classification
to achieve change detection. However, its accuracy is restricted by the classification
performance. The direct comparison methods are not influenced by the classification
results and are more robust. In general, images are segmented to obtain the homogeneous
object according to the scale parameters, and the spectral and texture feature of the object
are then extracted. Im et al. [31] improve the performance of change detection by generating
neighborhood correlation images (NCI) through object-oriented analysis. Wang et al. [32]
perform unsupervised change detection via the cross-sharpening of multitemporal data
and image segmentation, which can reduce the detection errors precipitated by relief or
spatial displacement.

Although the efficacy of object-based methods in improving the accuracy of change de-
tection has been proven, such methods rely mainly on segmentation algorithms to segment
images, and scale parameters usually need to be set during the process of segmentation. If
the scale parameters are too small, it will induce obvious false alarms; however, if they are
too large, it will cause the problem of missing detection.

2.2. Change Detection Methods Based on Deep Learning

Deep learning models can automatically extract robust abstract image features at
multiple levels, and have become an effective way to perform change detection. At the
outset, scholars mostly combine deep learning and traditional change detection methods.
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For example, Liu et al. [33] propose a symmetric convolutional coupling network, which
first inputs the optical and SAR image into a symmetric network structure to obtain the
feature pairs, then calculates the Euclidean distance to obtain change information and finally
obtains a binary change map through threshold segmentation. Zhan et al. [34] introduce the
siamese convolutional neural network into change detection, extract the change information
through the network, and use the k-nearest neighbor method to optimize the initial change
detection results obtained by threshold segmentation.

Deep learning technology can significantly improve the accuracy of change detection
results, but the above methods only replace traditional feature extraction with deep net-
works, and fail to make full use of the advantages of end-to-end structure. Daudt et al. [35]
construct a change detection model based on a convolutional neural network and propose
two image input methods; one is the early fusion (EF) mode and the other is the siamese
mode. In the EF mode, dual-temporal images are stacked together as input, while in the
siamese mode, images are used as input of different branches. Liu et al. [36] apply bipartite
differential neural network (BDNN) to change detection of heterogeneous remote sensing
images based on the strong feature extraction capacity of deep neural networks. BDNN
uses the learnable change disguise maps (CDMs) to weaken the differences between the
changed regions and enhance the network’s ability to identify the unchanged regions. The
test results show that BDNN have the capacity not only to detect changing information in
the remote sensing images, but also to resist the impact of registration errors on the results
to a certain degree.

Remote sensing image change detection is similar to the binary classification in seman-
tic segmentation, but has its own characteristics, that is, the dual-temporal images used
have spatial-temporal correlation. The attention model has been successfully applied in
natural language processing and semantic segmentation, thus a series of change detection
methods combined with attention models have been proposed. Mou et al. [37] designed an
end-to-end recursive convolution neural network. The network learns a spectral-spatial-
temporal feature representation to generate features with rich spatial-temporal information,
and combines a recurrent neural network with CNN to obtain change information. Di-
akogiannis et al. [38] propose two methods based on ResNet, i.e., self-attention fusion
and relative attention fusion. The former is used to enhance the attention of the region of
interest in a single image, while the latter focuses on the correlation between dual-temporal
images. Zhang et al. [39] extract deep features based on VGG16, and realize efficient fusion
between multi-level features through channel attention and spatial attention module. Deep
learning technology has greatly improved the performance of change detection, but its
detection effect on changed ground object boundaries needs to be improved further. Some
methodologies have already made attempts to extract regularized building boundaries.
Marcos et al. [40] integrate priors and constraints including continuous boundaries, smooth
edges, and sharp corners into the segmentation process. Zorzi et al. [41] use FCN trained
with a combination of adversarial and regularized losses to perform building boundary
refinement and regularization. Zorzi et al. [42] extend this algorithm by using a GAN-
based model to extract regularized building boundaries after obtaining the building mask
using FCN.

3. Methods
3.1. Overview

The FDORNet model is composed of four parts: feature extraction, feature decomposi-
tion, feature optimization, and feature reorganization. Specifically, in the feature extraction
module, we extract multi-scale difference features of dual-temporal images. Main body
features and edge features are separated by constructing a learnable flow field in the fea-
ture decomposition module. Subsequently, in the feature optimization module, multiple
supervision strategies are adopted to accurately optimize the main body and edge features
by using the corresponding main body and edge ground truth. Finally, we reorganize the
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optimized features to form a complete building change detection process in the feature
reorganization module. The overall design of the model is shown in Figure 1.
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3.2. Feature Extraction

The feature extraction module has great effect on the final detection performance
because of the spectral and temporal differences between remote sensing images used
for building change detection. Herein, we employ the ResNet [43] framework, which has
shown outstanding performance in object detection and image segmentation. In addition,
the siamese framework consists of two branch networks with the same architecture that
share the same weights and has natural advantages for change detection because it can
efficiently extract the features of two input branches. Accordingly, a siamese ResNet
framework which adopts ResNet to implement two branches of the siamese network is
used in the feature extraction part.

3.2.1. ResNet

The depth of the network is very important in remote sensing image processing, but
blindly deepening the network will cause the problem of degradation. As the depth of the
network increases, accuracy tends to saturate and then declines rapidly. ResNet can solve
the problem of degradation in deep neural networks by means of the residual connection.

ResNet uses residual blocks to implement shortcut connections, which learn the
relationship between the target and the input not directly but in the form of residuals. The
basic unit of residual block is shown in Equation (1),

T(x) = F(x, {wi, b}) + x (1)

where, F(x, {wi, b}), Wi and b denote the residual function, weight, and bias, respectively.
There are slight differences in the form of residual basic units in the ResNet framework

with different depths. Figure 2 shows the two commonly used forms of the residual basic
unit. The residual basic unit composed of two convolutional layers on the left is the basic
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module of ResNet34, and that containing three convolutional layers on the right is the
basic structure of ResNet50, ResNet101, and ResNet152. Considering the feature extraction
capacity, the number of model parameters and the model complexity, we build the feature
extraction module in this work using ResNet50.
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3.2.2. Feature Extraction

The feature extraction part is made up of five stages. The first stage consists of the
convolutional layer which does not involve the residual learning unit, namely, conv1 in
ResNet50. Stages 2 to 5 correspond to layers conv2_x to conv5_x in ResNet50, respectively,
and contain residual learning units. After inputting the dual-temporal images, we can
obtain the deep feature maps of each stage

{
F1

1 , F1
2 , F1

3 , F1
4 , F1

5
}

and
{

F2
1 , F2

2 , F2
3 , F2

4 , F2
5
}

,
where the superscript represents the temporal of the image, and the subscript represents
the corresponding stage. In the original ResNet50 model, through pooling and strided
convolution (stride = 2) operations, the output feature maps size of each stage is the result
of two times the downsampled, however, the final feature map resolution will be too low,
which is not conducive to building change detection. In this work, the strided convolution
parameters of the last two stages are changed (setting stride = 1) so that the resolution
of the feature map will not decrease further. For input images with a size of 256 × 256,
the feature maps size in the five stages is 128 × 128 × 128, 256 × 64 × 64, 512 × 32 × 32,
1024 × 32 × 32, 2048 × 32 × 32, respectively. Compared with the original image, the
difference map between images can more intuitively reflect the change information of
ground buildings. Therefore, after extracting feature maps through ResNet50, the features
of the corresponding stage are subtracted and the absolute value is taken to obtain dual-
temporal multi-scale difference features {DF1, DF2, DF3, DF4, DF5}.

3.3. Feature Decomposition

In remote sensing images, the main body usually corresponds to the low-frequency
information part of the image, while the edge corresponds to the high-frequency part.
Compared to the edge features with large differences, the main body features with stronger
internal consistency are easier to extract. Moreover, for multi-scale features with different
resolutions, the low-resolution features can better reflect the main information of images,
and it is easier to extract the main body features of buildings. During the five stages of the
feature extraction module (see Figure 3), dual-temporal multi-scale difference features DF1
and DF2 are rich in detailed information, and DF5 reflect the main information of the image
better. Accordingly, the dual-temporal difference features of the deepest level are taken as
the input of the feature decomposition module. The learnable flow field provides a vehicle
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for the internal pixel features to flow to the center of the changed buildings to extract the
main body features. The edge features can then be obtained by subtracting the main body
features from the input features DF5. Figure 4 illustrates the feature decomposition module,
where F denotes the input feature maps of the feature decomposition part, FLow and DF
are the encoding and decoding feature maps, Flow represents the learnable flow field, and
Fbody and Fedge denote the main body features and edge features.
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3.3.1. Flow Field

In the feature decomposition module, the flow field acquires the main body features
through learning of the mapping relationship between F and Fbody. Its task is similar
to that of optical flow, both of which are aimed at learning the movement information
between the input and the target. Since the convolutional neural network is very good at
learning the relationship between input and output by being given enough training data,
this work references the framework of a neural optical flow network [44] to construct the
feature decomposition module. We adopt the encoder-decoder structure, and obtain lower
frequency encoding feature maps FLow by the strided convolution operation, then generate
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low-frequency feature maps DF through up-sampling to the same size as F. Finally, we
concatenate F and DF together, and obtain the flow field through a 3 × 3 convolution
operation. The feature map size of F, FLow, DF and Flow is 256 × 32 × 32, 256 × 16 × 16,
256 × 32 × 32, 256 × 32 × 32, respectively.

3.3.2. Main Body Features and Edge Features

The main body features focuses on the representation of the internal pixel information,
which guides the flow direction of internal pixel features through Flow. In the mapping
process, the differentiable bilinear sampling mechanism [45] is used to approximately
estimate each point xl in the low-frequency features. The four neighboring pixel values of
xl are obtained by bilinear interpolation operation.

Fbody(xl) = ∑
x∈N(xl)

vl F(x) (2)

where vl represents the weight of the bilinear kernel on the separated space grid, which is
mainly calculated by Flow, and N denotes the pixels in the neighborhood.

The edge feature map Fedge is the high frequency information part of the image, and the
main body feature map Fbody is the low frequency information. Thus Fedge can be obtained
by subtracting the main body feature from the input image feature map. Fedge is obtained
by subtracting the main body features from the deep features F, which is expressed as

Fedge = F− Fbody (3)

3.4. Feature Optimization

The main body and edge features decomposed from DF5 contain more semantic
features. which can reflect the main information, but lack detailed features. As a result, the
reliability of the boundary information is not adequate. Moreover, up-sampling operation
can enlarge the feature map, but cannot increase the total amount of the feature information.
These problems will influence the boundary detection of changed buildings. Consequently,
a feature optimization module is designed to improve the accuracy of boundary detection
by combining multi-scale shallow features. The detail information is added while increasing
the size of the feature maps. The feature optimization structure shown in Figure 5 is used
to refine both the edge and main body features.

The multi-layer shallow features used in the feature optimization are the dual-temporal
multi-scale difference features extracted in the feature extraction module. In the op-
timization process, the shallow and deep feature maps are stacked layer by layer via
skip connections. It can be observed in Figure 3 that DF1 and DF2 feature layers have
the most copious detailed information. Herein, we first combine the DF2 feature with
256 × 64 × 64 size to optimize the main body and edge features and generate feature maps
optimized once (i.e., F1

body and F1
edge with 256 × 64 × 64 size). Then, the shallowest feature

DF1 is combined by performing a second optimization on the feature map F1
body and F1

edge
to increase the detailed information again in a similar manner, which can obtain features
optimized twice (i.e., F2

body and F2
edge with 256 × 128 × 128 size). The F2

body and F2
edge are

up-sampled to obtain the final feature body and edge maps with 2× 256× 256 size. During
this process, to reduce the aliasing effect that may exist in the difference feature maps, the
shallow feature needs to be dealt with a 3 × 3 convolution operation before the feature
combination, which can enhance the anti-aliasing performance of the network. More-
over, to better combine the feature information of shallow and deep layers, we conduct a
3 × 3 convolution operation again for the feature maps after the skip connection.
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3.5. Feature Reorganization

Building change detection is aimed at obtaining the final detection result. In the feature
optimization part, only the important change information is retained during the precise
optimization process, and the unchanged information and pseudo-changed information
are filtered out. Feature reorganization is necessary to obtain a single binary map of change
detection results. After F2

body and F2
edge are obtained, the reorganized feature map is formed

by a direct addition strategy. At this time, the size of the reorganized feature map is
2 × 128 × 128. Subsequently, to ensure that the main body and the boundary of the ground
object in the final results are accurately connected during up-sampling of the reorganized
feature, the feature maps DF2 with the 3 × 3 convolution and up-sampling operation is
stacked again to increase the global consistency information. All of the above operations
constitute a complete change detection process.

3.6. Loss Function

The existing change detection methods only supervise the final prediction result maps
and ignore the interaction between the main body and the edge of the ground buildings.
The multiple supervision strategy is adopted to achieve accurate optimization of the main
body and edge features in this work. The main body, edge and overall change detection
ground truth are used to optimize the main body features, edge features and final prediction
results, respectively. The edge label is composed of the outermost pixel of change detection
result ground truth. Specifically, each pixel of change detection labels is traversed to
determine the category of its 4 neighboring pixels. If there is a difference, the pixel will be
identified as the edge, otherwise, it will be identified as the non-edge. The main body label
can then be obtained from the change detection label by subtracting the edge label. The
loss function is defined as:

L = λ1Lbody(body, Flabel
body ) + λ2Ledge(edge, Flabel

edge ) + λ3Lout(out, label) (4)

where Lbody represents the loss of the main body, Ledge is the loss of the edge, and Lout
denotes the loss between the prediction map out and the change detection result ground
truth label. All three kinds of losses are calculated by using the cross entropy. λ1, λ2, and
λ3 respectively denote the weight of the three losses in the total loss L. In this work, the
weights of the above three losses are the same, namely, the values of λ1, λ2, and λ3 are all
set as 1. Flabel

body and Flabel
edge are the labels of main body and edge.
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After the multiple supervised training, the optimization effect of feature optimization
module on the main body feature maps and edge feature maps is shown in Figure 6,
where the first line is the optimization results of the main body features and the second
line is for the edge features. It can be seen in Figure 6a that the main body and edge
features formed by feature decomposition alone have fuzzy contours, and it is difficult
to give complete ground buildings changed information. As Figure 6b shows, the main
body features optimized once (i.e., F1

body) can clearly identify the contours of the changed

ground buildings, but the details are lacking. The edge features optimized once (i.e., F1
edge)

can find the contour information of some ground buildings, but many boundary lines
of the changed buildings are discontinuous, making it difficult to obtain the accurate
boundaries. By comparing Figure 6c,d, it can be observed that the main body and edge
features optimized twice can obtain more accurate building change information. In other
words, the FDORNet model can accurately optimize the main body and edge of buildings
through the multiple supervised training.
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4. Experiments
4.1. Dataset

LEVIR-CD, an airborne image building change detection dataset published by
Chen et al. [22] in 2020, is adopted in our experiments. The dataset consists of 639 Google
Earth images with a size of 1024 × 1024 and a spatial resolution of 0.5 m. The time span
between dual-temporal images ranges from 5 to 14 years. The buildings in the dataset
include villas, high-rise apartments, small garages and large warehouses. The whole
dataset contains a total of 31,333 independent changed buildings, and each image pair
contains an average of 50 changed buildings. The changed information is very rich in
LEVIR-CD. In this paper, the dataset is divided into the training set, the validation set
and the test set according to the data division method of LEVIR-CD. These three sets
are composed of 445, 64 and 128 groups of image pairs. A variety of data augmentation
methods are adopted, including non-overlapping clipping, random flipping and random
rotation. Figure 7 shows some image samples after clipping with a size of 256 × 256 pixels.
The sample sizes of the amplified training set, the validation set and the test set are 10,680,
1536 and 2048, respectively.
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4.2. Experimental Details

In order to highlight the advantages of change detection based on FDORNet and
explore the rationality of the network framework, this work designs two groups of experi-
mental comparison schemes. The first group is a comparison of different methods. The
FDORNet model is compared with four change detection models based on deep learning,
including FC-EF [35], EF-Siam-conc [35], a fully convolutional siamese network combined
with a basic spatial-temporal attention model STA-BAM [22] and with pyramid spatial-
temporal attention model STA-PAM [22]. The second group is the ablation experiment.
The feature optimization module in the FDORNet model is very important for the precise
optimization of the main body and edges. To analyze its validity and rationality, the
corresponding ablation experiment is performed to test the performance of the feature
optimization module. The experimental methods are named FDORNet-base and FDORNet,
where FDORNet-base is the FDORNet model without the feature optimization module.

All experiments are based on the Ubuntu 18.04 system. The CPU is Intel(R) Core (TM)
i7-10700KF and the GPU is NVIDIA GeForce RTX 3080 with a memory of 10 GB. The deep
learning framework used is Pytorch 1.8.0 with a Python version of 3.6. The training epochs
are all set as 200.

5. Results and Analysis
5.1. Quantitative Evaluation Cirteria

Quantitative analysis of experimental results is very important and indispensable.
We use the confusion matrix to evaluate the performance of the model. Building change
detection can be regarded as a binary classification task categorized into changed buildings
and background. Its confusion matrix is shown in Table 1, where each column denotes the
actual category, and each row represents the predicted category where each pixel belongs.
We can obtain overall accuracy, recall, precision, F1-score and mean intersection over union
(MIoU) from the confusion matrix.
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Table 1. Confusion matrix of building change detection.

Ground Truth

Predict
Change buildings Background

Change buildings True Change (TC) False Background (FC)
Background False Change (FB) True Background (TB)

The overall accuracy represents the ratio of correctly detected pixels to total pixels,
usually expressed as a percentage. It is defined as follows:

Overall accuracy =
TC + TB

TC + TB + FC + FB
(5)

where TC is the number of correctly detected pixels of changed buildings, TB is the
correctly detected background pixels, FC represents pixels that belong to background but
is misidentified as changed buildings, and FB represents changed building pixels classified
in background.

The recall is the metric of accurately predicted changed building pixels from all actual
changed building pixels in ground truth:

Recall =
TC

TC + FB
(6)

The precision is the metric of the actual changed building pixels predicted to belong
to changed buildings:

Precision =
TC

TC + FC
(7)

The precision and recall are negatively correlated. To balance the influence of preci-
sion and recall and evaluate the model comprehensively, the F1-score is introduced as a
comprehensive index:

F1 =
2 · Precision · Recall
Precision + Recall

(8)

The MIoU is commonly used to evaluate the efficacy of the model in detecting changing
buildings:

MIoU =
TP

TP + FP + FN
(9)

5.2. Comparison between Different Methods

The results of change detection are analyzed from qualitative and quantitative aspects
to evaluate the five deep learning-based change detection methods. In terms of quantitative
analysis, the above five indices including overall accuracy, recall, precision, F1-score and
MIoU are used to evaluate the performance of change detection methods. For the qualitative
evaluation, a detailed analysis is carried out on the detection effect of buildings with
general density and higher density in the test set and the detection performance of building
boundaries is also compared.

In the quantitative evaluation, Table 2 shows the detection accuracy of the above
five deep learning-based change detection methods on the LEVIR-CD dataset. It can be
seen that FDORNet obtains the best detection performance and has reached the highest
score in all the five evaluation indices. In particular, its precision, F1-score and MIoU
are 9.3%, 5.1% and 4.4% higher than those of the method combined with the pyramid
spatial-temporal attention model STA-PAM, respectively. For the change detection method
of modeling global image information, STA-BAM and STA-PAM obtain better detection
performance compared to FC-EF and EF-Siam-conc based on U-Net, but their detection
accuracy is still lower than that of FDORNet.
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Table 2. Five methods of detection accuracy on the LEVIR-CD dataset. Bold indicates the highest
score for each evaluation cirteria.

Methods Overall
Accuracy (%) Recall (%) Precision (%) F1-Score (%) MIoU(%)

FC-EF 96.5459 64.5995 68.7865 66.6273 73.1891
EF-Siam-conc 95.7203 73.4687 57.7948 64.6959 71.6804

STA-BAM 98.0691 87.2022 77.6449 82.1465 83.8408
STA-PAM 98.4768 89.8648 81.9707 85.7364 86.7188
FDORNet 99.0723 90.4158 91.2937 90.8524 91.1335

In the qualitative evaluation, Figures 8 and 9 show the detection results of building
areas with different density (e.g., medium and high density) in the form of color maps and
binary change maps, respectively, which can intuitively display the detection effects of
the above five change detection methods. Figure 8 illustrates the detection results in the
building area with medium density. From left to right are the change detection result labels,
the FC-EF detection results, the EF-Sima-conc detection results, the STA-BAM detection
results, the STA-PAM detection results, and the FDORNet detection results. The green
parts denote the changed areas correctly identified, and the red parts indicate the areas that
are incorrectly recognized. As can be seen in the top two lines in Figure 8, FDORNet can
better maintain the integrity of the ground object boundary and accurately identify large
buildings. The last three lines show that FDORNet can better identify small buildings and
describe ground object boundaries in more detail and accuracy.
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Figure 9. The detection results of the five methods in high-density areas (a–f).

Figure 9 shows the detection effects of the five methods in the high-density building
areas, and Figure 10 compares the accuracy of the five methods in boundary detection
of changed buildings. Among them, the detection effects of FC-EF and EF-Siam-conc
based on U-Net are observably poor, and it is difficult to identify the gaps between dense
buildings. Moreover, the detection results of boundaries are fragmented and have low
precision. In contrast, the STA-BAM and STA-PAM methods combined with the spatial-
temporal attention model have improved detection performance, but the recognition ability
of building gaps is still weak. There are partial connections between buildings and the
phenomenon of saw-tooth boundaries (see Figure 10 rectangular box). FDORNet also
presents better recognition ability in these areas, and can better maintain the accuracy of
ground object contours, and has strong anti-aliasing performance. The above experimental
results show that although the method based on the spatial-temporal attention model has
certain advantages in improving the performance of change detection, the detection effect in
the high-density building areas still needs to be improved further. FDORNet can accurately
identify large and small buildings by modeling the main body and edge information of
ground objects respectively, and it achieves better performance in maintaining the accuracy
of ground object boundaries.
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5.3. Ablation Experiments

In order to optimize the main body features and edge features accurately, a feature
optimization part is designed in the FDORNet model. The ablation experiment is carried out
to verify the rationality and efficacy of the design. The experiment compares the FDORNet-
base method without the feature optimization module with the FDORNet method using
the feature optimization part. The quantitative detection accuracy is shown in Table 3. It is
clear that the precision, the F1-score and the MIoU of FDORNet are approximately 2.6%,
2.0% and 1.7% higher than the FDORNet-base, respectively. Specifically, the framework
with the feature optimization module can obtain higher detection accuracy. Figure 11
shows the detection results of these two methods, in which the first column illustrates
the labels of change detection results, the second column shows the detection results of
FDORNet-base, and the last column illustrates the FDORNet detection results. It can be
seen that the FDORNet model with the feature optimization module can obtain complete
building contours in large building areas, and can better identify small buildings. For both
large and small buildings, the saw-tooth phenomenon of boundaries in FDORNet detection
results is weak.

Table 3. Detection accuracy of ablation experiments.

Methods Overall
Accuracy (%) Recall (%) Precision (%) F1-Score (%) MIoU(%)

FDORNet -base 98.8611 89.0168 88.6744 88.8452 89.3697
FDORNet 99.0723 90.4158 91.2937 90.8524 91.1335
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6. Conclusions

In order to improve the performance of boundary detection in dense building areas,
the idea of feature decoupling is applied to change detection, and a building change
detection method based on the feature decomposition-optimization-reorganization network
(FDORNet) is proposed in this work. The proposed method includes four modules: feature
extraction, feature decomposition, feature optimization and feature reorganization. In
the feature extraction module, we extract multi-scale difference features of dual-temporal
images. The main body features and edge features are separated by constructing a learnable
flow field in the feature decomposition module. Subsequently, in the feature optimization
module, multiple supervision strategies are adopted to accurately optimize the main
body and edge features by using the corresponding ground truth. Finally, we reorganize
optimized features to form a complete building change detection process in the feature
reorganization module. The building change detection dataset LEVIR-CD is employed to
evaluate the performance of our work. The experimental results show that the FDORNet
model can obtain better detection results in the building area compared with the four state-
of-the-art methods based on U-Net or combining with spatial-temporal attention models.
The diversity of training samples is very important to the change detection performance of
the model, but most of the existing datasets are homologous remote sensing images. Future
work will additionally make a change detection dataset of remote sensing images from
different sensor types to test and further improve the FDORNet model.
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