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Abstract: Synthetic aperture radar (SAR) image change detection (CD) aims to automatically recog-
nize changes over the same geographic region by comparing prechange and postchange SAR images.
However, the detection performance is usually subject to several restrictions and problems, including
the absence of labeled SAR samples, inherent multiplicative speckle noise, and class imbalance.
More importantly, for bitemporal SAR images, changed regions tend to present highly variable sizes,
irregular shapes, and different textures, typically referred to as hybrid variabilities, further bringing
great difficulties to CD. In this paper, we argue that these internal hybrid variabilities can also be
used for learning stronger feature representation, and we propose a hybrid variability aware network
(HVANet) for completely unsupervised label-free SAR image CD by taking inspiration from recent
developments in deep self-supervised learning. First, since different changed regions may exhibit
hybrid variabilities, it is necessary to enrich distinguishable information within the input features.
To this end, in shallow feature extraction, we generalize the traditional spatial patch (SP) feature
to allow for each pixel in bitemporal images to be represented at diverse scales and resolutions,
called extended SP (ESP). Second, with the carefully customized ESP features, HVANet performs
local spatial structure information extraction and multiscale–multiresolution (MS-MR) information
encoding simultaneously through a local spatial stream and a scale-resolution stream, respectively.
Intrinsically, HVANet projects the ESP features into a new high-level feature space, where the change
identification becomes easier. Third, to train the framework effectively, a self-supervision layer is
attached to the top of the HVANet to enable the two-stream feature learning and recognition of
changed pixels in the corresponding feature space, in a self-supervised manner. Experimental results
on three low/medium-resolution SAR datasets demonstrate the effectiveness and superiority of the
proposed framework in unsupervised SAR CD tasks.

Keywords: synthetic aperture radar (SAR); change detection (CD); hybrid variability; self-supervised
learning; label-free framework

1. Introduction

Benefiting from the capability of all-weather and all-time Earth observation, the
synthetic aperture radar (SAR) sensor has been used in numerous applications increasingly,
including but not limited to urban planning, disaster monitoring, and land-cover/land-
use (LCLU) analysis [1–7]. In reality, change detection (CD) in SAR images is crucial in
these applications, which seeks to precisely identify the changed and unchanged parts by
analyzing two or more SAR images acquired over the same geographic region at different
times [2,3,7–9]. However, SAR images exhibit diversified inherent characteristics, such as
ubiquitous multiplicative speckle noise and geometrical distortions, that inevitably impose
some challenges in SAR image CD [8–10].
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The challenges of SAR image CD mainly come from three aspects: (1) the speckle
noise and pseudochange [3,9–12], (2) the scarcity of accessible labeled samples, and (3)
class imbalance [13].

1. Speckle Noise and Pseudochange: Due to the particular imaging mechanism that creates
SAR images by processing the radar backscatter responses coherently [10,11], speckle
noise inevitably appears all over the images, which dramatically affects the intensity of
the SAR images; consequently, changed pixels share a wide range of intensity values
with unchanged pixels, namely intensity fluctuations. This is because speckle causes
dramatic intensity fluctuations and further results in the overlapped nature between
the changed and unchanged classes [9,10], which brings difficulty for accurate change
feature extraction. In addition, pseudochanges can also be caused by the slight
variation of the acquisition parameters, such as the imaging configuration, incidence
angles, and radiometric variations, making it difficult to detect changes of interest
precisely [14,15].

2. Scarcity of Labeled Samples: It is acknowledged that collecting a large quantity of
high-quality pixel-wise annotations in a short time is infeasible, raising the problem
of training data scarcity. On the one hand, the problem poses challenges for the
existing supervised CD approaches [13] that rely heavily on either ground truth or
a significant amount of labeled training samples. On the other hand, the absence of
label information makes it difficult for the unsupervised methods [9,11,12,14–19] that
rely on handcrafted features to model the change information accurately.

3. Class Imbalance: Considering that the prior probability of occurrence of changed
objects is much lower than unchanged ones, SAR CD is a typical class imbalance
classification issue in practical scenarios. That is to say, the number of changed
pixels is much smaller than unchanged ones in the context of bitemporal SAR scenes.
Such an imbalance problem will severely undermine the performance of data-driven
approaches [13]. However, almost all existing methods overlook this problem.

In summary, all these problems together form the major obstacles for SAR CD and
impede the detection performance from improving, which motivates us to explore a more
effective model further. By reviewing the existing literature, the above issues are usually
addressed from the perspectives of difference image (DI) generation (i.e., shallow feature
extraction), classifier design, and sample selection strategy.

Firstly, to capture discriminant change features and counteract the speckle effect, re-
searchers have developed a series of DI generation methods, including but not limited
to mathematical difference descriptors [20–23] and statistical modeling [24–27], such as
the log-ratio operator [21], wavelet-based DI fusion methods [23,28,29], likelihood-ratio
method [27], and multiresolution analysis-based method [28], etc. Recently, saliency detec-
tion has been employed to robustly locate the conspicuous changed regions and to remove
the easily confusable regions in the background, such that better quality can be gained in
the produced DI [30–32]. However, these saliency-guided methods focus on long-range
contextual information at the expense of details due to the inevitable blurring effect.

Secondly, most previous SAR image CD works [8,9,11,12,14–19] focus on how to
design an unsupervised model to achieve good performance, wherein clustering-based
classifiers [9,15,17,18,28] are considered most representative and popular. Although their
effectiveness and efficiency have been demonstrated, traditional clustering algorithms
still suffer from some significant drawbacks, the major one of which is the poor ability in
data fitting. Recently, deep learning models, such as the autoencoder [30], convolutional
neural network (CNN) [33], and capsule network [34], have been adopted to accurately
process the complex and nonlinear SAR data, where pseudolabels inferred by clustering
algorithms are used as supervised signals. These methods are regarded as a novel CD
framework named the preclassification scheme. Even if this scheme alleviates the scarcity of
labeled samples to a certain extent, the label information is still derived from the clustering,
whose accuracy cannot be ensured. Consequently, this may lead to image CD systems that
cannot learn exact change semantics. More recently, some studies [11,35] have resorted
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to transfer learning, thus providing an alternative solution to the problem of labeled data
scarcity. Transfer learning can make use of prior knowledge in the source domain (e.g.,
optical data with/without ground truth) to train a deep network for application in the
target domain (i.e., SAR data). However, the distribution discrepancy between the target
and source domains cannot be easily bridged, restricting the performance of transfer
learning-based methods.

As for the class imbalance in SAR data, very few methods have tried to explicitly
provide a practical and feasible solution, such as [13], where the ground truth map is
utilized to guide the training data set construction in a supervised manner. We argue that
the strategy in [13] is inapplicable in practical SAR scenarios where accurate labels are
costly and expensive to collect. Among the existing unsupervised methods [30–40], this
problem has always been neglected, where training instances of changed and unchanged
classes are usually sampled from the imbalanced class distributions, further leading to
the imbalance in the training set. Considering that this problem will inevitably hinder the
model training, a specialized strategy is necessary to rebalance the class distributions in the
training data set to learn class knowledge better.

Apart from the aforementioned problems, changed regions in bitemporal SAR scenes
tend to occur at various sizes in arbitrary orientations and also exhibit highly varied shapes
and textures, typically summarized as “hybrid variabilities”. Specifically, changed regions
usually occupy connected areas ranging from a dozen of pixels to thousands of pixels, the
so-called scale variation. Furthermore, the changes that occur between bitemporal images
may correspond to various natural or manmade objects, which are naturally exhibited as
irregular shapes and somewhat different textures in images. All these hybrid variabilities
together increase the difficulty of accurately recognizing real changed parts. Although
a large number of SAR image CD methods have been proposed, none of them has put
enough emphasis on this unique characteristic inherently existing in changed regions.

In this article, we propose a label-free SAR CD system to comprehensively tackle
all these problems, which formulates the local structure information learning and the
multiscale–multiresolution (MS-MR) information encoding into a unified framework to
strengthen the feature distinguishability and fulfill the classification in a completely un-
supervised way. It includes three parts: shallow feature extraction, the class rebalance
strategy, and the training of the Hybrid Variability Aware Network (HVANet). At first,
considering the importance of the context information in describing images, we generalize
the conventional single-scale spatial patch (SP) feature to focus on the MS-MR information
for the representation at each image pixel, referred to as extended SP (ESP). The key novelty
of the feature extraction is MS-MR patch feature construction, which can greatly help to
characterize both image details and semantic content from multiple levels and perspectives.
Second, a class rebalance strategy is proposed to realize a manageable balance in the train-
ing data set. Third, for the purpose of the label-free detection of changes, a self-supervised
network named HVANet is specially tailored for completely unsupervised feature learning
and change identification. Specifically, we establish two streams in HVANet to concurrently
learn local structure information and encode MS-MR information, referred to as the local
spatial stream and the scale-resolution stream. Intrinsically, HVANet projects the input
ESP features into a new learned feature space in a self-supervised manner, where pixels of
different categories with diverse appearances can be better differentiated. Finally, training
and inference can be performed end-to-end. The main contributions of this paper can be
summarized as follows:

1. We define a completely unsupervised SAR image CD framework, under which a novel
label-free method is accomplished. Specifically, the idea of self-supervised learning
is introduced to enable end-to-end high-level feature learning and classifier training
without any labeled samples.

2. We propose to represent each pixel in the images using both the conventional single-
scale patch (i.e., SP feature) and the MS-MR patches simultaneously, which is capable of
comprehensively describing pixel information through the complementary local spatial
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information and long-range context information. These features are gathered together
as the shallow feature for each pixel, from which the network can extract multiple types
of high-level features for better feature representation and feature classification.

3. We devise a novel two-stream network architecture called HVANet, which decom-
poses the feature learning into the local spatial and the scale-resolution streams. The
local spatial stream employs the Siamese network (SiamNet) to extract the intrinsic
structural information around each pixel, while the scale-resolution stream encodes
the corresponding MS-MR information to compensate for the spatial context for
intensifying representation power.

The rest of this paper is organized as follows. Section 2 reviews the existing unsu-
pervised SAR image CD works. Section 3 presents in detail the proposed label-free CD
framework for SAR images. Experimental results are presented in Section 4. Finally, the
discussions and conclusions are provided in Sections 5 and 6, respectively.

2. Related Work

SAR image CD is one of the challenging scene understanding tasks in the SAR com-
munity. In the literature, the process of CD typically consists of change feature extraction
and feature classification. Accordingly, we review the existing CD methods from these two
perspectives: change feature extraction and feature classification.

(1) Change Feature Extraction: Feature extraction in CD, known for its capability to
generate DI or features focusing on change information, is a key step. At the very beginning,
some mathematical operators, such as the subtraction, ratio, and log-ratio operators [20–23],
are adopted to measure change information pixel-by-pixel, thus deriving a DI. Most of
the operators are often susceptible to speckle and pseudochanges. Then, considering the
better representation ability inherent in the spatial context, a variety of methods have been
exploited to improve the accuracy and robustness of change information measurement by
leveraging the wavelet-related algorithms [23,28,29,31,33,36] due to their ability to extract
multiscale (or multiresolution) context information. However, it has been observed that
wavelet transform cannot fully characterize the real changes in complex scenes. Recently,
some strategies [30–32] have been dedicated to making use of the saliency information
obtained by considering long-range dependencies in images and have thus been able to
effectively reduce distraction in the complex background. Typically, Geng et al. [30] use
a segmented saliency map as the binary spatial weight for the log-ratio DI to filter the
distraction in the background. Unfortunately, these saliency-guided methods [30–32] suffer
from a major drawback: they can enhance context but inevitably induce a blurring effect
to edge and image details due to their emphasis on global information; thus, the changed
regions may be shrunken or dilated, causing a great deal of misclassified pixels near the
borders and finally detail loss.

(2) Feature Classification: This process aims to assign a label (changed or unchanged
semantic label) for each pixel, following which the class labels are mosaiced to a change
map. The process can be roughly categorized into two classes, i.e., supervised and unsuper-
vised, based on whether labels are necessary or not. Considering the labeled data scarcity,
unsupervised classifiers are preferable in feature classification where no ground-truth labels
are required, thus relieving the reliance on real labels. The representative methods of this
kind typically use the feature extraction techniques described above to acquire low-level
handcrafted features and directly use clustering models to obtain a change map, as shown
in Figure 1a. In this direction, Aiazzi et al. [15], Celik [17], Gong, Zhou, and Ma [27] have
made many remarkable advances in unsupervised SAR CD. Although they have been
shown to be effective, the conventional clustering models are susceptible to speckle and
pseudochanges and fail to make a precise decision because of their weak fitting capability
under complex SAR data distribution.
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Figure 1. Three types of CD framework for SAR images. (a) Conventional clustering-based CD
framework. (b) Preclassification scheme. (c) The proposed label-free CD framework.

Stepping into the era of artificial intelligence, recent years have witnessed an increasing
interest in deep learning methods to address a number of problems in remote sensing (RS)
image analysis and interpretation. In this context, a deep learning-based preclassification
scheme has been recently developed, as shown in Figure 1b, which casts the unsupervised
problem into a supervised deep learning problem. Under the scheme, a shallow unsu-
pervised classifier is first applied to assign pseudolabels to unlabeled samples, following
which deep models can be effectively trained in a supervised way. Here, clustering models
mainly serve as the shallow classifier [30,32–34,37–40], which means that methods under
this scheme remain clustering-guided. In [36], Gong et al. firstly proposed a pioneering
deep neural network (DNN)-based SAR image CD approach. Afterward, a variety of
works [30,32–34,38–40] have followed this scheme to take advantage of the superiority of
deep learning techniques in automatic feature learning and classification. Despite the good
achievements achieved, the weak data fitting ability of the critical clustering-based shallow
classifier causes two main limitations: i) the pattern diversity of the pseudolabeled training
samples is overly simple, and ii) noisy labels are inevitable. As a consequence, both the
diversity and credibility of the pseudolabeled samples cannot be ensured, hindering the
training and finally limiting the generalization performance of deep models.

With the development of deep learning technology, there is a new trend of SAR
image CD that exploits the newly proposed transfer learning paradigm to circumvent the
limitations thanks to a domain knowledge transfer trait [11,35,41]. The rationale is to exploit
a large amount of accessible heterogeneous images with/without ground truth to pretrain
a deep model and then transfer it into the target data domain in the fine-tuning stage. In
this regard, it helps to efficiently reduce the reliance of deep models on labeled samples
in the target domain where pixel-wise annotations are very difficult and costly to gather.
Gao et al. [35] use 10 multitemporal SAR images with ground truth to train a CD network,
which is transferred to the considered SAR scene for CD through a fine-tuning operation.
Tan et al. [41] introduce the idea of transfer learning into the dictionary learning for PolSAR
CD. Saha et al. [11] build an SAR-optical transcoding network to implement SAR image
CD in the feature space of the optical domain. Nevertheless, the data shift between two
different data domains caused by the vast difference in imaging mechanisms is a gap that
is not easy to bridge, thus limiting the domain knowledge transfer performance.

Recently, thanks to its ability to effectively mine category knowledge for model learn-
ing through the nature of unlabeled data, self-supervised learning, served as a special
branch of unsupervised learning, has been prevailing in the context of RS image interpreta-
tion [42–44]. Specific for self-supervised learning, the learning signal can be constructed
by uncovering and exploiting the latent structure and nature in unlabeled data, while the
entire training procedure is completely label-free [45]. Notably, self-supervised learning
figures out an effective fashion to fully exploit the unlabeled samples to excavate underly-
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ing category knowledge and learn useful features for some downstream tasks, such that
the scarcity of labeled samples can be tackled to a certain extent. However, existing self-
supervised learning-based CD works [46–48] almost focus on multispectral/hyperspectral
images [46] or cross-sensor images [47,48]. In [47], Chen and Bruzzone explored building
a self-supervised pseudo-Siamese network for multispectral-SAR images CD based on
contrastive learning. It constructs positive samples using the bitemporal images from
the same scene and constructs the negative samples using paired images from different
scenes, such that the network is trained end-to-end in an unsupervised way. Finally, the
cross-sensor bitemporal images can be compared by the deep features extracted by the
pseudo-Siamese network. In [48], Saha et al. proposed a CD framework for optical-SAR
image CD using a self-supervised model. To the best of our knowledge, few studies have
investigated the self-supervised CD methods purely for bitemporal SAR images so far. As
a consequence, the intrinsic challenges in SAR data still remain. It is necessary to explore a
self-supervised framework to overcome the challenges in SAR image CD.

In this work, we exploit self-supervised learning to realize an end-to-end and label-free
learning of the task-specific high-level features from original bitemporal SAR images. To
this end, a self-supervised learning paradigm is used to enable label-free feature learning
and change identification. As shown in Figure 1c, thanks to the label-free property of
self-supervised learning, real labels are unnecessary in the training process, such that the
preclassification scheme and its defects can be avoided and a completely unsupervised
deep learning-based CD framework can be established.

3. The Proposed Method

Denote the bitemporal single-channel SAR images acquired over the same geographic
region at two different times t1 and t2 as X1 and X2 of the same size H ×W, where H
and W refer to height and width, respectively. In bitemporal SAR images, the geometry
and appearances of different changed regions may be significantly different, typically
manifested by the high variabilities in size, shape, and texture, which are not trivial
to model. In addition, the other challenges, including the scarcity of labeled data, the
speckle effect, and the class imbalance problem, also severely restrict the performance and
generalization of the detection model.

Our goal is to overcome these challenges, that is, precisely locating the real changes
between X1 and X2 while keeping the number of false and missed changes low. To this end,
we propose a self-supervised framework to make full use of latent category knowledge in
unlabeled samples for the purpose of label-free SAR image CD. The overall flowchart of the
framework is depicted in Figure 1c, which mainly consists of the shallow feature extraction
stage, class rebalance strategy, and self-supervised HVANet training stage. Finally, the
detection results on real data are inferred by the well-trained HVANet. Specific details
about the proposed framework are described in the following subsections.

3.1. Shallow Feature Extraction

As discussed earlier, the changed regions always tend to present high variability in
size, shape, and texture, making it intractable to capture robust features to model the
change information. For this reason, SAR scenes are usually hard to interpret if the shallow
feature cannot fully reflect or characterize the variation of sizes, shapes, and textures. Thus,
enriching the input features is necessary for overcoming the defects of the widely used
single-scale spatial patch (SP) [30,32–35,37–40] and reducing the learning difficulty. This
motivates us to propose a novel shallow feature by taking inspiration from the human visual
perception mechanism that processes local and global information in different functional
areas of the brain [49,50].

Our intuition is that these internal hybrid variabilities should be described by different
types of shallow features in order to improve the expression ability and generalization of
the later feature learning and classification. We argue that shallow input features should
be characterized as (i) long-range spatial context that is beneficial to exhibit global spatial



Remote Sens. 2022, 14, 734 7 of 32

semantic and suppress the speckle and pseudochanges, (ii) multiresolution and multiscale
information that helps to identify the various sizes and textures of changed regions, and
(iii) local structure information that helps to describe fine shape and texture further.

With the insight acquired from the above analysis, we generalize the SP feature
to focus on the multiscale and multiresolution information for better change information
characterization, referred to as extended SP (ESP). Specifically, the shallow feature extraction
consists mainly of three steps: long-range context modeling, multiresolution DI generation,
and ESP generation. Next, we elaborate on this process in detail.

3.1.1. Long-Range Context Modelling

In bitemporal SAR images, the speckle and pseudochanges caused by the nature of
the SAR imaging process make it difficult to extract shallow information precisely. This
is mainly because extensively used change feature descriptors such as log-ratio operators
generally compute dissimilar value pixel-by-pixel without considering the long-range con-
text information. To reduce the negative effect brought by the speckle and pseudochanges,
we use context-aware saliency detection (CASD) [51] to model the long-range context. To
be specific, CASD is inspired by the following psychological principles:

1. Considering the low-level local spatial information, namely appearance characteristics,
such as contrast and magnitude;

2. Global spatial information is necessary to highlight the salient pixels and suppress
the background pixels;

3. According to the selective visual attention mechanism, salient pixels should cluster
around one or more attention centers, rather than distribute all over the image;

4. High-level factors, such as the location prior regarding the salient areas.

Following the above principles, the CASD algorithm was proposed. First, it computes
the single-scale local-global saliency; second, it integrates the saliency maps computed
at multiple scales; third, attention information and other priors are taken into account to
strengthen spatial description. Accordingly, we directly apply the CASD algorithm to the
log-ratio DI, i.e., Xlr = |log(X1/X2)|, and then, a saliency map Xs that carries rich spatial
context is obtained. Please refer to [51] for more details about CASD.

3.1.2. Multiresolution DI Generation

After acquiring the long-range context information, namely, the saliency prior Xs,
we follow the general idea of multiresolution analysis (MRA) [52,53] for DI generation,
thus allowing the change information to be represented at multiple levels. Unlike the
typical MRA strategy that decomposes an input into different frequency sub-images, such
as wavelet decomposition [52] and Laplacian pyramid [53], we empirically build on our
previous work [54]. In [54], we constructed a spatially enhanced (SE) DI by fusing the
saliency map with the log-ratio DI under a reweighting scheme. The main shortcoming of
the SE DI generation was its dependence on the manual selection of the optimal fused DI,
limiting the flexibility and expression capability.

In order to generalize this method to deal with the hybrid variabilities of SAR images,
in this article, multiresolution DI is reconstructed level by level, which is automatic and
selection-free. Here, MRA is a postprocessing fashion to convert the input image into
different levels, and the concept of “resolution” here refers to the image level at which
the fine image details can be expressed. At different resolutions, the details of an image
describing different spatial structures can be reflected to different degrees.

To be specific, we reconstruct DIs from high resolution to low resolution under the
reweighting scheme [54]. The modeled spatial context Xs is injected into Xlr to generate
multiresolution representations of Xlr by allocating varying degrees of attention to the
salient changed parts. The reconstruction process at the resolution l can be formulated as

Xl
slr(i, j) = wij · Xlr(i, j)

wij = lX̃s(i,j)
(1)
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where Xl
slr(i, j) denotes the reconstructed change magnitude at pixel position (i, j) at reso-

lution level l, wij is the respective attention weight, and X̃s is the normalized saliency map.
In particular, l ∈ {1, . . . , L} indicates the resolution level. As a consequence, the multireso-
lution representations

{
X1

slr, X2
slr, . . . , XL

slr

}
are established, where resolution 1 corresponds

to the input itself, i.e., X1
slr = Xlr. As illustrated in Figure 2, reconstructed images at high-

resolution levels focus on describing small-scale regions or local details, while images at
low-resolution levels emphasize large-scale regions or semantic content. To adequately rep-
resent change information at each pixel position, DIs

{
X1

slr, X2
slr, . . . , XL

slr

}
are hierarchically

stacked in a high-resolution-to-low-resolution manner, denoted as Xl
slr ∈ RH×W×L.

Figure 2. Schematic of multiresolution DI generation. Herein, “resolution” in this article corresponds
to different levels of detail, rather than the real range or azimuth resolution in SAR imaging.

3.1.3. ESP Generation

Due to the existence of diversified characteristics in real changed regions, the single-
scale image patch feature, as shown in Figure 3a, which is commonly utilized as the
basic processing unit in deep learning-based CD approaches, fails to precisely and flexi-
bly describe diverse characteristics of changed regions and differentiate pseudochanges.
Motivated by seeking a new processing unit that can overcome the disadvantages of the
single-scale patch, the ESP feature is constructed to better correlate with the human per-
ception mechanism [49,50]. As shown in Figure 3b, the generation of the ESP feature is
accomplished by carrying out the following steps.

Figure 3. Schematic of (a) SP feature generation and (b) ESP feature generation.

1. MS-MR Patch Acquisition: Multiple overlapped adjacent regions at different scales but

centered at the same pixel are extracted from Xslr =
{

X1
slr, X2

slr, . . . , XL
slr

}
, constituting

the MS-MR patch features
{

Rk
slr

}K

k=1
. Here, the K scales of

{
Rk

slr

}K

k=1
correspond to the
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K spatial dimensions {(2k− 1)× (2k− 1)}K
k=1 that allow the representational pixel to

be located at the same central position, as shown in Figure 3b. Particularly, for the kth
scale, the corresponding feature Rk

slr is a localized cube of size (2k− 1)× (2k− 1)× L
cropped from Xslr ∈ RH×W×L. The MS-MR patch feature extraction is quite suitable
for characterizing the change information at each pixel since it intuitively allows the
central pixel to be represented at multiple levels.

2. SP Feature Acquisition: To avoid information loss in the generation of DI, the original SP
features {R1, R2} ∈ RB×B are still cropped from SAR images X1 and X2, respectively.
These two patches separately carry respective local spatial information and content,
which are of critical importance to delineate the shape and texture characteristics,
especially for strip areas and edge areas surrounded by many easily confused pixels.

In this way, the bitemporal SAR images can be transformed into the ESP feature set{
Ri,ESP = (Ri,1, Ri,2, R1

i,slr, . . . , RK
i,slr)

}H×W

i=1
where the subscript i denotes the image pixel

index. In the proposed label-free CD framework, the ESP feature would be regarded as
a basic element to perform the CD. Particularly, the ESP feature can be considered as a
diverse information description for each pixel, making it feasible for deep models to capture
different features. Note that the spatial dimension of {R1, R2}, namely B× B, is defined as
the basic scale by default.

3.2. Class Rebalance Strategy

Theoretically, self-supervised learning can make use of all the pixels in images as
training samples, similar to traditional clustering. Nevertheless, the significantly unequal
contribution from the changed and unchanged class caused by the imbalance problem in
SAR data [13] will lead to training failure.

To tackle this problem, a class rebalance strategy based on hierarchical k-means clus-
tering is specially tailored to maintain the balance in the constructed training set, which is
inspired by the clustering algorithm in [38] but has a different purpose. That is to say, the
label information estimated by the strategy is merely utilized to maintain a manageable
class balance in the training set, rather than utilized as pseudolabels as in [38]. Specifically,
in this strategy, the reconstructed DI at the lowest resolution, namely XL

slr, is utilized as
an input since it contains salient changed regions with less speckle and pseudochanges.
Algorithm 1 details the rebalance strategy.

Algorithm 1: Class Rebalance Strategy

Input: Image XL
slr

Initialization: Iteration number n = 0; counting parameter c = 0; training set Ωtrain.
1: Partitions XL

slr into two clusters: changed cluster Ωc and unchanged cluster Ωu
by using k-means clustering.
(Here, the number of pixels in Ωc is denoted by Tc.)

2: Determines a threshold T = β · Tc.
3: Partitions XL

slr into five subgroups: Ω1, . . . , Ω5 by using k-means clustering and their
corresponding number of pixels is denoted as T1, . . . , T5.
4: Sort the subgroups by the average magnitude value in descending order.
5: repeat
6: n = n + 1, and c = c + Tn.
7: If c ≤ T, assign pixels in Ωn to changed set Ω̃c.
8: If c > T, assign pixels in Ωn to unchanged set Ω̃u.
9: until n = 5
10: Integrate all the pixels in changed set Ω̃c to Ωtrain. Sample the same number of
pixels from unchanged set Ω̃u into Ωtrain.
Output: Training set Ωtrain.

In Algorithm 1, the parameter β is empirically set to 1.5. Using this strategy, the
balance between changed and unchanged classes in the obtained training set can be roughly
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reached, such that the inherent imbalance problem in SAR data can be greatly relieved.
Meanwhile, the estimated labels resulting from this strategy are merely utilized as an
important prior for rectifying the class distribution in the training set but not involved in
subsequent network training.

3.3. Hybrid Variability Aware Network

The pipeline of the proposed hybrid variability aware network (HVANet) is graphically
illustrated in Figure 4. The whole HVANet consists of two streams (i.e., the local spatial
stream and the scale-resolution stream) and a self-supervision layer. The local spatial
stream is a Siamese network (SiamNet) that handles the SP part in the ESP feature, while
the scale-resolution stream is composed of two modules that are in charge of processing
the MS-MR part in the ESP feature. In this way, local structural features and encoded
MS-MR features that contribute to the changed region identification are further extracted,
following which the self-supervision layer combines the two types of features together into
a high-level feature and classifies it. Intrinsically, the HVANet projects the ESP features into
a learned high-level feature space, where the features are semantically discriminative and
feature classification is easier.

Figure 4. Framework of the proposed HVANet.

3.3.1. Local Spatial Stream

As shown in Figure 4, the local spatial stream consists of a pair of twin subnet-
works with symmetric structure and shared weights, referred to as the Siamese network
(SiamNet) [47,48,55]. Unlike the traditional DNN-based methods [30,37], which concate-
nates the paired patches, i.e., SP, and processes it using a deep network, the two-branch
architecture enables the SiamNet to learn respective local structural features from the paired
inputs in the same way. Hence, the changed patch pair will have paired features away from
each other. Meanwhile, the unchanged patch pair will have pretty similar activations on
the corresponding features. Considering that the CD task seeks to measure the dissimi-
larity between the paired pixels, such a SiamNet architecture is naturally appropriate for
further improving the accuracy of change information extraction. Specifically, the SiamNet
is composed of NFC fully connected layers, where layer-wise feature extraction can be
formulated as {

hl
Siam1 = σl

Siam(Wl
Siam · h

l−1
Siam1 + bl

Siam)

hl
Siam2 = σl

Siam(Wl
Siam · h

l−1
Siam2 + bl

Siam)
(2)
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where
{

hl−1
Siam1, hl−1

Siam2

}
and

{
hl

Siam1, hl
Siam2

}
denote the bilateral inputs and outputs corre-

sponding to the lth fully connected layer,
{

Wl
Siam, bl

Siam

}
represent the weights and bias

at this layer, and σl
Siam is a nonlinear function. The final outcomes

{
hNFC

Siam1, hNFC
Siam2

}
at the

NFCth fully connected layer are the learned features in the local spatial stream, denoted as
{hSiam1, hSiam2} for clarity.

Benefiting from the bilateral feature extraction nature of the SiamNet architecture, the
fine structure information in R1 and R2 is separately and independently preserved in hSiam1
and hSiam2, thus promoting better spatial information description.

3.3.2. Scale-Resolution Stream

In the local spatial stream, the patch-wise content primarily influences the local struc-
ture feature extraction. However, as SAR images often contain too many changed regions
with arbitrary sizes, shapes, and textures, it is still arduous to accurately identify changes
of interest using merely the original SP features. To further facilitate the distinguishability
of learned high-level features, the scale-resolution stream is appended to compensate for
the missing contextual information to cope with the hybrid variabilities.

To fully make use of the MS-MR information to obtain a spatially and semantically
powerful feature representation complementary to the structure feature in the local spatial
stream, a scale-resolution information encoding module (SRE) is first devised to encode
the information in the MS-MR patches. In reality, not all scales or resolutions are equally
important for contributing to the CD task. Therefore, channel attention [56] is introduced
into SRE to learn what features to highlight; that is, more informative scales and resolutions
should be emphasized while secondary ones should be suppressed, thus acquiring an
encoded feature. Immediately after the SRE module, an ordinary DNN is attached to
extract high-level representation further.

(1) Scale-Resolution Information Encoding Module: To concentrate on the task-related
features and suppress secondary information automatically, the SRE is proposed. The

MS-MR patches in the ESP feature, i.e.,
{

Rk
slr

}K

k=1
, are used as inputs of this module.

Specifically, the cross-resolution information encoding unit (CRE) and within-resolution
information encoding unit (WRE) are placed in parallel to process the MS-MR input{

Rk
slr

}K

k=1
. The CRE is responsible for capturing the informative scale and resolution clues

and compressing the secondary information, while WRE is in charge of compensating the
necessary spatial content. Later, the features extracted by the two units are aggregated as in
channel attention [56] to embrace the key scale and resolution clues and redistribute the
change feature representation, finally strengthening the representation ability. The SRE
module is illustrated graphically in Figure 5.

Figure 5. Illustration of the proposed SRE module.
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The CRE unit contains K-1 convolution branches, each of which is composed of two
convolution operations: a depthwise convolution (DWC) [57] and an ordinary convolution.
The CRE unit aims to explore the cross-resolution correspondence for each patch feature

in
{

Rk
slr

}K

k=1,k 6=bs
to capture the informative scale and resolution clues. Particularly, the

patch at the basic scale, i.e., Rbs
slr, is utilized as the input of WRE and not involved in this

unit. Without loss of generality, we describe the encoding process for the kth feature
Rk

slr ∈ R(2k−1)×(2k−1)×L to illustrate the CRE unit. Specifically, a DWC operation with
kernel size 1 × 1 is firstly applied to Rk

slr as

hk
CRE = σDWC

CRE−k(W
DWC
CRE−k ? Rk

slr + bDWC
CRE−k) (3)

where weight and bias
{

WDWC
CRE−k, bDWC

CRE−k

}
correspond to Rk

slr, σ
DWC
CRE−k denotes a nonlinear

activation function, and the symbol ? represents the DWC operation. Here, the 1 × 1
DWC convolves the input patch channel-by-channel, thus capturing the nonlinear spatial
features at each resolution without changing the spatial dimension. Following this, the
cross-resolution correspondence is realized through a normal convolution (Conv) with
the kernel size (2k− 1)× (2k− 1), thus learning an importance descriptor of the different
resolutions adaptively, as

ωk = σConv
CRE−k(W

Conv
CRE−k � hk

CRE + bConv
CRE−k) (4)

where
{

WConv
CRE−k, bConv

CRE−k

}
denote the weights and biases of the current Conv layer, σConv

CRE−k
represent the sigmoid function, and the symbol � denotes convolution. Since the reg-
ular Conv kernel will fuse the entities across channels, the compressed feature vector
ωk ∈ R1×1×L is captured by summarizing both the within-resolution and cross-resolution
information. Moreover, the importance descriptor of different resolutions can be learned at
each scale, which carries both resolution and scale clues.

After extracting importance descriptors at K-1 scales in the CRE unit, most secondary

information in
{

Rk
slr

}K

k=1,k 6=bs
is compressed. To compensate for the compressed informa-

tion, we propose a simple yet effective WRE unit. Specifically, the WRE unit is in charge of
processing the unique feature Rbs

slr ∈ RB×B×L at the basic scale bs (1 ≤ bs ≤ K), of which
the height and width are the same as the SP feature {R1, R2} ∈ RB×B. This unit encodes
the internal change information at each resolution in Rbs

slr without any cross-resolution
correspondence by sequentially using two learnable 1 × 1 DWC layers, as{

h1
WRE = σWRE(WDWC

WRE1 ? Rbs
slr + bDWC

WRE1)

h2
WRE = σWRE(WDWC

WRE2 ? h1
WRE + bDWC

WRE2)
(5)

where
{

WDWC
WRE1, bDWC

WRE1

}
and

{
WDWC

WRE2, bDWC
WRE2

}
denote the weights and biases of the two

1 × 1 DWC layers, respectively, and h1
WRE ∈ RB×B×L, h2

WRE ∈ RB×B×L are the correspond-
ing outputs. Relying on the depthwise operation nature that employs a single convolutional
filter per input channel, dimension-invariant nonlinear transformation is realized using
the 1 × 1 DWC kernels, and internal spatial information at different resolutions can be
separately preserved.

To embrace the different scale clues and focus on the informative resolutions simul-
taneously, it is a natural belief that the learned importance descriptors at different scales
in CRE should be fully combined and then weight the extracted features in WRE; thus,
the scale, resolution, and spatial information can be harmoniously integrated together. To
this end, the features h2

WRE and {ωk}K
k=1,k 6=bs are aggregated as in the channel attention

mechanism [56]. Formally,
ω = ω1 ∗ · · · ∗ωK−1 ∗ωK (6)
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R̃enc = Fscale(h
2
WRE,ω) (7)

where the symbol ∗ denotes the element-wise product andω is the integrated importance
descriptor. Particularly, Fscale(·, ·) refers to the channel-wise product betweenω ∈ R1×1×L

and h2
WRE ∈ RB×B×L, and its output R̃enc ∈ RB×B×L is the final encoded features, where

the whole MS-MR information is selectively and automatically summarized. As described
earlier, the SRE module intrinsically performs the channel-wise attention, which jointly
emphasizes the features from informative resolutions and scales according to the learned
importance descriptors and promotes the feature learning to be aware of the variable size
and texture characteristics.

(2) Feature Enhancing Module: Immediately after the SRE module, a regular DNN is
utilized as a feature extractor to learn high-level features to enhance the representation
power, called the feature enhancing module (FE), which has the same architecture as the
two branches of SiamNet. This module learns an adaptive mapping function that takes
the encoded feature R̃enc as the input and generates the high-level feature hSRS, namely the
final outcome of the scale-resolution stream.

3.3.3. Greedy Layer-Wise Unsupervised Pretraining

The direct application of self-supervised learning is very challenging given the high
dimensionality of the ESP features. To better initialize the network weights and capture some
useful features, we propose to adopt greedy layer-wise unsupervised pretraining [58–60].
Specifically, the SiamNet in the local spatial stream and the FE module in the scale-resolution
stream are individually pretrained.

Considering the specific architecture of the SiamNet, we design a symmetric layer-wise
pretraining strategy to promote the target-specific feature learning. Specifically, the initial
weight matrix and bias vector of the lth layer in SiamNet is learned through a specially
designed Siamese autoencoder (SiamAE) with a single hidden layer. For the lth layer in
SiamNet, the corresponding SiamAE can be formulated as{

hl
Siam1 = σl

Siam(Wl
Siam · h

l−1
Siam1 + bl

Siam)

hl
Siam2 = σl

Siam(Wl
Siam · h

l−1
Siam2 + bl

Siam)
(8)

{
ĥ

l
Siam1 = σl

Siam(W̃ l
Siam · h

l
Siam1 + b̃

l
Siam)

ĥ
l
Siam2 = σl

Siam(W̃
l
Siam · hl

Siam2 + b̃
l
Siam)

(9)

where
{

hl−1
Siam1, hl−1

Siam2

}
,
{

hl
Siam1, hl

Siam2

}
, and

{
ĥ

l
Siam1, ĥ

l
Siam2

}
denote the input, hidden

representation, and output of the SiamAE.
{

Wl
Siam, bl

Siam

}
and

{
W̃

l
Siam, b̃

l
Siam

}
represent

the weight matrix and bias vector of the encoder and decoder in the SiamAE, respectively.
The input

{
h0

Siam1, h0
Siam2

}
of the first layer is the SP feature; i.e., {R1, R2}. Finally, initial-

ization is achieved by minimizing the L2 norm of the difference between
{

hl−1
Siam1, hl−1

Siam2

}
and

{
ĥ

l
Siam1, ĥ

l
Siam2

}
:

Wl∗
Siam, bl∗

Siam, W̃
l∗
Siam, b̃

l∗
Siam = arg min

Wl
Siam,bl

Siam,W̃
l
Siam,b̃

l
Siam

∥∥∥hl−1
Siam1 − ĥ

l
Siam1

∥∥∥2

2
+
∥∥∥hl−1

Siam2 − ĥ
l
Siam2

∥∥∥2

2
. (10)

After being pretrained by this strategy, the weights and biases
{

Wl∗
Siam, bl∗

Siam

}
of the

lth layer will be kept unchanged in the pretraining stage. With the symmetric layer-wise
pretraining strategy that enforces the SiamAE to reconstruct the SP feature, the SiamNet in
the local spatial stream is encouraged to extract some useful features to provide a better
parameter initialization.
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Similar to the symmetric layer-wise pretraining described above, the pretraining
strategy for the lth layer of the FE module in the scale-resolution stream can be summarized
as follows:

hl
SRS = σl

FE(W
l
FE · hl−1

SRS + bl
FE) (11)

ĥ
l
SRS = σl

FE(W̃
l
FE · hl

SRS + b̃
l
FE) (12)

Wl∗
FE, bl∗

FE, W̃
l∗
FE, b̃

l∗
FE = arg min

Wl
FE,bl

FE,W̃
l
FE,b̃

l
FE

∥∥∥hl−1
SRS − ĥ

l
SRS

∥∥∥2

2
. (13)

Here, the input of the first layer is Rbs
slr in the ESP feature. As such, the FE module is

pretrained layer-by-layer. By means of the pretraining strategy, most network weights in
HVANet can be well initialized. Since the multi-branch architecture of the SRE module in
the scale-resolution stream cannot be pretrained in such a layer-wise way, weights in the
SRE are initialized using the technique described in [61].

3.3.4. Self-Supervised Fine-Tuning

(1) Self-supervision Layer: Due to the lack of ground truth labels in SAR data, training
targets are not available for unsupervised learning. As a result, it is necessary to explore
how to eliminate the requirement of labeled data by creating learning signals for model
training. To this end, a specialized self-supervision layer is constructed to allow performing
feature classification and providing learning signals for fine-tuning simultaneously, which
is inspired by the deep embedded clustering method [62].

Specifically, given the training set Ωtrain = {Ri,ESP}Ntrain
i=1 , the two streams in HVANet

can extract three features for each input. The self-supervision layer combines them together
to form a united feature, as H = {hi,Uni = (hi,Siam1, hi,Siam2, hi,SRS)}Ntrain

i=1 , under which the
two streams are also united into one framework. Later, we compute the initial class centers
M = {µ0,µ1} by performing k-means on H, where subscript “0” represents the unchanged
class and “1” represents the changed class. These initial class centers will provide an
approximate optimization direction and enable the later learning process, namely the
self-supervision.

We calculate the probability that the ith input sample is assigned to the jth class
by measuring the similarity between H and µ based on a Student’s t-distribution-based
kernel [62], as

Qij =
(1 +

∥∥∥hi,Uni − µj

∥∥∥2
)
−1

(1 + ‖hi,Uni − µ0‖2)
−1

+ (1 + ‖hi,Uni − µ1‖2)
−1 , j ∈ {0, 1} (14)

where hi,Uni is the united high-level feature corresponding to the ith input Ri,ESP. The
rationale behind the probability calculation is to use the Student’s t-distribution as a kernel
to transform the similarity of a feature to a certain class center into the class probability. In
this regard, the heavy-tailed property of the Student’s t-distribution is powerful for robustly
fitting and describing the feature distribution in the high-level feature space. In addition,
beyond the initial class centers M that are calculated by directly performing k-means on
H, the class centers can be updated automatically in training, as further described in the
following subsections.

It is intuitive that the inputs with high confidence could provide more reliable class
knowledge and be utilized as learning signals to guide the network fine-tuning in a self-
supervised manner. In this direction, the supervision signal is constructed by raising Qij to
the second power to emphasize the reliable class knowledge, as

Pij =
Q2

ij/zj

Q2
i0/z0 + Q2

i1/z1
(15)



Remote Sens. 2022, 14, 734 15 of 32

where zj = ∑Ntrain
i=1 Qij is the soft frequency of the jth class and Pij is the newly created

supervision signal for the ith input feature. The soft frequency zj helps to normalize the
contribution of each training sample, such that class imbalance can be further alleviated.

The supervision signal Pij is completely generated from the probability Qij but with
reduced entropy since it is calculated by raising Qij to the second power. Consequently, the
training target is constructed by paying attention to the credible unlabeled samples with
high predicated class probability, the so-called self-supervision.

(2) Self-supervision Loss: To progressively force the model to learn with useful class
knowledge from unlabeled features themselves, the training target Pij is constructed and
can provide a meaningful optimization objective for the fine-tuning of HVANet. Using
such a self-supervision strategy, the HVANet is encouraged to output low-entropy (i.e.,
highly confident) predictions and progressively achieve entropy minimization. Following
this idea, a Kullback–Leibler (KL) divergence-based loss function is adopted to quantify
the similarity between the predicted distribution Q and the target distribution P, as

L = ∑Ntrain
i=1 ∑1

j=0 Qij log
Pij

Qij
= KL(Q||P). (16)

Herein, KL divergence between distributions Q and P is adopted as an objective for
network optimization. Minimizing the objective function encourages the similar features
to cluster together while separating the dissimilar features in the learned high-level space,
such that the classification in the feature space becomes easier.

(3) Optimization: To effectively fine-tune the HVANet in a completely unsupervised
manner, both the network weights θ and class centers M should be updated with back
propagation based on the self-supervised loss L. The optimization can be formulated as

(θ, M)← (θ, M)− η
1

Ntrain
∇(θ,M)L (17)

where η denotes the learning rate. The update of class centers provides the optimization
direction for the next training epoch. More importantly, the repeated update of network
weights encourages HVANet to learn useful class knowledge from unlabeled samples and
promote the model performance progressively.

3.3.5. Computational Complexity Analysis

Here, we provide a rough evaluation on the computational complexity of the HVANet.
To be specific, the computational cost of each training epoch comes mainly from calculating
features {hSiam1, hSiam2} in the local spatial stream and calculating feature hSRS in the scale-
resolution stream. Hence, in this section, we analyze the computational complexity of the

HVANet, given n input ESP features
{
(Ri,1, Ri,2, R1

i,slr, . . . , RK
i,slr)

}n

i=1
.

In the training of the local spatial stream, the n pairs of patches {(Ri,1, Ri,2)}n
i=1 ∈ RB×B

are fed into the first layer with N1
layer neutrons. For each output neuron at the first fully

connected layer, when one flattened image patch is fed, there are B× B multiplications
between weights and inputs and B× B additions to sum the multiplication results and bias.
As the nonlinear activation function is applied to the outputs of the fully connected layers,
the computational complexity of the utilized nonlinear function should be considered,
which is denoted as Cnon floating point operations (flops) for the sake of clarity. Therefore,
there are 2× N1

layer × (2B2 + Cnon) flops for a pair of input patches (Ri,1, Ri,2). Similarly,

the next fully connected layer has 2× N2
layer × (2N1

layer + Cnon) flops. In this way, for the
SiamNet in the local spatial stream which has NFC fully connected layers, the total number
of flops (abbreviated as TNFSiam) can be formulated as

TNFSiam = 2× N1
layer × (2B2 + Cnon) +

NFC

∑
i=2

2× Ni
layer × (2Ni−1

layer + Cnon). (18)
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Hence, the computational complexity of the local spatial stream at each training epoch
can be represented as O(n× TNFSiam) flops.

As for the scale-resolution stream, both the computational complexities of the SRE
module and the FE module should be considered, respectively. As the elaboration in

Section 3.3.2, when n MS-MR patch features
{

Rk
slr

}K

k=1
are fed into the SRE module,

the CRE unit processes the features
{

Rk
slr ∈ R(2k−1)×(2k−1)×L

}K

k=1,k 6=bs
while the WRE

unit processes the feature Rbs
slr ∈ RB×B×L. On the one hand, the CRE unit contains

K − 1 branches, each of which successively performs the DWC and an ordinary con-
volution operation. For the kth branch in the CRE unit, the corresponding input fea-
ture Rk

slr ∈ R(2k−1)×(2k−1)×L is processed using a DWC operation with kernel size 1× 1,
which involves (2k− 1)× (2k− 1)× L multiplications for the combination between the
kernel and input, and (2k − 1) × (2k − 1) × L additions between the combination and
bias. Since each pixel in the feature map of DWC should be processed by the nonlinear
function, the resulting computational complexity is (2k− 1)× (2k− 1)× L× Cnon flops.
Later, when the activated output hk

CRE ∈ R(2k−1)×(2k−1)×L is fed into an ordinary Conv
layer with kernel size (2k − 1)× (2k − 1), there are (2k − 1)× (2k − 1)× L2 multiplica-
tions and (2k − 1)× (2k − 1)× L2 + L(L− 1) additions. Besides, there is an additional
computational complexity L × Cnon caused by the nonlinear function. Thus, the total
computational complexity of the K − 1 branches in the CRE unit can be summarized as
∑K

k=1,k 6=bs (2k− 1)2 × L(2L + 2 + Cnon) + L(Cnon + L− 1) flops. On the other hand, the
WRE unit processes the Rbs

slr ∈ RB×B×L using two successive DWC operations with kernel
size 1× 1, which involves 2× B× B× L multiplications, 2× B× B× L additions. Two non-
linear functions also cause 2× B× B× L× Cnon flops. For the feature aggregation in CRE,
the integration of the learned importance descriptors {ωk}K

k=1,k 6=bs involves (K − 2)× L
multiplications and channel-wise attention requires B× B× L multiplications. Finally, the
encoded feature R̃enc ∈ RB×B×L is fed into the FE module, which has an identical network
architecture to the SiamNet, but the dimension number of the input layer is B× B× L. In
summary, the total number of flops of the scale-resolution stream (abbreviated as TNFSRS)
can be summarized as

TNFSRS =
K
∑

k=1,k 6=bs
(2k− 1)2 × L(2L + 2 + Cnon) + L(Cnon + L− 1)

+B2L(5 + 2Cnon) + (K− 2)× L

+N1
layer × (2B2 × L + Cnon) +

NFC
∑

i=2
Ni

layer × (2Ni−1
layer + Cnon).

(19)

Consequently, given n input ESP features
{
(Ri,1, Ri,2, R1

i,slr, . . . , RK
i,slr)

}n

i=1
, the compu-

tational complexity of the entire HVANet at each training epoch can be represented as
O(n× (TNFSiam + TNFSRS)) flops.

According to the above analysis, the main computational cost comes from the SiamNet
in the local spatial stream and the FE module in the scale-resolution stream, where the fully
connected layers account for most parameters in HVANet. By contrast, we introduce the
channel-wise attention and the DWC operation for the MS-MR information encoding in
the SRE module, enabling effective feature extraction with negligible computation cost.
Moreover, the small sizes of the patches in the ESP feature determine that the scale of
the utilized fully connected layers and the corresponding computational complexity is
relatively limited, which means the HVANet is lightweight and efficient in the training
phase and inference phase. To further illustrate the computational complexity of the
HVANet, we compare the training time and inference time of the HVANet with other
unsupervised CD methods in Section 4.
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4. Experimental Results

In this section, we performed extensive experiments to ensure that the entire proposed
CD system is effective. Experiments were conducted on three real datasets. We compare
the proposed HVANet with some state-of-the-art methods in terms of objective indexes
and visual results. Our experiments were conducted on a workstation with an Intel(R)
Core(TM) i7-8750H CPU (6 cores, 2.2 GHz, 32 GB RAM) and an Nvidia Quadro P2000
graphical processing unit (GPU) (4 GB RAM). Particularly, the proposed HVANet was
implemented using the Keras with the TensorFlow backend [63] and MATLAB 2016a in
Windows 10 environment. The corresponding code of the proposed method will be made
available at https://github.com/CATJianWang/HVANet (accessed on 16 December 2021).

4.1. Dataset Description

The proposed HVANet method was conducted on three representative bitemporal
SAR image datasets: the Ottawa dataset, the Farmland A dataset, and the Farmland B
dataset. The corresponding real SAR images and ground truth maps for three datasets are
shown in Figures 6–8. More detailed introductions of three datasets are provided as follows.

Figure 6. Ottawa dataset. (a) Image acquired in July 1997. (b) Image acquired in August 1997.
(c) Ground truth.

Figure 7. Farmland A dataset. (a) Image acquired in June 2008. (b) Image acquired in June 2009.
(c) Ground truth.

https://github.com/CATJianWang/HVANet
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Figure 8. Farmland B dataset. (a) Image acquired in June 2008. (b) Image acquired in June 2009.
(c) Ground truth.

1. Ottawa dataset: Ottawa dataset was captured by Radarsat-1 in July and August 1997,
respectively. The images in this dataset have a low spatial resolution with a spatial
size of 290 × 350. Figure 6a,b show the bitemporal SAR images and Figure 6c shows
the corresponding ground truth map. The dataset reflects the flooded areas over
Ottawa, Canada.

2. Farmland A dataset: Farmland A dataset was acquired in June 2008 and June 2009 by
the Radarsat-2 sensor over an agricultural area at the Yellow River Estuary in China.
The SAR images have a higher spatial resolution than Ottawa dataset, which covers
an area with 289 × 257 pixels and has a spatial resolution of 3 m. The SAR images and
the ground truth map are shown in Figure 7. The changed parts are mainly caused by
the cultivation.

3. Farmland B dataset: Farmland B dataset was collected in June 2008 and June 2009
by the Radarsat-2 sensor over an agricultural area at the Yellow River Estuary in
China. This dataset covers an area with 291 × 306 pixels, which is characterized by
a spatial resolution of 3 m. In common with Farmland A, this dataset includes the
farmland change arising from cultivation. The SAR images and the ground truth map
are shown in Figure 8.

Particularly, in the last two datasets, the SAR images acquired in June 2008 are four-look,
but the images obtained in June 2009 are single-look, indicating a significant discrepancy of
the impact of speckle noise on the bitemporal images. Obviously, such a discrepancy would
increase the difficulty of CD in these two datasets. Furthermore, these bitemporal SAR
image datasets are publicly available for download at https://github.com/CATJianWang/
HVANet/tree/main/Dataset (accessed on 16 December 2021).

4.2. Experimental Settings

(1) Evaluation Criteria: Both visually qualitative comparison and quantitative measures
are applied to evaluate the results of the proposed method and competing methods. On
the one hand, change detection results are shown in an intuitively visual way, namely
the binary change map. On the other hand, false positives (FP), false negatives (FN),
overall errors (OE), percentage of correct classification (PCC), and Kappa coefficient (κ) are
employed as the evaluation criteria. FP is the number of unchanged pixels that are wrongly
detected as changed pixels, whereas FN is the number of changed pixels that are wrongly
detected as unchanged pixels. OE is the sum of FP and FN, representing the total number
of misclassified pixels. Moreover, PCC is computed as

PCC = (TP + TN)/(TP + FP + TN + FN) (20)

https://github.com/CATJianWang/HVANet/tree/main/Dataset
https://github.com/CATJianWang/HVANet/tree/main/Dataset
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Kappa (κ) is calculated as below:

κ = (PCC− PRE)/(1− PRE) (21)

where

PRE =
(TP + FP)× (TP + FN) + (TN + FN)× (TN + FP)

(TP + FP + TN + FN)2 . (22)

Here, TP (abbreviation for true positives) denotes the number of changed pixels that
are correctly detected as the changed class, while TN (abbreviated for true negatives)
represents the number of unchanged pixels that are correctly detected as the unchanged
class. Note that the provided experimental results below are the mean criteria values after
running 10 times.

(2) Network Architecture: To accomplish the network training and testing with high
effectiveness and efficiency, the HVANet architecture is made to be lightweight, reducing
network parameters and speeding up network operation. The detailed structure of the
HVANet is shown in Table 1. During training, we employ the stochastic gradient descent
(SGD) optimizer to train the network and set the learning rate to 0.0001, batch size to 128,
and momentum to 0.9.

Table 1. Architecture of the proposed HVANet.

HVANet Configuration

Local Spatial Stream

Input Feature : {R1, R2} ∈ RB×B

Fully Connected Layers (B × B) × 750 × 750 × 1500 × 1

Nonlinearity: SELU

Scale-Resolution Stream

Input feature :
{

Rk
slr

}K

k=1

SRE Module

WRE unit for Rbs
slr ∈ RB×B×L at basic scale

Depthwise Conv 1 × 1

Nonlinearity: SELU

Depthwise Conv 1 × 1

Nonlinearity: SELU

Branch k of the CRE unit for a certain feature
Rk

slr ∈ R(2k−1)×(2k−1)×L in
{

Rk
slr

}K

k=1,k 6=bs

Depthwise Conv 1 × 1

Nonlinearity: SELU

Conv L@(2k – 1) × (2k – 1)

Nonlinearity: Sigmoid

FE Module

Fully Connected Layers (B × B × L) × 750 × 750 × 1500 × 1

Nonlinearity: SELU

4.3. Ablation Study

To better understand HVANet, we conducted an ablation study to show the effective-
ness of our model components, including the local spatial stream (abbreviated as LSS in
this section), the scale-resolution stream (abbreviated as SRS in this section), and the SRE
module in the SRS. Besides, the effect of the proposed class rebalance strategy is also studied
to illustrate its role in the construction of the training set and then the model training.

(1) Contribution of Local Structure Information Extraction in LSS: From the perspective of
the SiamNet architecture in the LSS, local structure information in bitemporal images can
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be preserved and extracted independently. For comparison, only fully connected layers are
considered to replace the Siamese architecture in HVANet. Specifically, we compare the
HVANet (LSS + SRS) and regular DNN + SRS while the network architecture in SRS is kept
the same for these two models. Here, the input of the regular DNN is the concatenation of
the vectorized SP feature R1, R2. Besides, we also perform the comparison between the LSS
(SiamNet) and regular DNN without SRS to further show the superiority of the SiamNet in
extracting change information. Comparing the two feature extraction architectures, regular
DNN does not perform well because the structural information independently inherited
from two patches is destroyed and the extracted features are not effective. The ablation
study results are reported in Table 2. Benefiting from the structure-preserved nature, LSS
(SiamNet) can effectively capture the high-level structural features by learning, achieving
better performance.

Table 2. Ablation study results of the proposed HVANet on SiamNet.

Model
LSS

(SiamNet)
SRS Ottawa Farmland A Farmland B

SRE FE PCC Kappa PCC Kappa PCC Kappa

DNN 93.96 80.04 94.67 82.15 95.44 68.41
LSS (SiamNet)

√
93.98 79.99 95.07 83.18 95.49 68.33

DNN + SRS
√ √

98.22 93.41 96.12 86.28 98.83 89.26
HVANet (LSS +SRS)

√ √ √
98.59 94.64 96.29 87.12 98.99 90.70

(2) Contribution of Scale-Resolution Information Encoding in SRS: To investigate the
important role played by the scale-resolution stream in the CD performance, we conduct
ablation on SRS. Specifically, there are two ablation strategies: (1) removing the entire
SRS from HVANet and the resulting model, i.e., the LSS (SiamNet), is compared with the
HVANet to verify the efficiency of SRS; (2) removing the SRE module while retaining the
feature enhancing (FE) module in SRS to further validate the effectiveness of the ability of
scale-resolution information encoding of SRE module. As shown in Table 3, the models
HVANet (w/o SRS) and HVANet (w/o SRE) receive significant drops in PCC and Kappa.
The results indicate that the SRS is critical in our HVANet, especially the SRE module that
can fully exploit MS-MR information and capture the informative scale and resolution
clues to strengthen the description of the hybrid variabilities in CD scenes. Furthermore,
despite the fact that the structural information extracted in LSS (SiamNet) can improve the
description at each pixel, the distinguishable and generalizable information is still scarce
such that the category knowledge learning remains a tough task, restricting the model
performance. On the contrary, our model can make full use of both structural information
and MS-MR information and aggregate them, thus can obtain a semantically discriminative
feature. This also indicates that the MS-MR information is of great significance in providing
useful feature representations.

Table 3. Ablation study results of the proposed HVANet on SRS.

Model
LSS SRS Ottawa Farmland A Farmland B

(SiamNet) SRE FE PCC Kappa PCC Kappa PCC Kappa

LSS (SiamNet)
√

93.98 79.99 95.07 83.18 95.49 68.33
HVANet

√ √
97.23 90.02 96.12 86.48 98.95 90.61

HVANet
√ √ √

98.59 94.64 96.29 87.12 98.99 90.70

DNN 93.96 80.04 94.67 82.15 95.44 68.41
DNN + SRS

√ √
98.22 93.41 96.12 86.28 98.83 89.26

(3) Effect of Class Rebalance Strategy: The proposed HVANet is intrinsically a data-
driven model that relies strongly on the training samples. The imbalance of the samples
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of different categories inevitably has a negative impact on the training efficiency. In this
context, we specially designed the class rebalance strategy to mitigate the imbalance, which
is a challenging problem in SAR image CD, especially when the ground truth or real labels
are unavailable. We performed ablations on the strategy. We set the HVANet trained
with the samples selected by regular k-means clustering as the baseline (i.e., replacing the
hierarchical clustering in Algorithm 1 and only using the k-means results for the training
sample selection). As shown in Table 4, the HVANet can achieve significant improvements
in the PCC and Kappa values on the Farmland A dataset when applying the rebalance
strategy. This is because the k-means clustering is very susceptible to the speckle noise,
intensity fluctuations and pseudochanges, and cannot obtain a relatively accurate result.
Hence, the balance in the selected training samples cannot be reached. Therefore, we apply
the designed class rebalance strategy to sample the training pixels from the entire images
to realize a manageable balance in the training set.

Table 4. Ablation study results of the proposed HVANet on class rebalance strategy.

Model
Sample Strategy Ottawa Farmland A Farmland B

K-Means Class
PCC Kappa PCC Kappa PCC Kappa

Clustering Rebalance

HVANet
√

98.38 93.95 95.81 84.98 98.90 89.65
HVANet

√
98.59 94.64 96.29 87.12 98.99 90.70

4.4. Parameter Analysis

(1) Number of Considered Scales: The ESP features contain multiscale information at each
pixel to enrich the spatial context. Our intuition is that each pixel position of the bitemporal
images can be characterized by information at multiple scales and different resolutions,
that is the ESP features. In this way, the number of considered scales K is a significant hy-
perparameter. We test different K ∈ {1, 2, 3, 4, 5} to investigate its effect on the performance
of the HVANet using the Ottawa, Farmland A, and Farmland B datasets. As shown in
Table 5, for Ottawa and Farmland A datasets, our model achieves the best performance
when increasing K from 1 to 3; for the Farmland B dataset, the best performance is obtained
under K = 5. It can be observed that the model encounters a performance drop when
decreasing K from 3 to 1. This is because the small scales, e.g., 1 × 1 and 3 × 3, lack spatial
neighbor information to produce semantically strong features, resulting in many incorrectly
detected pixels. Although there are performance improvements by further increasing the
number of scales on Farmland B, for the consistency and the tradeoff between efficiency
and precision, we set K to 3 in the following experiments.

Table 5. Effect of the scale number.

Scale Number Scale Setting
Ottawa Farmland A Farmland B

PCC Kappa PCC Kappa PCC Kappa

K = 1 1 98.12 92.93 95.08 81.82 98.47 85.89
K = 2 1, 3 98.30 93.59 95.15 82.67 98.56 86.42
K = 3 1, 3, 5 98.59 94.64 96.29 87.12 98.99 90.70
K = 4 1, 3, 5, 7 98.21 93.22 95.22 82.72 98.77 88.36
K = 5 1, 3, 5, 7, 9 98.00 92.53 95.39 85.43 99.09 91.60

(2) Basic Scale: For the proposed method, the basic scale (i.e., patch size height×width)
B× B, which determines the size of input patches of the HVANet, influences the final change
detection result. Intuitively, a larger B indicates that more local information is considered
and therefore tends to produce a semantically smoother change map. Nevertheless, the
image details may be lost under an overly large B. In contrast, a smaller B is beneficial to
preserve the delicate details and local structures but is sensitive to the extensive speckle
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noise in SAR images. For this reason, parameter B is analyzed using three datasets. Table 6
reports the results obtained by HVANet on three datasets under different values of size
B. As can be seen, the best performance is achieved when a small patch size (B = 3 for
Ottawa dataset and B = 5 for Farmland A and Farmland B datasets) is employed, while
enlarging the patch size only decreases the PCC and Kappa values. This is because the
small patch size effectively preserves the detailed structural information in the local spatial
stream, while the scale-resolution stream helps to compensate for the context information
from MS-MR change information to deal with the hybrid variabilities in SAR imagery. The
large patch size will cause that fine structural information cannot be emphasized. As a
result, we set the patch size to be 3× 3, 5× 5, and 5× 5 for the Ottawa, Farmland A, and
Farmland B datasets, respectively.

Table 6. Sensitivity analysis of the HVANet in relation to patch size.

Basic Scale
Ottawa Farmland A Farmland B

PCC Kappa PCC Kappa PCC Kappa

3 × 3 98.59 94.64 95.94 85.83 98.85 89.19
5 × 5 98.34 93.65 96.29 87.12 98.99 90.70
7 × 7 98.17 93.03 95.71 84.73 98.72 89.81
9 × 9 97.89 92.17 95.25 82.96 98.49 86.02

(3) Number of Resolutions: The number of resolutions L is a significant hyperparameter.
We study the performance of the HVANet with different configurations of the input ESP
features that contain different numbers of resolution levels, i.e., L ∈ {1, 2, 3, 4, 5}. Table 7
exhibits significant improvements in the PCC and Kappa values of our model on the three
SAR image datasets when increasing the number of resolution levels. These results indicate
that more resolution levels could enrich the context information to better characterize the
change information at each pixel and make the constructed ESP features more discriminative
and generalizable. Consequently, we set the number of resolution levels L to 5.

Table 7. Effect of the resolution number.

Resolution Number
Ottawa Farmland A Farmland B

PCC Kappa PCC Kappa PCC Kappa

1 98.14 92.85 95.66 84.39 98.58 87.06
2 98.36 93.91 95.92 86.35 98.73 87.95
3 98.51 94.29 96.17 86.58 98.83 89.29
4 98.48 94.06 96.25 86.91 98.97 90.39
5 98.59 94.64 96.29 87.12 98.99 90.70

4.5. Visualization of the Learned High-Level Features

To intuitively demonstrate the discriminative power of HVANet, we adopt the t-SNE [64]
to visualize the initial ESP features and the learned united features hUni at each pixel position
in the bitemporal images extracted by using the HVANet after self-supervised learning,
respectively, as shown in Figure 9. It can be seen in the first row of Figure 9 that the samples
from change and non-change classes severely overlap with each other in the feature space. This
indicates that speckle, pseudochanges, and hybrid variabilities have a significant influence
on the shallow ESP features, which are not suitable for identifying changes. Meanwhile, the
high-level features learned by HVANet in the self-supervised learning manner exhibit larger
inter-class separability and intra-class compactness. Moreover, the self-supervised learning
framework can effectively discover and exploit category knowledge in unlabeled samples
and learn a new high-level feature space, where the margin between the features of change
and unchanged classes is enlarged, indicating that feature classification becomes easier.
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Figure 9. T–SNE visualization of the shallow ESP features (first row) and the learned high-level
features by HVANet after training (second row) on (a) Ottawa dataset, (b) Farmland A dataset and
(c) Farmland B dataset.

4.6. Comparison to Counterpart Methods

We make a comparison to several existing unsupervised SAR CD methods, including
two typical clustering-based methods (PCA-kmeans [17], GaborTLC [18]), and five unsu-
pervised deep learning-based methods (PCANet [38], DDNet [40], CWNN [39], INLPG-
CWNN [20], and SGDNNs [30]).

1. PCA-kmeans [17]: Clustering-based method, where each pixel-pair in bitemporal
images is represented by a feature vector extracted by principal component analysis
(PCA) [65] and then partitioned into changed and unchanged classes, generating the
change map.

2. GaborTLC [18]: Multilevel clustering-based method, which extracts Gabor feature [66]
vectors from log-ratio DI, and then two clustering algorithms are cascaded to partition
the Gabor features into changed and unchanged classes.

3. PCANet [38]: A deep learning-based method under a preclassification scheme. Gabor
wavelet [66] is used to extract shallow features, to which a clustering algorithm is
applied for the generation of pseudolabeled samples; thus, the training of the PCANet
can be performed using the pseudolabeled samples.

4. DDNet [40]: Frequency and spatial domain-based method under a preclassification
scheme, where features of frequency and spatial domains are integrated using two
modules to improve the representation power of learned features.

5. CWNN [39]: Wavelet transformation-based deep learning method, which adds the
wavelet transformation [18,29,36] into the pooling layers to suppress the speckle effect
in deep feature space, thereby improving the performance in SAR image CD.

6. INLPG-CWNN [20]: This method replaces the log-ratio DI in the CWNN method with
the proposed INLPG DI in [48], which considers structural information in computing
DI and speckle noise is effectively suppressed.

7. SGDNNs [30]: Saliency-guided preclassification-based method, which combines the
saliency map and the log-ratio DI into a fused DI, and hierarchical clustering is applied
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to the combined DI for the acquisition of pseudolabeled samples. A DNN is optimized
using the pseudo labeled samples for the CD task.

We implement these methods using their publicly available codes and default settings.
The experimental results on the Ottawa dataset are reported in Table 8. As we can see,

the two traditional methods, PCA-kmeans and GaborTLC, obtain inferior statistical value
results because the handcrafted features cannot well characterize the hybrid variabilities
in SAR images and the typical clustering algorithms lack an adequate ability to fit the
complex SAR data. By contrast, the deep learning-based methods, including the PCANet,
DDNet, CWNN, SGDNNs, and our HVANet, produce better results due to the powerful
feature learning capability from deep models. Particularly, the SGDNNs achieve the best
performance in this dataset, i.e., the largest PCC (98.95%) and Kappa value (95.94%). It is
observed that our HVANet model obtains comparable PCC (98.59%) and Kappa values
(94.64%) with the SGDNNs.

Table 8. Change detection results of each method on Ottawa dataset.

Method FP FN OE PCC Kappa

PCA-kmeans 589 1898 2487 97.55 90.49
GaborTLC 1249 497 1746 98.28 87.63
PCANet 995 853 1848 98.18 93.22
DDNet 622 1186 1808 98.22 93.21
CWNN 1291 434 1725 98.30 93.75

INLPG-CWNN 0 7039 7039 93.07 68.31
SGDNNs 0 1067 1067 98.95 95.94
HVANet 497 934 1431 98.59 94.64

Change detection maps are shown in Figure 10. As shown in Figure 10a,b, the con-
ventional clustering-based methods often confuse unchanged pixels with changed pixels.
Meanwhile, deep learning-based methods better infer and separate the changed and un-
changed classes, as shown in Figure 10c–h. It is observed that SGDNNs outperform other
competing methods, produce the lowest false alarms, and retain more details, as shown in
Figure 10g. Regarding our HVANet, even though some isolated pixels are not well processed
in the result, the visual effect of HVANet is quite comparable with the result of SGDNNs.
Moreover, the results shown in Figure 10 are consistent with those listed in Table 8.

The change maps from different methods and the corresponding statistical values
on the Farmland A dataset are reported in Table 9 and shown in Figure 11, respectively.
According to the introduction in Section 4.1, the Farmland A and Farmland B datasets
seriously suffer from speckle noise, which easily causes poor results. According to the
reported results in Table 9 and Figure 11, the traditional methods, PCA-kmeans and
GaborTLC, show inferior results that contain extensive incorrectly detected isolated regions
and pixels. Similarly, due to the complex scene and hybrid variabilities, the two deep
learning-based methods, i.e., INLPG-CWNN and SGDNNs, encounter high FN values.
However, Figure 11c–e visually exhibit better detection results, demonstrating that the
PCANet, DDNet, and CWNN methods are suitable for this data set. Particularly, the
CWNN returns the best results with the highest PCC (96.60%) and Kappa values (88.23%).
Our proposed HVANet achieves comparable results from the perspective of the statistical
values and visual effect. More importantly, the post-processing operation is adopted in
PCANet [38] to eliminate the isolated regions that are likely to be false alarms, while
the similar operation is unnecessary and not utilized in our method. Besides, according
to the visual results in Figure 11, the change maps inferred by the HVANet are more
complete and have better consistency compared with other change maps. Particularly,
benefiting from the structural information extraction and the scale-resolution awareness of
HVANet, the strip changed regions are detected while the hard-to-classify pixels are well
processed. In summary, for this dataset, the proposed method significantly exceeds most
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unsupervised SAR image CD approaches, including traditional and recently proposed
deep learning-based.

Figure 10. Ground truth and change maps by different methods for the Ottawa dataset. (a) PCA-
kmeans, (b) GaborTLC, (c) PCANet, (d) DDNet, (e) CWNN, (f) INLPG-CWNN, (g) SGDNNs,
(h) HVANet, (i) ground truth.

Table 9. Change detection results of each method on Farmland A dataset.

Method FP FN OE PCC Kappa

PCA-kmeans 4211 3365 7576 89.80 66.40
GaborTLC 1656 2867 4523 93.91 78.69
PCANet 1716 1686 3402 95.42 84.55
DDNet 952 1846 2798 96.23 86.95
CWNN 837 1690 2527 96.60 88.23

INLPG-CWNN 510 2409 2919 96.07 85.96
SGDNNs 862 2894 3756 94.94 81.86
HVANet 891 1864 2755 96.29 87.12

Figure 12 shows the change detection results on the Farmland B dataset. The corre-
sponding evaluation metrics are listed in Table 10. PCA-kmeans and GaborTLC suffer
from high FP values, which indicates that the speckle noise and pseudochanges severely
affect the performance of conventional clustering algorithms. Similar to the results on the
first two datasets, the deep learning-based methods perform better than the conventional
methods on this dataset. It should be noted that our HVANet achieves the best performance
and produces the best change map, which is closer to the ground truth map. Concretely, in
the change map shown in Figure 12h, fewer pixels are incorrectly detected and the details
in changed regions are completely preserved, which demonstrates the effectiveness of the
high-level feature learning in HVANet.
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Figure 11. Ground truth and change maps by different methods for the Farmland A dataset.
(a) PCA-kmeans, (b) GaborTLC, (c) PCANet, (d) DDNet, (e) CWNN, (f) INLPG-CWNN, (g) SGDNNs,
(h) HVANet, (i) ground truth.

Figure 12. Ground truth and change maps by different methods for the Farmland B dataset.
(a) PCA-kmeans, (b) GaborTLC, (c) PCANet, (d) DDNet, (e) CWNN, (f) INLPG-CWNN, (g) SGDNNs,
(h) HVANet, (i) ground truth.
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Table 10. Change detection results of each method on the Farmland B dataset.

Method FP FN OE PCC Kappa

PCA-kmeans 2235 623 2858 96.79 74.78
GaborTLC 748 703 1451 98.37 85.44
PCANet 356 1265 1621 98.54 85.40
DDNet 155 1211 1366 98.47 84.80
CWNN 225 863 1088 98.78 88.37

INLPG-CWNN 7007 22 7029 91.88 54.53
SGDNNs 18 1848 1866 97.90 77.53
HVANet 302 597 899 98.99 90.70

From the experimental results, it can be concluded that the proposed HVANet is
effective for CD on bitemporal SAR images. To further illustrate the superiority of HVANet,
the average values of all the evaluation criteria on three different datasets are calculated,
as listed in Table 11. It is observed that HVANet provides the highest average PCC
(97.96%) and Kappa value (90.82%), which illustrates that HVANet achieves better CD
results and is more robust than the competing methods. That is to say, compared with
the other methods, HVANet can provide relatively stable and credible CD results, which
are meaningful in practical applications that may encounter different scenes and data
distributions. Consequently, as a tradeoff between performance and stability, HVANet is a
suitable and useful model for SAR image CD.

Table 11. The average evaluation criteria of different methods for the three datasets.

Method FP FN OE PCC Kappa

PCA-kmeans 2345 1962 4307 94.71 77.22
GaborTLC 1217 1356 2573 96.85 83.92
PCANet 1022 1268 2290 97.38 87.72
DDNet 577 1414 1991 97.64 88.32
CWNN 784 996 1780 97.89 90.12

INLPG-CWNN 2505 3157 5662 93.67 69.60
SGDNNs 294 1936 2230 97.26 85.11
HVANet 563 1132 1695 97.96 90.82

4.7. Computational Efficiency

In this section, the computational efficiency of different SAR image CD methods is
reported. Among the compared methods, PCA-kmeans and GaborTLC are the traditional
clustering-based methods that can directly perform prediction for the given SAR images
without training. PCANet, DDNet, and CWNN are all deep learning-based unsupervised
methods, where model training is necessary to achieve good CD performance. Particularly,
for the deep learning algorithms, training time and inference time rely strongly on the
hyperparameter setting and running environments. Therefore, this paper uses the default
setting of the compared methods to count the training time and inference time. Table 12
reports the training time and inference time of these methods. As can be seen from Table 12,
the traditional CD methods, i.e., PCA-kmeans and GaborTLC, have a significant time
advantage because there is no training procedure. Despite the training procedure of deep
learning models bringing more computational time, the inference speed is relatively fast
and the total inference time is short. Furthermore, HVANet does not have an advantage
in training time due to its more complex network architecture. Compared with the deep
learning-based methods, i.e., PCANet, DDNet, and CWNN, the proposed HVANet spends
less inference time on the Ottawa dataset and Farmland A dataset, while the inference
time of HVANet on the Farmland B dataset is moderate. Considering the tradeoff between
computational cost and the detection accuracy, HVANet is more suitable for the CD task
for SAR images.
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Table 12. Computational costs of different SAR image CD methods (in seconds).

Method
Ottawa Dataset Farmland A Dataset Farmland B Dataset

Training Time Inference Time Training Time Inference Time Training Time Inference Time

PCA-kmeans - 1.34 - 2.51 - 1.37
GaborTLC - 3.29 - 4.37 - 4.18
PCANet 621.92 300.65 501.93 541.17 555.48 303.72
DDNet 596.85 17.69 618.41 18.54 454.89 17.21
CWNN 547.23 15.81 549.37 15.62 543.56 12.49
HVANet 327.76 9.41 710.74 12.28 565.23 16.45

5. Discussion

The experimental results are provided in Section 4 and illustrate that the proposed
label-free method achieves better and more robust CD performance for SAR images than
the competing methods. The reason why the proposed method surpasses the compared
state-of-the-art methods resides in three aspects. One is that, inspired by the human
perception mechanism that processes local and global information independently, we
construct the shallow feature by combining the local patches and context-rich MS-MR
patches, displacing the traditional single-scale processing unit. The context information
and diverse scale and resolution information contained in the constructed ESP features
are conducive to improving the description for change information and making it more
differentiated from the speckle and pseudochanges. The second reason lies in the two-
stream feature extraction in HVANet, which combines the local spatial feature extraction
and MS-MR information encoding into one framework, improving the representation
power of the learned high-level features. Particularly, the channel attention mechanism
is adopted in the scale-resolution stream to effectively aggregate the key multiscale clues
and multiresolution clues for better feature representation. Third, the self-supervision
layer enables the feature learning and classification to be automatic, end-to-end, and
label-free. Despite real labels and the corresponding class knowledge being unavailable,
the performance of our HVANet matches or exceeds that of the compared state-of-the-
art methods.

From the ablation experiments in Section 4.3, we illustrate the contribution of each
component in HVANet and the class rebalance strategy. In Table 2, the results show that
the Siamese structure is naturally more suitable for CD tasks due to the separate processing
of the SAR image patch pair. As in Table 3, the results show that the scale-resolution stream
really extracts semantically distinguishable features that can greatly enhance the description
of change information, thus improving the detection accuracy. For the hybrid variations of
sizes, shapes, and textures in changed regions, the scale-resolution can better model them
and intensify the robustness of the CD system. The main reason is that not only can the deep
architecture process the complex SAR data in a nonlinear way, but also local features and
contextual semantic features can be extracted in the two streams of HVANet to contribute
to the CD tasks. Meanwhile, the class imbalance in SAR data also poses challenges for
CD tasks. For this, we propose the class rebalance strategy to redistribute the training
samples to achieve a balanced class distribution in the training set. The results in Table 4
demonstrate that the proposed hierarchal clustering-based strategy can provide better
results than ordinary k-means clustering. Moreover, the deep learning-based competing
methods, including PCANet, DDNet, CWNN, INLPG-CWNN, and SGDNNs, neglect this
problem, where the distribution of the constructed training set is severely imbalanced.
According to the results in Tables 8–11 and Figures 10–12, the detection performance of
these methods is unstable, which more or less reflects the negative impact of the class
imbalance on the model performance.

According to the experimental results in Section 4.6, we can conclude that the proposed
method matches or even exceeds the competing methods from the perspectives of perfor-
mance, generalization, and robustness. It can be seen from Figures 10–12 that the results of
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the proposed methods are closer to the ground truth map, with fewer false positive and
false negative pixels. The same conclusion can also be made from the evaluation criteria
provided in Tables 8–11. Accordingly, all these results confirm that both local structure
information and the context-rich MS-MR information help to jointly retrieve more details
and suppress speckle and pseudochanges, meaning that the shallow feature extraction and
the corresponding two-stream network architecture are obviously suitable for the CD tasks
in SAR imagery.

6. Conclusions

In this paper, considering the hybrid variabilities in bitemporal SAR images, which
significantly complicate the CD task, we formulated a novel self-supervised framework
to learn a semantically powerful high-level feature for label-free SAR image CD. The pro-
posed HVANet contains two separate streams in the feature extraction stage, one of which
takes advantage of the Siamese network architecture to extract local structural features
from the bitemporal SAR images and the other utilizes the carefully devised SRE module
to capture the informative scale and resolution features to enhance the representation
power further. More importantly, the self-supervision layer is introduced to aggregate the
above-mentioned two types of features to reflect change information effectively and com-
prehensively, and it could also unify the two streams into one framework for end-to-end
self-supervised learning. The experimental results based on the Ottawa dataset, Farmland
A dataset, and Farmland B dataset demonstrate that the proposed HVANet outperforms
some conventional CD methods and other state-of-the-art deep learning-based CD methods,
exhibiting its superiority.

Even though the proposed CD method provides a significant performance improve-
ment, how to learn sufficiently accurate category information from unlabeled data in an
unsupervised manner is still a challenging problem in the field of SAR image CD. In the
future, we will further focus on unsupervised information extraction and classification
with novel deep learning technologies.
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