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Abstract: Given the great importance of lakes in Earth’s environment and human life, continuous
water quality (WQ) monitoring within the frame of the Water Framework Directive (WFD) is the
most crucial aspect for lake management. In this study, Earth Observation (EO) data from Landsat
7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) sensors
have been combined with co-orbital in situ measurements from 50 lakes located in Greece with
the main objective of delivering robust WQ assessment models. Correlation analysis among in
situ co-orbital WQ data (Chlorophylla, Secchi depths, Total phosphorus-TP-) contributed to distin-
guishing their inter-relationships and improving the WQ models’ accuracy. Subsequently, stepwise
multiple regression analysis (MLR) of the available TP and Secchi depth datasets was implemented
to explore the potential to establish optimal quantitative models regardless of lake characteristics.
Then, further MLR analysis concerning whether the lakes are natural or artificial was conducted
with the basic aim of generating different remote sensing derived models for different types of lakes,
while their combination was further utilized to assess their trophic status. Correlation matrix results
showed a high and positive relationship between TP and Chlorophyll-a (0.85), whereas high negative
relationships were found between Secchi depth with TP (−0.84) and Chlorophyll-a (−0.83). MLRs
among Landsat data and Secchi depths resulted in 3 optimal models concerning the assessment
of Secchi depth of all lakes (Secchigeneral; R = 0.78; RMSE = 0.24 m), natural (Secchinatural; R = 0.95;
RMSE = 0.14 m) and artificial (Secchiartificial; R = 0.62; RMSE = 0.1 m), with reliable accuracy. Study
findings showed that TP-related MLR analyses failed to deliver a statistically acceptable model for the
reservoirs; nevertheless, they delivered a robust TPgeneral (R = 0.71; RMSE = 1.41 mg/L) and TPnatural

model (R = 0.93; RMSE = 1.43 mg/L). Subsequently, trophic status classification was conducted
herein, calculating Carlson’s Trophic State Index (TSI) initially throughout all lakes and then oriented
toward natural-only and artificial-only lakes. Those three types of TSI (general, natural, artificial)
were calculated based on previously published satellite-derived Chlorophyll-a (Chl-a) assessment
models and the hereby specially designed WQ models (Secchi depth, TP). The higher deviation of
satellite-derived TSI values in relation to in situ ones was detected in reservoirs and shallower lakes
(mean depth < 5 m), indicating noticeable divergences among natural and artificial lakes. All in all,
the study findings provide important support toward the perpetual WQ monitoring and trophic
status prediction of Greek lakes and, by extension, their sustainable management, particularly in
cases when ground truth data is limited.
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1. Introduction

Surface freshwater is one of the most essential resources for the terrestrial ecosystem
and the predominant source of drinking water on Earth [1]. Over the past few decades,
climate change and human activities have deteriorated water quality (WQ) [2]. Some
factors responsible for it include rapid development, as well as changes in land use/land
cover (LULC) patterns, industrialization, and urbanization [3]. The close proximity of water
reservoirs to settlements may reduce the price of water to consumers. However, it may also
prevent the sustainable management of water resources against deteriorating activities and
inappropriate disposal of urban sewage generated within drainage basins [4].

Deterioration of lake systems’ WQ has resulted in many lake eutrophication problems;
therefore, environmental scientists have tried to monitor, manage, and limit it for more
than two decades [5]. WQ monitoring is the most crucial aspect for lake management [6]
and particularly includes the monitoring of certain WQ properties through in situ sampling
and field work. The aforementioned WQ properties include Chl-a concentration, total
suspended matter (TSM), Secchi depth (SD), and nutrient concentrations [7].

However, conventional WQ measurements and in situ sampling are laborious, costly
and time consuming [3]. Moreover, those techniques are characterized by limited ability
to provide a synoptic spatiotemporal view of WQ [8,9] since the condition of an entire
water body cannot be fully represented. Furthermore, patchy distribution of nutrients,
algal blooms, and TSM define those methods as unsuitable for monitoring a large number
of water bodies at a regional or national scale [10,11].

Recent developments in geoinformation technologies and in particular of Remote
Sensing (RS) and Geographical Information Systems (GIS), concerning pollution loads and
WQ, offer a number of advantages that practically address the limitations of traditional
water sampling [12–14]. Among the key advantages of RS is the ability to cover large
areas [15] and to collect spectral information at variable spatial scales and at dramatically
lower cost compared to field measurements [16].

According to [17], there are three well-documented methodologies to estimate the
concentration of WQ elements in inland waters: empirical, semi-empirical, and physical or
analytical methodology. Empirical methods attempt to establish relationships between in
situ water quality measurements and water leaving radiance measured by the sensor with-
out the precondition of prior understanding of the complex water and light interactions.
Those relationships imply effective data improvement but limited transferability [18]).
Moreover, empirical methods incorporate machine learning techniques, which are differen-
tiated by their robust ability to handle complicated non-linear relationships, typical of WQ
remote sensing data [19,20]. Machine learning algorithms include artificial neural networks
(ANN), genetic algorithms (GA), support vector machines (SVM), random forest regression
trees, and empirical orthogonal functions [20]. On the other hand, through semi-empirical
techniques, spectral and physical knowledge are combined and then correlated to the in
situ concentrations. Regarding physical or analytical approaches, the acquisition of certain
biogeochemical parameter values (e.g., Chl-a, CDOM) is required, as well as inherent and
apparent optical properties, and are based on radiative transfer within the water column.
Then, the in situ concentrations are assessed by modeling the reflectance of surface water.
Although analytical methods, including fuzzy logic and Principal Component Analysis
(PCA), have already been extensively used, empirical and semi-empirical predicting models
are still widely utilized [21]. Analytical methods’ complexity in terms of their theory and
calculation difficulties [21] and the non-availability of required detailed spectral informa-
tion of the optically active water constituents (optical properties, radiometric quantities)
have contributed to the maintenance and development of empirical models. This trend is
further observed especially in cases where machine learning models are utilized, as most
of them reduce overall error and maximize model fit [20]. However, it should be noted that
empirical algorithms are more specific to certain water types, regional or optical [22].

The classification of waters in Case 1 (oceanic) and Case 2 (coastal regions, rivers, and
lakes, refined by [23], is characterized by great importance when remote sensing techniques
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are utilized to monitor their WQ. The distinction between the two cases has some significant
effects on the interpretation and modeling of optical data. In particular, according to this
classification scheme, the optical properties of Case 1 waters are determined by phyto-
plankton and co-varying substances, while Chl-a is considered a proxy of phytoplankton
concentration. This assumption has facilitated the implementation of large-scale optical
models and the development of Chl-a predicting algorithms for Case 1 waters. On the
other hand, single variable models should be abandoned when Case 2 waters should be
studied. It is, on the whole, acknowledged that Case 2 waters are more complex than Case 1
concerning their composition and optical properties. Monitoring the WQ of Case 2 waters
is a more sophisticated task since phytoplankton, suspended material, yellow substances,
and perhaps bottom reflectance vary independently of each other. The main difficulty lies
in the fact that the alterations in optical signal and the concentrations of the dissolved
constituents are often so small that they hinder the ability to extract reliable information
or the optical signal may be affected in a similar way by more than one substance, which
results in an inability to discriminate the different materials [21]. Moreover, of principal
value is the choice of the appropriate wavelengths, as well as their number in a Case 2
adopted algorithm. Hence, given the difficulty that WQ monitoring of Case 2 waters
constitutes a multi-variable, non-linear problem, it is more realistic to establish a series of
algorithms rather than a single all-purpose one. In this way, more than one algorithm will
attempt to capture and solve the problem for all variables and over several and different
ranges of concentrations [24].

In parallel, the Case 1/Case 2 classification can substantially improve remote sensing
products when associated with individual optical water types (OWTs). In particular, coastal
regions and inland waters are characterized by such optical diversity that any further
information about their variability in IOPs and biogeochemical significance would be
particularly valuable. Some OWTs can be hypereutrophic waters, turbid waters with high
organic content, sediment-laden waters, CDOM-rich waters, or even very clear blue waters.
Several hierarchical, partitional, and hybrid clustering techniques have been utilized to
further discriminate distinct OWTs within and between Case 1 and Case 2 waters [25]. After
all, a reliable OWT classification optimizes the selection of the finest constituent algorithms
when simpler approaches cannot yield reliable results.

Inland waters, and especially lakes, are small water bodies that are not detected by
current ocean color satellites, and even though this lack prevents the monitoring and
estimation of their WQ components, it has been replenished by the use of Landsat sensors.
A recent review of state-of-the-art RS-based approaches by [21] underpins the use of
Landsat sensors, TM (Thematic Mapper), MSS (Multi-Spectral Scanner), ETM (Enhanced
Thematic Mapper), and OLI (Operational Land Imager) as fairly successful choices to assess
the important WQ parameters, including Chl-a, SDD, TP, and trophic status [4,26–31].

RS has been widely demonstrated as an effective solution for detecting the relationship
between algae concentration and corresponding nutrients [32]. Nitrogen (N) and phospho-
rus (P) are vital micronutrients for algae, while P (existing either in a particulate or dissolved
phase) is the key limiting nutrient responsible for eutrophication in most lakes [33]. In
general, special attention should be paid depending on which nutrient is growth limiting,
as in one water body the correlation with Chl-a might be with N, while in a different water
body the correlation might be with P [19]. Total phosphorus (TP) estimation via RS has
been explored due to its high correlation with optically active constituents [34–36] since it
cannot be measured directly using optical RS instruments. The chlorophyll-a (Chl-a) and TP
relationship has been investigated in individual lakes [37,38], and it is well documented to
be accompanied by a strong and positive correlation among lakes [39,40]. The authors of [9]
performed routine WQ monitoring on the slightly-polluted Guanting Reservoir in China
using Landsat-5 TM and retrieved WQ data with eight variables, namely algae, turbidity,
concentrations of chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen
(NH3–N), nitrate nitrogen (NO3–N), total phosphorus (TP), and dissolved phosphorus (DP).
Their results indicated a statistically significant correlation (10–30% mean relative error)
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among all estimated parameters and reflectance regression algorithms. Landsat-5 TM data
was also used by [41], who predicted TP among other water quality components of different
sources across Alberta and managed to classify lakes into four trophic states indicating
low to very high productivity. In another study, [42] established both a regression model
and an empirical neural network to simulate the relationship between TP and Landsat TM
radiances for Chagan Lake, China. As TP is highly correlated to Chl-a concentration, and
TSM usually reflects TP loading, TP is also closely related to Secchi depth (SD) with an
exponential equation according to Carlson’s findings [43]. Based on the same rationale, [44]
estimated TP empirically through associated Chl-a, TSM, and Secchi depth across three
reservoirs in Indiana, US, with R2 values between in situ and spectral data ranging from
0.55 to 0.72.

Water clarity, commonly reflected by SD, is reduced by the increased presence of
suspended sediment, organic matter, and zooplankton [43]. The stimulating production of
algae in a lake usually originates from increased nutrients, in particular, phosphorus [40].
As the algae and suspended inorganic matter increase in a lake, the depth to which light
can penetrate [45] is reduced. Therefore, SD is often used as a trophic state indicator [43].
In general, there are two methodologies followed to retrieve SDT based on remote sensing
data. Empirical approach estimating SD through regression analysis and semi-analytical
approach retrieving SD based on an underwater visibility theory [46]. Regarding empirical
models, reflectance at the red spectrum has been almost globally used to retrieve water
clarity [47–51] since increased brightness is accompanied by decreased water clarity [52].
Moreover, further studies have also documented the usefulness of spectral response of the
blue, green, and near-infrared spectral bands in combination with in situ measurements
of SD and Chl-a concentrations in predicting water clarity for inland lakes [45,53]. It
should also be noted that semi-analytical methods are superior to empirical ones mainly
concerning the reliability of results and the fact that no in situ data are required afterwards
for recalibrating the retrieval algorithm. On the other hand, those approaches require
the utilization of a spectroradiometer and the collection of in situ-measured Rrs spectra
including the radiance of skylight, radiance from a standard gray board, and the total
upwelling radiance from the water [46].

Since water clarity has long been proven to interact with nutrient availability and
Chl-a concentrations within lakes [43,54], remote sensing studies frequently use it to assess
overall lake trophic status (oligotrophic, mesotrophic, or eutrophic) [55,56]. WQ monitoring
programs (such as WFD) have been implemented worldwide to acquire large datasets of
several WQ parameters, while several methods (such as cluster and discriminant analysis)
have been efficiently utilized to manage those complex data and interpret the underlying
patterns of trophic status. However, these methods need continuous in situ measurements,
while the classical and most widely used method to characterize a lake’s trophic status
is Carlson’s Trophic State Index (TSI) [43]. This approach includes equations employing
Secchi depth, Chl-a, and P measurements [57].

The hereby adopted methodological scheme includes the implementation of stepwise
multiple regression (MLR) analyses among in situ measurements and satellite data. In situ
data concern Secchi depths and TP concentrations along 50 lakes, included in the National
Lake Monitoring of Greece (WFD), and since the majority of those data were recorded
during 2013–2015, images of sensors Landsat 7 ETM+ and Landsat 8 were the exclusive
choice for the implementation of this research. According to a previous study conducted by
the authors [31], a principal component analysis (PCA) indicated that the variance of Chl-a
concentrations of the same lakes was affected by whether the lakes were natural or artificial,
while the rest of the tested parameters were the climatic type, typology, and the sampling
season. Hence, based on those PCA’s results, hereby MLR analyses concerned: (a) all in
situ measurements of TP and Secchi depth during 2015–2016 and 2013–2016, respectively,
and (b) in situ TP and Secchi depth datasets of the same years, including natural-only
and artificial-only lakes. Correlation analyses were additionally conducted to explore and
detect the existing interrelationships among TP, Chl-a concentrations, and SD of monitored
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lakes and improve the effectiveness of the WQ assessment models by indicating further
significant predictors. Subsequently, Chl-a regression models developed by [31], and hereby
established TP and Secchi depth’s models were utilized to calculate the water trophic index
of the studied lakes.

In purview of the above and taking advantage of the large in situ dataset derived from
the application of National Lake Monitoring in Greece (WFD), the present study aims to:
(1) explore the complicated relationships among TP, Chl-a concentrations, and Secchi depth
measurements throughout 50 lakes, substantially representing Case 2 waters, (2) generate
accurate quantitative TP and Secchi depth models by incorporating satellite images with
concurrent in situ measurements, and (3) derive the Carlson Trophic Index for assessing
water trophic state spatially over all monitored waterbodies.

2. Study Area

The study area includes 50 natural and artificial lakes (Figure 1; Table 1). These
waterbodies comprise the National Monitoring Network of Waters in Greece, which is
implemented by the Goulandris Natural History Museum, Greek Biotope/Wetland Centre
(EKBY). More information about the general characteristics of the monitored lakes can
be found in the study conducted by [31], or more detailed data can be retrieved from the
EKBY’s site (Goulandris Natural History Museum, Greek Biotope/Wetland Centre; http://
biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731; accessed date 5 February 2020).

Table 1. Main characteristics of the lakes included in the National Lake Network Monitoring in
Greece (WFD) [31,58].

No
National

Name
Station

Surface
(km2)

(N)atural/
(A)rtificial

Mean
Depth (m) No

National
Name

Station

Surface
(km2)

(N)atural/
(A)rtificial

Mean
Depth (m)

1 Lake Ladona - A - 28 Lake Petron 11.91 N 3.1

2 Lake Pineiou 19.64 A 15.1 29 Lake Zazari 2.98 N 3.95

3 Lake
Stymfalia - N 1.31 30 Lake

Cheimaditida 9.82 N 1.01

4 Lake Feneou 0.47 A 10.5 31 Lake
Kastorias 30.87 N 3.7

5 Lake
Kremaston 68.43 A 47.2 32 Lake Sfikias 3.96 A 23.2

6 Lake
Kastrakiou 25.58 A 33.2 33 Lake

Asomaton 2.46 A 20.8

7 Lake Stratou 7.02 A 9.6 34 Lake
Polyfytou 63.49 A 22.4

8 Lake
Tavropou 21.46 A 15.0 35 Lake Mikri

Prespa A - N 3.95

9 Lake
Lysimacheia 10.87 N 3.5 36 Lake Mikri

Prespa B N -

10 Lake Ozeros 10.57 N 3.8 37 Lake Megali
Prespa A - N 17

11 Lake
Trichonida 93.53 N 29.6 38 Lake Megali

Prespa B N -

http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
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Table 1. Cont.

No
National

Name
Station

Surface
(km2)

(N)atural/
(A)rtificial

Mean
Depth (m) No

National
Name

Station

Surface
(km2)

(N)atural/
(A)rtificial

Mean
Depth (m)

12 Lake
Amvrakia 13.14 N 23.4 39 Lake Doirani

1 33.25 N 4.6

13 Lake
Voulkaria 7.38 N 0.96 40 Lake Doirani

2 N -

14 Lake Saltini - N - 41 Lake
Pikrolimni 6.30 N 1.2

15 Lake Mornou 17.50 A 38.5 42 Lake
Koroneia - N 3.8

16 Lake Evinou 2.68 A 31.5 43 Lake Volvi 70.36 N 12.3

17 Lake Pigon
Aoou 11.44 A 20.8 44 Lake Kerkini - A 2.19

18 Lake
Pournariou 19.28 A 29.8 45 Lake

Leukogeion 0.83 A 4.05

19 Lake
Pamvotida 21.82 N 5.3 46 Lake

Ismarida - N 0.9

20 Lake
Pournariou II 0.56 A 11.7 47 Lake

Platanovrysis 2.99 A 26.4

21 Lake
Marathona 2.17 A 15.8 48 Lake

Thisavrou 13.43 A 38.4

22 Lake Dystos - N - 49 Lake Gratinis 0.80 A 14.2

23 Lake Yliki 19.96 N 20.1 50 Lake N.
Adrianis - A -

24 Lake
Paralimni 9.96 N 2.99 51 Lake Kourna - N 15

25 Lake Karlas - A 0.9 52 Lake
Bramianou - A 10.1

26 Lake
Smokovou - A - 53 Lake

Faneromenis 0.33 A 9.98

27 Lake
Vegoritida 47.67 N 26.52
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Figure 1. National Lake Network Monitoring in Greece (numbers of sampling stations coincide with
the numbers presented in Table 1).

3. Materials and Methods
3.1. Data Acquisition
3.1.1. In Situ Data

Data used in this study were collected in the framework of the Greek Water Moni-
toring Network for lakes (WFD). All data is freely accessible and was downloaded from
the EKBY’s site (Goulandris Natural History Museum, Greek Biotope/Wetland Centre
(http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731; in Greek; accessed date
5 February 2020). The network incorporates 50 lakes, natural and reservoirs. At the majority
of the lakes, only one sampling station is detected, except for trans-boundary lakes (Megali
Prespa, Mikri Prespa, and Doirani), where two sampling stations are located (Table 1;
Figure 1). From the total of 53 sampling sites, there are 27 surveillance sites and 26 opera-
tional sites. Surveillance stations operate in water bodies of good status, for a certain period
of time (one year), while operational stations are monitored on a monthly or seasonal basis

http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
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in water bodies that fail to achieve good status [31]. The selected data used herein include
the Secchi depth measurements on several dates from 2013 to 2018 and TP concentrations
from 2015 to 2018 throughout the monitored lake stations. Secchi depth measurements
were conducted with a Secchi disk, measuring the transparency of water, while in situ Chl-a
data was already available in the framework of our last study [31].

Particularly, Chl-a concentrations were measured from 2013 to 2018 and determined
spectrophotometrically (Method 10200 H [59]). TP concentrations include all inorganic,
organic, and dissolved forms of phosphorus, and the available dataset incorporates mea-
surements analyzed during the years 2015, 2016, and 2018. During 2013 and 2014 (i.e., since
the beginning of the WFD), analysis of orthophosphates resulted in low concentrations,
lower than the quantitation limit (LOQ) of the respective adopted method; hence, no mea-
surement was available during this period. Therefore, the following years (i.e., 2015, 2016,
2018) analyses of orthophosphates were replaced by total phosphorus, which resulted in
the acquisition of actual measurements during this period.

Further investigation of in situ data included a seasonal statistical analysis by incor-
porating dates of the same season of all lakes during the monitored years. The seasons
were determined as: summer (June, July, and August), autumn (September, October, and
November), winter (December, January, and February), and spring (March, April, and May).
More information about the sampling periods, sampling, and analysis methodologies can
also be found on the EKVY’ site.

Exploratory statistics among the Secchi depth measurements of 2013, 2014, 2015, 2016,
and 2018 and TP concentrations of 2015, 2016, and 2018 were calculated incorporating
the estimation of mean, median, standard deviation, and min-max. Skewness, Kurtosis,
and Kolmogorov–Smirnov and Shapiro–Wilk tests were conducted to explore the data
normality. Furthermore, SPSS Statistical Package (v. 24.0) was used to group and categorize
the under-studied WQ parameters based on the sampling season, year, and whether the
lakes are natural or artificial. Moreover, a correlation matrix among simultaneous in situ
measurements of TP, Chl-a, and Secchi depths was conducted to explore their existent
interrelationships and further contribute to indicating the most significant predictors.

Exploratory Statistical Analyses

Secchi depths throughout the monitored Greek lakes were measured during the years
2013, 2014, 2015, 2016, and 2018 (Table 2). Minimum values ranged from 0.03 (2014, 2015)
to 0.2 m (2013), while maximum values ranged from 11 (2015) to 15.5 m (2018). Mean
values of Secchi depth are similar during all years and equal to around 3.2 m. Secchi depths
are higher in artificial than in natural lakes, while the highest values are observed during
summer months for both natural and artificial lakes (Figure 2). The temporal distribution
of Secchi depths was categorized on the criterion of whether the lakes were artificial or
natural; values were also higher in artificial lakes during all sampling years, with some
exceptions (e.g., Trichonida Lake; Figure 2).

Table 2. Summary of descriptive statistics of in situ Secchi depth values during years 2013–2016
and 2018.

Secchi Depth (m) in Year: N Min Max Mean Std. Deviation Skewness Kurtosis

2013 134 0.20 14.0 3.1 2.8 1.5 3.3

2014 125 0.030 14.0 3.8 3.1 0.9 0.2

2015 140 0.030 11.0 3.2 2.6 0.8 −0.2

2016 64 0.050 15.0 3.03 3.2 1.7 3.1

2018 314 0.100 15.5 3.04 2.7 1.4 2.4

all years 777 0.03 15.5 3.2 2.8 1.3 1.7



Remote Sens. 2022, 14, 739 9 of 41

Figure 2. Boxplots presenting basic statistics of Secchi depths (a) grouped by the lake’s nature and
categorized by the sampling season, and (b) grouped by sampling year and categorized by the
lake’s nature.

Total measurements of TP concentrations are 370, including the years 2015, 2016, and
2018 (Table 3). Minimum TP values are similar during all years (around 0.01 mg/L), while
maximum values increase during these years. The same tendency is reflected based on
average values, with the mean TP value of 2018 being double compared to the respective
value of 2016. Higher TP concentrations are detected in natural lakes, particularly during
autumn sampling months, while water sampling analysis in summer revealed the greatest
TP concentrations in artificial lakes (Figure 3). As far as the yearly distribution of TP con-
centrations in Greek lakes is concerned, it is confirmed that natural lakes are more affected
by TP pollution sources than the artificial ones with an increasing tendency throughout the
years (Figure 3).

Table 3. Summary of descriptive statistics of in situ TP concentrations during years 20152016 and 2018.

Total Phosphorus (mg/L)
in Year N Min Max Mean Std. Deviation Skewness Kurtosis

2015 169 0.01 4.2 0.14 0.56 6.7 45.4

2016 69 0.02 5.1 0.23 0.8 5.5 29.9

2018 132 0.02 13.3 0.48 1.8 4.9 25.98

all years 370 0.01 13.3 0.28 1.2 6.9 54.2
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Figure 3. Boxplots presenting basic statistics of TP concentrations (a) grouped by the lake’s nature
and categorized by the sampling season, and (b) grouped by sampling year and categorized by the
lake’s nature (top and bottom panels illustrate the range of in situ TP measurements in a logarithmic
scale divided in 0–0.8 mg/L and 1–15 mg/L extents, respectively).

3.1.2. EO Data Acquisition and Pre-Processing

Landsat 8 OLI and Landsat 7 ETM+ images used herein covered the 50 monitored
lakes throughout Greece. These data had been previously acquired in the framework of our
previous study [31]. In particular, a 2013–2016 and 2018 time series of 296 Landsat images—
with a mean time window between the satellite overpass and the in situ measurements
equal to 4 days—were downloaded from the USGS (United States Geological Survey)
Data Centre (https://earthexplorer.usgs.gov/ (accepted date 5 February 2020)) for Chl-a
estimations. More specifically, total in situ Chl-a data include 702 measurements, and the
time window between sampling and satellite dates ranges from −21 to 17 days. Moreover,
since not all monitored WQ parameters were sampled on simultaneous dates, Secchi depth
data were aligned with a total of 304 images (2013–2018) and the TP concentrations with
122 images (2015–2018), including some newly downloaded extra images. Secchi depth
measurements are equal to 578, and the time window difference ranges between −16 to
19 days with a mean time gap of approximately 4 days. As far as the TP measurements
are concerned, 268 total values were recorded during the years 2015, 2016, and 2018,
accompanied by satellite images with overpass dates ranging from 21 to 14 days before and
after the field work, respectively and the mean time gap is equal to 4 days. Moreover, it
should be noted that the majority of the satellite images have been used for the monitoring
of more than one of the studied WQ parameters, and the statistical analysis eventually
included those that met certain criteria (e.g., images that portrayed lakes with mean depth
greater than 5 m; images of dates coincident with sampling dates of all the three parameters-

https://earthexplorer.usgs.gov/
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Chl-a; TP; Secchi depth for the TSI calculation, etc.). Concerning the great time window
between sampling and satellite dates in some cases, it should be noted that only a few
images are temporally far from the field work’s date. It has been proven that a time-window
up to ±7 days yields reasonable results and is not considered a problem when lake water
quality, especially in non-tidal systems, is monitored [60–62]. Therefore, concerning the
Chl-a training dataset (general model), only 15.4% of records surpassed the ±7 days’ time
gap. The respective percentages for Secchi depth and TP training datasets are 13.2% and
15%, while 50% and 71% of those records, respectively, constitute artificial lakes that have
been separately elaborated in a restricted time gap of±5 days. The percentages are similarly
low concerning the development of WQ models for natural lakes. The Chl-a natural model
was developed by employing 12 out of 85 records (14.1%) with a date difference greater
than ±7 days from the satellite overpass, while the Secchi natural model included 5 out of
65 (7.7%) records characterized by the same time window. As far as the TP natural model
is concerned, only 2 out of 29 measurements have been aligned with Images acquired at
dates greater than ±7 days from the sampling date. Given the low percentage rates of
those records utilized in the development of WQ models, it is assumed that their effect is
insignificant on the models’ performance and prediction accuracy.

The pre-processing steps that were adopted herein are identical to the ones described
in our earlier study [31]. More particularly, semi-automatic classification plugin (SCP) of
the free and open-source cross-platform desktop geographic information system Q-GIS
v. 3.6.3-Noosa was employed to perform: (a) conversion of images from digital numbers
(DN) to top-of-atmosphere reflectance (TOA), (b) atmospheric correction by using the DOS1
method (applied to all bands except for thermal ones), and (c) the creation of a band stack
set for each image. The band stack set of L7 ETM+ includes bands B1 (blue), B2 (green), B3
(red), B4 (NIR), B5 (SWIR1), and B7 (SWIR2), while L8 incorporates bands B2 (blue), B3
(green), B4 (red), B5 (NIR), B6 (SWIR1), and B7 (SWIR2).

Since 2003, sensor ETM+ has acquired and delivered data with gaps caused by Scan
Line Corrector (SLC) failure. In order to retrieve the data that concurred with those line
gaps, several calculations were conducted by employing focal statistics through ArcMap.
Those line gaps are approximately 205 m in length on the vertical axis, and in combination
with the spatial resolution of the Landsat sensor (30 m), the mean value within a circle of
7 cells was determined among several trials as the most optimal neighborhood to include
the coincident sampling station everywhere within this line. Through the focal statistics
tool, an output raster (focal raster) for each input one (satellite band) was calculated, and
then the Con and IsNull functions were applied (Equation (1)) in order only the no-values
cells to be replaced while the rest preserved their values.

Con (IsNull(Satellite band with gaps), 〈focalRaster〉, 〈Satellite band with gaps〉) (1)

The implementation of the DOS1 atmospheric correction method was not validated in
order to ensure that atmosphere biases were completely removed. However, this method
is widely used by the EO community [63,64] and proved useful when no atmospheric
measurements are available and correcting historical imagery. In the framework of the effort
of [65] to develop WQ empirical algorithms across certain Spanish lakes and ponds, they
evaluated three different atmospheric correction methods (DOS; ATCOR3; MODTRAN5).
Those methods were applied to Landsat 7 ETM+ bands, and the results indicated that the
DOS method performed better than the others, reporting the lowest errors.

Moreover, to further ensure the use of only cloud-free pixels over the sampled lakes,
the Cloud Masking QGIS plugin (https://smbyc.github.io/CloudMasking; accessed date
10 March 2020) was used. By using this tool, clouds, cloud shadow, cirrus, aerosols, and
ice/snow were masked for all Landsat images using the combination of the Fmask and
Blue Band processes.

https://smbyc.github.io/CloudMasking
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3.2. Statistical Approach
3.2.1. Establishment of Relationships between Landsat Data, Secchi Depths, and TP

The hereby available in situ data include Secchi depth and TP lake measurements,
recorded in the framework of the WFD application in Greece during the years 2013–2016
and 2018. Especially in situ data of 2018 was used as an independent validation dataset
for both of the WQ elements. Visible (blue, green, and red), NIR, and SWIR spectral
bands, combined with their ratios, additions, subtractions, and ln- and log-transformations
were employed in multiple combinations, including transformations from the respective
scientific literature (Table 4) with the basic aim of exploring and developing statistically
significant relationships between them and in situ Secchi depths and TP measurements
of coincident dates. Figure 4 illustrates the discrete methodological steps followed herein
regarding the two in situ datasets indicated by numbers (1) and (2) for Secchi depths and
TP values, respectively.

Figure 4. Flow diagram describing the methodology followed regarding the WQ models’ establish-
ment and validation.

As far as the Secchi depth dataset (1) is concerned, a correlation analysis between
several band transformations and Secchi depths’ measurements, as well as log, ln, and
SQRT Secchi depths, was conducted, including previously published band combinations
(Table 4). In those independent variables, in situ Chl-a was also included, as this parameter
has been previously proved to affect lake water clarity [44]. Correlation analysis results
and the selection of certain significant predictors of Secchi depth were determined based
on specific rules. Setting initially a threshold value of the significant correlations at the
0.01 level and a Spearman value equal to or higher than ±0.4 (which indicates a moderate
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relationship, according to [66]) resulted in the distinction of the initial wide group of
Secchi depth’s predictors. Furthermore, those predictors were also enriched and confirmed
based on the results of the predictor importance chart (IBM SPSS software Statistics v.
23.0, Armonk, NY, USA). This chart indicates the relative importance of each predictor
in estimating a model, while the predictor importance relates to the importance of each
predictor in making a prediction, not whether or not the prediction is accurate. Additional
criteria including multi-collinearity and values of tolerance factor, variance inflation factor
(VIF), and R2 were also applied to explore statistical performance and residuals and resulted
in a subset of the initial predictors. According to [31], a factor analysis was implemented
to obtain an indication of underlying common factors (components) that explain the
interrelationships among Chl-a concentrations, lake nature (natural/artificial), sampling
season, and climatic type. The rotated component matrix results indicated that the lake
characteristics (natural/artificial), followed by the sampling season, were the variables that
mostly affect the variance of Chl-a concentrations in the same—as in this work—studied
lakes during the same period (2013–2018). In the effort of the authors [31] to further enhance
the efficiency of Chl-a regression models, a confined time window of ±5 days between
field measurements and satellite overpass was used, in cases with statistically significant
results. Those results were indeed further improved when artificial lakes were the case,
regardless of the sampling season. Hence, since a) the herein research concerns the same
lakes being monitored during the same period and b) the ultimate goal is the assessment of
their trophic status, it was decided to conduct MLR analyses based on the same rationale
as in [31]. Consequently, the two basic scenarios employed concern: Case A) MLR analysis
among attributes originating from a randomly developed training dataset. Total Secchi
depth measurements were divided into training and validation datasets, including 80%
(228 out of 286 Secchi depth measurements) and 20% of the entire dataset, respectively.
This analysis constitutes an effort to develop a Secchi depth quantitative model for lakes
when no information is available (e.g., regardless of the sampling season, natural/artificial
etc.), and Case B) MLR analysis focused separately on attributes concerning natural-only
or artificial-only lakes, with the latter being accompanied by a time window of ±5 days
between sampling and satellite date, as proposed by [31]. Furthermore, the addition of
Chl-a values in the possible Secchi depth’s predictors further shortened the initial total in
situ dataset, as only the records of dates characterized by simultaneous sampling of Secchi
depths and Chl-a were included in the analysis.

The same methodology was also adopted in the TP concentrations (2 in Figure 4). The
in situ dataset of TP is narrower than the one concerning Secchi depths, as it includes only
values sampled during the years 2015 and 2016 (the dataset of 2018 was utilized as an
independent validation dataset). Correlation analysis was also conducted among satellite
band transformations (Table 4) and in situ TP values, while in situ Chl-a concentrations,
Secchi depths, and their logarithmic transformations were also included since they have
been proven to interact and affect TP concentrations in lakes [34–36]. Due to fewer TP
available measurements, the threshold value of Spearman r was set to 0.3 to avoid the
loss of possible significant TP predictors, and the proposed TP predictors were also con-
firmed by the significance predictor chart. Hence, according to Figure 4, multiple datasets
with simultaneous measurements of all three parameters or combinations of them were
established and constituted the randomly made datasets (Case A). Those multiple datasets
were further divided into training (80% of each total record) and validation ones (the rest
20%). Then, concerning MLR analyses of B case (Figure 4), the aforementioned datasets
were further divided into cases including natural-only and artificial-only lakes (with a data
acquisition time window of ±5 days), while they were additionally separated into training
(80%) and validation (20%) datasets, respectively.

Training datasets regarding the in situ Secchi depths and TP include measurements of
2013–2016 and 2015–2016, respectively. It should also be noted that training and validation
datasets contained lakes with mean depths higher than 5 m to surely avoid the bottom
reflectance noise [67]. In particular, [67] recommended that any pixel with a water column
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depth of 5 m or less should be characterized as optically shallow and omitted from the
analysis in order to avoid any unwanted optically shallow effects apparent in satellite-
derived products; WQ models and their efficiency in our case. The final results of the MLRs
should be the development of rigorous quantitative algorithms regarding: (a) Secchi depth
and TP for all the lakes, (b) Secchi depth and TP for natural lakes, and (c) Secchi depth and
TP for artificial lakes.

Table 4. Published band combinations utilized in remotely estimating TP and Secchi depth values.

Reference Parameters Band Combinations and Sensors

[68] TP Blue, Green, Red, NIR, NIR/Green (L8)

[42,44] TP Blue, Green, Red, and NIR (L5)

[36] Ln (TP) Blue, Red/Green, Blue/Red (L5)

[4] TP Blue,
Green, Red, NIR, SWIR1, and SWIR2 (L5)

[48] (1) TP(2) Secchi depth
(1) Red,

Green, Red/Blue, (Green + Red)/2, Green2, (Blue + Green)/2 (L5)
(2) Red/Blue, Red2, Blue, (Blue+Green)/2, (Blue + Red)/2 (L5)

[69] (1) SQRT (TP)
(2) Secchi depth

(1) Red, SWIR2 (L7 ETM+)
(2) LOGRed, LOGSWIR2 (L7 ETM+)

[70] Phosphorus Blue, Green, Red, NIR (L5)

[71] LOG (P) NIR/Visible light (GOCI)

[72] (1) Phosphates
(2) TP

(1) Red, MIR
(2) Red IRS P6 (LISS III)

[5] TP LOG (Green/Red to NIR), (CASI)

[27] (1) Secchi depth (m)
(2) LN Secchi depth

(1) Blue/Red, (Blue-Red)/Green, LN [(Blue-Red)/Green] (L7 ETM+)
(2) NIR, (Blue-Red)/Green, LN Red

[73] LN Secchi depth Blue, Blue/Red (L5)

[74] Secchi depth Blue, Green, Red (IRS-1A)

[75] Secchi Depth Green, Red, Blue, Vegetation red edge (B5), Water Vapour (Sentinel 2)

[76] Secchi depth Green, Blue (MODIS-Aqua)

[77] Secchi depth Blue, Red (MERIS)

3.2.2. Validation Approach

WQ quantitative models were validated in two ways. The basic statistical metric
selected to verify efficiency is the Spearman’s (r) correlation coefficient, which was selected
based on the Kolmogorov–Smirnov and Shapiro–Wilk tests of normality. Additionally, the
mean error (e) and the Root-Mean-Square Error (RMSE) indices were also applied. Initially,
each validation dataset, including 20% of the total values during the years 2013–2016 for
Secchi depths and 2015–2016 for TP, respectively, constituted the first validation process
(the remaining 80% were used as training datasets). Then those values were linked with the
respective images in order to acquire the predicted parameters’ values and further assure
the good performance of the selected models. The second validation process included the
utilization of the independent in situ datasets sampled during 2018 (Figure 4).

3.3. Carlson’s Trophic State Index (TSI) and Validation

Carlson’s Trophic State Index (TSI) is the most widely used tool for characterizing
a lake’s health or its trophic state, while the latter is defined as the biological reaction
of water bodies to nutrient additions [57]. Carlson’s method [43] uses Secchi depth in
meters, a logarithmic transformation (Ln) of chlorophyll-a concentration in micrograms
per liter, and total phosphorus measurements in micrograms per liter, while it concerns
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an index represented as a numerical scale to categorize lakes into classes related to their
trophic status.

Equations (2)–(4), derived from [43], have been widely used to compute the TSIs
according to TP, Chl-a, and SD, respectively, while an average (Equation (5)) is estimated to
produce the final trophic state as follows:

TSI(TP) = 10 ∗ [6−
LN

(
48
TP

)
LN(2)

] (2)

TSI(Chla) = 10 ∗ [6−
(

2.04−
(

0.68 ∗ ln(Chla)
LN(2)

))
] (3)

TSI(SDT) = 10 ∗ [6−
(

LN(SDT)
LN(2)

)
] (4)

TSI(average) = [TSI(TP) + TSI(Chla) + TSI(SDT)]/3 (5)

The trophic status classification system categorizes lakes as oligotrophic (TSI value < 30),
mesotrophic (TSI value 40–50), eutrophic (TSI value 60–70), and hypereutrophic (TSI
value > 70; Table 5) and since the scale of the index is arithmetic, it can describe trophic
changes and a larger number of transitional individual lake classes (e.g., oligotrophic-
mesotrophic, mesotrophic-eutrophic).

Table 5. Carlson’s trophic state index values and classification of lakes [43,78].

TSI
Values

Trophic
Status Attributes

<40
<30 Oligotrophic Transparent water

30–40 Oligotrophic-Mesotrophic

41–50
41–48 Mesotrophic Higher turbidity, higher algae

abundance and macrophytes

49–50 Mesotrophic-Eutrophic

51–70
51–60 Mesotrophic-Eutrophic

61–70 Eutrophic Usually blue-green algae blooms

>70 Hypereutrophic Extreme blue-green algae blooms

Based on these equations, the in situ TSI for all cases accompanied by available si-
multaneous in situ measurements of TP, Chl-a, and Secchi depths were also calculated.
In the framework of the study conducted by [31], through the harmonization of Landsat
7 ETM+ and 8 OLI images, three Chl-a quantitative models were developed, including the
ratios of blue to green and red, red to green and blue, and the ln-transformed bands SWIR1
and SWIR2. Those models were established based on the same period and same lakes as
the ones developed herein; Equation (6) concerns the calculation of Chl-a concentrations
across all lakes, while Equations (7) and (8) regard the Chl-a assessment of natural-only and
artificial-only lakes, respectively. Hence, taking into consideration those Chl-a models, we
calculated TSI (Chl-a; Equation (3)) by using the equation being established regardless of the
lake characteristics (Equation (6)), TSI (Chl-a) of natural lakes by employing the respective
equation (Equation (7)) and TSI (Chl-a) of reservoirs by using the Chl-a equation, respec-
tively developed (Equation (8)). Then we used the hereby developed models concerning the
TP and Secchi depths for the calculation of satellite-derived TSI (TP; Equation (2)) and TSI
(SDT; Equation (4)), respectively. After implementing Equations (2)–(5), satellite-derived
TSI values were calculated and trophic state classification was conducted initially for the
cases concerning all the lakes and then separately for the natural-only and artificial-only
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cases (by using the independent models). Validation of satellite TSI was carried out based
on statistical analysis and the resulting deviation from the respective in situ TSI values.

logChla = 3.599− 0.63 ∗
(

blue
red

)
− 2.183 ∗

(
lnred

lnswir2

)
(6)

logChla = 4.443− 1.421 ∗
(

blue
green

)
− 3.454 ∗

(
lnred

lnswir2

)
+ 1.304 ∗

(
red

green

)
(7)

logChla = 2.919− 2.011 ∗
(

lnred
lnswir1

)
+ 1.449 ∗

(
red

green

)
− 1.441 ∗

(
lnred
lnblue

)
(8)

4. Results
4.1. Secchi Depth and Total Phosphorus Quantitative Models for Greek Lakes
4.1.1. Secchi Depth Models

Spearman r values that resulted from the correlation analysis among all available band
transformations and Secchi depth values, log, ln, and SQRT Secchi depth values ranged
from −0.56 to +0.56. Correlation matrix in combination with the predictor importance
chart (IBM SPSS software Statistics v. 23.0, Armonk, NY, USA) indicated the highest
important predictors. Values of importance for the same variables varied depending on the
dependent parameter (Secchi, SQRTSecchi, etc.); some variables were common for all the
Secchi transformations (Table 6), whereas each Secchi transformation (e.g., SQRT, LOG, LN)
also indicated some different variables that were important concerning their prediction.
Those variables/predictors were further inserted in several combinations in numerous
stepwise linear regressions. Application of multi-collinearity tests (i.e., Variance Inflation
Factor-VIF with values higher than 1 and less than 10 and Tolerance higher than 0.1) and
R2 values indicated the optimal Secchi quantitative models, which included as dependent
variables the ln-, log- and SQRT Secchi transformations, with the latter proven to be the
most satisfactory (Equation (9); Table 7; Figure 5a). The selected SQRT(Secchi)general model
incorporated ratios of bands blue, red, and green from the visible spectrum and the second
band from the short-wave infrared part of spectrum, while collinearity statistics suggested
an absence of autocorrelation.

Table 6. Common variables with the highest value of importance concerning the prediction of Secchi,
SQRTSecchi, and LOG/LN Secchi, derived from the predictor importance chart.

Value of Importance

Variable Secchi SQRT(Secchi) LOG-LN(Secchi)

Green/SWIR1 0.014 0.008 0.011

LOG(Blue/Red) 0.033 0.044 0.041

(Blue − Red)/(Blue + Red) 0.034 0.045 0.042

LN Green/LN Blue 0.035 0.041 0.045

Red/Blue 0.035 0.045 0.046

LOG Blue/LOG Green 0.037 0.043 0.047

LN((Blue − SWIR2)/(Green − SWIR1)) 0.039 0.032 0.038

(Blue − Red)/Green 0.046 0.054 0.050

Blue + Red + Red/Blue 0.046 0.050 0.047

Green/Blue 0.052 0.052 0.058

(Blue − Green)/(Blue + Green) 0.056 0.055 0.059

LOG (Blue/Green) 0.056 0.055 0.059
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Table 7. Regression analysis statistics and Secchigeneral model’s summary.

Model R R2 Adjusted R2 Std. Error of the
Estimate

Change Statistics

Durbin-WatsonR2

Change F Change df1 df2 Sig. F
Change

Secchigeneral 0.74 0.54 0.54 0.46 0.24 115.8 1 222 0.0 2.24

Predictors: (Constant), Blue + Red + Red/Blue, LN Green/LN SWIR2.

Figure 5. Scatter plots between in situ and estimated SQRT Secchi depths derived from (a) general
model, (b) model established for natural lakes, and (c) model established for reservoirs (lines set at
confidence intervals 95%).

To ensure that further independent special models are essential to be developed for
natural and artificial lakes to gain higher accuracy, the Secchigeneral model (Equation (9))
was also separately applied to natural-only and artificial-only lakes. Even though some
statistical indices were acceptable, special models for the different types of lakes proved
to perform better compared to the general one, particularly concerning artificial lakes.
Statistical and verification results derived from the application of the general model to
natural and artificial lakes are presented in the validation section.

SQRT(Secchi)general = 1.215− 2.479 ∗
(

blue + red +
red
blue

)
+ 3.394 ∗

(
lngreen
lnswir2

)
(9)

Subsequently, after the conduction of multiple MLR analyses employing natural-
only and artificial-only lakes separately, the SQRT Secchi transformation also proved to
perform better in both cases and reflected adequate and reliable Secchi depths. It should
be noted that autonomous elaboration of natural and artificial lakes signified the log-chl-a
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transformation as a Secchi predictor accompanied by a high beta coefficient, especially
for natural lakes (Table 8). Hence, the models that met the aforementioned criteria and
were finally selected to calculate Secchi depth in natural (Equation (10); Figure 5b) and
artificial (Equation (11); Figure 5c) lakes, included except for the logchl-a, visible bands as
well: red, green, and blue, while Equation (11) (artificial lakes) additionally incorporated
the SWIR1 band.

SQRT(Secchi)natural = 1.172− (1.003 ∗ logchl− a)− (1.031 ∗ logred) (10)

SQRT(Secchi)artificial = 3.927− 1.365 ∗
(green

blue

)
− 0.318 ∗

(
red

swir1

)
− 0.361 ∗ logchl− a (11)

Table 8. Regression analysis statistics and Secchinatural and Secchiartificial models’ summaries.

Scenario/Model R R2 Adjusted R2 Std. Error of the
Estimate

Change Statistics

Durbin-WatsonR2

Change F Change df1 df2 Sig. F
Change

Secchinatural 0.78 0.6 0.59 0.55 0.06 8.6 1 59 0.005 2.14

Secchiartificial 0.73 0.53 0.51 0.37 0.07 16 1 105 0.0 2.12

Predictorsnatural: (Constant), Log Chl-a, Log Red. Predictorsartificial: Green/Blue, Red/SWIR1, Log Chl-a.

4.1.2. Total Phosphorus Models

The correlation matrix among all variables, including all the lakes with mean depths
higher than 5 m resulted in slightly weaker correlations than those regarding Secchi depths.
In this case, the Spearman threshold value was reduced to±0.3 to discriminate and incorpo-
rate more phosphorus variables/predictors. Furthermore, the coefficients of determination
among phosphorus, chlorophyll-a, and Secchi depths were very high, with values equal to
0.85 and −0.84, respectively. Optimal predictors with Spearman values higher than ±0.3
were further enriched and confirmed based on the calculation of their significance accord-
ing to the significance predictor chart. Final selected predictors (Table 9) were inserted in
manifold stepwise MLRs. The insertion of Chl-a and Secchi depth data as independent
variables in MLRs improved the results and yielded some statistically acceptable models
employing some of those predictors.

Table 9. Common variables with the highest value of importance concerning the prediction of TP
and LOG/LN TP, derived from the predictor importance chart.

Value of Importance

Variable TP LOG-LN (TP)

Red/SWIR1 0.2672 0.3283

Green/SWIR1 0.2296 0.2973

LN Green/LNSWIR1 0.1308

Green/Red 0.1249 0.1525

LOG Chl-a 0.0953 0.1848

LOG (Red/Green) 0.0776

LN Red/LN Green 0.0344

LN Secchi 0.1315

Among the most optimal models, Equation (12) is the one selected for TP quantification
in Greek lakes, employing, except for the Chl-a, the band ratio of Ln-Red and Ln-SWIR1
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bands. Both predictors are accompanied by equally high beta coefficient values, while
Durbin–Watson’s statistic test is fully acceptable (Table 10; Figure 6a).

LogTPgeneral = −1.425 + 0.452 ∗ logChla− 0.573 ∗
(

lnred
lnswir1

)
(12)

Table 10. Regression analysis statistics and TPgeneral model’s summary.

Model R R2 Adjusted R2 Std. Error of the
Estimate

Change Statistics

Durbin-WatsonR2

Change F Change df1 df2 Sig. F
Change

LogTPgeneral 0.85 0.73 0.71 0.18 0.05 7.6 1 43 0.008 2.34

Predictors: (Constant), LogChl-a, LN Red/LN SWIR1.

Figure 6. Scatter plots between in situ and estimated LOG TP values derived from (a) general model
and (b) model established for natural lakes (lines set at confidence intervals 95%).

MLRs that concerned artificial lakes resulted in weak models characterized by poor
statistical performance; R2 values ranged from 0.13 up to 0.3, while TP models concerning
the natural lakes managed to deliver highly acceptable results based on given statistical
indices. Since no special model was delivered for TP quantification in artificial lakes,
the LogTPgeneral model’s further efficiency was explored by applying it to natural and
artificial lakes (dataset of 2018), while the results are presented in the validation section.
Concerning natural lakes, the log Secchi proved to be a strong TP predictor, followed by
the band ratio of green and red (Equation (13); Figure 6b). The best quantitative TPnatural
model is characterized by high Pearson’s and coefficient of determination values, while no
autocorrelation problem is detected (Table 11).

LogTPnatural = −0.633− (0.704 ∗ logSecchi)− 0.392 ∗
(green

red

)
(13)

Table 11. Regression analysis statistics and TPnatural model’s summary.

Model R R2 Adjusted R2 Std. Error of the
Estimate

Change Statistics

Durbin-WatsonR2

Change F Change df1 df2 Sig. F
Change

LogTPnatural 0.91 0.82 0.81 0.17 0.06 8.1 1 26 0.009 1.9

Predictors: (Constant), LogSecchi, Green/Red.

4.2. Models’ Validation

This section presents the results of the analysis concerning the evaluation of the
general models’ (Secchigeneral,TPgeneral) performance after their application separately on
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natural-only and artificial-only lakes. Since those two general models were developed
based on data from 2013–2016, their validation was conducted based only on data from
2018. Regarding the Spearman value, all correlations selected and presented are significant
at the 0.01 level.

4.2.1. Secchi Depth Models

The Secchigeneral model was developed based on 228 cases and validated twice based
on 57 and 115 cases, while RMSE are quite low, equal to 0.24 m (1st validation) and 0.37 m
(2018 validation), respectively (Table 12). RMSE was additionally expressed as a percentage
based on both maximum Secchi depth and average Secchi depth values. Even though
the percentage based on the average Secchi depth is greater than the one based on the
maximum Secchi depth value, as expected, the numbers are relatively low, indicating the
good performance of the developed models. Application of the Secchigeneral model to
natural lakes resulted in acceptable and reliable results and similar values regarding the
examined statistical indices as those derived by the Secchinatural model. Nevertheless, the
Spearman value of the Secchinatural model (2018 data) is higher than the general one; hence,
Secchinatural is selected as the optimum method to quantify Secchi depths in natural lakes.

As far as the artificial lakes are concerned, Secchiartificial model is selected compared
to the Secchigeneral, since both average residuals and the RMSE values are lower (0.002
compared to 0.06 m and RMSE 0.14 m compared to 0.44 m).

4.2.2. Total Phosphorus Models

The LogTPgeneral model performed well concerning both validation procedures (Table 13).
High Spearman values derived from datasets of 12 and 33 cases and similar average in
situ and satellite LogTP values characterize both validations. RMSE is 1.41 mg/L (1st
validation) and 1.46 mg/L (validation of 2018). Application of the LogTPgeneral model to
artificial lakes yielded acceptable results since RMSE equals 1.51 mg/L.

Concerning the application of the general model to natural lakes, it is clear that
the specially developed model for natural lakes is superior since the values of average
residuals and RMSE are quite lower (0.93 compared to 1.21 mg/L; RMSE = 1.63 compared
to 3.2 mg/L). Moreover, the higher Spearman value (0.68) and larger size of the validation
dataset (n = 49) also indicate the advantage of this model in the assessment of the TP
concentrations in natural lakes.
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Table 12. Statistical indices used to validate the Secchi selected algorithms (** correlation significant at the 0.01 level (two-tailed). RMSE—root-mean-square error.
* All values concern SQRT Secchi depths).

1st Validation (20%) 2nd Validation (2018 Data)

Models Spearman r Average in situ * Average
Satellite *

Average
Residuals (m)

RMSE (Secchi;
m/% of Max
Secchi/% of

Average Secchi)

Spearman r Average In Situ * Average
Satellite *

Average
Residuals (m)

RMSE (Secchi;
m/% of Max
Secchi/% of

Average Secchi)

Secchigeneral
Training dataset

N = 228

0.78 **
N = 57 2.1 2.1 0.00001 0.24/1.7%/5.1% 0.58 **

N = 115 2.02 1.86 0.03 0.37/2.39%/8.2%

Secchigeneral
applied on

natural

0.65 **
N=44 1.93 1.86 0.005 0.3

Secchigeneral
applied on

artificial

0.51 **
N = 57 2.1 1.82 0.06 0.44

Secchinatural
Training dataset

N = 65

0.95 **
N = 27 1.76 1.74 0.0002 0.14/0.93%/3.6% 0.73 **

N = 28 1.9 1.8 0.008 0.3/1.92%/7.1%

Secchiartificial
Training dataset

N = 111

0.62 **
N = 28 2.01 2.04 0.001 0.1/1.18%/2.3% 0.56 **

N = 40 2.13 2.17 0.002 0.14/1.43%/3.3%
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Table 13. Statistical indices used to validate the TP selected algorithms (** correlation significant at the 0.01 level (two-tailed). RMSE—root-mean-square error. * All
values concern LogTP.

1st Validation (20%) 2nd Validation (2018 Data)

Models Spearman r Average In
Situ *

Average
Satellite *

Average
Residuals

(mg/L)

RMSE (TP;
mg/L) Spearman r Average In

Situ *
Average

Satellite *

Average
Residuals

(mg/L)

RMSE (TP;
mg/L)

LogTPgeneral
Training
dataset
N = 46

0.71 **
N = 12 −1.79 −1.78 0.95 1.41 0.81 **

N = 33 −1.22 −1.18 0.91 1.46

LogTPgeneral
applied on

natural

0.55 **
N = 40 −1.1 −1.2 1.21 3.2

LogTPgeneral
applied on

artificial

0.86 **
N = 11 −1.33 −1.21 0.76 1.51

LogTPnatural
Training
dataset
N = 29

0.93 **
N = 7 −1.61 −1.54 0.86 1.43 0.68 **

N = 49 −1.26 −1.22 0.93 1.63
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Furthermore, Chl-a, Secchi depth and TP maps of selected lakes were created after
application of the Chl-a (Figure 7) algorithms derived by [31] and the herein developed
Secchi (Figure 8) and TP algorithms (Figure 9). The Landsat 8 OLI satellite image of
11 August 2013 was used in order to produce the satellite-derived spatial distribution
of the studied WQ parameters of this day, while the respective in-situ values of those
lakes were sampled with −2 and +5 days (Chl-a) and −5 and +5 days (Secchi depth) of
difference from the aforementioned date, while there is no available in situ data for their
TP concentrations. Application of the Secchi general model resulted in Secchi depth values
ranging from 0.000002 to 8.2 m and from 0.000005 to 30.2 m for natural and artificial lakes,
respectively (Figure 8a). Application of the Secchi natural model in natural lakes yielded
Secchi depths ranging between 0.000001 and 7.8 m (Figure 8b), while the Secchi artificial
model resulted in Secchi depth values varying from 0.05 to 8.4 m (Figure 8c), as far as the
artificial lakes are concerned. The Secchi general model (Equation (9)) was applied by using
the aforementioned band combinations, while the Secchi natural (Equation (10)) and Secchi
artificial (Equation (11)) models were applied, including the respective Chl-a equations
specially designed for the natural (Equation (7) [31]) and artificial (Equation (8) [31]) lakes,
respectively. Concerning the application of TP general model, which also includes Chl-a,
Equation (12) was used, whereas the TP model of natural lakes employed the Secchi natural
model in order to be applied. TP general model resulted in values ranging from 0.0008
to 0.85 mg/L and from 0.002 to 0.12 mg/L for natural and artificial lakes, respectively
(Figure 9a). Values of the specially designed TP model for natural lakes vary from 0.016
to 19 mg/L, while only a few values are greater than 0.2 mg/L (Figure 9b). Furthermore,
since the variance of TP estimated values is small, it was decided to present those values by
grouping them in classes, as stretching values resulted in low-quality results. Furthermore,
it should be noted that all parameters’ values have been converted in actual units, e.g.,
Chl-a in µg/l, Secchi depth in meters, and TP in mg/L, to facilitate the understanding and
the comparison among the concentrations.

4.3. Satellite Derived Assessment of Trophic Status of Greek Lakes Based on Carlson’s Trophic
State Index
4.3.1. Evaluation of the Lake Trophic Status’s Assessment Based on the Whole Dataset

Calculation of both types of TSI using in situ only data and models based on satellite
data concerns the attributes that were accompanied by available simultaneous in situ
measurements of TP and Chl-a concentrations and Secchi depth measurements (176 total
cases). Since in situ available TP data are those analyzed during the years 2015–2016
and 2018, both calculated TSIs concern the same period. Furthermore, the application
of Equations (2)–(5) concerning both the in situ only data and the models resulted in
categorizing the under-study attributes (and by extension the lakes) in 5 classes regarding
their trophic status (Table 14; Figure 10). The main difference is that in situ measurements
indicated 1 eutrophic case and no hypereutrophic cases, while remote sensing detected
2 hypereutrophic cases and no eutrophic cases. In both analyses, cases that are characterized
as oligotrophic comprise the majority of the entire dataset, and cases with a tendency to
mesotrophy and mesotrophic ones occupy the next positions.
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Figure 7. Satellite-derived Chl-a maps (on 11 August 2013) of selected lakes after the application of
General (a), Natural (b), and Artificial (c) models (WGS_1984, UTM Zone 34 N Coordinate system),
derived by [31].
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Figure 8. Satellite-derived Secchi maps (on 11 August 2013) of selected lakes after the application of
Secchi General (a), Secchi Natural (b), and Secchi Artificial (c) models (WGS_1984, UTM Zone 34 N
Coordinate system).
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Figure 9. Satellite-derived TP maps (on 11 August 2013) of selected lakes after the application of TP
General-(a), and TP natural (b) models (WGS_1984, UTM Zone 34 N Coordinate system).
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Table 14. In situ and satellite derived TSIs’s frequencies and percentages of all cases.

Whole Dataset
TSI (In Situ) TSI (Satellite) TSI (In Situ) TSI (Satellite)

Frequency Valid Percent

1 (Oligotrophic) 92 124 52.3 70.5

2 (Oligotrophic-
Mesotrophic) 42 30 23.9 17

3 (Mesotrophic) 26 15 14.8 8.5

4 (Mesotrophic-
Eutrophic) 15 5 8.5 2.8

5 (Eutrophic) 1 - 0.6 -

6 (Hypereutrophic) - 2 1.1

Total 176 176 100.0 100.0

Figure 10. Scatter plot between in situ and satellite-derived TSI values, based on the whole dataset
(lines set at confidence intervals 95%).

Further statistical analysis suggested that 103 of 176 attributes (58.5%) were identically
classified based on the two TSI calculations, while 50 cases out of 73 that were classified
differently, were allied to the right previous or next class (−1, +1) in relation to the in
situ results. Furthermore, attributes that were misclassified in 3 or 4 classes away from
the in situ ones are in total 8, which correspond to a 4.5% of the misclassified dataset.
Considering the mean depth of the lakes (Figure 11a), it is proven that cases concerning
deeper lakes (>5 m) were more successfully classified than the shallow ones verifying the
effect of the bottom reflectance as an obstacle in the remote sensing elaboration. Records
belonging to natural lakes were the majority of those that were either identically (56 out
of 112) or by-one-class misclassified (40 out of 112; Figure 11b). Concerning the sampling
season (Figure 11c), results of summer months resulted in 68 attributes that were identically
classified by both TSI calculations, while 40 out of 120 were misclassified in the previous
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or next trophic status class. All records regarding spring-monitored lakes were identically
classified, while remote sensing concerning autumn season indicated a slight weakness in
properly classifying the trophic status of lakes compared to summer. The total number of
176 attributes is divided into 49 sampled in autumn, 7 sampled in spring, and 120 cases
sampled in summer months. Those sampling dates are accompanied by 26 images during
autumn, 6 images during spring, and 51 images during summer months.

Figure 11. Count of satellite-classified/misclassified cases concerning all monitored lakes grouped
by (a) the lake’s mean depth, (b) lakes’ nature, and (c) sampling season. Numbers from −4 up to
3 represent the class deviation between the satellite and in situ derived TSIs, while 0 indicates no
differentiation. Positive and negative signs represent the direction of the deviation from oligotro-
phy to hypereutrophy and vice versa, respectively, based on the corresponding in situ TSI value
(reference value).

4.3.2. Evaluation of the Lake Trophic Status Assessment concerning Natural and
Artificial Lakes

The calculation of in situ TSI values of records belonging to natural lakes categorized
them in 5 trophic status classes (1–5), while satellite TSI resulted in 6 classes (1–6), charac-
terizing 5 cases as hypereutrophic (Table 15; Figure 12). Furthermore, the majority of those
attributes were characterized as oligotrophic and oligotrophic–mesotrophic based on both
calculations, while one case was classified as eutrophic by both calculations.

Table 15. In situ and satellite derived TSIs’s frequencies and percentages of cases belonging to
natural lakes.

Natural Lakes
TSI (In Situ) TSI (Satellite) TSI (In Situ) TSI (Satellite)

Frequency Valid Percent

1 (Oligotrophic) 50 59 44.6 52.7

2
(Oligotrophic-Mesotrophic) 35 29 31.3 25.9

3 (Mesotrophic) 14 11 12.5 9.8

4 (Mesotrophic-Eutrophic) 12 7 10.7 6.3

5 (Eutrophic) 1 1 0.9 0.9

6 (Hypereutrophic) - 5 - 4.5

Total 112 112 100.0 100.0
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Figure 12. Scatter plot between in situ and satellite-derived TSI values of natural lakes (lines set at
confidence intervals 95%).

From the total of 112 records concerning the natural lakes, 66 of them were identically
classified in the same class, while the 46 that presented differences concern mostly cases
that were misclassified by only one class (30 out of 46). Furthermore, 6 cases out of 46 were
misclassified by three or four classes away from the respective in situ ones. Trophic status
classification of deep natural lakes (average depth > 5 m) was particularly successful since
22 out of 27 cases were identically classified according to both TSI calculations and the
remaining 5 cases were misclassified by only one class deviation (Figure 13a). Trophic status
classification of shallower natural lakes was also satisfactory since 44 out of 85 cases have
no difference regarding their classification; 25 were misclassified by only one class deviation
while 10 cases were misclassified by 2-classes from the respective in situ ones. As far as the
water sampling seasons are concerned (Figure 13b), calculation of satellite derived average
TSI during summer months was also proved successful since 52 out of 80 cases presented
no difference compared to respective in situ TSI, while 18 presented misclassifications by
one category deviation. Furthermore, all 5 cases concerning spring-monitored lakes were
identically classified based on both in situ and satellite TSI values. The calculation of TSI
throughout the natural lakes was based on the acquirement of 19 images, while 4 and
36 images were used for calculating the spring and summer TSI, respectively including 5
and 80 attributes.
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Figure 13. Count of satellite-classified/misclassified cases belonging to natural lakes grouped by
(a) the lake’s mean depth and (b) sampling season. Numbers from −4 up to 3 represent the class
deviation between the satellite and in situ derived TSIs, while 0 indicates no differentiation. Positive
and negative signs represent the direction of the deviation from oligotrophy to hypereutrophy and
vice versa, respectively, based on the corresponding in situ TSI value (reference value).

As far as the artificial lakes are concerned, both in situ and satellite TSI calculations re-
sulted in similar trophic status classifications and identical classes (1–4; Table 16; Figure 14).
The majority of records concerning artificial lakes are characterized as oligotrophic and
oligotrophic–mesotrophic while 3 cases were classified as mesotrophic–eutrophic based on
both TSI values (in situ only, models).

Table 16. In situ and satellite derived TSIs’s frequencies and percentages of cases belonging to
artificial lakes.

Artificial Lakes
TSI (In Situ) TSI (Satellite) TSI (In Situ) TSI (Satellite)

Frequency Valid Percent

1 (Oligotrophic) 42 48 65.6 75

2 (Oligotrophic-
Mesotrophic) 7 9 10.9 14.1

3 (Mesotrophic) 12 4 18.8 6.3

4 (Mesotrophic-
Eutrophic) 3 3 4.7 4.7

Total 64 64 100.0 100.0
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Figure 14. Scatter plot between in situ and satellite-derived TSI values of artificial lakes (lines set at
confidence intervals 95%).

Regarding the trophic status misclassifications of artificial lakes, only 21 out of
64 records were misclassified, and 12 out of 21 were classified in categories that devi-
ated only 1 class away from the respective in situ ones. Observing artificial lakes based on
their mean depth (Figure 15a), it is proven that attributes regarding deeper artificial lakes
were successfully classified concerning their trophic status since 33 out of 35 presented no
classification differentiation and two (2) of them were misclassified in classes that deviated
3 and 2 classes from the in situ ones, respectively. Additionally, cases belonging to shallower
artificial lakes were also satisfactorily classified, as 10 out of 29 showed no differentiation
and 12 were misclassified by one class difference. Observing the classification of artificial
lakes based on the sampling season (Figure 15b), it is clear that not only are summer trophic
status classifications successful (26 out of 40 cases presented no differentiation), but also
TSI calculations during spring and autumn seasons managed to classify records with great
accuracy. TSI classification throughout the artificial lakes during autumn was conducted by
using 15 Landsat images, while 2 and 28 images were used for spring and summer seasons,
respectively.
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Figure 15. Count of satellite-classified/misclassified cases belonging to artificial lakes grouped by
(a) the lake’s mean depth and (b) sampling season. Numbers from −3 up to 3 represent the class
deviation between the satellite and in situ derived TSIs while 0 indicates no differentiation. Positive
and negative signs represent the direction of the deviation from oligotrophy to hypereutrophy and
vice versa, respectively, based on the corresponding in situ TSI value (reference value).

5. Discussion

Increasing human activities and industrialization have dramatically degraded lake
water quality [79]. Therefore, implementation of WFD in Greece, as well as in other
European countries, has as a main aim to ensure sustainable management of lakes. The use
of geoinformation technologies—and, in particular, RS and GIS—with conventional in situ
water samplings has been proven to be the most efficient, cheap, and reliable tool to monitor
WQ parameters in lakes. WFD has been implemented in Greece for at least the last seven
years, while numerous in situ measurements of WQ elements provide valuable means to
scientists and public authorities to assess and monitor Greek lake WQ. In particular, in situ
measurements of Secchi depths and TP concentrations combined with Landsat data have
been utilized in this study framework to assess the trophic status of monitored Greek lakes.

5.1. The Significance of Lakes’ Nature concerning the Constituents’ Variance

Exploratory statistical analysis of the available datasets indicated higher Secchi depth
values in artificial lakes than in natural lakes during all sampling years (2013–2018), whereas
the greatest TP concentrations were detected in natural lakes, illustrating accumulating
TP loadings and an increasing tendency throughout the years (2015–2018). Moreover, [31]
reported that natural lakes also presented notably higher Chl-a concentrations in relation
to reservoirs. The present study findings are also in accordance with those reported in
other similar studies. For example, [80] documented that chlorophyll-a concentrations
tend to be lower in reservoirs than in natural lakes because higher inorganic turbidity and
high flushing rates (low hydraulic residence times) in reservoirs limit the development of
phytoplankton biomass. In this way, higher Secchi depth values in artificial lakes indicate
clearer water. This is once again interpreted by a higher presence of non-algal turbidities
in this type of lake compared to natural lakes [81]. Concerning the TP values, it should
be noted that artificial lakes lose nutrients (in particular P) by settling in a downstream
direction. The sampling station’s location plays a major role in WQ monitoring. One of the
main differences between artificial and natural lakes is that artificial lakes characteristically
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exhibit a trophic gradient [80], as it may grade from eutrophic (in its upper reaches) to
oligotrophic (close to the dam) [82].

Correlation matrix among in situ measurements of monitored WQ parameters through-
out all lakes resulted in high and positive correlation between TP and Chl-a (0.85) and high
negative relationship between Secchi depth with TP and Chl-a with values of coefficient
of determination equal to −0.84 and −0.83, respectively. This finding agrees with results
reported in other studies studying natural and artificial lakes around the world [81,83]. For
most lakes, chlorophyll a was highly correlated with SD, phosphorus was directly corre-
lated with chlorophyll a and inversely correlated with SD. This is mainly due to the fact that
increases in nutrient concentrations (in particular TP) result directly in higher algal growth
(Chl-a concentration) and decreased water transparency (Secchi depth) [82]. An additional
explanation for the fact that Secchi depth decreases with increasing TP concentration was
given by [84], who proved that a proportion of phosphorus may be linked to suspended
particles resulting from soil erosion and carried through the river’s downslope.

5.2. MLR Analysis and Resulted Proxies of Studied WQ Parameters

MLR analyses among in situ Secchi depth measurements and Landsat 7 ETM+ and
8 OLI data yielded three (3) optimal Secchi estimation models concerning the assessment
of Secchi depth of all lakes (Secchigeneral), natural (Secchinatural) and artificial (Secchiartificial)
ones. The Secchigeneral model incorporated a combination of blue, red, green, and SWIR2
bands, while models developed for natural and artificial lakes were accompanied by the
insertion of logchl-a as a significant Secchi predictor. The Secchigeneral model was also
independently applied to natural and artificial lakes to further explore its effectiveness
regarding the nature of lakes. The abovementioned model proved to perform better
concerning the natural lakes than the reservoirs, since water transparency in artificial lakes
is notably influenced by non-algal sources of turbidity. This rationale is equally supported
by [85], who documented that the use of Chl-a to estimate Secchi depth is inappropriate
for waters where even moderate amounts of non-algal turbidity are present. On the other
hand, [86] proposed taking into consideration this type of turbidity when reservoirs are
evaluated. However, many scientists argue that Secchi depth data are calibrated for each
lake or reservoir; hence, they may be used for WQ monitoring. Numerous algorithms
have been developed for Secchi depth assessment. Relevant literature is enriched with
studies that demonstrated strong relationships between Landsat data and in situ Secchi
depths by employing mostly the blue, green, red, NIR bands and their ratios of the visible
spectrum [8,53,55,87] while in the framework of this paper we also tried and managed to
combine other water quality indicators and remotely sensed spectral reflectance. Even more
models based on Landsat series data have been empirically developed to map SD for inland
and coastal waters [55,65,88]. However, in contrast to our work, those studies utilized
calibration and validation datasets sampled from one, two, or a few lakes within a small
geographical region, failing to generate a uniform model for the systematic assessment of
SD at a greater scale [89]. On the other hand, [89] constructed a general SD power function
model (based on red band) established on extensive in situ SD and Landsat reflectance
from 225 China lakes, exploring SD spatial variation from 1986 to 2018. This study, in
agreement with ours, not only performed regression-related efforts but also confirmed
that Landsat series data can result in an accurate long-term estimation of the SD. Another
effort to develop a 20-year water clarity census on a broad regional and spatial scale has
been conducted by [53], who studied over 10500 lakes of Minnesota state. In particular, a
regression model incorporating the blue and red bands of several Landsat series (4 MSS,
7 ETM+, 5 TM) demonstrated that satellite imagery is an accurate method to assess water
clarity over a long period of time. Moreover, one of the latest studies that developed a
unified model mapping global lake clarity using Landsat imagery was conducted by [90].
In the framework of this research, the combination of trained in situ SD data (3586 data
points; 2235 lakes across the world) and match-up Landsat images (TOA; L5-TM; L7-ETM+;
L8-OLI) were used to establish various regression models. The proposed model based on



Remote Sens. 2022, 14, 739 34 of 41

the blue/green and red/blue bands demonstrated its applicability to monitor SD in inland
bodies across the globe and its stability to variations in the time and space of the optical
properties of lakes.

MLR analyses among TP concentrations and Landsat band transformations yielded
statistically weak models, whereas further insertion of in situ Chl-a and Secchi depth data
improved the results. A general TP assessment model with application on all lakes was
produced, including the logarithmic transformation of Chl-a and the band ratio of Ln-Red
and Ln-SWIR1 bands with reliable values of tested statistical indices. The fact that no
statistically acceptable model was generated for artificial lakes may partly be attributed
to the time lag that has been observed for phytoplankton to consume TP in this type of
lake. This fact makes the relationship between TP and Chl-a or SD more complicated [44]
in reservoirs, and further limnological research is needed to additionally penetrate into
the functions of those lakes’ systems. On the other hand, as far as the natural lakes are
concerned, Secchi depth proved to be a strong TP predictor. The TP model developed for
natural lakes also incorporated the ratio of green and red bands and was accompanied by a
high coefficient of determination value. The weakness of MLRs in producing an optimal
TP model for artificial lakes urged us to further explore the efficiency of the TP general
model on artificial and natural lakes as well. Application of the TPgeneral model to artificial
lakes (2018 data) yielded acceptable results, a fact that characterizes it as reliable enough
to be used at this type of lake. On the other hand, the specially developed TP model for
natural lakes was superior compared to the general one based on basic statistical indices
(Spearman and RMSE values).

The authors of [91] suggested that TP could not be assessed using RS techniques
because it represents dissolved constituents and is characterized by weak optical character-
istics and a low signal noise ratio. Nevertheless, it has been investigated based on its high
correlation with optically active constituents [40,42], such as phytoplankton [48] and Secchi
depth [92]. Furthermore, data from the Landsat series, among many other satellite sensors,
has been widely used for TP assessment in inland waters and especially lakes [34,36]. The
authors of [68] selected an MLR model (R = 0.57) using blue, green, red, and NIR Landsat
8 bands to estimate TP among other WQPs in the Nakdong River with weak accuracy.
Further TP studies have detected similar correlations between the NIR band and the 3
visible bands (blue, green, and red) and Chl-a [93,94]. Another study that utilized SWIR
data for the assessment of phosphate concentrations in Akkulam–Veli Lake, Kerala, India
was conducted by [72]. They produced an equation (R2 = 0.5) accompanied, except for
the red band, by the MIR (middle infrared; band that followingly was replaced by the
SWIR) [95].

5.3. Contribution of SWIR Bands in WQ Monitoring of Case 2 Waters

The results accrued by the herein MLR analyses and the observed weight of SWIR
bands regarding the calculation of Secchi depth and TP concentrations constitute a topic
that needs further exploration and explanation. The main interpretation is based on the
fact that lakes belong to Case 2 waters, which are optically complex. Since those waters
are also influenced by inorganic and yellow substances—except for phytoplankton and
related particles—it is well recognized that sediment reflectance exceeds the absorptive
properties in the NIR and SWIR wavelengths [24,96], and the standard algorithms in
use today in Case 1 waters (especially for chlorophyll retrieval from satellite data) break
down [24]. Furthermore, according to [72], in cases where there is even a small quantity
of impurities, significant changes are caused in the refractive index of a substance with
substances containing more polarizer groups. Hence, since, for example, TP is a pollutant
with more polarity, it changes the refractive index of water, which in turn changes the
reflectance of NIR and MIR in water. In accordance with this theory, there are several studies
that have widely used SWIR bands concerning the monitoring of WQ elements in Case 2
waters. The authors of [63] studied the WQ of lakes in eastern Oklahoma and indicated
the existence of a relationship between SWIR reflection and algae/plant production by
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including at least one of the short-wave infrared bands (SWIR) in all of their significant band
combinations for chlorophyll-a. The SWIR band of a Sentinel 2A/MSI image was proven
once again important for Chl-a estimation (R2 = 0.7) in Chebara Dam (Kenya) [97] and in
particular, a second-order polynomial fit was found to be suitable using the reflectance
from the difference between the green (B3) and the SWIR-1 (B11) band. Furthermore, [98]
studied 11 representative lakes of Greece (included in our dataset) regarding their Chl-a
concentrations and managed to establish high correlations between the red and SWIR bands
of Landsat 8 images. The authors of [9] also generated a Chl-a three-variable predictive
model employing green and SWIR-1 bands and the ratio red/green using EMT+ sensor
(R2 = 0.91) in Río Tercero reservoir (Argentina).

5.4. Lakes’ TSI Classification and Exploration of the Factors Affecting Its Accuracy

In the framework of this study, assessment models of the studied WQPs (TP, Secchi
depth) were developed. Then, Carlson’s Trophic State Index (TSI) was applied to assess
the trophic status initially of all studied lakes and afterwards separately of natural and
artificial ones. TSI can be successfully monitored for lakes using satellite techniques, and
this methodology has been documented in numerous studies [99–101]. Trophic status
classification based on satellite-derived TSI of all cases was coincident with the respective
in situ at a percentage of 58.5%, while 28.5% of the misclassified cases concerned a deviation
at only one (1) trophic class. Satellite TSI calculation independent of cases regarding natural
and artificial lakes yielded results that were highly coincident with the in situ derived
classes (58.9% and 67.2%, respectively). Considering the mean depth and nature of the
lakes, deeper (>5 m) and natural lakes were more successfully classified compared to
shallow and artificial ones. Deeper lakes are less affected by the bottom reflectance, a fact
that is once more verified based on the hereby findings. Light bottom reflection in shallow
waters may be a result of the above-water remotely sensed reflectance spectra; hence, it
cannot be very reliable. Therefore, the estimation of WQPs in shallow waters should be
validated using in situ data [102].

Concerning the higher TSI misclassification in artificial lakes, it should be noted that
TP and Secchi depth are far more variable in reservoirs than in natural lakes [81]. Most
models have been developed with the assumption that phosphorus is the primary factor
limiting algal growth [103]. Nevertheless, there are other nutrients, such as nitrogen, or
other factors (e.g., incident light) that may also limit algal production, particularly in
reservoirs [82]. The above-mentioned rationales in combination with the fact that in this
study TP concentration of artificial lakes has been assessed based on the TPgeneral model,
may partly explain the fact that TSI evaluation is less robust in those impoundments.

A significant aspect concerning the contribution of the present study lies in the fact that
the study area includes 50 different lake systems of varied chemistry, trophic level, from
different regions of Greece, and WQ elements collected over different seasons. WQ assess-
ment models have been developed concerning a wide range of limnological conditions with
emphasis on whether the lakes are natural or artificial, deep (>5 m mean depth), or shallow.
WQ empirical models are priceless means for trophic status classification for the majority of
Greek lakes, especially when in situ data are limited. In addition to their proven predictive
performance, it should be noted that, based on the validation processes, they exhibited spa-
tial and temporal stability to variations of the optical properties of the lakes. Furthermore,
according to [104], Landsat OLI and ETM+ have similar wavelength ranges, and based on
the results yielded by [44], excellent consistency was also found between those sensors in
the blue, green, red, and NIR regions. Hence, the developed models also accommodate
the spectral configuration differences among the Landsat sensors used. However, those
empirical models are accompanied by several restrictions, such as the accuracy of sampling
points’ geolocation and the incorporation of many sampling seasons, while the latter plays
a crucial role in TP loadings and Secchi depth values. Moreover, additional and deeper
limnological research is needed, mostly oriented toward the primary limiting factors of
Chl-a production and the predominant sources of turbidity (algal/non-algal), particularly
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in reservoirs. A wider limnological research study would provide valuable information
about the lake-wide stratification effects, water movement, and other ecosystem-interaction
effects on lake water quality, especially for areas that cannot be accessed and sampled.

6. Conclusions

This study developed an approach to modeling Greek lakes’ water quality by com-
bining EO data (Landsat 7 ETM+ and 8 OLI) with in situ measurements of TP and Secchi
depths derived from the application of WFD in Greece. Furthermore, based on our previous
study [31] and the derived Chl-a empirical models, the WQ assessment models developed
herein contribute to the evaluation of the trophic status of all monitored lakes (N = 50;
National Monitoring Lake Network) by applying Carlson’s trophic index.

Stepwise MLR analyses incorporated, except for Landsat reflectance bands, in situ
measurements of water constituents that, according to the relevant literature, play a role as a
proxy of other WQ parameters. Even though estimation of non-optically active constituents
of WQ remains a complex challenge for remote sensing, those enhanced analyses managed
to explore and highlight the most significant predictors of TP and Secchi depth’s values of
all lakes but also separately of artificial and natural ones.

According to recent literature, even though physical and bio-optical models are con-
sidered more robust, they require deep knowledge, collection, and parameterization of
certain spectral features. Furthermore, even deep learning approaches (belonging to
empirical/non-linear methods) still hide issues regarding the appropriate balance between
the depth of the network and computational efficiency [19]. On the other hand, empiri-
cal methods (mostly linear approaches) have the benefit of being easy to implement and
straightforward for data processing, and in some cases, as in [105], proved to outperform a
range of bio-optical methods when applied to regional datasets. Based on this perspective,
empirical separate models’ development (general, natural, artificial) for the assessment of
certain WQ parameters (TP, Secchi depth) provides a great opportunity for water resources
managers to gain information at any time about the trophic status of any lake in Greece. A
reliable prediction of lake trophic status, as the one proposed herein, will further support
the monitoring of eutrophication and the drivers of its dynamics, especially nowadays that
lakes are undergoing the dual influence of human activities and climate change.

Current approaches for modeling WQ elements in lakes have limited transferability
(in space and time). The hereby delivered WQ models may be applicable and deliver fairly
acceptable results in lakes outside Greece. However, even though there is a strong possibil-
ity that those models will be effective only within the borders of Greece, eutrophication
has evolved into such a growing public concern that its investigation and monitoring is
considered essential and important even at a country level. In this way, this study supports
the aims of WFD and facilitates the continuous water quality monitoring of Greek lakes.

The present study can be extended in different directions; the ultimate goal is the
development of a robust tool monitoring WQ parameters in various scales and of a direct
and reliable assessment of trophic status for all Greek lakes. However, future work initially
includes the harmonization of Sentinel and Landsat images with the main aims of investi-
gating the performance of the hereby developed models if combined with Sentinel images
and the minimization of the great time windows (>±7 days) between in situ and satellite
data. Moreover, based on the continuous operation of WFD in Greece, at least until 2023,
ongoing quality control tests will be conducted to further improve those models’ efficiency.
Furthermore, since the DOS1 atmospheric correction method has not been validated, one
more key priority future action is the application of alternative atmospheric correction
methods with the principle goal of exploring their wider effect on models’ predictive
ability. In addition to the utilized methodology, and given the nature of the available data,
which is non-parametric, the authors intend to employ non-linear methods in the near
future. These methods offer, according to the literature, great potential for WQ parameter
estimation, and a sensitivity analysis among several empirical methods would contribute
to a better understanding of WQ constituents’ behavior and possibly to their more accurate
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assessment. The authors hope that successfully accomplishing all aforementioned research
tasks, on condition of the continuous updating of wide WQ datasets, will provide the
best opportunity for researchers and public authorities to guide and eventually manage
sustainably public safety decisions and effective protection measures.
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