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Abstract: Pixel-based (PB) and geographic-object-based (GEOBIA) classification approaches allow the
extraction of different objects from multispectral images (MS). The primary goal of this research was
the analysis of UAV imagery applicability and accuracy assessment of MLC and SVM classification
algorithms within PB and GEOBIA classification approaches. The secondary goal was to use different
accuracy assessment metrics to determine which of the two tested classification algorithms (SVM
and MLC) most reliably distinguishes olive tree crowns and which approach is more accurate (PB or
GEOBIA). The third goal was to add false polygon samples for Correctness (COR), Completeness (COM)
and Overall Quality (OQ) metrics and use them to calculate the Total Accuracy (TA). The methodology
can be divided into six steps, from data acquisition to selection of the best classification algorithm
after accuracy assessment. High-quality DOP (digital orthophoto) and UAVMS were generated. A new
accuracy metric, called Total Accuracy (TA), combined both false and true positive polygon samples, thus
providing a more comprehensive insight into the assessed classification accuracy. The SVM (GEOBIA)
was the most reliable classification algorithm for extracting olive tree crowns from UAVMS imagery.
The assessment carried out indicated that application of GEOBIA-SVM achieved a TACOR of 0.527,
TACOM of 0.811, TAOQ of 0.745, Overall Accuracy (OA) of 0.926 or 0.980 and Area Under Curve (AUC)
value of 0.904 or 0.929. The calculated accuracy metrics confirmed that the GEOBIA approach (SVM
and MLC) achieved more accurate olive tree crown extraction than the PB approach (SVM and MLC)
if applied to classifying VHR UAVMS imagery. The SVM classification algorithm extracted olive tree
crowns more accurately than MLC in both approaches. However, the accuracy assessment has proven
that PB classification algorithms can also achieve satisfactory accuracy.

Keywords: geographic object-based image analysis (GEOBIA); pixel-based approach; very-high-
resolution imagery; segmentation; Sali; support vector machine; maximum likelihood;
accuracy assessment

1. Introduction and Background

The olive is one of the oldest and most widely cultivated species in the Mediter-
ranean [1–3]. Over the centuries, the distribution, spread, and finally the dominance of
olives through the centuries have shaped the Mediterranean landscape’s recognizable
character [1]. Over 70% of the olives in the world are grown in the Mediterranean countries
of the European Union [4]. Olives are well adapted to sloping and poorly fertile soils,
thus providing an ecological, economic and social benefit to the areas in which they are
cultivated [5]. Preservation of olive groves as an element of Mediterranean identity [6]
and a strategic economic resource [7] depends on sustainable environmental management,
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based on the improvement of the competitiveness of the agricultural sector and on precision
agricultural methodology and technology [8,9]. The development of geospatial technolo-
gies has enabled precise mapping and inventorying of olives [10,11]. The application of
unmanned aerial vehicles (UAV) in aerial photogrammetry is widely accepted as a reliable
and accurate remote sensing method for environmental protection and mapping of vegeta-
tion species [10,12,13]. Compared to satellite images, UAV multispectral images (UAVMS)
have significantly better spatial resolution and greater flexibility in the selection of the
appropriate spatio-temporal resolution [14]. In comparison to airborne photogrammetric
systems, UAV-based systems have lower operating costs and the possibility of lower flight
altitudes, thus flying closer to treetops and providing a very detailed insight into vegetation
dynamics [15]. Various pixel-based (PB) and geographic-object-based (GEOBIA) classifica-
tion approaches allow the extraction of different objects from MS, and, depending on the
set parameters and the quality of the input data, they can achieve different results [16]. PB
methods use the individual pixels of an MS as a minimum mapping unit, thus allowing a
very detailed classification of different objects, which in some cases can potentially lead to
the formation of various types of “noise” or the “salt and pepper” effect [17,18]. On the
other hand, GEOBIA allows pixels of given images to be grouped into meaningful homo-
geneous “superpixels” of different shapes and sizes, according to their common spectral,
spatial and geometric features [18–20]. A highly accurate land cover model (LCM) can be
generated using the MS and PB or GEOBIA approach, together with selected test samples
and an appropriate classification algorithm [18]. However, classifying data collected by
remote sensing methods into a meaningful and accurate thematic map remains a challenge.
The classification outcome is still influenced by many factors such as the complexity of the
landscape within the study area, selected test patterns and chosen approaches to image
processing and classification [21–23]. Therefore, the constant emergence of new classifi-
cation algorithms and methods [24] in recent years requires a critical approach. Different
classification algorithms should be compared and evaluated to facilitate the selection of the
most accurate and suitable one for particular research [16].

Many authors have used UAVs for aerial photogrammetric surveys over areas of
olive groves to collect the data required to extract olive trees crowns via the GEOBIA
approach. In [25], olive and citrus tree crowns were extracted from UAVMS imagery
using a multiscale object-based approach. In [26], photogrammetric point clouds were
generated by UAV technology and analyzed using GEOBIA. In [27] and [28], olive trees
were also extracted from the UAVMS imagery using the GEOBIA approach to assess olive
tree characteristics. In [29], the authors developed and tested the performance of a method
based on low-cost UAV imagery to estimate olive crown parameters (tree height and crown
diameter). Different authors have used different classification algorithms in their research;
for example, those in [25] used the Assign Class algorithm, those in [30] used Random
Forest by applying PB and GEOBIA approaches and those in [31] compared the results of
two deep learning (Fully Convolutional Networks and patch-based Deep Convolutional
Neural Networks) and two conventional (Support Vector Machine (SVM) and Random
Forest) classification algorithms. In [32], the Maximum Likelihood Classifier (MLC) was
used, while in [29] classification was performed using the Classification and Regression
Trees algorithm. Furthermore, researchers used different methods to assess the accuracy
of the models; for example, those in [25] used Recall, Precision, F-score and Branching
Factor metrics. In [27] and [32], the Overall Accuracy (OA) [33] metric was used. The
authors in [34] used Correctness (COR) [35], Completeness (COM) [35] and Overall Quality
(OQ) [35] metrics. In [27], an OA value of 0.93 was obtained. The authors in [30] also used
OA, as well as Producer’s Accuracy (PA) [33] and User’s Accuracy (UA) [33], which were
also used by [31]. Using these metrics, [30] proved that GEOBIA separates tree species
more reliably than the PB approach.

The primary goal of this research is the analysis of UAV imagery applicability and
accuracy assessment of the most commonly used classification algorithms (MLC and
SVM) [34,36–39] within PB and GEOBIA classification approaches. The secondary goal
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is to use different accuracy assessment metrics to determine which of the two tested
classification algorithms (SVM and MLC) most reliably distinguishes olive tree crowns, and
which approach is more accurate (PB or GEOBIA). The third goal is to add false polygon
samples for COR, COM and OQ metrics, and use them to calculate Total Accuracy (TA).

The paper includes the following sections. Section 1. Introduction and Background and
Section 2. Materials and Methods, which consists of Section 2.1. Study Area, Section 2.2. The
Methodological Framework of the Research, Section 2.3. Field Research, Section 2.3.1. Data
Acquisition, Section 2.4. UAV Imagery Processing, Section 2.5. Segmentation, Section 2.6.
Adding Test Samples, Section 2.7. Classification and Section 2.8. Accuracy Assessment.
Then follows Section 3. Results and Discussion, which consists of Section 3.1. Derivation of
DSM and DOP, Section 3.2. Derivation of UAVMS, Section 3.3. Segmentation, Section 3.4.
Adding Test Samples, Section 3.5. Results of Classification Algorithms and Section 3.6.
Accuracy of Classification Algorithms. The last section is Section 4. Conclusions.

2. Materials and Methods
2.1. Study Area

The study area for the extraction of olive tree crowns is the topographic basin of the
settlement of Sali (Figure 1). It largely includes the Saljsko polje olive grove (202.1 ha),
which protects the Natura 2000 ecological network as a special botanical reserve. The area
is located in the south-eastern part of Dugi Otok, and contains olive trees up to 700 years
old which, along with the size of the trees, makes this a unique ecological area within this
area [40].
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2.2. The Methodological Framework of the Research

The methodology is divided into the following steps: field research (1); development
of digital orthophoto (DOP) and UAVMS (2); UAVMS segmentation (3); adding test samples
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(4); PB classification using two classification algorithms (MLC and SVM) (5.1); GEOBIA
classification using two classification algorithms (MLC and SVM) (5.2); estimation of the
accuracy of the model and selection of the best classification algorithm (6) (Figure 2).

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 17 
 

 

The methodology is divided into the following steps: field research (1); development 
of digital orthophoto (DOP) and UAVMS (2); UAVMS segmentation (3); adding test samples 
(4); PB classification using two classification algorithms (MLC and SVM) (5.1); GEOBIA 
classification using two classification algorithms (MLC and SVM) (5.2); estimation of the 
accuracy of the model and selection of the best classification algorithm (6) (Figure 2). 

 
Figure 2. The methodological framework of the research. 

2.3. Field Research 
The field research (Figure 2(1)) was conducted on June 27 and 28, 2020. This period 

is most suitable for aerial photogrammetric imaging of olive trees due to the fact that 
pruning is already done, the culmination of vegetation and the minimal presence of shad-
ows [41]. Two aerial photogrammetric surveys of the topographic basin of the Sali settle-
ment were performed. The first survey used a camera that records the visible part of the 
spectrum (RGB), and the second used a multispectral camera. In the process of collecting 
RGB images, a UAV DJI Matrice 210 RTK V2 was used, on which a Zenmuse X7 camera 
was mounted (Figure 2 (1)), while a DJI Matrice 600 Pro on which a MicaSense RedEdge-
MX (Figure 2(1)) multispectral camera was mounted was used to collect multispectral im-
ages. An RTK-GPS Stonex S10 (Figure 2(1)) was used to collect ground control points 
(GCPs) and checkpoints (CPs). 

2.3.1. Data Acquisition 

Figure 2. The methodological framework of the research.

2.3. Field Research

The field research (Figure 2(1)) was conducted on June 27 and 28, 2020. This period is
most suitable for aerial photogrammetric imaging of olive trees due to the fact that pruning
is already done, the culmination of vegetation and the minimal presence of shadows [41].
Two aerial photogrammetric surveys of the topographic basin of the Sali settlement were
performed. The first survey used a camera that records the visible part of the spectrum (RGB),
and the second used a multispectral camera. In the process of collecting RGB images, a UAV
DJI Matrice 210 RTK V2 was used, on which a Zenmuse X7 camera was mounted (Figure 2(1)),
while a DJI Matrice 600 Pro on which a MicaSense RedEdge-MX (Figure 2(1)) multispectral
camera was mounted was used to collect multispectral images. An RTK-GPS Stonex S10
(Figure 2(1)) was used to collect ground control points (GCPs) and checkpoints (CPs).

2.3.1. Data Acquisition

The first step was to mark and collect points on a local geodetic basis. GCPs were
collected to achieve a better absolute orientation of the model. A total of ten GCPs and five
CPs were marked and measured in the official projection coordinate reference system of
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the transverse Mercator projection (HTRS96/TM). The points were collected at different
altitudes, considering the rules for the spatial arrangement of placement of landmarks
in photogrammetry (distribution throughout the entire survey plan) [42] (Figure 1). The
next step was to create an optimal flight plan. This included selecting mission types
considering terrain morphology, the research object, and the distribution of GCPs. The
development of missions via UAV was performed in the DJI GS Pro software. Seven double
grid missions with front and side overlap of 80% were planned for the RGB camera’s data
acquisition in the topographic basin settlement of Sali, while seven single grid missions
with front and side overlap of 80% were planned for data acquisition by the multispectral
camera. Considering the comprehensiveness of the terrain and the desired spatial resolution
(ground sampling distance: GSD) for DOP (GSD = 5 cm), the average flight or acquisition
altitude was about 200 m, and for UAVMS (GSD = 18 cm), it was 260 m. The compasses
and inertial measurement systems (IMUs) of both UAVs were then calibrated, and a
multispectral camera radiometric calibration was performed using a reflection calibration
panel (CRP2). The multispectral camera was calibrated before and after each mission, in
order to accurately display the light conditions during flight. The calibration process was
performed in such a way that the CP2 was lowered onto a flat surface. Then, the camera
was connected to the configuration page via a Wi-Fi network. Special attention was given
to ensuring that the panel was not in the shade when taking a calibration photo, and that
the sensor was at least 1 m above the CP2. Finally, the aerial photogrammetric recording
was performed.

2.4. UAV Imagery Processing

The second step in extracting olive tree crowns was the production of DOP and
UAVMS images (Figure 2(2)). The collected RGB and multispectral images were processed
using Agisoft Metashape Professional 1.5.1., one of the most commonly used software
packages for photogrammetric image processing [43,44]. Thanks to implemented structure-
from-motion (SfM) and multi-view algorithms, Agisoft enables 3D modelling based on
reconstructing 3D structures from overlapping 2D images [45–47]. First, connection points
were generated, and models were oriented with the help of collected GCPs. Then, dense
point clouds and polygon networks were created, from which digital surface models (DSM)
(Figure 3C), DOP (Figure 3A) and UAVMS (Figure 3B) were derived.

2.5. Segmentation

The third step was the segmentation of UAVMS (Figure 2(3)) based on the Mean
shift approach [19] within ArcGIS. The Segment Mean Shift tool within ArcGIS identifies
features or segments in imagery by grouping neighboring pixels together that have similar
spectral, spatial, and geometric characteristics [19]. Since the characteristics of the image
segments depend on the spectral detail, spatial detail and the minimum segment size,
the optimization of the values of stated parameters was achieved. An iterative process
(n = 64) was performed. The best combination of parameter values was selected based on
the visual interpretation of the UAVMS segmentation results.

2.6. Adding Test Samples

The fourth step was to add test samples (Figure 2(4), Supplementary Material Figure S1).
This refers to the process of collecting test samples and verifying them. Samples were
collected for the following 18 classes: Young Olive Trees, Old Olive Trees, Older Olive
Trees, Oldest Olive Trees, Tile, Sheet Metal, Sheet Metal 2, Asphalt, Concrete, Shadow, High
Vegetation, Macadam, Bare Stone, Quarry, Sea, Grass, Shrubby Vegetation, Brown Soil. Due
to the possible input distortions of the sharpened multispectral image, a larger number of
samples were marked. The collected test samples were checked by the cross-validation
method. In total ≈ 1200 samples for all classes were collected.
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2.7. Classification

The fifth step was classification (Figure 2(5)). Within the PB (Figure 2(5.1)) and GEO-
BIA (Figure 2(5.2)) classification approaches, MLC and SVM classification algorithms were
tested. Classifications were based on selected samples. For this purpose, a tool called
PvO-ACP (pixel vs. object automated classification process) was used (Supplementary
Material Figure S2). This was created in Model Builder within ArcGIS. PvO-ACP allows si-
multaneous generation of PB and GEOBIA models via access based on selected parameters.
The generated models were then reclassified into 12 classes (Figure 4) and finally into two
classes: Olive Tree and Other, as in [28] (Figure 7).
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2.8. Accuracy Assessment

The sixth step was to assess the accuracy of the models and select the best classification
algorithm (Figure 2(6)). Estimating the accuracy of the generated models was based on
COR, COM and OQ metric indicators. These metrics quantify the relationship between
reference objects (reference olive trees, ROT) and derived objects (classified olive trees, COT)
and examine the accuracy of the executed classification [48]. The accuracy assessment was
performed based on 13 polygon features of ROTs (ROT1–ROT13) (Figure 4A2,B2,C2,D2 and
Figure 7). ROTs were selected using the Create Accuracy Assessment Points tool within
ArcGIS. Olive trees on which a pixel was located, or was closest to them, were vectorized at
a scale of 1:25 from the produced DOP with a spatial resolution of 5 cm. The authors in [26]
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also manually delineated tree crowns in their research, but they vectorized all the trees.
The overlap area (AO) of all four COTs was calculated. The values were used to assess the
accuracy of the classification algorithms according to the following formulas:

COR =
Ao

ACOT

(1)

where Ao is the overlap area of ROT and COT and ACOT is the total area of COT

COM =
Ao

AROT

(2)

where Ao is the overlap area of ROT and COT and AROT is the total area of ROT

OQ =
Ao

AROT + ACOT − Ao
(3)

where Ao is the overlap area of ROT and COT, AROT is the total area of ROT and ACOT is the
total area of COT.

The COR, COM and OQ metrics values vary in the range of 0–1. Higher values
indicate a higher match between reference and classified objects, i.e., higher accuracy of the
classification algorithm [49].

Since it can be seen from the generated models that the classification algorithms in the
PB models overestimated the area of olive tree crowns, it was necessary to add another 13
polygon features, representing false olive trees (FOT). This is the first time, to the best of
our knowledge, that false polygon samples have been added to these metrics. FOTs were
added on the same principle as ROTs. Then, COR, COM and OQ values for FOTs were
calculated. The same methodology was applied as for ROTs, except that in this case a lower
value represents higher accuracy. The Total Accuracy (TA) was calculated by subtracting
the FOT indicator value from the ROT indicator value according to the formulas below:

TA = CORROT − CORFOT (4)

TA = COMROT − COMFOT (5)

TA = OQROT − OQFOT (6)

TA values can vary between −1 and 1. A higher value represents higher accuracy.
The second accuracy assessment was performed using Producer Accuracy (PA) and

User Accuracy (UA) for both classes. PA represents the probability that a reference pixel
was classified correctly while UA represents the probability that a classified pixel represents
that class on the ground [50,51]. Overall Accuracy (OA) was also calculated for estimation
of classification rate correctness. It represents the quotient of the total number of correct
pixels and the total number of pixels in the error matrix [50,51]. The accuracy assessment
using these indicators was calculated in two ways. The first way was to randomly add
500 points using the Create Accuracy Assessment tool. Each generated point received
ground truth data and classification data (for each of the four generated models). The
values of PA, UA and OA were then calculated using the Create Confusion Matrix tool
within ArcGIS, based on the formulas below:

PAi =
pii
p+i

(7)

UAi =
pii
pi+

(8)

OA =
m

∑
i=1

pii (9)
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where pii is the major diagonal element for class I, p+i is the total number of observations
in column i (bottom margin), pi+ is the total number of observations in row i (right margin)
and m is the number of rows, columns in the error matrix. PA, UA and OA values can vary
between 0 and 1. A higher value represents higher accuracy.

Another way to calculate PA, UA and OA values was to create a point feature for each
pixel based on the generated ROT and FOT polygons. Considering the spatial resolution of
the UAVMS, as described in [34], the Create Fishnet tool within ArcGIS generated a grid of
polygons of 18 ∗ 18 cm within the ROTs and FOTs, with centroids that were used as input
data to assess the accuracy of the models. Then, in the same way, the pixel value for each
generated model was added for all point features, and PA, UA and OA were calculated
using the Create Confusion Matrix tool.

Tertiary accuracy assessment was performed using the receiver operating characteris-
tics curve (ROC) and the calculation of the area under the curve (AUC), which are widely
used methods for estimating the accuracy of classification algorithms [52–55]. AUC values
vary in the range of 0–1, with higher values representing greater accuracy of the model.
Values <0.6 represent poor accuracy; 0.6–0.7 average accuracy; 0.7–0.8 good accuracy;
0.8–0.9 very good accuracy; and > 0.9 excellent accuracy [56,57]. The creation of ROC
curves was automated with the Calculate ROC Curves and AUC Values tools within Ar-
cGIS. The same 500 random points as those created within ROTs and FOTs for calculating
PA, UA and OA were used as input data to assess the accuracy of the models and select the
best classification algorithm.

3. Results and Discussion
3.1. Derivation of DSM and DOP

A total of 6587 high-quality images were collected in the planned seven double grid
missions. The total error in five CPs used for the accuracy assessment of the generated
model CPs was 5.83 cm. Suppose the spatial resolution of the aerial photogrammetric
images and the purpose of the model are considered. In that case, this accuracy of the
developed models satisfies the needs of the analyses for which the created models were
used. By interpolating 1.5 ∗ 109 dots within a dense cloud, a 5 cm spatial resolution DSM
was generated (Figure 3C). Based on the generated DSM and point clouds, a 5 cm spatial
resolution DOP was created (Figure 3A), containing three visible channels (RGB).

3.2. Derivation of UAVMS

A total of 7245 high-quality images were collected in the planned seven missions.
Five images were collected at each recording location, one for each multispectral camera
channel (red, green, blue, red edge, near-infrared). It follows that a total of 7245 × 5
= 36,280 images were taken. By processing the images within Agisoft Metashape 1.5.1.,
very-high-resolution UAVMS were generated. The combination of channels determined
that the differences between vegetation species are best observed in the layout of channels
5-4-1 (Figure 3B). The UAVMS, with this channel order, served as the basis for extracting
classes with the PB approach, while for the GEOBIA approach, segmentation of the same
image was performed.

3.3. Segmentation

As in [29], the iterative process of testing segmentation parameters based on trial-error
procedure yielded optimal values for olive tree crowns extraction by the GEOBIA approach.
Of the 64 derived models, a model containing the following parameter values was selected:
(a) spectral detail = 18/20; (b) spatial detail = 15/20; (c) minimum segment size = 10/20
(Figure 3D). Given that the spectral detail is conditioned by the spectral resolution of
UAVMS [58], which affects the differentiation of different vegetation species, the selected
value of the spectral detail allowed the separation of olive trees from other vegetation.
The value of the spatial detail parameter, which determines the importance of feature
proximity in the multispectral model, enabled the isolation of individual trees and reduced
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the influence of generalization during classification. The minimum segment size was set at
10 pixels which, given the spatial resolution of the UAVMS of 18 cm, allowed mapping of
all olive tree crowns larger than 0.324 m2.

3.4. Adding Test Samples

Numerous factors such as shadows caused by tall objects or terrain morphology,
sunlight angle, vegetation physiology, etc., affect differences in the spectral characteristics
of elements of the same class within the same image [59]. For this reason, a total of ≈1200
samples were collected within 18 classes. Four classes related to olive trees whose spectral
differences are influenced by ecological conditions, tree age, agronomic processes, variety,
leaf growth rate and other abiotic and biotic stress factors [60].

3.5. Results of Classification Algorithms

SVM and MLC models for the PB and GEOBIA approaches (Figure 4A–D) were gener-
ated by the developed PvO-ACP tool. The PB approach has been observed to overestimate
olive tree crown areas, especially in areas where pine forests predominate (Figure 4A1,B1).
This is because the pixel as the minimum mapping unit is responsible for the “salt and
pepper” effect. The GEOBIA-SVM model recognized the fewest olive trees in the pine
forest (Figure 4C1), while the GEOBIA-MLC model had slightly lower results (Figure 4D1).
The algorithms recognized olive trees in the shadows within all LCMs, but mostly in those
generated by the PB approach, particularly the MLC classification algorithm. PB models
are “grainy” (Figure 4A2,B2), while GEOBIA models are more compact (Figure 4C2,D2),
especially the SVM model (Figure 4C2).

3.6. Accuracy of Classification Algorithms

Using COR, COM and OQ metrics on ROTs, the results obtained showed that the
GEOBIA-SVM model had the highest COR value (0.9064), which is similar to the results
in [34] (Figure 5C). The PB-SVM model had the highest value of the COM (0.8772), as well
as of the OQ (0.7767) (Figure 5A), which proves it to be the most accurate model. However,
using FOTs, it has been proven that the GEOBIA-SVM model overestimates the surface
area of the Olive Tree class by the least amount. GEOBIA-SVM had the best index values
(COR = 0.3796; COM = 0.0159; OQ = 0.0157) (Table 1C). By calculating the TA, the GEOBIA-
SVM model was shown to be the most reliable (TA COR = 0.5269; TA COM = 0.8110; TA
OQ = 0.7450) (Table 2). In addition, it has been proven that false samples in these metrics
affect the change in accuracy results.

The confusion matrix results showed that the GEOBIA-SVM model had by far the
largest UA and OA values, regardless of the number and arrangement of points at which
accuracy was tested (Table 3C, C1). The OA values of 0.926 and 0.980 are similar to the
results in [27], where an OA value of 0.93 was obtained after certain manual corrections
to the final model. Both MLC models had slightly lower accuracy but were still better
than results obtained in [32] where an OA value of 0.69 was obtained for an MLC model
generated by supervised classification. It has been proven that an increase in the number of
test points increases the model’s accuracy according to the OA indicator, but the value of
UA decreases significantly for the Olive Tree class. Furthermore, with an increase in the
number of test points, the value of PA increased, except in the case of PB-SVM, where it
decreased slightly but was still the highest (Table 3A, A1). As in [30], the OA proved that
GEOBIA more reliably separates tree species than the PB approach. From the results, it can
be seen that there are some general features in the results of confusion matrices derived
based on a larger number of test samples. These refer to relatively low values of the UA
metric, ranging from 0.093 (Table 3B1) to 0.497 (Table 3C1). This may indicate the problem
of overestimating the number of olive trees in a specific area. Therefore, this approach must
be applied with caution, and additional ground validation data used in addition to MS.
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Figure 5. Results of COR, COM and OQ metrics for: (A) PB-SVM; (B) PB-MLC; (C) GEOBIA-SVM;
(D) GEOBIA-MLC on ROTs.

According to the derived ROC curves and AUC values, SVM (GEOBIA) (Figure 4C
and Figure 7) is the most reliable classification algorithm for extracting olive tree crowns
from UAVMS imagery (Figure 6). Its accuracy has excellent values of 0.904 when using
500 random points (Figure 6A) and 0.929 when using points within ROTs and FOTs
(Figure 6B). The GEOBIA-MLC model also has excellent accuracy (0.901) in points within
ROTs and FOTs and very good accuracy (0.864) within 500 random points. SVM (PB) has
very good accuracy within both approaches (0.833 and 0.874), while the less accurate model
is PB-MLC, also with very good accuracy, but much lower at 0.826 and 0.813. The AUC
indicator derived for 13 ROTs and 13 FOTs indicates the problem of shadows, which classi-
fication algorithms, especially in PB analyses, recognize as an olive tree, mostly in areas
of dense pine forest and tall buildings. The SVM classification algorithm has proven to
be an excellent solution for reducing shadow problems in GEOBIA analyses, while in the
case of PB analyses, SVM is also a better solution than MLC as the latter produces “noise”
(Figure 7).
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Table 1. Results of COR, COM and OQ metrics for (A) PB-SVM; (B) PB-MLC; (C) GEOBIA-SVM; (D)
GEOBIA-MLC on FOTs.

A Test Area COR
PB-SVM

COM
PB-SVM

OQ
PB-SVM B Test

Area
COR

PB-MLC
COM

PB-MLC
OQ

PB-MLC

FOT1 0.0337 0.9868 0.0337 FOT1 0.8858 0.3399 0.3257

FOT2 0.3274 0.9510 0.3219 FOT2 0.8777 0.2543 0.2456

FOT3 0.0564 0.9912 0.0564 FOT3 0.3164 0.0075 0.0073

FOT4 0.0527 0.9838 0.0527 FOT4 0.4259 0.0203 0.0198

FOT5 0.0876 0.9809 0.0875 FOT5 0.8458 0.1304 0.1274

FOT6 0.0158 0.9911 0.0158 FOT6 0.6000 0.0126 0.0125

FOT7 0.1362 0.9900 0.1360 FOT7 0.9134 0.1649 0.1624

FOT8 0.0500 0.9791 0.0500 FOT8 0.2491 0.0150 0.0143

FOT9 0.0068 0.9983 0.0068 FOT9 0.7076 0.0057 0.0057

FOT10 0.1948 0.9937 0.1945 FOT10 0.9185 0.1961 0.1928

FOT11 0.0397 0.9879 0.0397 FOT11 0.3581 0.0042 0.0041

FOT12 0.0743 0.9824 0.0742 FOT12 0.6395 0.0771 0.0739

FOT13 0.0347 0.9991 0.0347 FOT13 0.7583 0.0188 0.0187

Total 0.7595 0.0728 0.0712 Total 0.6535 0.0959 0.0931

C Test Area
COR

GEOBIA-
SVM

COM
GEOBIA-

SVM

OQ
GEOBIA-

SVM
D Test Area

COR
GEOBIA-

MLC

COM
GEOBIA-

MLC

OQ
GEOBIA-

MLC

FOT1 0.8343 0.0196 0.0196 FOT1 0.9367 0.6308 0.605

FOT2 0.8622 0.1161 0.114 FOT2 0.8105 0.1945 0.186

FOT3 0 0 0 FOT3 0.0476 0.0006 0.0006

FOT4 0 0 0 FOT4 0.5009 0.009 0.0089

FOT5 1.1588 0.0005 0.0005 FOT5 0.882 0.0201 0.0201

FOT6 0.2821 0.0005 0.0005 FOT6 0.5186 0.0016 0.0016

FOT7 0.8524 0.0169 0.0169 FOT7 0.8818 0.0833 0.0824

FOT8 0 0 0 FOT8 0.3238 0.0094 0.0092

FOT9 0 0 0 FOT9 0.6445 0.0018 0.0018

FOT10 0.9445 0.0532 0.0531 FOT10 0.8923 0.1276 0.1256

FOT11 0 0 0 FOT11 0.3753 0.0109 0.0107

FOT12 0 0 0 FOT12 0.7343 0.0073 0.0073

FOT13 0 0 0 FOT13 0.4043 0.0032 0.0031

Total 0.3796 0.0159 0.0157 Total 0.6117 0.0846 0.0817

Table 2. TA for PB-SVM, PB-MLC, GEOBIA-SVM and GEOBIA-MLC models.

COR COM OQ

TAPB
SVM 0.111 0.804 0.705

TAPB
MLC 0.240 0.725 0.648

TAGEOBIA
SVM 0.527 0.811 0.745

TAGEOBIA
MLC 0.234 0.778 0.658
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Table 3. PA, UA and OA for: (A-A1) PB-SVM; (B-B1) PB-MLC; (C-C1) GEOBIA-SVM; (D-D1)
GEOBIA-MLC.

A Class
Value Other Olive

Tree Total UA OA A1 Class
Value Other Olive

Tree Total UA OA

Other 351 10 361 0.972 Other 762662 2412 765074 0.997

Olive
tree 69 70 139 0.504 Olive

tree 108345 15360 123705 0.124

Total 420 80 500 Total 871007 17772 888779

PA 0.836 0.875 PA 0.876 0.864

OA 0.842 OA 0.875

B Class
Value Other Olive

Tree Total UA OA B1 Class
Value Other Olive

Tree Total UA OA

Other 350 16 366 0.956 Other 731779 3505 735284 0.995

Olive
tree 70 64 134 0.478 Olive

tree 139228 14267 153495 0.093

Total 420 80 500 Total 871007 17772 888779

PA 0.833 0.800 PA 0.840 0.803

OA 0.828 OA 0.839

C Class
Value Other Olive

Tree Total UA OA C1 Class
Value Other Olive

Tree Total UA OA

Other 400 17 417 0.959 Other 856246 3177 859423 0.996

Olive
tree 20 63 83 0.759 Olive

tree 14761 14595 29356 0.497

Total 420 80 500 Total 871007 17772 888779

PA 0.952 0.788 PA 0.983 0.821

OA 0.926 OA 0.980

D Class
Value Other Olive

Tree Total UA OA D1 Class
Value Other Olive

Tree Total UA OA

Other 369 14 383 0.963 Other 799475 2600 802075 0.997

Olive
tree 51 66 117 0.564 Olive

tree 71532 15172 86704 0.175

Total 420 80 500 Total 871007 17772 888779

PA 0.879 0.825 PA 0.918 0.854

OA 0.870 OA 0.917
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4. Conclusions

SVM and MLC LCMs of the topographic area of the Sali settlement on the island of
Dugi Otok were generated using the PB and GEOBIA approaches. All generated LCMs
were reclassified into two classes: Olive Tree and Other. Accuracy assessment metrics
showed that the GEOBIA approach generated more accurate models than the PB approach.
Therefore, it was found that the applied classification algorithms achieved better results
on the segmented image. Since GEOBIA groups pixels into homogeneous meaningful
“superpixels”, various types of “noise” within the shaded areas (forests and tall buildings)
occur much less frequently. These problems can often occur in the PB approach because
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classification algorithms within the PB approach classify each pixel separately. However,
PB classification algorithms can produce results with satisfactory accuracy.

Although the accuracy assessment indicated that SVM (GEOBIA) was the best algo-
rithm for extracting olive tree canopies, it is necessary to point out certain limitations. As
the results indicate (Table 3), there may be a problem of overestimation (low value of UA)
of the number of olive trees in a specific area. Therefore, this approach must be applied
with caution, and ground validation data should be used.

The COR, COM and OQ metrics proved that all classification algorithms overestimated
the area of olive trees (high false-positive rate), except the SVM (GEOBIA), which does so
rarely, as 7 out of 13 false samples did not recognize the Olive Tree class. For this reason, the
TA results indicated that the GEOBIA-SVM model was the most accurate (TACOR of 0.527,
TACOM of 0.811, TAOQ of 0.745). Furthermore, other metrics used also showed that GEOBIA-
SVM was the most accurate classification method. More precisely, GEOBIA-SVM achieved
an OA of 0.926 or 0.980 and an AUC value of 0.904 or 0.929, depending on the number
and arrangement of accuracy assessment points. Limitations on the software used and the
lack of licenses for other software, such as eCognition, limited the choice of algorithms. In
future research, the accuracy of several segmentation methods (Multiresolution, Spectral
Difference, etc.) and other classification algorithms (Hierarchical Classification, Random
Forest, Fully Convolutional Networks, Deep Convolutional Neural Networks, etc.) will
be examined. Furthermore, the influence of spectral resolution and UAV flight settings
(flight altitude and camera calibration) on the accuracy of GEOBIA and PB classification
algorithms will be determined.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14030757/s1, Figure S1: Collected test samples. Figure S2:
PvO-ACP tool.
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