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Abstract: It is of great significance to understand the extent and distribution of bamboo for its valuable
ecological services and economic benefits. However, it is challenging to map bamboo using remote
sensing images over a large area because of the similarity between bamboo and other vegetation types,
the availability of clear optical images, huge workload of image processing, and sample collection.
In this study, we use the Landsat 8 times series images archive to map bamboo forests in China via
the Google Earth engine. Several spectral indices were calculated and used as classification features,
including the normalized difference vegetation index (NDVI), the normalized difference moisture
index (NDMI) and textural features of the gray-level co-occurrence matrix (GLCM). We found that
the bamboo forest covered an area of 709.92 × 104 hectares, with the provinces of Fujian, Jiangxi, and
Zhejiang containing the largest area concentrations. The bamboo forest map was accurate and reliable
with an average producer’s accuracy of 89.97%, user’s accuracy of 78.45% and kappa coefficient of
0.7789. In addition, bamboo was mainly distributed in forests with an elevation of 300–1200 m above
sea level, average annual precipitation of 1200–1500 mm and average day land surface temperature of
19–25 ◦C. The NDMI is particularly useful in differentiating bamboo from other vegetation because
of the clear difference in canopy moisture content, whilst NDVI and elevation are also helpful to
improve the bamboo classification accuracy. The bamboo forest map will be helpful for bamboo forest
industry planning and could be used for evaluating the ecological service of the bamboo forest.

Keywords: bamboo mapping; remote sensing; Landsat; random forest algorithm; China; GEE

1. Introduction

Bamboos (family: Poaceae; sub-family: Bambusoideae) are woody grasses found in
regions with a tropical and subtropical climate. The global bamboo area is about 2200 × 104

hectares, mainly distributed in Asia, Latin America and Africa [1]. China is the leading
producer of bamboo in the world. The bamboo forest area in China was 641.2 × 104

hectares according to the China’s Eighth Inventory of Forest Resources (CEIFR) carried
out in 2014–2018 [2,3]. More than 500 species of bamboo in 39 genera are found in China,
accounting for nearly half of the bamboo species of the world [4]. The distribution of
bamboo is affected by the water and thermal spatial patterns and it is mainly grown in the
16 provinces located to the south of the Qinling–Huaihe line in China.

Bamboo can provide numerous ecological and economic benefits and advantages. It pro-
vides shelter and food for some endangered animals, such as the giant panda of China [5–7].
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Additionally, bamboo forests can be a significant carbon sink [8–11], which can assist with cli-
mate change mitigation [12] and environmental restoration [13–16]. Bamboo-based industries
provide significant employment opportunities and contribute to economic development and
poverty alleviation due to the remarkable growth rate of bamboo and its versatility [17]. There-
fore, the accurate mapping of bamboo forest is critical for bamboo-based industry planning,
bamboo resource managing, ecological protection, economic growth, and other factors.

Due to the wide distribution of bamboo in China, distribution mapping by field
surveys would be laborious and time consuming. Remote sensing technology is often used
for land cover and terrestrial environment mapping and monitoring because of its inherent
advantages of real-time, large-area, and repeatable observations [18–22]. Extensive efforts
have also been employed to map bamboo in various ecosystems [23–25]. However, it is
much more difficult to detect mixed bamboo with other canopy vegetation and shrubbery
bamboo in the understory layer [26]. The availability of clear optical images is often low
due to the cloudy and rainy climate of tropical and subtropical areas [27]. Bamboo mapping
over large regions need an extensive workload of image preprocessing.

Bamboo mapping can be improved when using satellite images of fine spatial resolu-
tion. For example, the accuracy of bamboo mapping with IKONOS or SPOT5 images can be
greater than 90% [25,28,29], but the mapping extent was limited to the image frame. Bam-
boo mapping with Landsat images can often allow an accuracy greater than 80% [20,30–32].
However, it is also a challenging task to map bamboo with remote sensing images for a large
area such as China because of the spectral similarity with other vegetation types [27]. It was
demonstrated that the phenological characteristics revealed by the multi temporal spectral
vegetation index can improve the recognition of bamboo forests [33,34]. The phenological
indices was even successfully used for mapping understory bamboo [35,36]. However,
bamboo mapping with multi-phase satellite images could be limited by the computational
capability especially for a personal computer. Open-access Landsat images analyzed in the
Google Earth engine (GEE) platform [37] have made it possible to map bamboo forest over
a larger region. Provincial-scale bamboo mapping has been successful for the province
of Fujian [38] and Hainan [39] in China with phenological characteristics derived from
Landsat time series images based on GEE. National-level bamboo mapping in Ethiopia,
Kenya, and Uganda in East Africa has also been performed using the GEE platform [40].

Samples were collected from field trips traditionally. It is very time consuming, laborious,
and costly especially for a large-scale region. Therefore, sample collection by visual interpreta-
tion from images with higher spatial resolution were also widely accepted in land use/cover
classification [41,42]. Moreover, the achieved data created by the surveying department also
could be used as the source of samples such as the forest resource inventory dataset. Since the
archived data record the past state, it is absolutely necessary to determine the correctness of
the archived-source samples by visual comparison with high-resolution satellite images.

Several classification algorithms, including support vector model (SVM) [43], artificial
neural networks (ANN) [44] and random forest (RF) [45], have been used for bamboo
mapping successfully. However, the SVM consumes a lot of machine memory and com-
puting time when handling multi-dimensional features for classification, and it is difficult
to select certain parameters, such as the kernel function [46,47]. While ANNs are still in
the development stage and is hard to use and to optimize because of the time-consuming
parameter tuning procedure, there are numerous types of neural network architectures
to choose from and a high number of algorithms used for training [48]. Therefore, these
shortcomings make it difficult for ANNs to be applied to the classification of province-by-
province strategy in this study, which is also the main reason for less classification research
using the artificial neural network.

RF is a robust algorithm deriving reliable predictions based on the voting of n decision
trees, which can effectively overcome the overfitting problem. After model training, it also
provides an importance score for each feature, which can be used for feature ranking and
selection [49]. RF was widely used in land cover mapping and monitoring because of its
obvious advantages in processing high-dimensional data [50–53].
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Based on our experience of bamboo mapping in the Fujian and Hainan Provinces
in the past [38,39], bamboo mapping in China is carried out province by province using
the RF algorithm with the Landsat 8 times series images archive and the GEE platform.
The bamboo forest spatial pattern is analyzed quantitatively according to the differential
of temperature, elevation, precipitation and aspect in China. This work may be helpful
for bamboo forest industry planning and rural revitalization, and is of great significance
for the quantitative evaluation of the ecological service of the bamboo forest ecosystem.
Additionally, it will reveal the influence of hydrothermal factors on the spatial distribution
pattern of bamboo forests quantitatively.

2. Study Area

China is located on the east coast of Eurasia (73◦33′ E to 135◦05′ E, 3◦51′ N to 53◦33′ N),
facing the world’s largest ocean and back to the world’s largest continent. From coast to
inland, climate types evolve from humid to arid climate. Influenced by the latitude of solar
radiation, there are three climatic zones including tropical, subtropical and temperate from
south to north in China. China’s terrain is high in the west and low in the east. There are
numerous mountains running east–west and north–south and leading to the diversity of
regional climate. The diverse climate types in China contribute to the diversity of habitats
and provide a diverse environment for the growth of vegetation. This is also an important
reason for the diversity of bamboo species in China. China is one of the richest countries in
terms of bamboo coverage and diversity. Of the over 500 bamboo species found in China,
moso bamboo (phyllostachys pubescen) is the most abundant one, occupying 72.96% of the
nationwide bamboo area [2]. According to China’s Ninth Inventory of Forest Resources
(CNIFR), there are about 641.2 × 104 hectares of bamboo forest area in China, mainly
distributed in 16 provinces (including Fujian, Jiangxi, Zhejiang, Hunan, Hubei, Guangdong,
Guangxi, Yunnan, Guizhou, Sichuan, Chongqing, Shanxi, Hainan, Taiwan, Anhui, and
Jiangsu) located at the south area of the Qinling–Huaihe Line known as the isothermal line
of 0 ◦C in winter and 800 mm annual isoprecipitation line (Figure 1). Although there are
some shrubbery bamboo forests growing in the southern Tibet Autonomous Region and at
the southern foot of the Himalayas, they are not even recorded in CNIFR due to the very
small number. Therefore, bamboo mapping for China was carried out province by province
only for the 16 provinces framed by blue lines showed in Figure 1.

Figure 1. Location and elevation map of China, with the 16 provinces where bamboo forests are
mainly distributed outlined by the blue line.
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3. Materials and Methods

The flowchart of our bamboo mapping methods is shown in Figure 2, which includes
data preparation, sample collection, feature selection, image classification, and accuracy
assessment.

Figure 2. Bamboo mapping methodology and workflow in this study. The SRTM, RF and RFC refer
to the Shuttle Radar Topography Mission, random forest and random forest classifier.

3.1. Sample Collection

Samples were collected from field trips (FT), forest resources inventory (FRI), and
plantation forest maps (PFM).

Field trips for collecting samples were carried out in the Jiangxi, Zhejiang, Hainan, and
Yunnan Provinces. Firstly, we went to the provincial forestry department to learn about the
distribution of the bamboo forest. Then, bamboo patches greater than 30 m × 30 m were
selected as samples for training or validating in the field trip, and GPS locator was used for
recording the position. We also collected non-bamboo samples of the broad-leaved forest
and coniferous forest for training.

China’s Inventory of Forest Resources has been conducted every five years in China
since 1973. The forest resource database created by the Inventory of Forest Resources
records detailed forest patch information, including dominant tree species, number, canopy
height, etc. We obtained the forest resource database for the provinces of Jiangxi, Fujian,
Guangdong, Yunnan, and Sichuan. The database was created in China’s Eighth Inventory
of Forest Resources (CEIFR), finished in 2013. The pure bamboo patches with coverage
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greater than 60% and area greater than 900 m2 were selected as samples. All the selected
samples unsuitable for training or validation were carefully screened from the dataset by
the visual interpretation of high-resolution images on Google Earth to consider land cover
changes caused by human activities.

The vectorized plantation dataset established by plantation survey during 1999–2003
was also used for bamboo forest mapping. The bamboo samples were also confirmed
by visual interpretation from high resolution images on Google Earth. Additionally, a
web-source natural plant survey dataset for the Taiwan Province (https://if.forest.gov.tw/
landcover/index.html, accessed data: 3 November 2021) was employed. It was finished by
the Forth Forest resources survey in the Taiwan Province in 2015.

We did not obtained the forest resource database created by the Inventory of Forest
Resources for the Shaanxi Province and no bamboo patch was recorded in the plantation
dataset. The bamboo forests in the Shaanxi Province are mainly distributed in southern
Shaanxi, near the Sichuan Province. The bamboo species and morphology in the Sichuan
Province are very similar to those in the Sichuan Province. Therefore, bamboo forest
mapping for the Shanxi Province was conducted together with the Sichuan Province.

Samples for training and validating from FT, FRI, PFM and Web were totaled as
21,610 samples (5389 bamboo samples and 16,221 non-bamboo forest samples) were col-
lected. The details of the final sample dataset and its spatial distribution are shown in
Table 1 and Figure 3.

Table 1. Details of collected samples, where FT represents the field under investigation, FRI represents
the forest resources inventory, and PFM represents the plantation forest map.

ID Provinces Sources Time
No. of Samples

Bamboo Non-Bamboo

1 Hainan FT 2016–2017 153 991
2 Zhejiang FT 2015 373 444

3 Jiangxi FT 2016
586 1101FRI 2014

4 Yunnan
FT 2017

920 1089FRI 2016–2017
5 Fujian FRI 2015 611 974
6 Guangdong FRI 2002 323 1189
7 Sichuan FRI 2007 471 2382
8 Guangxi PFM 1999–2003 245 710
9 Guizhou PFM 1999–2003 183 680

10 Hubei PFM 1999–2003 134 1217
11 Hunan PFM 1999–2003 490 1801
12 Jiangsu PFM 1999–2003 124 348
13 Chongqing PFM 1999–2003 124 596
14 Anhui PFM 1999–2003 209 709
15 Taiwan WEB 2015 436 1997
16 Shaanxi – – – –

Sum – – – 5382 16228

3.2. Data Preparation

(1) Shuttle Radar Topography Mission
The Shuttle Radar Topography Mission Version 3.0 (SRTM V3) [54] uses the radar

interferometry technique to obtain the most complete near-global high-resolution database
of the Earth’s topography. It is publicly available on the GEE platform (Collection snippet:
“USGS/SRTMGL1_003”) with a resolution of 1 arc second (about 30 m) provided by NASA’s
Jet Propulsion Laboratory (JPL). The SRTM V3 digital elevation model (DEM) was used as
one of the features for classification. In addition, the aspect was produced from the DEM
and was divided into shady aspect (0–90 degrees and 270–360 degrees) and sunny aspect

https://if.forest.gov.tw/landcover/index.html
https://if.forest.gov.tw/landcover/index.html
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(90–270 degrees) [55]. The elevation and aspect were used to analyze the topographical
features of the bamboo forest in China.

Figure 3. Spatial distribution of the bamboo and non-bamboo samples that we used in this study.

(2) Average annual precipitation
A monthly average precipitation with a 1 km resolution during 1 January 2017 and

1 January 2019 provided by EnvirometriX Ltd. is available on the GEE platform (Collection
snippet: “OpenLandMap/CLM/CLM_PRECIPITATION_SM2RAIN_M/v01”) [56]. The
monthly average precipitation was estimated as a weighted average with SM2RAIN-ASCAT
2007-2018, IMERG, CHELSA Climate, and WorldClim. A 3× higher weight was given to
the SM2RAIN-ASCAT data since it assumed to be the most accurate. The monthly average
precipitation was accumulated as the annual average precipitation (AAP). The AAP was
used to analyze the water condition characteristics of the bamboo forest in China.

(3) Land surface temperature
The MOD11A1.006 terra land surface temperature and emissivity daily global 1km

dataset provided by the NASA LP DAAC at the USGS EROS Center were derived from
the MOD11_L2 swath product. It has been available since 5 March 2002 and present in
the GEE platform (Collection snippet: “MODIS/006/MOD11A1”) [57]. All available LST
images in this collection were used for generating the average diurnal LST based on the
GEE platform. The average diurnal LST was primarily used to analyze the temperature
characteristics of the spatial distribution of bamboo forests.

3.3. Image Pre-Processing and Feature Selection

Landsat 8 is the eighth satellite of the US Landsat program and it is loaded with an
operational land imager (OLI) and a thermal infrared sensor (TIRS). Landsat 8 (30 m) images
with high spatial resolution and nice quality are widely used for land cover mapping and
monitoring [58,59]. The spectral band details of Landsat 8 OLI sensor are shown in Table 2.
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Table 2. Spectral band details for Landsat 8 OLI sensor.

Name Description Centers/µm Wavelength/µm Resolution/m

B1 ultra blue 0.443 0.435–0.451 30
B2 blue 0.482 0.452–0.512 30
B3 green 0.5615 0.533–0.590 30
B4 red 0.6545 0.636–0.673 30
B5 near infrared 0.865 0.851–0.879 30

B6 shortwave
infrared 1 1.6085 1.566–1.651 30

B7 shortwave
infrared 2 2.2005 2.107–2.294 30

B8 panchromatic 0.5895 0.503–0.676 15
B9 Cirrus 1.3735 1.363–1.384 30

All available Landsat 8 surface reflectance images between 2014 and 2016 were col-
lected as a primary data source. The detail of Landsat images used for bamboo mapping is
shown in Table 3. These images were atmospherically corrected using the LaSRC algorithm,
which includes a cloud, shadow, water and snow mask produced using the CFMASK
algorithm [60,61], as well as a per-pixel saturation mask. The band of pixel_qa provided
by GEE referring to pixel quality attributes generated from the CFMASK algorithm were
used to remove cloudy pixels in each image. The cloud-free images were used to generate
vegetation phenological indices.

Table 3. The collection snippets and number of Landsat 8 images during the target period we used in
this study.

Collection Snippet Time Images Count

LANDSAT/LC08/C01/T1_SR
2014 2883
2015 2823
2016 2856

LANDSAT/LC08/C01/T2_SR
2014 90
2015 105
2016 110

Total 8867

The best-available-pixel (BAP) compositing can effectively reduce the impacts of
clouds, aerosol contamination, and data volumes on satellite image application [62,63].
Therefore, a pixel-level composite strategy was employed here to composite the cloud-free
images. A quality score band was calculated. We first calculated the mean square deviation
(MSD) of all pixels in 6 bands (B2 to B7) for each scene image. The sum of MSD of all bands
at each pixel expressed as the quality score (smaller MSD should be better). The pixels with
the largest quality scores were included (gap filling) in the final composited image.

Chinese bamboo forests are mainly distributed in the tropical (including the Provinces
of Hainan, Yunnan and Taiwan) and subtropical monsoon climate zone (the remaining area
of 16 provinces). It is difficult to discriminate bamboo from other vegetation types only
using spectral reflectance due to the spectral similarity [26]. The normalized difference
vegetation index (NDVI) [64] quantifies vegetation by measuring the difference between
near-infrared band and red band, which is widely used for bamboo mapping:

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

where ρred and ρNIR refer to the B4 and B5 in Table 2, respectively. The normalized difference
moisture index (NDMI) [65] was also employed, which can effectively quantify the water
content of vegetation canopy. It can improve the accuracy of bamboo mapping because of
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the leaf water content difference between bamboo and other vegetation types. Additionally,
using the metrics of vegetation indices to simulate the vegetation phenological changes can
also improve the accuracy of bamboo mapping.

NDMI =
ρNIR − ρMIR
ρNIR + ρMIR

(2)

where ρNIR and ρMIR are B5 and B6 in Table 2, respectively.
Considering the high accuracy of the previous bamboo forest map for the Hainan

Province [39], the result was directly adopted for the Hainan province. The features for
bamboo mapping for the remaining 15 provinces include spectral reflectance, phenological
indices, textural features and topographic elevation, as shown in Table 4. Phenological
indices include the maximum, minimum, mean, and standard deviation of NDVI and
NDMI based on the cloud-free images. Textural features, including homogeneity, contrast,
entropy, and variance of gray level co-occurrence matrix (GLCM), were derived from the
first component image from a principal component analysis (PCA) [66–68] with the B2 to
B7 of the composited image. GLCM was calculated using a 9 × 9 window and an azimuth
angle of 45◦ and was expressed as 64-level grayscale.

Table 4. Variables used for bamboo mapping in all bamboo provinces of China, except Hainan.

Indices Metrics No. of Variables

Composited image B2–B7 6
DEM Elevation 1

GLCM Homogeneity 1
GLCM Contrast 1
GLCM Variance 1
GLCM Entropy 1

NDVI, NDMI Maximum 2
NDVI, NDMI Minimum 2
NDVI, NDMI Mean 2
NDVI, NDMI Standard deviation 2

3.4. Classification and Validation

The random forest classifier (RFC) is an ensemble machine learning approach that
generates a series of classification trees using bootstrap samples from training data [45].
RFC can handle high-dimensional data, overcomes the overfitting problem and scores
the features’ importance [48,51,52]. An “importance score” for each feature allows for the
ranking and selection of variables with greater discriminatory power [63].

Due to the different sample sources and bamboo species among the provinces, the user
storage space provided by the GEE is limited. The distribution of bamboo species overlaps
spatially. It is difficult for us to obtain a clear spatial distribution boundary between
bamboo species. Based on the above reasons, a province-by-province strategy was adopted.
Although the administrative boundary is certainly different from the boundary of species
distribution, it can alleviate the challenge of the variation of classification characteristics
caused by the diversity of bamboo varieties.

The number of prediction variables equals to the square root of the number of total
input variables. Generally, as the increase in the number of trees, the classification accuracy
continues to be improved, but when the number is greater than a certain value, the clas-
sification performance tends to be stable. Through the experiment using the exhaustive
method, we find that the RFC models of 16 provinces have a high classification accuracy
and stable performance when the number of trees is set to 200. The number of trees was set
to 500 for better stability.

A k-fold (k = 50) cross validation was conducted to evaluate the classification accuracy,
which is popular for evaluating the performance of classification algorithms [69,70]. The
sample set was randomly split into 50 sample subsets. A total of 1 sample subset was
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chosen for validation and the remaining 49 were used for training. This procedure was
repeated 50 times and the average results of the accuracy assessments were adopted for
mapping evaluation. The producer’s accuracy (PA), user’s accuracy (UA), overall accuracy
(OA) and kappa coefficient [71] were used as four metrics of accuracy evaluation. The best
classification performance of k-fold was used for mapping bamboo.

In addition, the bamboo forest area detected from satellite images were compared
with the reference data from the SNIFR [2] and the fourth forest inventory (https://if.
forest.gov.tw/landcover/index.html, accessed data: 3 November 2021) for the Taiwan
Province, China.

3.5. Feature Importance Scoring

Feature importance was evaluated by the contribution of each feature in the classifica-
tion [72,73]. Features’ contribution can effectively reveal the difference between bamboo
and other types of vegetation. The importance of all features (except the bands of compos-
ited image) was detected, while the features used in the Hainan Province was not included
because of the lack of representativeness. The feature importance provided by the RFC
was collected from the best performance of k-fold for each province, and the average of
scores was adopted. The final feature importance result was normalized based on the
average scores.

3.6. Analysis of Bamboo Spatial Distribution Patterns

Influenced by the spatial heterogeneity of water and energy, bamboo forests have
a unique spatial pattern [3]. The elevation, precipitation and LST were used for analyz-
ing the bamboo forest spatial patterns. Based on the ArcMap 10.2, the satellite-derived
bamboo grids were converted into points using the tool of “raster to point”. The four
metrics information of all bamboo points were extracted based on the tool of “extract
values to points”.

4. Results
4.1. Distribution of Bamboo Forest

The bamboo forest map for China was produced using the random forest algorithm
using Landsat 8 satellite images based on the GEE platform (Figures 4 and 5). The
total area of bamboo forests was estimated to be 709.92 × 104 hectares, including the
largest area in Fujian (135.13 × 104 hectares), Jiangxi (118.11 × 104 hectares) and Zhejiang
(108.33 × 104 hectares). The total bamboo forest area in the top three provinces account for
more than 50% of the whole country. The area of bamboo forest in the top five provinces
(Fujian, Jiangxi, Zhejiang, Hunan, and Sichuan provinces) account for more than 70% of
the total area. Bamboo forests are concentrated in the southeast (Fujian, Jiangxi, Zhejiang
and Hunan) and southwest regions (Sichuan, Yunnan) of China.

4.2. Classification Accuracy Assessment

The classification accuracy assessment was performed using the average result of UA,
PA, OA and kappa for each k-fold (Table 5). The bamboo forest mapping of China was
reasonable with a mean precision of 0.7789 in kappa, 93.74% in OA, 89.97% in PA, and
78.45% in UA. The classification accuracy for seven provinces (Jiangxi, Zhejiang, Anhui,
Guizhou, Taiwan, Hubei, and Jiangsu) is highly accurate, with a PA, UA, and kappa
coefficient greater than 0.8. The classification accuracy for five provinces (Hainan, Hunan,
Yunnan, Fujian, and Guangxi) is moderately accurate with parameters greater than 0.6.
However, the UA value for the remaining four provinces (Sichuan, Guangdong, Chongqing
and Shaanxi) is less than 0.6, but the PA and kappa coefficient for these four provinces
are higher. The classification accuracy with a higher PA and OA but lower UA indicates
that some non-bamboo was incorrectly classified as bamboo. The main reason may be that
the bamboo forest patches used as training samples were too small resulting in the lack of
representativeness.

https://if.forest.gov.tw/landcover/index.html
https://if.forest.gov.tw/landcover/index.html
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Table 5. The average of 50-fold cross validation results in this study.

ID Province
Bamboo

OA Kappa
UA PA

1 Fujian 74.59% 83.46% 84.58% 0.6625
2 Jiangxi 87.61% 90.83% 93.33% 0.8325
3 Zhejiang 97.37% 94.87% 96.10% 0.922
4 Hunan 74.59% 83.46% 97.04% 0.6197
5 Sichuan 58.90% 97.73% 92.78% 0.7018
6 Guangdong 56.06% 90.24% 89.62% 0.6332
7 Guangxi 77.50% 93.94% 93.99% 0.8122
8 Anhui 84.62% 94.29% 95.48% 0.8634
9 Guizhou 90.63% 96.67% 97.67% 0.9213
10 Taiwan 83.12% 90.14% 95.58% 0.8385
11 Hubei 82.35% 96.55% 97.43% 0.8744
12 Chongqing 59.26% 94.12% 90.55% 0.6736
13 Yunnan 85.20% 65.30% 93.59% 0.7038
14 Jiangsu 95.65% 95.65% 98.17% 0.9449
15 Shaanxi 58.90% 97.73% 92.78% 0.7018
16 Hainan 88.80% 74.60% 84.13% 0.757

Average 78.45% 89.97% 93.74% 0.7789

Figure 4. Spatial distribution map of bamboo in China that we obtained using the Landsat 8 time-
series image archive.
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Figure 5. The spatial distribution of bamboo in the 16 provinces analyzed.
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The remotely sensed bamboo forest area for the 16 bamboo-containing provinces
was compared with the reference data from CNIFR (Figure 6), showing that the extracted
bamboo is essentially consistent with the reference data. However, there are obvious
inconsistencies seen in the Yunnan province, as the area of extracted bamboo is much
greater than that of the reference data. However, some studies also revealed that the
bamboo forest area was greater than 35 × 104 hectares in the Yunnan Province [3,74,75].
The gap may be mainly caused by the significantly underestimated in the forest resource
inventory by the forestry administration department. In addition, there are more than 250
bamboo species, including scattered, tufted, and mixed bamboo, growing in the Yunnan
Province [1]. The morphological diversity of bamboo species and the complexity of the
topography where bamboo grows significantly increased the difficulty of bamboo extraction
from remote sensing images. The bamboo area was underestimated for the Anhui and
Hubei Provinces in this study, which may be related to the accuracy of the plantation forest
map and its visual interpretation.

Figure 6. Scatter plot of the comparison between the reference and estimated results of the bamboo
areas at the provincial level. The solid line is the fitting line between reference and estimated results,
and the mathematical meaning of the dotted line is y = x.

4.3. Environmental Characteristics of the Spatial Distribution of Bamboo Forests
4.3.1. Topological Characteristics of Bamboo Forests

An overlaying analysis of the elevation and the bamboo forest map shows that bamboo
forests are mainly distributed in an elevation range of 200 m to 1200 m (Figure 7a). Bamboo
forests below 1000 m account for more than 80% of the total area. Most bamboo provinces,
including Fujian, Zhejiang, Jiangsu, Jiangxi, Hunan, Hubei, Anhui, Guangdong, Guangxi,
Hainan and Taiwan, are low mountainous and hilly landforms. The bamboo in the Sichuan,
Chongqing, Guizhou and Shaanxi Provinces is mainly grown in the Sichuan Basin where
the elevation ranges from 300 to 700 m. Influenced by human activities, such as reclamation,
bamboo forest grows less in regions with an elevation lower than 200 m. Highland bamboo
forests were also found in the Yunnan province. The limited elevation range of the distribution
of bamboo forests is due to temperature decreasing as elevation increases [76,77].

The overlaying analyses of aspect of the bamboo forest map found that the bamboo
forest area in a shady aspect was less than that in the sunny aspect when the elevation was
greater than 500 m, but the difference between the sunny and shady aspect for the region
with an elevation lower than 500 m was not obvious (Figure 7b). This is mostly caused by
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differences in solar radiation. Differences in solar radiation regarding the sunny and shady
aspects are more pronounced at higher altitudes [78].

4.3.2. Hydrothermal Characteristics of the Bamboo Forest

An overlaying analysis of the AAP and the bamboo forest map revealed that bamboo
grows in moisture areas with an APP that ranges from 1200 mm to 2000 mm (Figure 7c).
The histogram of the bamboo forest distribution with AAP shows a bimodal form. The
first peak is mainly composed of bamboo forests in Yunnan, Sichuan and Chongqing with
an AAP less than 1400 mm. Cloudy and foggy climate in the Sichuan basin allows for
relatively little evapotranspiration loss and soil moisture is suitable for bamboo forests that
meet the growth requirements of bamboo. The second peak is mainly composed of bamboo
forests in Fujian, Guangdong, Guangxi, Hunan, Jiangxi, and Zhejiang. These provinces are
rich in precipitation affected by subtropical monsoons. Therefore, precipitation has a great
impact on the distribution of bamboo, and bamboo is difficult to grow in areas with an
annual precipitation less than 800 mm.

The overlaying bamboo map with the day LST (Figure 7d) revealed that the bamboo forest
was mainly distributed in regions with an average day LST range of 19 ◦C to 25 ◦C. A very
small number of bamboo forests are distributed in areas with an average day LST below 15 ◦C.

Figure 7. Spatial patterns of elevation (a), aspect (b), temperature (c), and annual precipitation (d) of
bamboo forests in China.
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4.4. Feature Importance

The importance scores for each feature (excluding the spectral reflectance of the com-
posite images) shown in Table 4 was expressed as a histogram (Figure 8a). The importance
scores for maximum NDMI, mean NDMI, maximum NDVI, elevation, and mean NDVI
are the highest metrics. NDMI was the most helpful phenological feature for bamboo
identification, which may be related to the fact that the water content of bamboo leaves is
significantly lower than that of other vegetation in winter and spring [25]. The maximum
NDVI performed better than other NDVI metrics, indicating that the differentiation be-
tween bamboo and other vegetation is more obvious during the growing seasons. It may be
related to the fact that NDVI is sensitive to changes in precipitation and temperature [79,80].
Additionally, elevation was ranked fourth in the importance score [25]. GLCM metrics
are also helpful to improve the classification accuracy of bamboo mapping. Homogeneity
performed better than the other three metrics of GLCM.

Figure 8. Histogram of average normalized importance scores of classification features (a) and
the box plot of features’ importance difference in 15 provinces (b). G_c: GLCM_contrast; G_e:
GLCM_entropy; G_v: GLCM_variance; G_h: GLCM_homogeny; V_v: NDVI_min; V_p: NDVI_max;
V_m: NDVI_mean; V_s: NDVI_stdDev; M_v: NDMI_min; M_p: NDMI_max; M_m: NDMI_mean;
M_s: NDMI_stdDev; Ele: Elevation.

The difference in importance score for every feature between 15 provinces was ana-
lyzed (Figure 8b). The importance score of elevation has the largest provincial difference.
The importance score of elevation is low in provinces with little change in topographic
elevation. The importance score of maximum NDMI has the smallest provincial difference.
NDMI was considered the most important feature in bamboo detection, although the maxi-
mum NDVI in the Anhui and Jiangsu Provinces and the elevation in the Yunnan Province
achieved the highest importance score.
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5. Discussion

Bamboo forest mapping in China with satellite images of 30 m spatial resolution was
an unprecedented job with great amounts of sample collection, thousands of images to
process and the need of supercomputer capabilities. It was an impossible task for a personal
computer. In this study, the bamboo forest mapping was finished with multi-sourced multi-
source samples, images and operating environment provided by the GEE platform. The
bamboo forest map in China was reliable and consistent with the reference data from
CNIFR for most provinces. The coverage of bamboo forests in China was estimated to be
709.92 × 104 hectares and was greater than that of CNIFR.

The spatial pattern of bamboo forests is dominated by water and solar radiation
heat, which is characterized as latitudinal zonality and shaped by topographic elevation.
Therefore, bamboo forests in China are distributed at a certain elevation zone (300~1200 m),
day LST zone (19~25 ◦C) and AAP zone (1200~2000 mm). Bamboo forests at higher altitudes
are mainly scrub and dwarf varieties. It was reported that bamboo forests are expanding
under climate warming [77,81]. The bimodal histogram of the bamboo forest distribution
with AAP reveals that the bamboo forests of China can be divided into 2 major groups:
the southwest region (including Yunnan, Sichuan, and Chongqing) with an AAP less than
1400 mm, and the other 13 provinces with an AAP greater than 1500 mm. The results are
generally consistent with a previous study [4].

Sample collection is challenging for bamboo mapping on a countrywide scale and the
quality of samples had a significant effect on the classification results. A more convenient
method is to make full use of the databases established by forest resource surveys organized
by the forestry departments. All the samples obtained from the forest resources inventory
need to be confirmed with satellite images with higher spatial resolution considering the
land cover changes due to human activities or natural disasters. Moreover, the bamboo
sample dataset should be expanded to improve the recognition accuracy of all kinds of
bamboo species.

Feature selection was also important for bamboo detection, due to the spectral similar-
ity between bamboo and other forest types. Phenological indices can greatly improve the
discrimination. The “importance score” shows that NDMI was the most helpful feature for
bamboo identification, which may be related to the fact that the water content of bamboo
leaves is generally lower than that of other vegetation [82]. NDVI and elevation were also
helpful to bamboo mapping.

More than 500 species of bamboo are found in China, including scattered, tufted, and
mixed bamboo. Some bamboo patches are too small and fragmented to identify using
30 m spatial resolution Landsat 8 imagery. The morphological diversity of bamboo species
and the complexity of the topography where bamboo grows significantly increases the
difficulty of bamboo extraction from remote sensing images. It is much more difficult
to detect bamboo mixed with other canopy or shrubbery bamboo, which grows in the
understory layer. In a future study, higher-resolution satellite images, such as Sentinel,
could be potential image sources for bamboo mapping.

6. Conclusions

In this study, we successfully produced a bamboo forest map for China using Landsat
8 time series images and the experience of bamboo mapping for the Fujian [38] and Hainan
Provinces [39] based on the GEE platform. It was also a successful case of RFC for land
cover classification. The bamboo forest area was estimated as 709.92 × 104 hectares. The
bamboo forest was distributed at a certain elevation zone (300~1200 m), day LST zone
(19~25 ◦C) and AAP zone (1200~2000 mm). Bamboo forests at higher altitudes are mainly
scrub and dwarf varieties. A better understanding of the spatial pattern of bamboo forest
can be helpful for the bamboo forest industry and could be used to quantitatively evaluate
the bamboo ecosystem service.

Bamboo mapping is challenging due to the spectral similarity between bamboo and
other forest types. Feature selection is an important factor that affects classification accuracy.
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The canopy moisture difference between bamboo and other forest types during winter
and spring characterized with phenological NDMI played an important role in bamboo
detection. NDVI and elevation were also helpful to bamboo mapping.
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