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Abstract: Multi-exposure image fusion (MEF) is emerging as a research hotspot in the fields of
image processing and computer vision, which can integrate images with multiple exposure levels
into a full exposure image of high quality. It is an economical and effective way to improve the
dynamic range of the imaging system and has broad application prospects. In recent years, with the
further development of image representation theories such as multi-scale analysis and deep learning,
significant progress has been achieved in this field. This paper comprehensively investigates the
current research status of MEF methods. The relevant theories and key technologies for constructing
MEF models are analyzed and categorized. The representative MEF methods in each category are
introduced and summarized. Then, based on the multi-exposure image sequences in static and
dynamic scenes, we present a comparative study for 18 representative MEF approaches using nine
commonly used objective fusion metrics. Finally, the key issues of current MEF research are discussed,
and a development trend for future research is put forward.

Keywords: multi-exposure image fusion; dynamic range; image transform; deep learning; deghosting

1. Introduction

Brightness in a natural scene usually varies greatly. For example, sunlight is about
105 cd/m2, room light is about 102 cd/m2, and starlight is about 10−3 cd/m2 [1]. Owing
to the limitations of imaging devices, the dynamic range of a single image is much lower
than that of a natural scene [2]. The shooting scene may be affected by light, weather, solar
altitude, and other factors. Overexposure and underexposure often occur. A single image
cannot fully reflect the light and dark levels of the scene, and some information may be
lost, resulting in unsatisfactory imaging. Solving the problem of incomplete dynamic range
matching in existing imaging equipment, display monitors, and the human eye’s dynamic
response to real natural scenes is still challenging.

There are generally two ways to broaden the dynamic range of imaging detectors:
hardware design and software technology. For the former, the CCD or CMOS detector
needs to be redesigned, and a new optical modulation device may need to be introduced.
Aggarwal [3] realized a camera design by dividing the aperture into multiple parts and
using a set of mirrors to direct the light emitted by each piece to different directions.
Tumblin [4] described a camera to measure the static gradient rather than static intensity
and appropriately quantify the difference to capture HDR images. This kind of method
can directly improve the efficiency of exposure quantity and imaging quality, but they
are expensive and their practicability is limited. Through software technology, some
researchers reconstruct the high dynamic range (HDR) image using the camera response
function (CRF). Then, the HDR image can be displayed on the ordinary display device
through tone mapping (TM). Others adopt MEF technology directly, fusing the input
images with different exposure levels into an image with rich information and vivid colors,
which do not need to consider camera curve calibration, HDR reconstruction, and tone
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mapping, as shown in Figure 1. Compared with the first way, MEF technology provides
a simple, economical, and efficient manner to overcome the contradiction between HDR
imaging and a low dynamic range (LDR) display. It avoids the complexity of imaging
hardware circuit design and reduces the weight and power consumption of the whole
device. It improves image quality and has essential application significance.

Figure 1. The illustration of the multi-exposure image fusion.

MEF is a branch of image fusion, similar to other image fusion tasks [5]; for example,
multi-focus image fusion, visible and infrared image fusion, PET and MRI medical image
fusion, multispectral and panchromatic remote sensing image fusion, hyperspectral and
multispectral remote sensing image fusion, and optical and SAR remote sensing image
fusion. They combine multidimensional content from multiple-source images to generate
high-quality images containing more important information. The main difference between
these image fusion tasks is that the source images are different, and the source images of
MEF are a series of images with different exposure levels. In addition, it can also be used for
image enhancement under low illumination [6,7], defogging [8], and saliency detection [9]
by fusing or generating pseudo exposure sequences.

Research on MEF has been ongoing for more than 30 years, during which hundreds of
relevant scientific articles have been published. In particular, with the continuous increase
in the number and quality of newly proposed methods in recent years, significant progress
has been achieved in this field [10]. A suitable MEF method should work stably in both static
and dynamic scenes, appropriate exposure, good visual quality, and low consumption of
computing cost, especially when processing high-resolution images. Therefore, the design
of the MEF algorithm is a very challenging research task. This paper analyzes and discusses
the research status and development trends of MEF technology. The main contributions of
this review are summarized as follows.

1. The existing MEF methods are comprehensively reviewed. Following the latest
developments in this field, the current MEF methods are divided into three categories:
spatial domain methods, transform domain methods, and deep learning methods. The
deghosting MEF methods in a dynamic scene are also discussed as a supplement and
further analyzed.

2. A detailed performance evaluation is conducted. We compare the 18 representative
MEF methods on multiple groups of typical source images using nine commonly used
objective fusion metrics. The performance of MEF methods in static and dynamic scenes is
analyzed. Relevant resources, including source images, fusion results, and related curves,
have provided corresponding download links at “https://github.com/xfupup/MEF_data”
(accessed on 9 January 2022). This is convenient for the comparison and analysis of the
current MEF algorithms.

3. The challenges in the current study of MEF are discussed, and future research
prospects are put forward.

The remainder of this paper is organized as follows. Section 2 provides a compre-
hensive review of existing MEF methods. Section 3 presents a comparative study of MEF.
In Section 4, some prospects and potential research directions are put forward. Section 5
concludes the paper.

2. A Review on MEF

MEF has attracted extensive attention because it can effectively generate high-quality
images with a high dynamic range by combining different information from the image
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sequence with different exposure levels. In the past 30 years, many scholars have proposed
a variety of MEF algorithms. According to the existing research data, Burt et al. [11] were
one of the earliest research teams to study MEF. In their work, a pyramid-based method
was proposed to perform multiple image fusion tasks, including visible and infrared image
fusion, multi-focus image fusion, and multi-exposure image fusion. After that, a large
number of traditional MEF algorithms were proposed. In recent years, research based
on deep learning has become a very active direction in MEF. The MEF algorithms can
be classified in different ways. Zhang [10] divided MEF into three categories based on
the number of input source images, whether the imaging scene is static or dynamic, and
whether deep learning is used. Our research found that some methods can only process
two images [10,12–14]. In [10], they compared the fusion results from the two images
and gave a benchmark. However, most of the current MEF methods support multiple
input images. Some MEF methods that can deal with the images in a static scene may also
perform in a dynamic scene. Therefore, this paper presents a taxonomy of MEF methods
that proposes to divide the existing MEF approaches into three categories: spatial domain
methods, transform domain methods, and deep learning methods. In addition, MEF from
a dynamic scene when camera jitters or moving objects are present has always been a
challenge in this field. Ghost detection and elimination technology in a dynamic scene
has already attracted much interest. This paper also further studies the MEF in a dynamic
scene. The taxonomy is shown in Figure 2. It should be noted that although the presented
taxonomy is valid in most cases, some hybrid algorithms are not easy to be classified into a
single class. Such methods are classified according to their most dominant ideas.

Figure 2. Taxonomy of MEF methods.

The MEF methods based on the spatial domain use certain spatial features to fuse the
input source images directly in the spatial domain according to specific rules. The general
processing flow of this class of method is to generate a weight-mapping map for each input
image and calculate the fused image as a weighted average of all input images. According
to the level of information extraction, the MEF methods based on the spatial domain can
be roughly divided into three types: pixel-based methods, patch-based methods, and
optimization-based methods.

The MEF methods based on the transform domain generally consist of three stages:
image transformation, coefficient fusion, and inverse transformation [15], as shown in
Figure 3. First, the input images are transformed into another domain by applying image
decomposition or image representation. Then, the transformed coefficients are fused
through some pre-designed fusion rules. Finally, the fused image is reconstructed by
the corresponding inverse transformation on the fused coefficients. Compared with the
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MEF methods based on spatial domain, the most prominent feature includes the inverse
transformation stage of reconstructing the fused image. According to the transformation
used, the MEF methods based on the transformation domain can be further divided into
the multi-scale decomposition-based approaches, gradient-domain-based methods, sparse
representation-based methods, and other transform-based methods.

Figure 3. The general flow chart of transform domain methods.

In recent years, deep learning has become a very active direction in the field of MEF.
Neural networks with a deep structure have been widely proved to have strong feature
representation ability and are very useful for various image and vision tasks, including
image fusion. Currently, deep learning models, including convolutional neural networks
(CNNs) [16] and generative adversarial networks (GANs) [17], have been successfully
applied to MEF. Depending on the model employed, deep learning-based methods can be
further classified into supervised-based and unsupervised-based methods.

Due to the time difference in the image acquisition, camera jitter, and inconsistent
object motion, it is challenging to avoid ghosts in fusion results [18,19]. The introduction of
movement correction and relevant measures in the dynamic scene can effectively eliminate
ghosts and improve the visual quality of the fused image. The deghosting algorithms in
MEF can be broadly classified into three categories: global exposure registration, moving
object removal, and moving object selection or registration.

Each category of the MEF methods is reviewed in detail as follows.

2.1. Spatial Domain Methods
2.1.1. Pixel-Based Methods

This kind of method directly fuses the pixel-based features of the source images
according to certain fusion rules. Due to its advantages in obtaining accurate pixel weight
maps for fusing, it has become a popular direction for MEF. These methods directly act
on pixels. Most pixel-based methods are designed in the framework of a linear weighted
sum, that is, the fused image is calculated as a weighted sum of all input images. The core
problem is to obtain the weight map for each input image, and various pixel-based MEF
methods have been proposed on different strategies to compute the weight maps. Bruce [20]
normalized each pixel from the input image sequence and converted it into a logarithmic
domain. Taking each pixel as the center and R as the radius, they calculated the entropy in
the circle and assigned a weight to each pixel in line with the information entropy. Finally,
the input images were merged based on the weight after exiting the logarithmic domain.
Although the information entropy of the fused image is high, the color is unnatural in
some cases. Lee [21] proposed an MEF method based on adaptive weight. Specifically,
they defined two weight functions that reflected the pixel quality related to the overall
brightness and global gradient. The final weight was the combination of these two weights.
To adjust the brightness of the input images, Kinoshita [22] presented a scene segmentation
method based on brightness distribution and tried to obtain the appropriate exposure
values to decrease the saturation area of the fused image. Xu [23] designed a multi-scale
MEF method based on physical features. In their work, a new Retinex model was used to
obtain the illumination maps of the original input images, and weight maps were built,
combined with the extracted features. Ulucan [24] introduced an MEF method based on
linear embedding and watershed masking using a static scene. Linear embedding weights
were extracted from differently exposed images. The corresponding watershed templates



Remote Sens. 2022, 14, 771 5 of 31

were used to adjust these mappings according to the information of the input images for
the final fusion. However, the visual quality and statistical score will be reduced when the
input image sequence contains extremely overexposed or underexposed images. There
are many other pixel-level image fusion algorithms that use filtering methods to process
the weighted maps. Raman and Chaudhuri [25] designed a bilateral filter-based MEF
method that preserved the texture details of the input images at different exposure levels.
Later, Li [26] used a median filter and recursive filter to reduce the noise of weight maps.
However, only the gradient information of individual pixels was considered, regardless of
the local regions.

The main drawback of pixel-based MEF methods is that they are sensitive to noise,
ignore neighborhood information, and are prone to various artifacts in the final fused image.
Therefore, most methods require some pre-processing, such as histogram equalization, or
post-processing of the weight map, such as edge-preserving filtering, to produce a higher-
quality fusion result. Even though the boundary filtering algorithms were added in some
methods [25–27] and the halo artifacts can be reduced to some extent, the problem has not
been solved at the root. Meanwhile, improvement strategies may bring new issues, such as
breaking illumination relationships, over-relying on the bootstrap image, or significantly
increasing computational complexity.

2.1.2. Patch-Based Methods

Unlike the pixel-based MEF method, the patch-based method divides the source
images into multiple patch regions at a certain step size. Then, the patches at the same
position corresponding to each image in the sequence are compared, and the patch con-
taining the significant information is selected to form the final fused image. In [28], a
patch-based method was first introduced to solve the MEF problem in the static scenes.
The image was divided into uniform patches and the information entropy of each patch
was used to measure the richness of the patch. They selected the most information patches
and integrated them together using a patch-centered monotonically decreasing blending
function to obtain the fused image. The disadvantage of this method is that it is easy to
cause a halo at the boundary of different objects within the fused image. After that, many
patch-based MEF methods were presented [29]. Ma [30] conducted a commonly used MEF
method, which first extracted image patches from the input images, and decomposed them
into three conceptually independent components: signal strength, signal structure, and
average strength. These components were processed according to the patch intensity and
exposure measurement to generate color image patches. These image patches were then
put back into the fused image. Following this work, Ma [31] proposed a structural patch
decomposition MEF approach (SPD-MEF). Compared with [30], the main improvement
is that SPD-MEF can use the orientation of the signal structure components in the image
patch to guide the verification of structural consistency for generating vivid images and
overcoming ghost effects. This method does not need subsequent processing to improve
visual quality or reduce spatial artifacts. However, the image patch size is fixed and has
poor adaptability to the scene. The smaller size will cause the fused image to have serious
spatial inconsistency, and the larger size will lead to the loss of detail in the fused image.
On this basis, Li [32] proposed an improved multi-scale fast SPD-MEF method, which
effectively reduced halo artifacts by recursively downsampling the patch size. In addition,
the implicit implementation of structural patch decomposition also greatly improved the
calculation efficiency. Later, Li [33] continued to add an edge detail retention factor and
further designed a flexible bell curve for accurately estimating the weight function of the
average intensity component. This function can retain the details in bright and dark regions
and improve the fusion quality while maintaining a high computational speed. Wang [34]
proposed an adaptive image patch segmentation method that used superpixel segmen-
tation to divide the input images into non-overlapping patches composed of pixels with
similar visual properties. Compared with the existing MEF methods that used fixed-size
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image patches, it avoided the patch effect and preserved the color properties of the source
images.

In contrast to the pixel-based MEF methods, the main advantage of the approach
based on patch is that the weight map has less noise because it combines the neighborhood
information of the pixels and is robust to noise. However, since the patch in the image may
span different objects, there are problems in edge detail retention, leading to edge blurring
and halo, especially in edges with sharp changes in brightness.

2.1.3. Optimization-Based Methods

Several other MEF approaches are integrated into an optimization framework, and the
weight maps are estimated by calculating the energy function. Shen [35] proposed a gen-
eral random walk framework considering neighborhood information from the probability
model and global optimization. The fusion was converted into a probabilistic estimation
of the global optimal solution, and the computational complexity was reduced. However,
since the method ultimately used a weighted average to fuse the pixels, it may degrade
image details. In [2], by estimating the maximum a posteriori probability in the hierar-
chical multivariate Gaussian conditional random field, the optimal fusion weights can be
obtained based on color saturation and local contrast. Li [36] performed MEF using fine
detail enhancement for extracting the details from the input images based on quadratic
optimization to improve the overall quality of the fused image. Song [37] approximated
the ideal luminance image to a maximum contrast image using gradient constraints under
the framework of maximum a posteriori probability. This fusion scheme integrated the gra-
dient information of the input images and increased the fused image’s detail information.
In [38], an underexposed image enhancement method was proposed, where the optimal
weights were obtained by the energy function to retain the details and boost edges. Ma [39]
obtained a fusion result by globally optimizing the structural similarity index that directly
operated in all input images. They used the gradient rise optimization method to search the
image to be optimized, which was the color MEF structural similarity (MEF-SSIMc) index,
iteratively moving toward improving the MEF-SSIMc until convergence. The proposed
optimization framework was easily extended when MEF models with better objective
quality were available. In fused images, using only global optimization may lead to local
overexposure or underexposure. Similarly, using only local optimization may degrade the
overall performance of the fusion result. Therefore, Qi [40] combined a priori exposure
quality and a structural consistency test to improve the robustness of MEF. At the same
time, through the evaluation of exposure quality and the decomposition of image patch
structure, the global and local quality of the fused image were optimized.

The main advantage of the optimization-based methods is that they are general.
Specifically, they can flexibly change optimization indicators if a better one is available.
However, this is also the major disadvantage of these methods, since a single indicator
may not be sufficient to obtain a high-quality fused image. Therefore, the performance
of these methods is highly indicator dependent. Unfortunately, there is no indicator that
can completely express the fused image quality. All these methods suffer from severe
artifacts such as ringing effects, loss of detail, and color distortion, which lead to poor
fusion results. In addition, these methods are computationally intensive and cannot meet
real-time requirements.

2.2. Transform Domain Methods

Transform domain-based MEF methods can be mainly classified into multi-scale
decomposition-based methods, gradient domain-based methods, sparse representation
based-methods, and other transform-based methods.

2.2.1. Multi-Scale Decomposition-Based Methods

Burt [11] was one of the first to research the MEF algorithm, and proposed a gradient
pyramid model based on directional filtering. Mertens [41] proposed a multi-scale fusion
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framework, as shown in Figure 4, which decomposed all the input images using the Laplace
pyramid. The framework took the contrast, color saturation, and exposure to calculate
and normalize the weight maps, which were smoothed by the Gaussian pyramid. Then,
the Gaussian pyramid of the weight maps was multiplied by the Laplace pyramid of the
multi exposure images to obtain the fusion result, which can better recover the image’s
brightness, but cannot restore the details of the severely overexposed region. Based on this
framework, many studies have been proposed to further improve fusion performance.

Figure 4. The general schematic of the pyramid fusion framework. I(1)–I(N) denote N input images;
W(1)–W(N) are N weight maps; L{�} and G{�} indicate Laplace pyramid and Gaussian pyramid,
respectively. R1-Rn are layers of the Laplace pyramid of the fusion result.

Li [42] presented a two-scale MEF method, which first decomposed the input images
into base and detail layers and then calculated the weight maps by utilizing the significance
measure. They fined weight maps using the guidance filter. The texture information of the
input images could be retained, but halo artifacts still existed. An MEF method based on
mixed weight and an improved Laplace pyramid was introduced to enhance the detail and
color of the fused image in [43]. Based on the multi-scale guided filter, Singh [44] proposed
an image fusion method to obtain detail-enhanced fusion images. This method had the
advantages of both the multi-scale and guided filter methods, which can also be expanded
in multi-focus image fusion task. Nejati [45] designed a fast MEF approach in which a
guided filter was applied to decompose the input images for obtaining base and detail
layers. To obtain the fused image, the brightness components of the input images were
used to combine the base layers and the detail layers based on the blending weights of the
exposure function. LZG [46] merged LDR images with different exposure levels by using
the weighted guide filter to smooth the weight maps’ Gaussian pyramid. They designed
a detail-extraction component to manipulate the details in the fusion image according to
the users’ preference. Yan [47] proposed a simulated exposure model for white balance
and image gradient processing. It integrated the input images under different exposure
conditions into a fused image by using the linear fusion framework based on the Laplace
pyramid. Wang [48] presented a multi-scale MEF algorithm based on YUV color space
instead of RGB color space and designed a new weight smoothing pyramid used in YUV
color space. A vector field construction algorithm was introduced to maintain the details of
the brightest and the darkest areas in HDR scenes and avoid color distortion in the fused
image. In some approaches, they often used edge-preserving smoothing technology to
improve multi-scale MEF algorithms. Kou [49] proposed a multi-scale MEF method that
introduced an edge-preserving smoothing pyramid to smooth the weight map. Owing to
the edge-preserving characteristics of the filter, the details of the brightest/darkest regions
in the fused image were well kept. Following [49], Yang [50] introduced a multi-scale MEF
algorithm that first generated a virtual image with medium exposure based on the input
images. Then, the method presented in [49] was applied to fuse this virtual image and
achieve the fused result. Qu [51] proposed an improved Laplace pyramid fusion framework
to achieve a fused image with detail enhancement. In addition, it is not easy to determine
the appropriate fusion weight. To overcome this difficulty, Lin [52] presented an adaptive
search strategy from coarse to fine, which used fuzzy logic and a multivariable normal
conditional random field to search the optimal weight for multi-scale fusion.
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2.2.2. Gradient-Based Methods

This kind of method is inspired by the physiological characteristics of the human visual
system and is very sensitive to illumination. These methods aim to obtain the gradient
information of the source images and then compose the fusion image in the gradient
domain. Gu [53] presented an MEF method in a gradient field based on Riemannian
geometric measurement and the gradient value of each pixel, which was generated by
maximizing the structure tensor. The final fused image was obtained by a Poisson solver.
The average gradient of the fused image was high, and this method was suitable in
the details. However, the color was rarely processed, such that the fused image was
dark, and the color was unnatural. Zhang [54] proposed an MEF method to apply in
static and dynamic scenes based on gradient information. Under the guidance of the
gradient-based quality evaluation, it generated a tone map similar to a high dynamic range
image through seamless synthesis. Similarly, research using the gradient-based method
to maintain image saliency was presented in [55], where the significance gradient of each
color channel was computed. Moreover, the acquisition of the gradient was also a critical
issue for calculating the image contrast. In general, the corresponding eigenvector of
the matrix decided the gradient amplitude of the fusion. Several improved approaches
were appropriated to optimize the weighted sum of the gradient amplitude in [56]. In
this method, they used a wavelet filter, decomposing the image luminance, to obtain the
corresponding decomposition coefficients. Paul [57] designed an MEF approach based
on the gradient domain, which first converted the input images into YCbCr color space
and then performed the fusion of the Y channel in the gradient domain. At the same time,
the chrominance channels (Cb and Cr) were fused by applying a weighted sum of the
chrominance channels. Specifically, the gradient in each orientation was estimated based
on the maximum amplitude gradient selection. Using the gradient, the luminance was
reconstructed based on the Harr wavelet. In [58], according to local contrast, brightness,
and spatial structure, the author first calculated three weights of the input images and
combined them using the multi-scale Laplacian pyramid. The dense scale-invariant feature
transformation was used to compute the local contrast around each pixel position and
measure the weight maps. The luminance was calculated in the gradient domain to obtain
more visual information.

2.2.3. Sparse Representation-Based Methods

The approaches based on sparse representation (SR) take the linear combination of
elements in the over-complete dictionary to describe the input signal. The error between
the reconstructed signal and the input signal is minimized with as few non-zero coefficients
as possible, allowing for a more concise representation of the signal and easier access to
signal details [59]. In the past decade, SR-based MEF methods have rapidly become an
essential branch in the area of image fusion. A dictionary obtained by K-SVD was used
to represent the overlapping patches of the image brightness by the “sliding window”
technique in [60]. The fusion image was reconstructed based on the sparse coefficients
and the dictionary. Shao [61] proposed a local gradient sparse descriptor to generate the
local details of the input image. It extracted the image features to remove the halo artifacts
when the brightness of the source images changed sharply. Yang [62] designed a sparse
exposure dictionary for exposure estimation based on sparse decomposition, which was
used to construct the exposure estimation maps according to the atomic number of the
image patches obtained by sparse decomposition.

2.2.4. Other Transform-Based Methods

In addition to the above methods, discrete cosine transform (DCT) and wavelet trans-
form have also been successfully applied to MEF. Lee [63] proposed an HDR enhancement
method based on DCT that fused two overexposure and underexposure images. This
algorithm used the quantization process in JPEG coding as a metric for improving image
quality so that the fusion process can be included in the DCT-based compression baseline.
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They proposed a Gaussian error function based on camera characteristics to improve the
global image brightness. Martorell [64] constructed an MEF method based on the sliding
window DCT transform, which used YCbCr transform to calculate the luminance and
chrominance components of the image, respectively. Specifically, this technique decom-
posed the input images into multiple patches and computed the DCT of these patches. The
patch coefficients from the same position of the input images with different exposure levels
were combined according to their sizes. The chromaticity values were fused separately as
a weighted average at the pixel level. In [65], the input images were converted into YUV
space, and the color difference components U and V were fused in line with the saturation
weight. The luminance component Y was converted into the wavelet domain, and the corre-
sponding approximate sub-band and detail sub-band were fused by the well-exposedness
weight and adjustable contrast weight, respectively. The final fused result was obtained by
transforming the fusion image into RGB space.

2.3. Deep Learning Methods

In recent years, significant success has been achieved based on deep learning in
computer vision and image processing applications [66,67]. More and more MEF methods
based on deep learning have been proposed to improve fusion performance [68–71]. To
provide some useful references for researchers, the achievements in recent years based on
deep learning are reviewed, including supervised and unsupervised MEF methods.

2.3.1. Supervised Methods

In supervised MEF algorithms, a large number of multi-exposure images with ground
truth are required for training. However, this requirement is difficult to meet because
there is generally no ground truth available in the MEF. Researchers have to find effective
ways to create ground truth to develop this kind of method. CNN is known to be effective
to learn local patterns and capture promising semantic information. Furthermore, it is
also known to be efficient compared with other networks [72,73]. In 2017, Kalantari [74]
first introduced a supervised CNN framework for MEF research. The ground truth image
dataset was generated by combining three static images with different exposure levels in
their work. The three images were converted into an approximate static scene by optical
flow. Then, a convolutional neural network (CNN) was used to obtain fusion weights and
fuse the aligned images. The contributions of this paper were: (1) presenting the first study
on deep learning MEF; (2) the fusion effects of the three CNN architectures were discussed
and compared; and (3) a dataset suitable for MEF was created. Since then, many MEF
algorithms based on deep learning have been proposed. In 2018, Wang [75] proposed a
supervised CNN-based framework for MEF. The main innovation of the approach was
that it used the CNN model to gain multiple sub-images of the input images to use more
neighborhood information for convolution operation. This work changed the pixel intensity
of the ILSVRC 2012 verification dataset [76] to generate the ground truth images. However,
it may not be real for the ground truth images generated in this way.

The second way to solve the lack of the ground truth is to use the pre-trained model
generated by different methods. Li [77] extracted the features of the input images by utiliz-
ing a pre-trained model in other networks and calculated the local consistency using these
features to determine the weights. In addition, due to motion detection implementation,
this method can be used in both static and dynamic scenes. Similar work was also presented
in [78].

The third way to solve this problem is to select fusion results from some methods as the
ground truth. Cai [79] used 13 representative MEF techniques to generate 13 corresponding
fused images from each sequence and then selected the image with the best visual quality as
the ground truth by conducting subjective experiments. They provided a dataset containing
589 groups of multi-exposure image sequences, with 4413 images. The whole process
required much manual intervention, so the number of image sequences trained was very
limited, which may hinder the generalization ability of the fusion network. Liu [80]
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proposed a network for decolorization and MEF based on CNN. To obtain satisfactory
qualitative and quantitative fusion results, the local gradient information from the input
images with different exposure levels was calculated as the network’s input. It worked
on a source image sequence consisting of three exposure levels and each exposure level
can be viewed as a signal channel. In [81], a dual-network cascade model was constructed
consisting of an exposure prediction network and an exposure fusion network. The former
was used to recover the lost details in underexposed or overexposed regions, and the latter
could perform fusion enhancement. This cascade model used a three-stage training strategy
to reduce the training complexity. However, the down-sampling operation in this model
may cause checkerboard defects in the fused image, and the author alleviated this problem
by applying a loss function constructed with the structural anisotropy index.

The above supervised methods are explicitly designed for the MEF issue. There are
also several methods based on supervised deep learning that are constructed for some
image fusion tasks, including MEF. Zhang [82] proposed an end-to-end fully convolutional
approach (IFCNN) that used Siam architecture, as shown in Figure 5. Two branches
extracted the convolutional features from the input images and fused them using element
average fusion rules (note that different fusion tasks used different rules). In IFCNN, the
model was optimized utilizing perceptual loss, plus a fundamental loss that calculated
the intensity difference between the input images and the ground truth. IFCNN can be
suitable for fusing images at arbitrary resolution. However, its performance in the MEF
task may be limited because it was trained only with a multi-focus image dataset. In [83], a
general cross-modal image fusion network was presented, exploring the commonalities
and characteristics of different fusion tasks. Different network structures were analyzed in
terms of their impact on the quality and efficiency of image fusion. The dataset constructed
by Cai [79] was used for the MEF task. However, these models were not explicitly designed
for MEF issues and were not fine-tuned on multi-exposure images, so their performance
may not be satisfactory in some cases.

Figure 5. The network architecture of IFCNN.

The methods above either create the ground truth images by adjusting the brightness
value of the normal images, use other pre-trained models in other works to obtain the
ground truth images, or use the images with subjective effects in the existing fusion results
as the ground truth images. However, these methods may not deal well with the lack of
real ground truth images. In particular, the ground truth images in some MEF algorithms
are selected from the fusion results of other methods and not taken by optical cameras.
They may not be accurate or appropriate. In order to solve these problems, some studies
try to construct unsupervised MEF architectures.
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2.3.2. Unsupervised Methods

Since there are generally no real ground truth images available, some studies have
turned to developing the MEF methods based on unsupervised deep learning to avoid the
need for ground truth in training. This section describes the relevant unsupervised MEF
methods.

In 2017, Prabhakar [84] built the first unsupervised MEF architecture for fusing image
pairs, named DeepFuse, as shown in Figure 6. This method first converted the input images
into YCbCr color space. Then, a CNN composed of the feature layers, a fusion layer, and
the reconstruction layers was used for feature extraction of the Y channel, while the fusion
of Chrominance channels (Cb and Cr) was still executed manually. Thirdly, the image data
in YCbCr space were converted back into RGB space to obtain the final fusion image. This
unsupervised method used a fusion quality metric MEF-SSIM [85] as the loss function to
realize unsupervised learning. DeepFuse can extract effective features and be more robust
to different inputs because it uses CNN to fuse the brightness, which is its main advantage.
Furthermore, as an unsupervised method, it does not need ground truth to train. However,
a different color space conversion is required, which is not easy compared with fusing RGB
images directly. In addition, simply using MEF-SSIM as the loss function is not enough to
learn other critical information not covered by MEF-SSIM.

Figure 6. The network architecture of DeepFuse.

Ma [86] presented a flexible and fast MEFNet for the MEF task, and it also worked
in the YCbCr color space. First, the input images were downsampled and sent to a
context aggregation network for generating the learned weight maps, which were jointly
upsampled to high resolution using a guided filter. Then, the upsampling weight maps
were used for the weighted summation of the input images. Specifically, the context
aggregation network was trained for fusing the Y channel, while the fusion of Cb and Cr
was executed with a simple weighted summation. The final fused image in RGB space
was obtained by converting color space. The flexibility and speed were the significant
advantages of MEFNet, i.e., the input images with arbitrary spatial resolution can be fused
using this fully convolutional network, and the fusion process was efficient since the main
calculation was carried out with a fixed low resolution. However, because only MEF-SSIM
was used as the loss function, there was the same problem in MEFNet as in DeepFuse.

Qi [87] presented the UMEF network for MEF in static scenes. They used CNN to
extract features and fused them to create the final fusion image. Compared with DeepFuse,
there were three main differences between them, as follows. First, UMEF can fuse multiple
input images. By contrast, DeepFuse was designed to fuse two input images. Second, the
loss function was made up of two parts: MEF-SSIMc and an unreferenced gradient loss,
while the loss function of DeepFuse was only MEF-SSIM. As a result, more details of the
fused images were reserved in UMEF. Third, the color images can be directly fused with
MEF-SSIMc in UMEF, and the color space conversion is avoided. In [88], an end-to-end
unsupervised fusion network was designed to generate a fusion image, named U2Fusion.
It was applied to solve different fusion tasks, such as multi-modal, multi-exposure, and
multi-focus issues. U2Fusion extracted the features with pre-trained VGGNet-16 and fused
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the input images with the DenseNet network. The importance of the input images can be
automatically estimated through feature extraction and information measurement, and an
adaptive information preservation degree was put forward. However, this method was
required for the quality of the input images. When acquiring the image, these problems
will be amplified if there is noise or distortion. Gao [89] made some improvements based
on U2Fusion and applied the MEF model to the transportation field. The quality of the
fused images from the fusion model was improved using adaptive optimization.

Besides the unsupervised method based on CNN, some unsupervised MEF meth-
ods based on Generative Adversarial Networks (GAN) were also proposed. Chen [90]
presented an MEF network and fused two input images. This network integrated homogra-
phy estimation, attention mechanism, and adversarial learning, which were, respectively,
applied to camera motion compensation, the correction of the remaining moving pixels,
and artifact reduction. Xu [17] designed an end-to-end architecture for MEF based on
GAN, named MEF-GAN, and used the dataset from Cai [79]. Following [17] and [90], a
GAN-based MEF network, named GANFuse, was proposed in [91]. There were two main
differences between GANFuse and the GAN-based MEF approaches above. First, as an
unsupervised network, GANFuse used an unsupervised loss function, which was applied
to measure the similarity between the fusion image and the input images, rather than the
similarity with the ground truth. Second, GANFuse was composed of one generator and
two discriminators. Each discriminator was used to distinguish the difference between the
fusion image and the input images.

It should be noted that all the above unsupervised MEF networks, except UMEF,
required color space conversion. The input images needed to be converted into YCbCr
color space, and the Y channel was fused with the deep learning model, while the Cb and
Cr channels were fused by weighted summation.

2.4. HDR Deghosting Methods

Most MEF approaches assume that the source images are perfectly aligned, which is
usually violated in practice because of the time differences in image acquisition. Once there
are moving objects in the scene, ghosts or blur artifacts often occur that degrade the quality
of the fusion image [92–94], as shown in Figure 7.

Figure 7. Different types of the fusion images with ghost artifacts.

MEF in dynamic scenes has always been a challenge. To obtain HDR images without
artifacts, a large number of deghosting MEF methods have been proposed from different
angles, which are mainly in two aspects: how to detect the ghost area and how to eliminate
ghosts. Based on the above parts, this part analyzes the MEF deghosting methods in-depth.
The current MEF methods in dynamic scenes are investigated, classified, and compared.
The MEF processing in a dynamic scene is divided into the following categories: global
exposure registration, moving object removal, and moving object selection or registration.

2.4.1. Global Exposure Registration

The main aim of the methods in this class is to compensate for and eliminate the
impacts of the camera motion based on parameter estimation of the transformations that
are applied to each input image. These methods do not pay attention to the existence of
moving objects.
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Cerman [95] presented an MEF approach to register the source images and eliminate
the camera motion in handheld image acquisition equipment. The correlation in the Fourier
domain was used to evaluate the image offset from the translational camera motion in
initial estimation. Both the translational and rotational movement of the subpixels between
input images were locally optimized. They used the registration on continuous image
pairs without selecting a reference image. Gevrekci [96] proposed a new contrast-invariant
feature transform method. This method assumed that the Fourier components were in
phase at the corner position, used a local contrast stretching step on each pixel of the
source images, and applied the phase congruency for detecting the corners. Then, they
registered the source images by matching features using RANSAC. Another approach
using the phase congruency images was provided in [97], which used cross-correlation
technology to register the phase congruency images in the frequency domain instead
of using them to discriminate the key points in the spatial domain. Besides translation
registration, rotation registration was also performed with log polar coordinates, where
the rotation motion was represented by the translation transformation in the coordinates.
Evolutionary programming was applied to detect subpixel shifts to search the optimal
transformation values. In [98] used a target frame localization method to register the input
images and compensated for the undesired camera motion in the registration process.

Furthermore, using a camera with a fixed position could reduce this problem. In
addition to camera motion, the more challenging problem is that moving objects may
appear as ghost artifacts in the fused image. Therefore, in recent years more research has
focused on removing the ghosts of moving objects in fusion images.

2.4.2. Moving Object Removal

This kind of method removes all moving targets in the scene by static background
estimation. Most of the image scenes are static in practical applications, and only a small
part of the image contains moving objects. Without selecting a reference image, most of
these algorithms perform a consistency check for each pixel of the input images. The
moving object is modeled as the outlier and eliminated to obtain an HDR image without
artifacts.

Khan [99] proposed an HDR deghosting approach for adjusting the weight by esti-
mating the probability that each pixel belongs to the background iteratively. Pedone [100]
designed a similar iterative process, which increased the chances of the pixels belonging
to the static set through the energy minimization technology. The final probabilities were
applied as the weights of MEF. Zhang [101] utilized the gradient direction consistency to
determine whether there was a moving object in the input images. This method calculated
the pixel weights using quality measures in the gradient domain rather than absolute
pixel intensities. The weight of each image was computed as a product of consistency and
visibility scores. If the pixel gradient direction was consistent with the collocated pixels
from other input images, the pixel was assigned a larger weight by the consistency score.
On the other hand, the pixel with a larger gradient was assigned a larger weight by the
visibility score. However, this method may not be robust in frequently changing image
scenes. Wang [102] introduced visual saliency to measure the difference between the input
images. They applied bilateral motion detection to improve the accuracy of the marked
moving area and avoid the artifacts in a fused image through fusion masks. The ghosts of
moving objects and handheld camera motion can be removed. However, they need more
than three input images for effective fusing. Li [103] applied a light intensity mapping
function and bidirectional algorithm to correct non-conforming pixels without reference
images. This method used two rounds of hybrid correction steps to remove ghosts in the
fused image. In [51], the weight maps were calculated based on luminance and chromaticity
information in the YIQ color space. For dynamic scenes, this method used image difference
and superpixel segmentation to refine the weight maps, and the weights of moving objects
were decreased to eliminate the undesirable artifacts. Finally, a fusion framework based
on the improved Laplacian pyramid was proposed to fuse the input images and enhance
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the details. However, the algorithm was time-consuming and did not work well when the
camera jittered.

These methods assume a main pattern in the input image sequence, referred to as the
“majority hypothesis”, which means that moving objects only occupy a small part of the
image. A common problem in these methods is that the performance may not be satisfied
when the image scene contains moving objects with large motion amplitude or when some
parts of the images in the sequence change frequently.

2.4.3. Moving Object Selection or Registration

The main difference between the algorithms in this class and the moving object removal
methods is that the fusion result of the former includes the moving objects appearing
in the selected reference image. The moving object selection or registration methods
focus on reconstructing the pixels affected by the movement through finding the local
correspondence between the regions affected by object motion.

Some methods selected one or more source images for each dynamic portion as
guidance to eliminate the ghost. Jacobs [104] developed an object motion detector based
on an entropy map, which did not need camera curve knowledge to detect the ghost in
the region with low contrast. However, this method mostly failed when there was a large
image region with moving objects or fewer texture features. Pece [105] introduced an MEF
method to remove ghosting artifacts based on the bitmap motion detection technique. First,
they extracted each input image’s exposure, contrast, and saturation and then applied
the median bitmap to detect the moving objects. However, neglecting image structure
information may have some adverse effects on the fusion image. Silk [106] employed
different methods for deghosting according to the type of movement. The method started
with implementing the change detection and did not consider the object boundaries. Then,
to refine the object boundaries, using simple linear iterative clustering (SLIC) super-pixels,
the images were over-segmented. These super-pixels were divided into motion and non-
motion areas in line with the number of inconsistent pixels signed with the change detection
above. In the fusion stage, the super-pixels with the movement were allocated smaller
weights. Some super-pixels containing the moving object in each of the source images were
allocated larger weights when there were moving objects. Based on previous work in [101],
Zhang [107] improved upon and proposed a reference-guided deghosting method. They
assumed that most pixels in the source images were static compared with the pixels in the
motion regions. They introduced a consistency check for the pixels in the reference image to
deal with frequently changing scenes. Granados [108] proposed a Markov random field for
ghost-free fused images in a dynamic scene, and selected a reference image to reconstruct
the dynamic content. Because the moving object was obtained from a single reference
image, the dynamic range of the moving object cannot be recovered fully. In addition,
object overlap or half-included objects may appear without any semantic constraint in
the reconstruction. In [26], the local contrast and brightness of static images and the color
dissimilarity weight of dynamic images were extracted using fusion in static and dynamic
scenes. The weight maps were smoothed by the recursive filter. To overcome the ghosts,
they applied a new histogram equalization method and median filter to detect the motion
regions from the dynamic scenes. Lee [109] proposed a rank minimization method to detect
the ghost region. The constraints on moving objects were incorporated into the framework,
which consisted of sparsity, connectivity, and the a priori information from underexposed
and overexposed areas. The study in [110] presented a ghost-free MEF method based
on an improved difference approach. Before becoming ghost-free, each input image was
normalized to the brightness consistent with the reference image’s exposure level. When the
pixel was underexposed or overexposed, a special operation was performed by matching
other available exposures. Two reference images were selected in this method.

Some methods use optical flow estimation and the feature matching strategy to remove
ghosts in dynamic scenes. Zimmer [111] performed an alignment step based on the optical
flow method, which exploited the multiple exposures and created a super-resolution image.
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This method can generate dense displacement fields with sub-pixel accuracy and solve
the problems caused by moving objects and severe camera jitter. This method relied on
the warping strategy, from coarse to fine, to deal with large-scale displacement. Because
small objects may disappear on the rough horizontal plane, it was impossible to estimate
the large-scale displacement of small objects. Jinno [112] designed a weighting function for
fusing the input images, which assumed that the input images had been globally registered.
The maximum a posteriori probability estimation was used to estimate the displacement, oc-
clusion, and saturation regions simultaneously. Ferradans [113] proposed an MEF method
in the dynamic scene based on gradient fusion, which first selected a reference image and
then improved the details of its radiation map by increasing information interpolated from
the input image sequence. Liu [114] introduced an approach based on dense scale-invariant
feature transform (SIFT) for MEF in static and dynamic scenes. They first applied the
dense SIFT descriptor as the activity level measure to extract the local details from the
input images and then used the descriptor to eliminate the ghost artifacts in the dynamic
scenes. Following this study, Hayat [115] proposed an MEF algorithm based on a dense
SIFT descriptor and guided filter. There were two main differences compared with the
method in [114]. First, they used the histogram equalization and median filter to compute
the color dissimilarity feature instead of the spatial consistency module in [114]. Second,
they used the guided filter to remove the noise and discontinuity from the initial weights.
Zhang [116] introduced two types of consistency for matching the reference image with the
input images before ghost detection, consisting of mutual consistency based on histogram
matching and intra consistency based on super-pixel segmentation. This method assumed
that the input image was aligned and performed the motion detection at a super-pixel level
to maintain the weights of the outliers.

Other algorithms based on a patch-matching strategy reconstruct the moving object
region by transferring the information of a subset of the source images. Sen [117] developed
an image patch-matching approach for HDR deghosting based on energy minimization.
This method can jointly solve the problems of image alignment and reconstruction. Hu [118]
established a dense correspondence between the reference image and other images in the
sequence. The information of the images in the sequence was modified to match the
information of the reference image, and the wrong correspondences were corrected using
local homography. In their later work [119], Hu et al. proposed a PatchMatch-based method
for removing the ghosts in saturated regions of the source images. This method selected
an image with good exposure as the reference image, and the latent image of the fused
image was similar to the reference image. The PatchMatch algorithm was used to find
the matching patch in other input images in the underexposed or overexposed regions.
Compared with the method in [117], this method did not require the conditional random
fields of the input images to be linear [120]. Ma [31] detected the structural consistency of
the image patches and generated a pixel consistency mapping relationship to realize image
registration in the dynamic scene and eliminate the ghosts in the fused image. This method
introduced ρk, representing the consistency between the input image and the reference
image, as follows:

ρk = sT
r sk =

(xr − lr)
T(xk − lk) + ε

‖xr − lr‖‖xk − lk‖+ ε
(1)

where ‖·‖ indicates the l2 norm of a vector. xk is a set of color image patches that are
extracted at the same spatial location of the input image sequence containing K multi-
exposure images, and k lies in [1,K]. lk denotes the mean intensity component of xk. xr is
the image patch at the corresponding location of the reference image and lr represents the
mean intensity component of xr. sr is the reference signal structure, and sk is the signal
structure of another exposure. ρk lies in [−1,1]. The larger ρk is, the higher the consistency
between sk and sr. Since sk is obtained by mean removal and intensity normalization, it is
robust to exposure and contrast variations. The introduction of the constant ε can ensure
the robustness of the structural consistency to the sensor noise.
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Some methods have been proposed based on this theory [32,33,40]. Such methods
have good ghost removal performance. However, the computing cost is also high due to
intensive search and repair operations. Li [32,33] improved upon this method and reduced
the computational complexity.

In addition, some ghost removal methods are also applied in video [121,122]. Sum-
marize the above HDR deghosting methods, some approaches remove moving objects
and generate HDR images with only static areas. Other algorithms select the image with
optimal exposure for restructuring dynamic regions or register moving objects from dif-
ferent input images to maximize the dynamic range. However, when eliminating the
ghosts, these algorithms may also introduce different artifacts, such as noise, broken objects,
dark regions, or partial residual ghosting, etc. Therefore, it is expected that more effective
deghosting algorithms will be proposed to adapt to camera jitter or object motion.

3. Experiments
3.1. Image Dataset

To verify the universality of the algorithm, it is necessary to test and analyze under a
variety of representative scenes, including indoor, outdoor, different times, and different
weather. Some research teams have disclosed their datasets, summarized in Table 1 as
follows. “Dynamic” and “Static” indicate whether the dataset can be used for dynamic or
static scenes.

Table 1. Image dataset used in MEF.

Dataset Year Image
Sequences

Total
Number

Number of
Inputs Link of Source Code Remarks

MEFB [10] 2020 100 200 =2 https://github.com/xingchenzhang/MEFB
(9 January 2022) Static

SICE [79] 2018 589 4413 >2 https://github.com/csjcai/SICE
(9 January 2022) Static

TrafficSign [89] 2020 2000 6000 =2 https://github.com/chenyi-real/TrafficSign
(9 January 2022) Static

HRP [123] 2019 169 986 ≥2
https://github.com/hangxiaotian/

Perceptual-Multi-exposure-Image-Fusion
(9 January 2022)

Static

DeghostingI-QASet [31] 2020 20 84 >2 https://github.com/h4nwei/MEF-SSIMd
(9 January 2022) Dynamic

Dataset [124] 2016 17 153 >2 https://user.ceng.metu.edu.tr/~akyuz/files/
eg2201/index.html (9 January 2022) Dynamic

Some image sequences in the above dataset are crossed, and the input image sequences
range from two exposure levels to multiple exposure levels. Corresponding multi-exposure
datasets are required for different scenes and tasks. Research teams are welcome to open
their datasets under different scenes for free to effectively evaluate existing and future MEF
methods.

3.2. Performance Comparison

Generally, there are two ways to evaluate the performance of MEF methods: subjective
qualitative evaluation and objective quantitative comparison.

3.2.1. Subjective Qualitative Evaluation

The observer performs the quality evaluation of the fused image. High-quality fusion
images should not only retain as much important information from the input images as
possible, but also should be as naturalistic and comparable as the scene. Most of the
current literature gives the subjective evaluation results of the algorithm and even gives the
enlarged local map in the details. However, it is time consuming and laborious to observe
each fused image in practical applications. Moreover, each observer has different standards
when observing the fused image, from which it is easy to produce deviation estimations, so
objective quantitative evaluation is necessary.

https://github.com/xingchenzhang/MEFB
https://github.com/csjcai/SICE
https://github.com/chenyi-real/TrafficSign
https://github.com/hangxiaotian/Perceptual-Multi-exposure-Image-Fusion
https://github.com/hangxiaotian/Perceptual-Multi-exposure-Image-Fusion
https://github.com/h4nwei/MEF-SSIMd
https://user.ceng.metu.edu.tr/~akyuz/files/eg2201/index.html
https://user.ceng.metu.edu.tr/~akyuz/files/eg2201/index.html
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3.2.2. Objective Quantitative Comparison

Quantitatively evaluating the quality of the fusion image is a challenging task, be-
cause the ground truth image does not exist. Liu [125] divided 12 popular image fusion
metrics into four categories: metrics based on information theory, metrics based on image
feature, metrics based on image structure similarity, and metrics based on human percep-
tion. The corresponding Matlab code is available at “https://github.com/zhengliu6699/
imageFusionMetrics” (9 January 2022).

Since the performance of the MEF method may vary on the different metrics, it is
necessary to use a set of objective metrics to evaluate the MEF algorithm simultaneously.
Table 2 summarizes the objective metrics used for MEF methods in a static scene. To ensure
an unbiased assessment of fusion performance, this paper applies eight commonly used
metrics to evaluate the fused results of different MEF methods in the static scenes, as
follows.

1. Structural similarity index measure (MEF-SSIM) [85]. This metric is based on
the patch consistency measure and is widely used for MEF performance evaluation.
2. QAB/F [126]. This is also a commonly used metric in the fused result evaluation. Its
primary application is to analyze the edge information of the fused image. 3. Mutual infor-
mation (MI) [127]. This reflects the amount of information in the fusion image obtained
from the input image sequence. 4. Peak signal-to-noise ratio (PSNR) [128]. This is used to
measure the ratio between effective information and noise in images and reflect whether
the image is distorted. 5. Natural image quality evaluator (NIQE) [115]. This is based on
perceived quality. 6. Standard deviation (SD) [89]. This reflects the dispersion of an image.
7. Entropy (EN) [129]. This indicates the richness of information contained in an image.
8. Average gradient (AG) [130]. This expresses the ability of an image to retain small details.
MEF-SSIM, QAB/F, MI, and PSNR are objective metrics with the reference images. NIQE,
SD, EN, and AG are metrics without reference images. For the above metrics, except for
NIQE, a larger value indicates a better quality of the fusion image.

Since the processing methods in the dynamic scene are different from those in the
static scene, the evaluation metrics used are also different. There are few quantitative
metrics in the dynamic scene, and most algorithms are only subjectively eval
uated [51,103,104,107,109,116,131]. Some other fusion studies only quantify the fusion
results in a static scene, while the results in the dynamic scene are not quantified [64,115].
This paper produces some statistics on the quantitative metrics from the literature in the
dynamic scene. In a previous work [132], the HDR-VDP-2 metric was used to intuitively
judge the distortion between the fused image and the reference image; the larger the value,
the higher the quality of the fused image. Fang [133] developed an MEF perception evalua-
tion metric MEF-SSIMd for a dynamic scene. This paper investigates the evaluation metrics
used in MEF research, listed in Tables 2 and 3.

In addition to the above evaluation metrics, the computational efficiency of the algo-
rithm is also a critical evaluation criterion with the improvement of image resolution and
the requirements of video frame rate, which bring significant challenges to MEF task. Many
authors have given this metric in their research, but it largely depends on the computing
power of the equipment, so it may not be comparable in different works. Regardless, it can
be used as an evaluation reference.

https://github.com/zhengliu6699/imageFusionMetrics
https://github.com/zhengliu6699/imageFusionMetrics
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Table 2. Evaluation metrics of MEF methods in the static scenes.

NO. Metric References Remarks

1 Structural similarity index
measure (MEF-SSIM)

Huang [1]; Yang [13]; MEF-GAN [17]; Liu [58]; Yang
[62]; Martorell [64]; Li [77]; Liu [80]; Chen [81];

Deepfuse [84]; MEFNet [86]; U2fusion [88]; Gao [89];
LXN [123]; Shao [134]; Wu [135]; Merianos [136]

The larger, the better

2 QAB/F Nie [6]; Liu [38]; LST [42]; Hayat [115]; Shao [134] The larger, the better

3 MEF-SSIMc Martorell [64]; UMEF [87]; Shao [134] The larger, the better

4 Mutual information (MI) Nie [6]; Wang [34]; Gao [89]; Choi [137] The larger, the better

5 Peak signal-to-noise ratio
(PSNR)

Kim [7]; MEF-GAN [17]; Chen [81]; U2fusion [88];
Gao [89]; Shao [134] The larger, the better

6 Natural image quality
evaluator (NIQE) Huang [1]; Hayat [115]; Wu [135]; Xu [138] The smaller, the better

7 Standard deviation (SD) MEF-GAN [17]; Gao [89]; Wu [135] The larger, the better

8 Entropy (EN) Gao [89]; Wu [135] The larger, the better

9 Average gradient (AG) Nie [6]; Wu [135] The larger, the better

10 Visual information fidelity
(VIF) Liu [58]; LST [42]; Yang [62] The larger, the better

11 Correlation coefficient (CC) MEF-GAN [17]; U2fusion [88] The larger, the better

12 Spatial frequency (SF) Gao [89]; The larger, the better

13 Q0 Liu [38]; LST [42] The larger, the better

14 Edge content (EC) Hara [56] The larger, the better

15 Lightness order error (LOE) Liu [38] The smaller, the better

16 DIIVINE Shao [61] The larger, the better

Table 3. Evaluation metrics of MEF methods in dynamic scenes.

NO. Metric References Remarks

1 HDR-VDP-2 Kim [7]; Karad̄uzović-Hadžiabdić [19]; Tursun [120]; Yan [139] The larger, the better
2 MEF-SSIMd Shao [134] The larger, the better

3.3. Comparisons of Different MEF Methods

In our comparative study, the MEF methods are selected according to the following
three principles: the methods have been proposed in recent years, or they have great
influence in this field (according to the number of paper indexes); the source codes of
these methods are publicly available online; and the selected methods should cover the
sub-categories mentioned in Section 2 as much as possible. We selected 18 representative
MEF methods, including seven spatial domain methods, nine transform domain methods,
and two deep learning methods (one supervised method and one unsupervised method).

Table 4 lists the details of the selected MEF methods, including the category, the sources
of the methods, the download link of the code, and whether it can be applied in a dynamic
scene or not. “Dynamic” indicates that the algorithm can be used not only in a static scene,
but also in a dynamic scene. “Static” indicates that the algorithm can only be used in a static
scene. “Supervised” and “Unsupervised” mean supervised and unsupervised methods,
respectively. For all selected methods, the default parameter settings are the same as those
in the original literature.
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Table 4. Detailed information of the selected 18 MEF methods.

Category Method Year Link of Source Code Remarks

Spatial domain

Liu [114] 2015 https://github.com/yuliu316316/DSIFT-EF (9 January 2022) Dynamic
Ma [31] 2017 https://github.com/hangxiaotian (9 January 2022) Static
Ma [31] 2017 https://ece.uwaterloo.ca/~k29ma/ (9 January 2022) Dynamic

Lee [21] 2018 https://github.com/tkd1088/multi-exposure-image-fusion
(9 January 2022) Static

Hayat [115] 2019 https://github.com/ImranNust/Source-Code (9 January 2022) Dynamic

Qi [40] 2020 https://github.com/zhiqinzhu123/HDR-Multi-exposure-
image-FusiFu-Source-Code- (9 January 2022) Dynamic

LH20 [32] 2020 https://github.com/xiaohuiben/fmmef-TIP-2020
(9 January 2022) Dynamic

LH21 [33] 2021 https://github.com/xiaohuiben/MESPD_TCSVT-2021
(9 January 2022) Dynamic

Transform
domain

Mertens [41] 2007 https://github.com/hangxiaotian (9 January 2022) Static
LST [42] 2013 http://xudongkang.weebly.com/ (9 January 2022) Static

Paul [57] 2016
https://ww2.mathworks.cn/matlabcentral/fileexchange/4878
2-multi-exposure-and-multi-focus-image-fusion-in-gradient-

domain (9 January 2022)
Static

Nejati [45] 2017 https://mansournejati.ece.iut.ac.ir/content/exposure-fusion
(9 January 2022) Static

LZG [46] 2017 https://github.com/weizhe/deef (9 January 2022) Static
Kou [49] 2018 https://github.com/hangxiaotian (9 January 2022) Static

Yang [50] 2018 https://github.com/emmmyiyang/MEF-Two-Images
(9 January 2022) Static

LXN [123] 2019 https://github.com/hangxiaotian/Perceptual-Multi-
exposure-Image-Fusion (9 January 2022) Static

Wang [48] 2019 https://github.com/QTWANGBUAA/exposure-fusion
(9 January 2022) Static

Deep learning IFCNN [81] 2020 https://github.com/uzeful/IFCNN (9 January 2022) Supervised
MEFNet [86] 2020 https://github.com/makedede/MEFNet (9 January 2022) Unsupervised

3.3.1. Testing for Static Scene

To impartially compare the performance of 18 MEF methods in a static scene, we
randomly selected 20 image sequences for testing, including indoor and outdoor, day and
night, and sunny and cloudy days. Readers can find the fusion results of 18 MEF methods
at the following website “https://github.com/xfupup/MEF_data” (9 January 2022). Two
groups of the fusion results were selected for detailed discussion and analysis.

Figure 8 illustrates the fusion results of the “Studio” image sequence from 18 MEF
methods. It can be seen that there is a large difference in brightness between the inside
and outside of the window. The fused result from the inside of the window given by
Yang [50] is still underexposed, and there is a similar problem in Mertens [41], while the
overexposed region in the outside of the window from LXN [123] is relatively poorly
recovered. Other methods can achieve simultaneous exposure for inside and outside the
window. The fusion results of Ma [31], Hayat [115], and IFCNN [82] have color distortion.
The results of Liu [114] and Lee [21] are a little blurred. There are halos at the intersections
of the sky and the window from the fused results of Wang [48] and LST [42]. LH20 [32]
is better than LH21 [33] in color contrast, but the former is worse in detail preservation
in the underexposed regions. The fused results of the overexposed and underexposed
regions are recovered relatively well from MEFNet [86], while the artifacts and dark region
are introduced at the intersection position of these two regions. On the whole, LH20 [32],
LH21 [33], Nejati [45], Qi [40], Paul [57], and LZG [46] provide relatively better fusion
images in the “Studio” image sequence.

https://github.com/yuliu316316/DSIFT-EF
https://github.com/hangxiaotian
https://ece.uwaterloo.ca/~k29ma/
https://github.com/tkd1088/multi-exposure-image-fusion
https://github.com/ImranNust/Source-Code
https://github.com/zhiqinzhu123/HDR-Multi-exposure-image-FusiFu-Source-Code
https://github.com/zhiqinzhu123/HDR-Multi-exposure-image-FusiFu-Source-Code
https://github.com/xiaohuiben/fmmef-TIP-2020
https://github.com/xiaohuiben/MESPD_TCSVT-2021
https://github.com/hangxiaotian
http://xudongkang.weebly.com/
https://ww2.mathworks.cn/matlabcentral/fileexchange/48782-multi-exposure-and-multi-focus-image-fusion-in-gradient-domain
https://ww2.mathworks.cn/matlabcentral/fileexchange/48782-multi-exposure-and-multi-focus-image-fusion-in-gradient-domain
https://ww2.mathworks.cn/matlabcentral/fileexchange/48782-multi-exposure-and-multi-focus-image-fusion-in-gradient-domain
https://mansournejati.ece.iut.ac.ir/content/exposure-fusion
https://github.com/weizhe/deef
https://github.com/hangxiaotian
https://github.com/emmmyiyang/MEF-Two-Images
https://github.com/hangxiaotian/Perceptual-Multi-exposure-Image-Fusion
https://github.com/hangxiaotian/Perceptual-Multi-exposure-Image-Fusion
https://github.com/QTWANGBUAA/exposure-fusion
https://github.com/uzeful/IFCNN
https://github.com/makedede/MEFNet
https://github.com/xfupup/MEF_data
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Figure 9 shows the fusion results from the “SICE348” image sequence with a large
exposure ratio, and the fused images should preserve the structure and texture details of
the sky and architecture. The fusion result from Hayat [115] is a little blurred. The fused
image from Qi [40] contains a lot of noise. Yang [50] introduces color distortion. LH21 [33]
recovers well in the underexposed region, but the overall color contrast is low. The fused
results of Kou [49], Lee [21], Liu [114], LST [42], LXN [123], LZG [46], MEFNet [86], and
Wang [48] contain dark regions and the intensity of the fused images distributes non
uniformly. IFCNN [81], LH20 [32], Ma [31], Paul [57], Mertens [41], and Nejati [45] perform
relatively better on this sequence.

Figure 9. The qualitative evaluation on the “SICE348” image sequence. (a) The source image sequence,
(b) Liu [114], (c) Ma [31], (d) Lee [21], (e) Hayat [115], (f) Qi [40], (g) LH20 [32], (h) LH21 [33],
(i) Mertens [41], (j) LST [42], (k) Paul [57], (l) Nejati [45], (m) LZG [46], (n) Kou [49], (o) Yang [50],
(p) LXN [123], (q) Wang [48], (r) IFCNN [81], (s) MEFNet [86].
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Table 5 lists the average scores of eight metrics from 18 MEF methods on 20 groups of
image sequences. The top five performances are displayed in bold for each metric. It can
be seen that the spatial domain methods have some advantages in the metrics MI, NIQE,
SD, and EN. Ma [31], Qi [40], and LH20 [32] achieve the highest score and also have better
subjective performance in most scenes. The transform domain methods have advantages
in MEF-SSIM and QAB/F. LST [42] and Nejati [45] achieve the highest score in these two
metrics. The two MEF methods based on deep learning may have some problems on the
subjective qualitative evaluation in some cases, but they show advantages in multiple
metrics. Specifically, IFCNN [81] has some problems in color distortion, but it achieves
high scores in MI, PSNR, SD, and AG. In multiple scenes, MEFNet [86] has poor transitions
between the edges of the overexposed region and the underexposed region, which result in
halo and shadow problems in the fusion images. However, its scores on QAB/F and SD are
still high. It can be found that no method can rank in the top five on all eight metrics in
test image sequences, which indicates that there is still room for further improvement in
studies of the MEF method.

Table 5. The average quantitative metrics of different fusion methods.

Method MEF-SSIM QAB/F MI PSNR NIQE SD EN AG

Liu [114] 0.9405 0.6435 3.1984 8.6742 2.6025 52.6057 8.6081 8.8139
Ma [31] 0.9453 0.6089 3.9551 10.3328 2.9715 53.2696 5.7916 11.1830
Lee [21] 0.9590 0.6571 2.9782 9.0713 2.6374 50.2667 6.8547 8.8514

Hayat [115] 0.9078 0.4582 5.5102 10.0430 2.6826 49.6994 4.7667 5.8680
Qi [40] 0.9549 0.6410 3.9916 9.2923 2.9358 55.4990 6.5621 10.7526

LH20 [32] 0.9658 0.6673 2.7462 9.0995 2.6781 55.8062 9.0513 9.6758
LH21 [33] 0.9575 0.6504 3.3038 8.4724 2.6593 50.8119 7.6640 8.9427

Mertens [41] 0.9601 0.6455 3.7270 10.0365 2.9018 50.1038 6.2840 8.8763
LST [42] 0.9432 0.6640 3.2044 8.5309 2.6277 55.5074 9.4475 9.5823
Paul [57] 0.9608 0.6514 3.5030 9.9663 2.7218 51.0625 5.3089 9.0252

Nejati [45] 0.9612 0.6630 4.1353 9.2879 2.8538 55.0668 6.5410 10.2636
LZG [46] 0.9579 0.6509 2.9047 9.1140 3.1050 49.8743 7.0069 11.6734
Kou [49] 0.9586 0.6644 3.1466 8.8969 2.6869 50.0648 6.4023 9.5135
Yang [50] 0.9496 0.6414 2.9964 9.3743 2.7344 48.4575 6.8023 9.8153
LXN [123] 0.9667 0.6585 3.0658 8.8203 2.7060 52.2191 7.6235 9.4869
Wang [48] 0.9506 0.6517 3.2824 8.6193 2.7043 53.2645 6.6563 9.5763

IFCNN [81] 0.9066 0.6313 4.3726 10.2075 3.3714 55.1148 5.0288 11.8504
MEFNet [86] 0.8766 0.7189 3.4594 8.2712 2.8607 57.0665 6.2416 10.0945

Figure 10 provides more insights on the objective comparison of different MEF meth-
ods. Each metric curve can be generated by connecting the scores obtained by a method
on 20 image sequences, and the legend gives the average scores. Because there are a total
of 18 MEF methods involved, each sub-figure looks a little crowded. Readers can find the
eight sub-figures at the following website https://github.com/xfupup/MEF_data (9 Jan-
uary 2022). The curves can be selected in order to zoom in and observe them more clearly.
Considering that the lower the NIQE value, the better the performance, we take its negative
value (i.e., -NIQE) to illustrate. As can be seen from Figure 10, there is an approximately
consistent change trend in the given metrics for the different MEF algorithms. However,
different MEF methods may have several changes in each metric. For example, Hayat [115]
has a higher score on the MI, but it obtains lower values on other metrics. Additionally,
MEFNet [86] has a high score on MEF-SSIM metric, but its score is low on QAB/F.

https://github.com/xfupup/MEF_data
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Figure 10. Quantitative comparisons of different MEF methods on 20 image sequences.

3.3.2. Testing for Dynamic Scene

This part of the experiment establishes a dataset for the test in a dynamic scene
combined with the DeghostingIQASet dataset, including 162 fusion results from six MEF
methods on 27 groups of image sequences. The results can be downloaded online at
https://github.com/xfupup/MEF_data (9 January 2022). The HDR-VDP-2 scores of 162
fusion results from six methods are listed in Table 6. Figures 11 and 12 illustrate two sets of
fusion results from six MEF methods.

https://github.com/xfupup/MEF_data
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Figure 11. The qualitative comparison on the “Arch” image sequence. (a) The source image sequence,
(b) Liu [114], (c) Ma [31], (d) Hayat [115], (e) Qi [40], (f) LH20 [32], (g) LH21 [33].

Figure 12. The qualitative comparison on the “Wroclav” image sequence. (a) The source image
sequence, (b) Liu [114], (c) Ma [31], (d) Hayat [115], (e) Qi [40], (f) LH20 [32], (g) LH21 [33].

As can be seen in Figure 11, the fusion results will change when different reference im-
ages are selected, and all of the methods can remove ghosts in the “Arch” image sequence.
Liu [114], Ma [31], Qi [40], and LH21 [33] retain more details in overexposed and underex-
posed regions, such as sky and ground shadows, while the fused results of Hayat [115] and
LH20 [32] are relatively poor. On the roof of buildings, Hayat [115] and LH21 [33] have a
good performance in brightness recovery and detail retention. The brightness values of the
fusion results from the other four algorithms are low. Overall, the fusion performance of
LH21 [33] is the best in vision impression.

Figure 12 illustrates the fused results on the “Wroclav” image sequence. As can be
seen, the fused images obtained by Ma [31], LH20 [32], and LH21 [33] have no ghost artifact.
While Liu [114] and Hayat [115] eliminate ghosts, they also produce residual ghosts and
broken objects. The ghosts are not entirely removed in Qi [40] and the artifacts still exist.
Although Ma [31] and LH20 [32] remove the ghosts, the brightness is relatively dark in the
underexposed region. In addition, the brightness of the ground in LH20 [32] is still high,
and the color of the sky in Ma [31] is distorted. The fusion performance of LH21 [33] is
also the best in this image sequence. The details of the regions that are too bright and too
dark in the source images are well preserved in LH21 [33], for example, the hair of the man
sitting on the bench.

Table 6 lists the HDR-VDP-2 scores of the different deghosting methods. Black bold
font represents the highest score in this image sequence. The underlined font indicates
that the subjective evaluation of the fusion result is relatively good, but the HDR-VDP-2
score is excessively low. The underlined bold font means that the subjective assessment is
rather bad, but the HDR-VDP-2 score is excessively high. It was found that the selection
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of reference images has an impact on the score of HDR-VDP-2. When selecting an input
image including a moving object consistent with that in the fusion image as the reference
image, or selecting an image corresponding to the brightness of the fusion image but
inconsistent with the moving object as the reference image, the HDR-VDP-2 scores are quite
different. Although Ma [31] scores the highest in multiple image sequences, the details of
the underexposed regions of these image sequences were not recovered well. To sum up,
the performance of the fusion results from LH21 [33] is best in both subjective evaluation
and objective quantitative scores.

Table 6. Quantitative comparisons of different deghosting methods using HDR-VDP-2.

Sequence Liu [114] Ma [31] Hayat [115] Qi [40] LH20 [32] LH21 [33]

Arch 42.1539 43.8774 43.4479 39.4118 43.8846 47.7516
Brunswick 53.9745 68.7604 39.1341 34.9105 64.9440 73.2189

Campus 50.7968 68.5215 48.8127 67.4566 49.3895 50.5085
Cliff 46.3294 67.1114 48.7778 51.7876 69.2225 70.7965

Forest 66.6202 70.5719 56.6106 59.8429 68.8709 66.8502
Horse 52.8578 65.9682 43.5756 61.2289 66.3404 65.7502
Lady 49.7846 52.8730 45.1670 51.0440 45.4192 51.1117

Llandudno 37.1335 65.0071 54.5771 37.0104 56.7933 61.1436
Men 40.3770 45.3716 32.1539 40.6552 38.8748 55.7015

Office 33.3883 33.2980 36.1874 38.4133 34.6107 38.6722
ProfJeonEigth 39.9871 55.7125 42.0014 38.2431 46.6209 42.4667

Puppets 31.7485 54.8099 38.3072 36.8180 27.9814 56.7586
Readingman 35.1225 60.8870 30.9186 37.8561 42.4045 60.4606

Russ1 67.5083 70.3890 50.7266 58.2271 69.7728 72.7040
SculptureGarden 26.7691 39.3931 37.4966 31.8801 45.1903 40.0277

Square 48.4465 66.8230 39.0180 38.6824 71.5442 65.3453
Tate3 51.9602 54.9352 40.3044 42.4331 42.5136 53.1564

Wroclav 44.3532 52.2975 33.4461 32.3816 48.7993 56.5951
YWFusionopolis 40.9657 68.6462 46.2158 36.7817 40.3490 43.5701

137 59.2770 67.9392 52.7393 62.8411 58.9021 70.3419
138 60.8126 56.3963 43.0310 27.6285 52.0746 50.8200
269 56.7095 40.8084 54.8627 49.5950 43.6533 47.4784

Street 33.6765 36.0854 26.5961 30.7094 35.9272 36.2446
AgiaGalini 30.1654 48.1653 40.0907 48.8657 55.9823 74.2082

MarketMires2 56.9971 51.1316 55.4768 49.3215 66.5522 64.8403
Cars 51.4744 50.1511 41.4154 49.4603 46.6479 49.3922

Building 45.0889 57.9390 35.6322 54.6528 51.1381 55.1796

3.3.3. Computational Efficiency

This part gives the calculation time of the MEF methods involved in comparison,
except the two deep learning-based MEF approaches (these approaches are performed in
a parallel calculating way through GPU acceleration and the computational efficiency is
very high). All the other 16 methods are implemented in MATLAB 2018a with a 2.50 GHz
CPU (Intel(R) Core(TM) i5-7200U) and 16 GB RAM. When fusing two color images with
1000 × 664 pixels in a static scene, Table 7 lists the average running time of these methods.

Table 7. Computational efficiency of different MEF methods.

Method Time (s) Method Time(s) Method Time (s)

Liu [114] 3.0940 LH21 [33] 0.0523 Kou [49] 2.4438
Ma [31] 4.4762 Mertens [41] 1.3583 Yang [50] 8.0385
Lee [21] 1.6389 LST [42] 1.4190 LXN [123] 2.0184

Hayat [115] 3.8754 Paul [57] 1.8119 Wang [48] 1.5095
Qi [40] 6.9607 Nejati [45] 0.3878

LH20 [32] 1.2923 LZG [46] 8.2330
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4. Future Prospects

Although remarkable progress has been made in MEF, there are some issues for future
work. This section gives a detailed discussion on development trends based on the review
of the existing methods.

(1) Deep learning-based MEF

Although the performance of multi-exposure fusion based on deep learning has been
greatly improved, there are still many aspects worthy of further research. i) Establishing
a large-scale multi-exposure image dataset is crucial for supervised MEF methods. Some
expert photographers may be hired to capture “ground truth”, but it is not an easy task
due to the general camera’s limited capture range. In addition, a method similar to Cai [79]
may also be adopted. However, the representative methods should be selected from the
latest state-of-the-art algorithms. In addition, data augmentation techniques will provide
a way to generate a large amount of data without high cost and time requirements [89].
ii) Constructing a practical loss function consisting of several types of metrics and associ-
ated with the specific fusion task. Subsequent research should pay more attention to the
characteristics of the fusion task itself rather than blindly increasing the scale of the neural
networks. The existing methods based on deep learning rarely consider the correlation
between MEF and subsequent tasks when constructing the loss function, which often makes
the fusion results subjective. Future research may introduce the accuracy of following tasks
to guide the fusion process. iii) At present, most of the existing MEF methods based on deep
learning are only suitable for static scenes. In addition, there are also few multi-exposure
images in dynamic scenes, so it is necessary to capture and collect multi-exposure images
in dynamic scenes.

(2) MEF in dynamic scene

Most off-the-shelf MEF methods focus on solving the fusion of the images with
different exposure levels in a static scene. However, the source images are often misaligned
due to camera jitter and moving objects in the application. The fusion images will suffer
from ghosts, image blurring, halo artifacts, and other problems. Although some deghosting
MEF methods have been proposed in recent years, they cannot solve these issues robustly.
A way to address camera jitter is to use registration, but the preprocessing dependent on the
registration algorithm may lead to some limitations, such as low efficiency and dependence
on the registration accuracy. Therefore, it is necessary to develop a non-registered method
to implicitly realize MEF. Regarding moving objects, selecting the appropriate reference
image is also worthy of attention.

(3) The higher-quality MEF evaluation metrics

From the discussions from Section 3, it can be found that there may be inconsistency
between qualitative and quantitative evaluations of the fused results. Some methods that
show good qualitative performance may not perform well in quantitative comparison and
vice versa. For example, one of the most commonly used evaluation metrics, MEF-SSIM,
still cannot precisely describe the fused images’ subjective quality. Several methods also
show different performances on different types of metrics. This brings difficulties to the
comprehensive evaluation of the MEF methods. Therefore, it is necessary to explore more
accurate evaluation metrics from the perspective of the human visual system in future
research. In addition, there are few studies on developing appropriate evaluation metrics
for MEF in dynamic scenes. These are issues that need attention in the future.

(4) Task-oriented MEF

There are few MEF works developed for specific tasks in industry, remote sensing, and
other fields. Most research aims at natural images to verify the effectiveness of the proposed
methods, and no algorithms can be universal to all scenes. Therefore, it is important to
develop and fine-tune suitable MEF algorithms for more specific tasks.
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(5) Real-time MEF

From the perspective of application requirements, the MEF technique is the preprocess-
ing of many visual tasks, such as video surveillance, target recognition, target tracking, and
other applications. The performance of the MEF methods directly affects the accuracy of the
whole research. Some applications have high requirements for the computational efficiency
of the algorithm. However, the operating efficiency of the current MEF methods is low
owing to the complex transformation, function decomposition, and iterative optimization,
which limits the applications of the MEF algorithms in some real-time tasks. Therefore, the
development of real-time MEF algorithms is essential, which will cause MEF to have more
expensive application areas.

Therefore, based on the above review and prospects, we have not reached the upper
limit of MEF, and it remains a long-term task to study higher-quality MEF algorithms and
evaluation metrics.

5. Conclusions

MEF is an essential technique for integrating image information with different ex-
posure levels, which can more comprehensively understand the scene. To follow the
latest development in this field, this paper summarizes the existing MEF methods and
presents a literature review. These MEF methods can generally be divided into spatial
domain, transform domain, and deep learning. In addition, ghost removal MEF methods
are also discussed as a supplement. According to the core idea, each class is investigated
and further divided into several sub-categories. We analyze the representative methods
in each sub-category and provide some systematic summaries. A detailed comparative
study for the current MEF algorithms in static and dynamic scenes is carried out. The
experiment performs subjective and objective evaluations of the 18 MEF approaches using
nine commonly used objective fusion metrics. We have released the relevant resources
online for comparison, including input image sequences, fusion results, and curves. There
are still many challenges in MEF techniques and objective fusion performance evaluation
due to the limitations of sensor noise, camera jitter, moving objects, and computational
complexity. Finally, some prospects and potential research directions are proposed based
on our observations. We expect that the organized overview of MEF methods can help
relevant researchers to better understand the current development of MEF methods.
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