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Abstract: The convolutional neural network (CNN) method has been widely used in the classification
of hyperspectral images (HSIs). However, the efficiency and accuracy of the HSI classification are
inevitably degraded when small samples are available. This study proposes a multidimensional
CNN model named MDAN, which is constructed with an attention mechanism, to achieve an ideal
classification performance of CNN within the framework of few-shot learning. In this model, a
three-dimensional (3D) convolutional layer is carried out for obtaining spatial–spectral features from
the 3D volumetric data of HSI. Subsequently, the two-dimensional (2D) and one-dimensional (1D)
convolutional layers further learn spatial and spectral features efficiently at an abstract level. Based
on the most widely used convolutional block attention module (CBAM), this study investigates a con-
volutional block self-attention module (CBSM) to improve accuracy by changing the connection ways
of attention blocks. The CBSM model is used with the 2D convolutional layer for better performance
of HSI classification purposes. The MDAN model is applied for classification applications using
HSI, and its performance is evaluated by comparing the results with the support vector machine
(SVM), 2D CNN, 3D CNN, 3D–2D–1D CNN, and CBAM. The findings of this study indicate that
classification results from the MADN model show overall classification accuracies of 97.34%, 96.43%,
and 92.23% for Salinas, WHU-Hi-HanChuan, and Pavia University datasets, respectively, when only
1% HSI data were used for training. The training and testing times of the MDAN model are close to
those of the 3D–2D–1D CNN, which has the highest efficiency among all comparative CNN models.
The attention model CBSM is introduced into MDAN, which achieves an overall accuracy of about
1% higher than that of the CBAM model. The performance of the two proposed methods is superior
to the other models in terms of both efficiency and accuracy. The results show that the combination
of multidimensional CNNs and attention mechanisms has the best ability for small-sample problems
in HSI classification.

Keywords: hyperspectral image classification; multidimensional CNN; attention mechanism

1. Introduction

Hyperspectral images (HSIs) are three-dimensional (3D) volumetric data with a spec-
trum of continuous and narrow bands, which can reflect the characteristics of ground
objects in detail [1]. In recent years, many mini-sized and low-cost HSI sensors have
appeared, which makes it easy to obtain HSI data with rich spatial–spectral information,
such as AisaKESTREL10, AisaKESTREL16, and FireflEYE [2,3]. In this context, HSI is
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widely used in the fields of resource detection, environmental analysis, disaster monitoring,
etc. [4–6]. The classification of HSI is a basic analysis task that has become very popu-
lar [7]. However, due to the influence of the small number of samples (small samples),
the high-dimensional characteristics, the similarity between the spectra, and the mixed
pixels, efficient and accurate classification of HSI data has been a challenging task for many
years [8–10]. To solve these problems, some deep learning network models have been
applied in HSI processing [11], especially the convolutional neural network (CNN).

Recently, CNN has attracted extensive attention due to its efficacy in many visual ap-
plications, for instance, classification, object detection, and semantic segmentation [12–14].
Three types of CNNs—namely, one-dimensional (1D), two-dimensional (2D), and three-
dimensional CNNs—are successfully applied in HSI classification tasks. The 1D and 2D
CNNs can obtain more abstract level spectral or spatial features of HSI [15]. The 3D CNN
can learn the structural spatial–spectral feature representation using a 3D core, which
can comprehensively characterize ground objects [16]. Recently, 3D CNNs have attracted
extensive attention in HSI classification. Li et al. presented a novel approach that uses a 3D
CNN to view HSI cube data altogether [17]. Mayra et al. used a 3D CNN to show the great
potential of using HSI to map tree species [18]. Although these two 3D CNN models offer a
simple and effective method for HSI classification, their accuracy and efficiency can be still
further improved.

As can be seen from the literature, the results of using a single CNN of the three
CNNs have a few shortcomings in achieving high accuracy [19]. The main reason is that
HSI data are volumetric data and have information representation in both spatial and
spectral dimensions. The 1D CNN and 2D CNN alone are not able to extract discriminating
feature maps from both spatial and spectral dimensions. Similarly, a deep 3D CNN is more
computationally complex, and it is difficult to classify a large volume of HSI data with its
use. In addition, the performance of using a 3D CNN alone cannot satisfy the analysis of
classes with similar textures over many spectral bands [19]. To address these issues, hybrid
CNNs for HSI classification are developed. Swalpa et al. proposed a hybrid spectral CNN
model (HybridSN), which assembles the 3D and 2D convolutional layers for reducing the
complexity of the 3D CNN model [19]. Zhang et al. used a 3D–1D CNN model and showed
improved accuracy in the classification of vegetation species [16]. Since the performance of
these two models is still limited for classification applications in the condition of ground
scenes with many different land cover types, a hybrid 3D–2D–1D CNN has been proposed
by Liu et al. [20]. Notably, it does not perform well in terms of accuracy when the sample
data are small. In this study, a new model that makes full use of multidimensional CNNs is
proposed and uses some refinement mechanisms to overcome these shortcomings of the
previous methods.

Moreover, for the problem of small samples, an attention mechanism was applied to an
HSI analysis task [21,22]. The attention mechanism is a resource allocation scheme that can
improve the performance of a model with a little computational complexity [23], such as the
squeeze-and-excitation networks (SENets) [24], the selective kernel networks (SKNets) [25],
the convolutional block attention module (CBAM) [26], and the bottleneck attention module
(BAM) [27]. Compared with SENet, SKNet, and BAM, CBAM is a lightweight model, and it
can extract attention features in spatial–spectral dimensions for adaptive feature refinement.
Considering HSI is a 3D feature map, CBAM is selected to enhance the expression ability
of the HSI classification model. Additionally, to make it applicable to the characteristics
of HSI and obtain a higher accuracy of the classification using HSI, a convolutional block
self-attention module named CBSM is also proposed based on the CBAM.

For the application of the CBSM model, this study proposes a multidimensional CNN
with an attention mechanism model named MDAN. The MDAN model contains three
types of CNNs components and the CBSM model for higher efficiency and accuracy of
classification purposes.

The main contributions of this study are as follows:
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1. An improved graph convolutional network MDAN is proposed for HSI classification
with small samples;

2. A multidimensional CNN and a classical attention mechanism CBAM are used to
create deeper feature maps from small samples;

3. Based on CBAM, an attention module CBSM is designed to improve HSI classifica-
tion accuracy. The CBSM has increased connections, which is more suitable for the
classification of HSI data. Comparative experiments are carried out on three open
datasets, and the experimental results indicate that the MDAN model and the CBSM
model are superior to other state-of-the-art HSI classification models.

The rest of the paper is organized as follows: Section 2 introduces the proposed
MDAN and CBSM. Section 3 presents the parameter settings and the results of the proposed
approaches on the three different HSI datasets. The discussion of the results is described in
Section 4. Finally, the conclusions are shown in Section 5.

2. MDAN and CBSM Models
2.1. MDAN Model

The structure of the MDAN model is demonstrated in Figure 1. It can be seen that
MDAN uses the characteristics of all three types of CNNs and an attention mechanism
CBSM to extract different features from small samples. The spatial spectrum’s representa-
tion features are extracted by two 3D convolutional layers from the input data. The spatial
features are obtained at the 2D convolutional layer from the spatial-spectrum features. The
spatial features are modified by the attention module CBSM, which is set between the 2D
convolutional and 1D convolutional layers, to improve the classification accuracy. The 1D
convolutional layer is performed to further extract spectral features; then, the classification
is carried out based on spectral enhancement information.
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Figure 1. Architecture of the MDAN model; notably, the attention module CBSM is used to obtain
the modified Feature 4.

In the MDAN model, the original input HSI data cube is denoted by I ∈ RH×W×B,
where H, W and B are the height, width, and the number of spectral bands, respectively. The
band number of one pixel in I is equal to B, and the pixel contains rich feature information
for a label vector y ∈ R1×1×M, where M denotes the classes of ground objects. However,
HSI data contain narrow and continuous bands, high intraclass variability, and interclass
similarity; thus, it is a considerable challenge for the classification of HSI tasks [28]. In this
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case, the principal component analysis (PCA) is commonly used to decrease the spectral
feature dimensions of the original input data cube I, and the output data are denoted by
X ∈ RH×W×D, where D is the number of the spectral bands after the PCA is used [29–31].

2.2. CBSM Model

CBSM is an attention model for improving the accuracy of the HSI classification for the
problems of small samples, as portrayed in Figure 2. Let the intermediate HSI feature map
be denoted by F ∈ RH×W×C, where, C is the number of the spectral bands of the input map.
CBSM can be regarded as a dynamic-weight adjustment process to identify salient regions
in complex scenes through the 1D channel attention map denoted by MC ∈ R1×1×C, and
the 2D spatial attention map denoted by MS ∈ RH×W×1. During the processes of CBSM,
the input data are refined sequentially by MC and MS. As a result, the overall process of
CBSM can be written as

F′ = Mc(F)× F + F = (Mc(F) + 1)× F, (1)

F′′ = Ms(F′)× F′ + F′ = (Ms(F′) + 1)× F′, (2)

where × represents the multiplication by the element, and + denotes the elementwise
addition. In the computational process of the multiplication, the refined map MC and
MS are broadcasted accordingly to form a 3D attention map—the channel attention map
MC is broadcasted following the spatial dimension, and the spatial attention map MS
is broadcasted following the spectral dimension. Then, all the 3D attention maps are
multiplied with the input map F or F′ in an elementwise manner. In the computational
process of the addition, the process between two maps denotes that two elements in the
same 3D spatial position are added together, and the process between the +1 and a map
represents each element of the map plus 1. F′ indicate the intermediate feature map refined
by MC. F′′ is the final refined feature map through the CBSM model, which is illustrated in
Figure 2.
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MC is generated by pooling the weight of each channel feature. First, for determining
the relationship representation between channels efficiently, feature F is squeezed along the
spatial dimension. In this step, two parallel branches, i.e., global-average-pooling (GAP)
and global-max-pooling (GMP) operations are used for the feature extraction of each image.
The two parallel branches output two parallel spatial context features, i.e., Fc

avg and Fc
max.

Then, the two features are delivered to a shared network, which consists of a multilayer
perceptron (MLP) and one hidden layer, generating two intermediate features denoted as
W1 ∈ RC×C/r. In the shared network, the value of hidden activation is set to R1×1×(C/r) for
computational efficiency, where r is the reduction ratio. Finally, the output feature vectors
W1 are merged by element to produce the channel attention map MC ∈ R1×1×C, which is
computed as

Mc(F) = σ(MLP(GAP(F)) + MLP(GMP(F))) = σ
(

W1

(
WO

(
Fc

avg

))
+ W1(WO(Fc

max))
)

, (3)
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where σ represents the sigmoid function, which maps variables into the range of 0–1. In
the process of the MLP, the rectified linear unit (ReLU) activation function is followed by
WO ∈ RC/r×C. It is noted that WO and W1, are shared for both inputs.

MS is generated by pooling the weight of each spatial feature. First, the input map is
computed in the two processes of GAP and GMP along the channel dimension to generate
two 2D maps, i.e., Fs

avg ∈ RH×W×1 and Fs
max ∈ RH×W×1. These maps are then concate-

nated and convolved through a standard convolution layer, producing the 2D map, i.e.,
MS ∈ RH×W×1, which encodes locations to emphasize or suppress. Consequently, the
spatial attention of CBSM is computed as

Ms(F) = σ
(

f 7×7([GAP(F); GMP(F)])
)
= σ

(
f 7×7

([
Fs

avg; Fs
max

]))
, (4)

where f 7×7 denotes a 2D CNN filtering with the size of 7× 7.
The above two attention maps are complementary in CBSM, and they can capture rich

contextual dependencies to enhance representation power in both the spectral and spatial
dimensions of the input map.

3. Experiments and Results
3.1. Datasets

Three test datasets of Salinas (SA), WHU-Hi-HanChuan (WHU), and Pavia University
(PU) datasets were selected for validating the MDAN and CBSM models. The WHU dataset
contains high-quality data collected from a city in central China, which belongs to an
agricultural area in a combined urban and rural region, and it was used as a benchmark
dataset for the test results. Different from this dataset, SA and PU datasets were broadly
used in the verification of HSI classification algorithms [32,33].

3.1.1. The SA Dataset

The SA dataset was collected by an AVIRIS sensor in 1992 in the Salinas Valley area
of the United States. This dataset has a spatial resolution of 3.7 m, a spectral resolution
of 9.7–12 nm, and a spectral range of 0.40–2.50 µm. In this dataset, the image size is
512 × 217 pixels, and the number of labeled classes is 16. It composes 224 bands, including
20 bands with atmospheric moisture absorption and a low signal-to-noise ratio should be
deleted. In this study, 204 bands were retained for the experiments. Figure 3a shows the
ground truth of the land cover of the SA dataset. Table 1 shows the real mark classes of the
dataset, the s of samples in the training, and the testing set.

Table 1. The SA dataset.

Category No. Class Samples Training Samples Testing Samples

1 Broccoli-green weeds_1 2009 20 1989
2 Broccoli-green weeds_2 3726 37 3689
3 Fallow 1976 20 1956
4 Fallow rough plow 1394 14 1380
5 Fallow smooth 2678 27 2651
6 Stubble 3959 40 3919
7 Celery 3579 36 3543
8 Grapes untrained 11,271 113 11,158
9 Soil vineyard develop 6203 62 6141

10 Corn senesced green weeds 3278 33 3245
11 Lettuce romaine 4wk 1068 11 1057
12 Lettuce romaine 5wk 1927 19 1908
13 Lettuce romaine 6wk 916 9 907
14 Lettuce romaine 7wk 1070 11 1059
15 Vineyard untrained 7268 73 7195
16 Vineyard vertical trellis 1807 18 1789
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3.1.2. The WHU Dataset

The WHU dataset was acquired by an 8 mm focal length Headwall Nano-Hyperspec
imaging sensor in 2016 in HanChuan, Hubei Province, China. The image of the WHU
dataset contains 1217× 303 pixels with a spatial resolution of 0.109 m and 274 bands, with
a wavelength range of 0.40–1.00 µm. Since the dataset was acquired during the afternoon,
when the solar elevation angle was low, many shadow-covered areas are shown in the
image. Figure 3b shows the ground truth of the land cover of the WHU dataset. Table 2
shows the real mark classes of the dataset, the number of samples in the training, and the
testing set.

Table 2. The WHU dataset.

Category No. Class Samples Training Samples Testing Samples

1 Strawberry 44,735 358 44,288
2 Cowpea 22,753 182 22,525
3 Soybean 10,287 82 10,184
4 Sorghum 5353 43 5299
5 Water spinach 1200 10 1188
6 Watermelon 4533 36 4488
7 Greens 5903 47 5844
8 Trees 17,978 144 17,798
9 Grass 9469 76 9374
10 Red roof 10,516 84 10,411
11 Gray roof 16,911 135 16,742
12 Plastic 3679 29 3642
13 Bare soil 9116 73 9025
14 Road 18,560 148 18,374
15 Bright object 1136 9 1125
16 Water 75,401 603 74,647

3.1.3. The PU Dataset

The PU dataset was obtained by the ROSIS-03 sensor, which captures the urban area
of Pavia. The size of the dataset is 610 × 340 pixels, and the spatial resolution is about
1.3 m. The dataset consists of 115 bands and 9 main ground objects, with a wavelength
range of 0.43–0.86 µm. After removing 12 bands with high noise, the remaining 103 bands
were selected for the experiments. Figure 3c shows the ground truth of the land cover of
the PU dataset. Table 3 shows the real mark classes of the dataset, the number of samples
in the training, and the testing set.

Table 3. The PU dataset.

Category No. Class Samples Training Samples Testing Samples

1 Strawberry 44,735 66 6565
2 Cowpea 22,753 186 18,463
3 Soybean 10,287 21 2078
4 Sorghum 5353 31 3033
5 Water spinach 1200 13 1332
6 Watermelon 4533 50 4979
7 Greens 5903 13 1317
8 Bright object 1136 37 3645
9 Water 75,401 9 938
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3.2. Experimental Parameter Settings

The MDAN model contains two 3D convolutional layers, one 2D convolutional layer,
one CBSM module, one 1D convolutional layer, one flatten layer, and two fully connected
layers. In the experiments, the patch sizes of the three datasets were set to 25× 25× 15,
where 15 denotes the value of D, i.e., the number of the remaining spectral parameters in
the remote sensing image reduced by the PCA. The patch size was determined according
to studies by [19,34]; thus, one patch could roughly cover one single class. Empirically, the
epochs of the training data were set to 20 for all three datasets, as the convergence of the
MDAN model was achieved within the 20 epochs. The optimal learning rate was set to
0.001, also based on the above literature. For each class, only 1% of the pixels were randomly
selected for model training, and the remaining 99% of the pixels were used for performance
evaluation. Thus, the minimum number of training samples was close to 10 in all three
datasets. Finally, two fully connected layers were used to connect all neurons with the
Adam optimizer. Across the board, the MDAN model was randomly initialized and trained
by the back-propagation algorithm with no batch normalization and data augmentation.
The class probability vector of each pixel was generated through the MDAN model and
then was compared with the real label on the ground for the performance evaluation
of MDAN. The experiment was carried out under the environment of the Windows 10
operating system and NVIDIA Geforce RTX 2080ti graphics card. More details on class
information are provided in Table 4, where Run CBSM Here denotes that the CBSM process
was carried out at this position in the MDAN Process.

In the two 3D convolutional layers, the dimensions of the 3D convolution kernels are
8× 3× 3× 7× 1 and 16× 3× 3× 5× 8; the latter means 3D kernels have the number of
16, and the dimension of 3× 3× 5 for all 8 3D input feature maps, 3× 3, and 5 means the
spatial and the spectral dimension of the 3D kernels, respectively. In the 2D convolutional
layers, the size of the kernel is 32× 3× 3× 80, where 32 is the number of the 2D kernels
with the size of 3× 3, and 80 represents the size of the 2D input data. The CBSM model was
used to improve classification accuracy with the two attention maps, in which the channel
attention was implemented by GAP and GMP operation across the spatial dimension; the
spatial attention module has the characteristics of GAP and GMP in the channel dimension
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with a convolution kernel size of 7× 7. Finally, in the 1D convolution layer, the kernel size
is 64× 3× 608, where 64 is the spectral dimension of the 1D kernels, and 608 indicates
the size of the 1D input data. For the practical efficiency of the model, the 3D, 2D, and 1D
convolution layers were used before the flatten layer. The 3D layer can extract the spatial–
spectral information in one convolution process. The 2D layer can strongly discriminate the
spatial information within different bands. The 1D layer can strengthen and compress the
spectral information for efficient classification. It can be observed from Table 4 that in the
PU dataset, the parameters take up to 278784 at the dense_1 layer of the MDAN Process.
The number of the nodes in the Dense_3 layer at the end of the MDAN Process is nine,
which depends on the number of the real label classes. In this case, the total number of the
trainable weight parameters in the MDAN model is 459,391.

Table 4. Layer summary of the MDAN model based on the PU dataset.

CBSM Process MDAN Process

Layer (Type) Output Shape Parameter Layer (Type) Output Shape Parameter

Global_Average_Pooling2D_1 Globa (32) 0 Input Layer (25, 25, 15, 0) 0
Global_Max_Pooling2D_1 Almax (32) 0 Conv3D_1 (23, 23, 9, 8) 512

Reshape_1 (1, 1, 32) 0 Conv3D_2 (21, 21, 5, 16) 5776
Reshape_2 (1, 1, 32) 0 Reshape_1 (21, 21, 80) 0
Dense_1 (1, 1, 4) 132 Conv2D_1 (19, 19, 32) 23,072

Dense_2 (1, 1, 32) 160
Run CBSM HereAdd_1 (1, 1, 32) 0

Activation_1 (1, 1, 32) 0 Reshape_2 (19, 608) 0
Multiply_1 (19, 19, 32) 0 Conv1D_1 (17, 64) 116,800

Tf_Operators_Add_1 Lambd (19, 19, 32) 0 Flatten_1 (1088) 0
Lambda_1 (19, 19, 1) 0 Dense_1 (256) 278,784
Lambda_2 (19, 19, 1) 0 Dropout_1 (256) 0

Concatenate_1 (19, 19, 2) 0 Dense_2 (128) 32,896
Conv2D_1 (19, 19, 1) 98 Dropout_2 (128) 0
Multiply_2 (19, 19, 32) 0 Dense_3 (9) 1161

Tf_Operators_Add_2 Oplam (19, 19, 32) 0 Total params: 459,391
Add_2 (19, 19, 32) 0

3.3. Classification Results

In this section, the overall accuracy (OA), average accuracy (AA), Kappa coefficient
(KAPPA), training time, and testing time evaluation measures are used to assess the
performance of the two proposed approaches. The OA is obtained by dividing correctly
classified samples by all the test samples in a dataset; the AA denotes the average accuracies
of all classes, which is as important as OA. When the sample is unbalanced, the accuracy
will be biased towards multiple classes. In this case, the KAPPA needs to be obtained for a
consistency test. The closer the KAPPA is to 1, the higher the consistency is. Finally, the
efficiency of the MDAN model is reflected by the training and testing time.

The results of the two models are compared with the most broadly used methods, in-
cluding the support vector machine (SVM) [35], 2D CNN [36], 3D CNN [37], and CBAM [26].
For a further evaluation of the classification performance of the two models, the 3D–2D–1D
CNN [20] and the intermediate model of 3D–2D–CBAM–1D CNN are also compared with
the MDAN model. Table 5 shows the results of the three datasets.

The test results of the three datasets classification are shown in Tables 6–8, respectively,
and the best performances are highlighted in bold. Obviously, the MDAN model achieves
a good classification accuracy in almost all classes. The accuracy of the model of SVM and
3D CNN is slightly lower.
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Table 5. Classification accuracies and efficiencies of the proposed two models and selected methods
using the WHU, SA, and PU datasets, respectively, and the best performances are highlighted in bold.

SVM 2D CNN 3D CNN 3D–2D–1D
CNN

3D–2D–CBAM–1D
CNN (New)

MDAN (3D–2D–
CBSM–1D

CNN, New)

SA

OA (%) 82.48 97.25 77.40 94.46 96.16 97.34
AA (%) 83.92 97.79 77.96 94.69 96.82 97.22

KAPPA (×100) 80.47 96.94 74.61 93.83 95.72 97.04
Running time (s) 0.02 190.13 42.75 23.74 31.03 26.29
Testing time (s) 1.87 187.84 43.53 34.10 43.13 38.19

WHU

OA (%) 76.34 94.57 85.98 94.10 95.59 96.43
AA (%) 53.23 86.81 78.06 84.35 88.69 90.72

KAPPA (×100) 72.16 93.62 83.66 93.08 94.83 95.81
Running time (s) 0.20 857.86 199.17 108.17 121.12 122.26
Testing time (s) 36.06 1128.30 207.97 160.94 176.01 183.09

PU

OA (%) 63.83 89.26 60.59 85.03 90.64 92.23
AA (%) 37.24 80.79 43.50 68.98 83.25 83.21

KAPPA (×100) 43.74 85.44 47.54 80.16 87.62 89.65
Running time (s) 0.55 172.10 34.88 18.98 20.74 21.37
Testing time (s) 7.42 152.44 34.19 26.94 29.80 29.98

Table 6. Classification accuracies of the SA dataset. This table shows the best performances in bold.

Classes SVM 2D CNN 3D CNN 3D–2D–1D CNN 3D–2D–CBAM–1D
CNN (New)

MDAN (3D–2D–
CBSM–1D

CNN, New)

Brocoli-green weeds_1 98.66 100.00 99.85 100.00 97.99 100.00
Brocoli-green weeds_2 98.42 100.00 100.00 99.70 100.00 100.00

Fallow 74.19 100.00 8.84 100.00 100.00 100.00
Fallow rough plow 72.24 100.00 97.54 100.00 100.00 89.28

Fallow smooth 93.43 98.49 79.63 75.67 95.51 98.87
Stubble 99.01 100.00 100.00 100.00 99.80 99.03
Celery 98.88 100.00 100.00 99.92 99.86 100.00

Grapes untrained 67.81 97.88 95.42 91.54 98.18 99.18
Soil vineyard develop 98.31 100.00 98.14 100.00 100.00 100.00

Corn senesced green weeds 87.34 98.24 97.81 99.63 94.42 98.37
Lettuce romaine 4wk 90.64 97.82 78.52 89.78 98.39 87.51
Lettuce romaine 5wk 79.76 99.95 1.68 78.20 99.48 94.92
Lettuce romaine 6wk 80.79 86.00 95.81 97.35 86.11 100.00
Lettuce romaine 7wk 49.72 100.00 95.94 93.67 97.83 99.91

Vinyard untrained 62.37 86.28 6.61 89.76 81.57 88.44
Vinyard vertical trellis 91.20 100.00 91.62 99.78 100.00 100.00

Table 7. Classification accuracies of the WHU dataset. This table shows the best performances in bold.

Classes SVM 2D CNN 3D CNN 3D–2D–1D CNN 3D–2D–CBAM–1D
CNN (New)

MDAN
(3D–2D–CBSM–1D

CNN, New)

Strawberry 88.83 99.82 71.31 99.01 99.79 99.34
Cowpea 69.93 92.28 92.41 90.08 88.25 97.24
Soybean 48.32 96.43 85.67 94.49 98.87 96.28
sorghum 80.74 99.34 98.53 98.64 99.94 98.75

Water spinach 12.33 99.49 92.26 98.06 95.54 97.73
Watermelon 11.43 69.52 66.29 35.41 65.98 83.04

Greens 65.70 90.69 93.67 88.72 92.88 93.94
Trees 54.48 90.42 63.63 95.04 95.56 94.48
Grass 37.98 89.28 94.69 86.13 86.87 96.50

Red roof 76.99 94.54 84.55 98.73 98.38 95.70
Gray roof 83.41 96.45 94.76 95.22 98.13 97.14

Plastic 16.09 60.90 38.74 52.14 88.96 73.20
Bare soil 31.59 76.38 51.90 80.58 81.12 82.19

Road 75.50 91.87 95.50 95.87 95.02 93.62
Bright object 0.18 41.78 25.16 41.69 33.87 52.44

Water 98.20 99.82 99.84 99.82 99.82 99.88
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Table 8. Classification accuracies of the PU dataset. This table shows the best performances in bold.

Classes SVM 2D CNN 3D CNN 3D–2D–1D CNN 3D–2D–CBAM–1D
CNN (New)

MDAN
(3D–2D–CBSM–1D

CNN, New)

Asphalt 65.47 93.24 0.08 93.02 80.11 90.39
Meadows 99.37 99.98 99.81 94.80 98.71 99.70

Gravel 19.25 77.91 8.66 13.67 83.06 83.30
Trees 10.67 77.65 80.12 85.06 88.46 78.47

Painted metal sheets 6.69 96.10 99.92 95.05 99.17 96.40
Bare soil 26.07 73.11 0.00 99.90 98.79 99.96
Bitumen 23.68 82.99 0.00 41.31 89.37 76.99

Self-blocking bricks 43.56 75.78 85.73 67.74 75.03 80.25
Shadows 40.44 50.37 17.18 30.31 36.50 43.44

The test results are illustrated in Figures 4–6, and the category number is the same as
that in Tables 1–3. It is found that, in the selected models, there are some ground objects
with low accuracy in the marked area of the yellow circle. The MDAN model can solve this
problem and provides the highest accuracy for most ground objects. However, the results
of MDAN have some misclassified in the marked area of the red circle. The points in the
red circles in each figure are too small to avoid the reduction in the overall accuracy of the
MDAN model.
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CNN). This figure shows the classes with lower classification accuracy in the yellow circle and the
red circle.
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Figure 5. Ground truth and classification results of the WHU dataset: (a) ground truth; (b) SVM;
(c) 2D CNN; (d) 3D CNN; (e) 3D–2D–1D CNN; (f) 3D–2D–CBAM–1D CNN; (g) MDAN (3D–2D–
CBSM–1D CNN). This figure shows the classes with lower classification accuracy in the yellow circle
and the red circle.
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Figure 7 portrays the confusion matrices of the proposed MDAN model using all the
three selected datasets. It can be seen that the MDAN model achieves correct classification
in almost all classes. The training curves for 100 epochs of the three datasets are shown in
Figure 8 for the MDAN model. It indicates that in roughly 20 epochs, the MDAN model
roughly reaches perfect convergence.
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According to studies in the literature, the algorithms for HSI classification are sensitive
to unbalanced datasets in the predictor classes [23,38]. A model developed based on
unbalanced datasets tends to result in false predictions in small samples, but the overall
accuracy of the predictions is not necessarily low. Therefore, supplementary experiments
are further carried out using balanced training samples, i.e., all ground objects have the
same number of samples. Among all three datasets, the PU dataset is a more representative
dataset, with medium spatial resolutions, lower accuracy, and a diverse set of ground
scenes; thus, the PU dataset was only used for the following experiments. In this study,
the training epoch was set to 100, and the range of the training samples was set to 10–70.
Table 9 shows the supplementary experiment results.

Table 9. Classification results of MDAN using a balanced training sample of the PU dataset.

Classes 10 20 30 40 50 60 70

Asphalt 71.88 83.54 94.38 93.78 97.77 96.15 98.47
Meadows 97.83 97.28 99.02 99.64 98.75 99.74 99.74

Gravel 14.84 73.21 66.97 79.10 87.92 88.95 89.56
Trees 55.66 87.35 84.01 88.58 85.46 90.31 86.32

Painted metal sheets 90.16 95.74 98.65 99.78 95.27 95.56 96.30
Bare soil 50.82 99.58 93.10 99.36 99.84 100.00 99.98
Bitumen 11.23 82.25 90.77 61.71 96.73 97.18 96.80

Self-blocking bricks 82.04 57.57 79.58 91.67 85.12 90.35 90.02
Shadows 4.66 57.48 60.26 72.31 84.95 68.98 83.17

OA (%) 74.83 88.71 92.16 94.43 95.59 96.31 96.71
AA (%) 53.23 81.55 85.19 87.33 92.42 91.91 93.37

KAPPA (×100) 65.48 85.04 89.53 92.60 94.16 95.10 95.62
Running time (s) 23.34 44.22 64.70 85.92 104.97 125.97 146.32
Testing time (s) 30.05 30.08 29.98 30.25 29.98 29.77 29.91

Asphalt 71.88 83.54 94.38 93.78 97.77 96.15 98.47

As shown in Table 9, 20 samples can roughly meet the required accuracy in the
low training time of the HSI classification; hence, it is promising for the application and
popularization of the MDAN model. Then, with the expansion of the number of training
samples, the accuracy increases slowly. The highest classification accuracy is achieved
in the case of 50 samples; thus, more training samples (i.e., 60 or 70) are not necessarily
needed for the use of the MDAN model in the task of HSI classification.
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4. Discussion

The results of the proposed models and the selected models are shown in Figures 4–8,
Tables 5–9. It can be seen that the MDAN model achieves the best performance among all
of the selected models in terms of both accuracy and efficiency and achieves the overall
accuracies of 97.34%, 92.23%, and 96.42%, respectively, in the test results of the SA, PU,
and WHU datasets. In addition, compared with the two basic algorithms of 2D CNN and
3D CNN, the efficiency of MDAN is significantly improved. Additionally, compared with
the 3D–2D–1D CNN, which is the most efficient model among all of the selected CNN
models, MDAN takes slightly longer in terms of training and testing times. Different from
the selected CNN models, the SVM model achieves the lowest accuracy but the highest
efficiency among all of the selected models; thus, it is suitable for the situation of HSI
classification that does not require high accuracy but needs high efficiency.

The classification results of the 2D CNN indicate lower efficiency but higher accuracy
than those of the 3D CNN in the case of small samples. However, if the samples are
sufficiently large, the 3D CNN is better capable of extracting discriminating features than
the 2D CNN; then, the accuracy of the 3D CNN can meet the most requirements [37]. This
is because the 3D CNN can obtain higher-level features than the 2D CNN and can further
reduce the number of training samples. In general, a CNN model needs massive volumes
of data for a good performance; thus, the classification accuracy of the 3D CNN is lower
than that of the 2D CNN with small samples when the valid information of the HSI features
is removed. Moreover, the 2D CNN retains more parameters, which tend to consume a
large amount of time in the stage of using a classifier. As a result, the efficiency of the 2D
CNN is the lowest efficiency among all selected models.

In the case of small samples, the hybrid 3D–2D–1D CNN is more efficient and accurate
than the 3D CNN. However, the accuracy of this hybrid model is not as good as that of
the 2D CNN, and it is reduced in the results of the SA and PU datasets, while it remains
the same in the results of the WHU dataset. Therefore, this method still can be improved
regarding the accuracy of the classification using HSI.

The accuracy of the 3D–2D–CBAM–1D CNN is higher than that of the hybrid 3D–2D–
1D CNN model. In addition, the 2D and the 1D convolutional layers are incorporated in
the hybrid model for high efficiency; thus, the CBAM model is also used between the 2D
and 1D convolutional layers to form the 3D–2D–CBAM–1D CNN for high accuracy. CBAM
is a spatial-spectrum attention module, which significantly improves the performance of a
vision task based on its rich representation power [26]. As shown in Table 3, this model
achieves an accuracy improvement, as expected by using CBAM. However, due to the
unique high-dimensional spectral characteristics of HSI, the best performance cannot be
achieved by CBAM only, and the accuracy of the 3D–2D–CBAM–1D CNN is close to that
of the 2D CNN.

According to the literature on attention models, different attention connections lead
to different classification results [39–41]. Thus, the CBSM attention module with different
attention structural connections from CBAM is proposed to suit the 3D characteristics of
HSI data. CBSM can significantly improve CNN’s ability to classify HSI data, and the
application of CBSM in MDAN, i.e., 3D–2D–CBSM–1D CNN further improves the accuracy
from the CBAM used in 3D–2D–CBAM–1D CNN by 1%. Compared with the selected
models of the SVM, 2D CNN,3D CNN, 3D–2D–1D CNN, and 3D–2D–CBAM–1D CNN, the
MDAN model is the best performer on all three datasets. In addition, the MDAN model
also performs well in balanced training samples and correctly classifies all classes, as shown
in Table 4.

In summary, since the application of the attention mechanism, the MDAN model
can make CNN more efficient and more accurate in HSI classification than other selected
CNN models for small-sample problems. The attention module CBSM can further improve
the accuracy of the HSI classification model and can be easily integrated into other CNN
models to improve model performance.
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5. Conclusions

In this study, to address the poor accuracy of HSI classification models on the small
samples in the training data, an improved graph model MDAN was proposed from the
perspective of multidimensional CNNs and attention mechanisms. The MDAN model can
efficiently extract and refine features to obtain better performance in terms of both accuracy
and efficiency. To make the model more suitable for HSI data structure, an attention
module CBSM was also proposed in this study, which provided a better connection method
than the most widely used CBAM model. The CBSM module was used in the MDAN
model; thus, the spatial–spectral features were further refined, resulting in a model that
significantly helps to improve the accuracy of the HSI classification under the condition of
small samples. A series of comparative experiments were carried out using three open HSI
datasets. The experiment results indicated that the combination of multidimensional CNN
and attention mechanisms has a better performance on HSI data among all of the selected
models using both balanced and unbalanced small samples. The connection method used
in the CBSM model is more suitable for the extraction and classification of HSI data and
further improved the accuracy.

However, the performance of CBSM is better than CBAM only in the connection
method. Hence, future studies will be focused on finding a more targeted attention mod-
ule for HSI data. Moreover, the accuracy improvement made by new models is still
limited; thus, other strategies, such as supplementing the small samples using open high-
dimensional spectral data, may be used in the future. In addition, future research will also
focus on transfer learning and the samples randomly selected from anywhere when a large
number of rich HSI data appear.
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