
����������
�������

Citation: Gao, Y.; Song, X.; Li, W.;

Wang, J.; He, J.; Jiang, X.; Feng, Y.

Fusion Classification of HSI and MSI

Using a Spatial-Spectral Vision

Transformer for Wetland Biodiversity

Estimation. Remote Sens. 2022, 14, 850.

https://doi.org/10.3390/rs14040850

Academic Editor: Nicola Clerici

Received: 10 January 2022

Accepted: 6 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Fusion Classification of HSI and MSI Using a Spatial-Spectral
Vision Transformer for Wetland Biodiversity Estimation
Yunhao Gao 1 , Xiukai Song 2,*, Wei Li 1, Jianbu Wang 3, Jianlong He 2, Xiangyang Jiang 2 and Yinyin Feng 2

1 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
gaoyunhao@bit.edu.cn (Y.G.); liwei089@ieee.org (W.L.)

2 Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resources and
Environment Research Institute, Yantai 264006, China; hejianlong@shandong.cn (J.H.);
jiangxiangyang@shandong.cn (X.J.); fengyinyin@shandong.cn (Y.F.)

3 Lab of the Marine Physics and Remote Sensing, First Institute of Oceanography,
Ministry of Natural Resources, Qingdao 266061, China; wangjianbu@fio.org.cn

* Correspondence: songxiukai@shandong.cn

Abstract: The rapid development of remote sensing technology provides wealthy data for earth
observation. Land-cover mapping indirectly achieves biodiversity estimation at a coarse scale.
Therefore, accurate land-cover mapping is the precondition of biodiversity estimation. However,
the environment of the wetlands is complex, and the vegetation is mixed and patchy, so the land-
cover recognition based on remote sensing is full of challenges. This paper constructs a systematic
framework for multisource remote sensing image processing. Firstly, the hyperspectral image (HSI)
and multispectral image (MSI) are fused by the CNN-based method to obtain the fused image with
high spatial-spectral resolution. Secondly, considering the sequentiality of spatial distribution and
spectral response, the spatial-spectral vision transformer (SSViT) is designed to extract sequential
relationships from the fused images. After that, an external attention module is utilized for feature
integration, and then the pixel-wise prediction is achieved for land-cover mapping. Finally, land-
cover mapping and benthos data at the sites are analyzed consistently to reveal the distribution rule
of benthos. Experiments on ZiYuan1-02D data of the Yellow River estuary wetland are conducted to
demonstrate the effectiveness of the proposed framework compared with several related methods.

Keywords: coastal wetlands; multisource remote sensing; land-cover mapping; biodiversity estima-
tion; spatial-spectral vision transformer

1. Introduction

Coastal wetland is a transitional area between terrestrial and marine ecosystems,
which has a complex environment and monitoring elements [1]. Accurate biodiversity
monitoring of coastal wetlands is of great significance in water conservation [2], biodiversity
conservation [3], and blue carbon sink development [4]. Recently, natural factors and
human activities have deteriorated biotope and biodiversity.

The traditional on-site monitoring receives data by stations and sections, which is
time-consuming and laborious. In contrast, remote sensing technology has the advantages
of large-area coverage, spatio-temporal synchronization, and high spatial-spectral resolu-
tion [5], providing highly relevant information for a wide range of wetland monitoring
applications. Therefore, biodiversity estimation based on remote sensing achieves eco-
nomic and real-time data collection. In recent years, a lot of works have been developed for
biodiversity estimation based on remote sensing.

The limitation of remote sensing including resolution and sensors makes the biodi-
versity estimation applied at a coarse scale [6]. Biodiversity is mainly divided into animal
diversity and plant diversity. land-cover mapping is one of the most widely used appli-
cations of optical remote sensing, which directly serves the plant diversity estimation. In
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addition, considering the limitations of remote sensing monitoring of animal diversity,
land-cover mapping is capable of estimating animal diversity indirectly [7]. Therefore,
biodiversity estimation based on remote sensing relies on the interpretation of land-cover,
for which hyperspectral images (HSI) have attracted significant attention [8]. Su et al. [9]
designed an elastic network based on low-rank representation to classify HSI, which is
collected by a GaoFen-5 satellite, thus plant diversity estimation of coastal wetland was
achieved. Hong et al. [10] combined the convolutional neural network (CNN) and graph
convolutional network (GCN) to extract different types for urban land-cover classification.
Zhang et al. [11] developed a transferred 3D-CNN for HSI classification, for which the
overfitting problem caused by insufficient labeled samples was alleviated. Wang et al. [12]
proposed a generative adversarial network (GAN) for land-cover recognition, and achieved
promising results with imbalanced samples. Zhu et al. [13] designed a spatial-temporal
semantic segmentation model to harness temporal dependency for land-use and land-cover
(LULC) classification. Zhang et al. [14] proposed a parcel-level ensemble method for
land-cover classification based on Sentinel-1 synthetic aperture radar (SAR) time series and
segmentation generated from GaoFen-6 images. In [15], the land-cover in coastal wetland
were classified using an object-oriented random forest algorithm. In [16], a hierarchical clas-
sification framework (HCF) was developed for wetland classification. The HCF classifies
land-cover from rough classes to their subtypes based on spectral, texture, and geomet-
ric features.

Generally speaking, HSIs exhibit great advantages in land-cover classification due
to carrying plenty of spectral information [17]. However, the spatial resolution of HSI is
usually lower because of the requirements of signal-to-noise ratio in long exposure [18]. In
addition, the existing “different body with same spectrum” or “same body with different
spectrum” phenomenon on HSI deteriorates the interpretation. Therefore, joining the
complementary merits of multisource data further improves the accuracy of land-cover
classification [19]. In the past decade, extensive classification techniques have been suc-
cessfully applied to multisource data [20–22]. Some of the machine learning methods rely
on support vector machine (SVM), extreme learning machine (ELM) and random forest
(RF) [23–25]. More recently, deep learning has boosted the performance of classification
in the remote sensing community. In [26], the adaptive differential evolution was uti-
lized to optimize the classification decision from different data sources. Rezaee [27] et al.
employed the deep CNN to classify wetland land-cover on a large scale. In [28], a 3D-
CNN was designed for multispectral image (MSI) classification to serve wetland feature
monitoring. Zhao et al. [29] developed a hierarchical random walk network (HRWN)
to exploit the spatial consistency of land-cover over HSI and light detection and ranging
(LiDAR) data. In [30], a three-steam CNN was designed to fuse HSI and LiDAR data,
in which the multi-sensor composite kernels (MCK) scheme was employed for feature
integration. Xu [31] et al. developed a dual-tunnel CNN and a cascaded network, named
two-branch CNN, for feature extraction, and the multisource features were stacked for
fusion. Liu [32] et al. improved the two-branch CNN through interclass sparsity-based
discriminative least square regression (CS_DLSR), which encouraged the feature discrim-
ination among different land-cover. Zhang [33] et al. designed an encoder–decoder to
construct the latent representation between multisource data, and then fuse them for classi-
fication. In [34], a depth feature interaction network (DFINet) was developed for HSI and
MSI classification in the Yellow River estuary wetland. In [35], a hierarchy-based classifier
for urban vegetation classification was designed to incorporate the canopy height features
into spectral and textural data.

Despite the intense interest in multisource data classification, it remains a highly
challenging problem. The primary challenges are summed up into two aspects: (1) Data
quality needs to be improved. A higher spatial and spectral resolution is conducive to the
extraction of texture and spectral features, which improves the final classification results.
(2) Sequential features need to be noticed. The continuity of spatially distribution and spectrum
curves enhances the discrimination of features and the classification performance.
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To address the aforementioned challenges, a systematic framework for multisource
remote sensing image processing is constructed. The typical CNN is used for data fusion,
and then a spatial-spectral vision transformer (SSVit) is employed for land-cover mapping
which promotes biodiversity estimation. In stage 1, a CNN-based method is utilized to fuse
the HSI and MSI over the Yellow River estuary wetland, thus both the spatial and spectral
resolution of the fused image is improved. In stage 2, the land-cover mapping of fused
image is generated by the SSViT, which exploits the sequential relationship of spatial and
spectral information, respectively. After that, an external attention module is adopted for
feature integration. Finally, biodiversity estimation is achieved by land-cover mapping and
benthic collection in the study area. Extensive experiments conducted on the Yellow River
estuary dataset and several related methods reveal that the proposed framework provides
competitive advantages in terms of data quality and classification accuracy.

The main contributions of the proposed method are summarized as follows:

• A systematic framework including stage 1 (data fusion) and stage 2 (classification) is
constructed for land-cover mapping, which serves as the precondition of biodiversity
estimation. In fact, the relationship between land-cover and biomass is of utmost
importance for remote sensing monitoring of biodiversity. In this paper, the coarse-
scale biodiversity estimation of the Yellow River estuary dataset is indirectly achieved
based on land-cover mapping.

• The classification stage is crucial for information interpretation. To explore the spatial-
spectral sequential features of wetland, the spatial transformer and spectral trans-
former both with position embedding are utilized to extract the neighborhood corre-
lation, which encourages the discrimination between different classes. In addition,
an external attention module is employed to enhance the spatial-spectral features. Dif-
ferent from the self-attention module, the external attention module is optimized with
all training sets. Finally, the pixel-wise prediction is achieved for land-cover mapping.

The rest of this paper is organized as follows: In Section 2, the study area and con-
sidered data are described. Section 3 illustrates the proposed method in detail. Section 4
presents the experimental results on the Yellow River estuary dataset to validate the pro-
posed method, and then the biodiversity estimation is achieved. Finally, the conclusions
are presented in Section 5, respectively.

2. Study Area and Data Description

The Yellow River delta wetland locates in Shandong Province, China 118◦33′–119◦20′E,
37◦35′–38◦12′N. The Yellow River delta wetland is an important ecological functional
area in the Bohai Sea, while the estuarine wetland is a typical area [36]. In particular,
the intertidal zone of the Yellow River estuary wetland involves rich salt marsh vegetation
and benthos. It plays an important role in biodiversity protection and ecological restoration.
However, the Yellow River delta wetland is struggling to face the reduction of natural area,
biodiversity, and ecosystem service function.

Therefore, the monitoring of species composition and spatio-temporal distribution
in the study area promotes biodiversity estimation and protection. As shown in Figure 1,
the intertidal zone in the north of the Yellow River is selected as the study area, and 11 sites
are arranged for benthos collection. The coordinate and real landscape of field sites are
listed in Table 1.

In this paper, a mudflat quantitative sampler with the size of 0.25 m × 0.25 m × 0.3 m
is utilized to collect intertidal biological samples at the sites according to the sites and
number of quadrats listed in Table 1. The size of a quadrat is 0.0625 m2. Note that Bullacta
exarat and Mactra veneriformis are usually located on the surface of the intertidal zone, which
is recorded directly through field observation. Some samples at Sites A2 and A3 are scoured
by tide during sampling, thus the remaining samples are recorded at the proportion of 80%.
All samples retained after elutriation are transferred to the sample bottle. To obtain the
information of species composition and species density, the retained samples are further
analyzed quantitatively under the stereomicroscope.
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Table 1. The coordinate and real landscape of field sites.

Site Quadrats Coordinate Real Landscape

A1 2 119◦9′45.360′′E 37◦47′15.324′′N Tamarix chinensis
A2 1 119◦9′52.740′′E 37◦47′31.848′′N Suaeda salsa
A3 1 119◦10′4.224′′E 37◦47′57.082′′N Sparse area of Spartina alterniflora

B1 2 119◦7′35.832′′E 37◦47′8.052′′N Mixed area of Suaeda salsa and Tamarix chinensis
B2 4 119◦7′40.620′′E 37◦47′47.328′′N Dense area of Suaeda salsa
B3 2 119◦7′48.000′′E 37◦48′13.464′′N Sparse area of Suaeda salsa

C1 2 119◦6′31.498′′E 37◦49′35.351′′N Dense area of Spartina alterniflora
C2 2 119◦6′39.232′′E 37◦49′37.604′′N Mixed area of Suaeda salsa and Spartina alterniflora
C3 2 119◦6′44.322′′E 37◦49′34.668′′N Coastal beach in invasion area of Spartina alterniflora

D1 1 119◦4′33.575′′E 37◦49′6.440′′N Tidal creek in invasion area of Spartina alterniflora
D2 1 119◦4′46.424′′E 37◦50′10.171′′N Mudflat near Tidal creek

122°0′ E120°0′ E118°0′ E116°0′ E

38°0′ N

36°0′ N

40°0′ N

(c) HSI(b) MSI(a) Ground truth

Tamarix
forest

Spartina 
alterniflora

Suaeda salsa

Tidal creek

Mudflat

Shandong

Hebei

Tanjin

Cloud 
occlusion

Figure 1. Location of the study area. (a) the ground truth image; (b) the MSI captured by ZY1-02D;
(c) the HSI captured by ZY1-02D.

In addition, land-cover mapping is generated by multisource data including HSI and
MSI, which are captured by ZiYuan1-02D (ZY1-02D) satellite on 26 September 2020. The MSI
includes eight MSS (multi-spectral scanner) bands, with 10 m ground sample distance
(GSD). The HSI is obtained by an AHSI sensor, with a spectral resolution of 10–20 nm.
The parameters of ZiYuan1-02D satellite are listed in Table 2. The multisource data are
preprocessed by image registration, atmospheric correction, and radiometric calibration.
To be specific, the HSI and MSI are transformed into the WGS 84 geographic coordinate
system, and then the considered images are registered by the automatic registration tool
in ENVI. The Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
module of ENVI is employed for atmospheric correction, and the radiometric calibration is
carried out by using the gain and offset coefficients. The classification system is established
based on the real landscape listed in Table 1. Here, five classes are selected for land-cover
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classification, and the Cloud occlusion (white area in Figure 1a) is eliminated. The benthic
data collected at different sites are reported in Figure 2 and Table 3. The regions of interest
are selected as the training set, in which the ground truth is annotated by experts with
rich knowledge in field trips as listed in Table 4. Note that Tamarix forest is mainly the
distribution area of Tamarix chinensis, which mixed with other vegetation such as Suaeda
salsa and Phragmites australis.

Macrophthalmus japonicu

Glauconome primeana

Perinereis aibuhitensis

Potamocorbula laevis

Helice tridens sheni

Umbonium thomasi

Corophium acherusicum

Batillaria cumingi

Heteromastus filiformis

Arthropod

Mollusc

Annelids

Chone collaris

Bullacta exarata

Mactra veneriformis

Figure 2. The population and legend of benthos in the study area.

Table 2. The parameters of ZiYuan1-02D satellite.

Type Range of Wavelengths Spatial Resolution Spectral Resolution Width

MSI

B02 452-521nm

10 m — 115 km

B03 522–607 nm
B04 635–694 nm
B05 776–895 nm
B06 416–452 nm
B07 591–633 nm
B08 708–752 nm
B09 871–1047 nm

HSI 400–2500 nm 30 m 10–20 nm 60 km

Table 3. Benthic data collected at different sites.

Sites Species Name Number Species Density (#/m2) Weight (g) Biomass (g/m2)

A1 Macrophthalmus japonicu 2 16 1.335 10.682

A2

Glauconome primeana 3 60 3.127 62.538

Macrophthalmus japonicu 1 20 2.228 44.558

Perinereis aibuhitensis 4 80 0.865 17.304

A3

Glauconome primeana 4 80 3.514 70.280

Potamocorbula laevis 4 80 0.256 5.110

Bullacta exarata 2 2 4.776 4.776

Macrophthalmus japonicu 1 20 3.565 71.306

Perinereis aibuhitensis 2 40 0.858 17.166

Mactra veneriformis 1 1 20.615 20.615

B1
Macrophthalmus japonicu 2 16 1.254 10.028

Helice tridens sheni 1 8 5.226 41.810
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Table 3. Cont.

Sites Species Name Number Species Density (#/m2) Weight (g) Biomass (g/m2)

B2

Macrophthalmus japonicu 6 24 8.138 32.552

Helice tridens sheni 2 8 11.242 44.968

Perinereis aibuhitensis 5 20 0.956 3.825

Mactra veneriformis 1 1 12.578 12.578

B3

Glauconome primeana 2 16 1.241 9.926

Corophium acherusicum 12 96 0.023 0.186

Bullacta exarata 1 0.5 1.487 0.743

Perinereis aibuhitensis 3 24 0.151 1.204

Umbonium thomasi 4 32 1.057 8.454

C1

Batillaria cumingi 2 16 2.237 17.892

Macrophthalmus japonicu 3 24 3.435 27.483

Perinereis aibuhitensis 5 40 0.566 4.527

C2

Batillaria cumingi 2 16 1.690 13.520

Macrophthalmus japonicu 4 32 5.221 41.770

Helice tridens sheni 1 8 0.825 6.602

Perinereis aibuhitensis 5 40 0.882 7.056

Umbonium thomasi 4 32 0.082 0.658

C3

Glauconome primeana 18 144 10.163 406.504

Batillaria cumingi 22 176 18.350 146.802

Bullacta exarata 1 1 1.883 1.883

Helice tridens sheni 2 16 10.215 81.720

Perinereis aibuhitensis 15 120 1.439 11.510

Heteromastus filiformis 4 32 0.005 0.184

Umbonium thomasi 11 88 0.082 0.658

D1

Potamocorbula laevis 4 64 0.256 4.088

Macrophthalmus japonicu 1 16 3.251 52.016

Perinereis aibuhitensis 2 32 0.021 0.331

Heteromastus filiformis 8 128 0.004 0.062

D2

Glauconome primeana 10 160 1.900 30.395

Chone collaris 1 16 0.005 0.082

Corophium acherusicum 16 256 0.033 0.526

Helice tridens sheni 3 48 6.530 104.483

Perinereis aibuhitensis 8 128 0.840 13.442

Heteromastus filiformis 7 112 0.063 1.013

Table 4. Number of training and testing samples for the Yellow River estuary dataset.

Class Number of Samples

No. Name Training Testing

1 Spartina alterniflora 735 39,784
2 Suaeda salsa 2519 118,213
3 Tamarix forest 1069 31,044
4 Tidal creek 529 15,673
5 Mudflat 702 24,592

Total 5554 229,306
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3. Proposed Classification Framework

Give a set of multisource remote sensing images, including low-resolution HSI (LR-HSI
Xhsi ∈ RH×W×Ch ) and high-resolution MSI (HR-MSI Xmsi ∈ R3H×3W×Cm ) from ZY1-02D.
Here, H and W are the height and width of LR-HSI. Ch = 166 and Cm = 8 are the bands’
number of LR-HSI and HR-MSI, respectively.

Data fusion aims to integrate the spectral advantages of LR-HSI and the spatial advan-
tages of HR-MSI, thus the fused image with high spatial-spectral resolution is generated.
After that, the classification technology is conducted on the fused image for land-cover
mapping. As shown in Figure 3, the proposed framework includes two stages: (1) In
stage 1 (data fusion), the advantages of spatial-spectral information is reconstructed by
the CNN-based method; (2) In stage 2 (classification), the proposed SSViT, including a
spatial-spectral vision transformer and an external attention module, are employed to learn
the sequential relationship of spatial-spectral information for classification.

Spatial 
Sampling

Information Integration

Stage 2: ClassificationLR-HSIHR-MSILR-HSI

Stage 1: Data fusion (Testing)
Spectral 

Sampling

Image patches of fused image

Spatial 
transformer

Spectral
transformer

Prediction



Conv→BN→ ReLU

Conv→BN→ReLU

Stage 1: Data fusion (Training)

Fusion loss

2
1n p c× ×

1 d×

2
2n r p× ×

1 d×

1 2d×

1 2d×

LinearExternal attention

Conv→BN→ReLU

Conv→BN→ ReLU

h
dX

preX r r c× ×

m
dX

Figure 3. Framework of the proposed spatial-spectral vision transformer, which includes stage 1
(data fusion) and stage 2 (classification).

3.1. Data Fusion Based on HSI and MSI

Information fusion of HSI and MSI improves the spatial-spectral resolution of the
fused image, which is of great benefit to the subsequent interpretation. In [37], several
methods were conducted to fuse the HSI and MSI of ZY1-02D. Due to the unavailable
spatial and spectral response functions of sensors in the application, the performance of
many fusion technologies is limited, while the deep learning methods are able to alleviate
this problem [38]. Therefore, a CNN-based method is introduced for information fusion of
HSI and MSI. It is worth mentioning that other method options are also available for data
fusion combined with the practical demands.

3.1.1. Spatial and Spectral Sampling

CNN-based fusion methods require a proportionally large number of training samples
for parameters optimization. However, the reference image is scarce in the wetland scene.
Thus, the spatial sampling and spectral sampling are implemented on LR-HSI to obtain the
degraded images. The LR-HSI is used as the reference image, and the degraded images are
the training images during parameter optimization.

The spatial sampling is implemented on LR-HSI by Gaussian blur and downsampling
operation according to the scale ratio of HR-MSI and LR-HSI. The degraded MSI is gen-
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erated by equal interval band selection in the visible to near-infrared bands of LR-HSI.
The generation of the degraded HSI Xh

d and MSI Xm
d is calculated as:

Xh
d = Downsampling(Gaussian(Xhsi), 1/r), (1)

Xm
d = Xhsi(b), (2)

where Xh
d is the degraded HSI. Downsampled(·) and Gaussian(·) are spatially downsam-

pling by bilinear operation and blur by Gaussian filter, respectively. Xm
d is sampled from

original LR-HSI along the spectrum. b = Rounding(C′h/8) ∗ω + 1, ω = [0, 1, · · · , Cm − 1],
and C′h = 76 is the number of bands of visible to near-infrared in Xhsi. Rounding(·) is the
operation of rounding to 0.

3.1.2. Image Fusion Based on CNN

To achieve the complementary advantages of HSI and MSI, a CNN-based approach is
designed for information fusion. Firstly, the preliminary fusion is applied for information
integration. The preliminary fused image is denoted as:

Xpre(i) =

{
Xm

d (i), i f i = b

Upsampling(Xh
d(i)), otherwise,

(3)

where Xpre is the preliminary fused image, i = [1, 2, · · · , Ch]. Upsampling(·) is spatially
upsampling by bilinear operation.

The preliminary fused image is filtered through 3× 3 convolutional layer (Conv) with
stride 1, batch normalization (BN), and activation layers (ReLU), and then the other two
sequential operations with skip-connection are conducted for further fusion. The fusion
loss function L f is equipped for optimization, which is defined as:

L f =
1

HWCh

H

∑
h=1

W

∑
w=1

Ch

∑
c=1
‖Xhsi(h, w, c)− X f use(h, w, c)‖2, (4)

where X f use is the fused image, and ‖ · ‖2 is L2-norm.
Note that three convolutional layers with a kernel size of 3× 3 are deployed in the

CNN-based method, and stride is set as 1 with padding operation. Thus, the spatial size
of feature maps remains unchanged during training. More specifically, the learning rate
is set to 1× 10−4, and the Adam is employed to train the CNN-based method, which is
optimized 500 epochs.

3.2. Classification Based on SSViT

Accuracy land-cover mapping is crucial for biodiversity estimation based on remote
sensing. The distribution of land-cover indirectly reflects biodiversity. To exploit the sequen-
tial relationship from spatial/spectral information, attention mechanisms have achieved
promising performance [39]. The vision transformer (ViT) has boosted the performance
in computer vision, owing to the position embedding and self-attention [40]. Inspired by
the ViT, the spatial and spectral transformer assembled by an external attention module,
named SSViT, is designed for land-cover classification. More specifically, the proposed
SSViT is mainly composed of the spatial transformer and spectral transformer, which are
utilized to extract the sequential relationship of spatial-spectral information, respectively.
The framework of spatial/spectral transformer is illustrated in Figure 4.
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The transformer encoder

0 1 92 3 4 5 6 7 8

2
1n p c  2

2n r p r r c 

or
The transformer encoder

Add & Multi-head 
Attention

Layer Norm

Add & MLP

Layer Norm

Linear projection

Q VK

Linear

Figure 4. The framework of spatial/spectral transformer with a depth of 1.

3.2.1. The Spectral Transformer

HSIs sequentially record the information from the whole electromagnetic spectrum.
Therefore, the discrimination of spectral response explicitly encourages the land-cover
classification. However, the “different body with same spectrum” or “same body with
different spectrum” phenomenon deteriorates the classification results. Thus, the spectral
transformer with a depth of 8 is designed to extract the relationship of spectral information.
The baseline of spectral transformer with a depth of 1 is exhibited in Figure 4. First,
image patches centered at pixels of the fused image are fed into the spectral transformer.
Give an image patch X ∈ Rr×r×Ch that is filtered by sequential operations (Conv, BN,
and ReLU) to generate the feature map X f ∈ Rr×r×c, which is reshaped in several sub-

patches Xspec ∈ Rn(r2·p1) where n is the number of sub-patches, which is the sequence
length for the transformer, and p1 = c/n. After that, a trainable Linear projection layer
is utilized to map Xspec to d dimensions vectors. To obtain the relationship between n
sub-patches, a learnable 1D position embedding is preset to represent the image through
the transformer, which is illustrated in the green box of Figure 4.

The transformer encoder consists of multi-head attention, normalization layer (Layer
Norm) and multilayer perceptron (MLP). The outputs of multi-head attention are calcu-
lated as:

f = A(Q, K, V) = so f tmax(
QKT
√

d
)V, (5)

where Q, K, V ∈ RN×d are the query set, key set, and value set, respectively, and N is batch
size. A(·) denotes the attention function. f ∈ RN×d represents the attention feature, which
is generated by the weighted values V with respect to the attention learned from Q and K.
Intuitively, multi-head attention helps the network capture richer information. Multi-head
attention introduces several paralleled heads in which an independent scaled dot-product
attention function A(·) is utilized to generate the attention features. Therefore, the attention
feature f is redefined as:

f = [head1, head2, · · · , headh]Wo, (6)

headj = A(QWQ
j , KWK

j , VWV
j ) j = [1, 2, · · · , h], (7)

where WQ
j , WK

j , WV
j ∈ Rd×dh are the projection matrices of jth head. Wo ∈ Rhdh×d is the

projection matrix, and dh = d/h is the dimension of the features from each head.
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3.2.2. The Spatial Transformer

The spatial distribution of wetland land-cover is continuous. The image patches cover
rich spatial information, which is considered sequential. Therefore, a spatial transformer
is utilized to extract the relationship of spatial information. In detail, the feature map
X f ∈ Rr×r×c is reshaped in several sub-patches Xspa ∈ Rn(p2

2·c), where n is the number
of sub-patches, and p2 = r/n. Similarly, a trainable Linear projection layer is utilized to
map Xspa to d dimensions vectors, and then a learnable 1D position embedding is preset to
represent the image through the transformer. Finally, the relationship of spatial information
is obtained by the transformer, and the detailed calculation of the transformer is described
in Section 3.2.1. It is worth noting that the depth of the spatial and spectral transformers is
set as 8.

Attention

Layer Norm

Input Linear

Attention

Layer Norm

Input

(a) (b)

Q
KMVK eQ VM

Figure 5. (a) Illustration of the self-attention; (b) illustration of the external attention.

3.2.3. The External Attention

To realize joint classification, an external attention module is utilized to integrate
the feature extracted from the spatial and spectral transformer as shown in Figure 5b.
Similar to the self-attention (Figure 5a) in spatial/spectral transformers, the self-correlation
is obtained through Q, K, and V as computed in Equation (5). In external attention,
two memory units (MK ∈ Rd′×2d and MV ∈ Rd′×2d) are used to replace K and V on
the baseline of self-attention, which is optimized during the whole training set. Qe is
generated by Qe = Linear(C(fspec, fspa)). Here, fspec and fspa are the outputs from the
spectral transformer and the spatial transformer, respectively. Therefore, the relationship
among the whole training set is learned as follows:

fe = A(Qe, K, V) = so f tmax(
QeMT

K√
d

)MV , (8)

where Qe ∈ RN×2d and d′ < 2d, and . Finally, the pixel-wise prediction is achieved by a
Linear layer and Softmax.

The proposed SSViT is deployed on an Nvidia GTX 3080 GPU in PyTorch. The loss
function is cross-entropy loss defined in Equation (9), which is optimized by stochastic
gradient descent (SGD). Specifically, the learning rate is 5× 10−4, and the number of epochs
is 500. The batch size, momentum, and weight decay are selected as 128, 0.9, and 5× 10−4,
respectively,

Lc =
1
N

N

∑
i=1

M

∑
m=1
−ym

i log pm
i , (9)

where N is batch size, M is the number of classes, and y is the real label. ym
i = 1 is satisfied

when the class of pixel i is m, whose prediction probability after So f tmax is pm
i ; otherwise,

ym
i = 0.
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4. Experiments and Analysis

In this paper, the framework for multisource remote sensing image processing is
developed for biodiversity estimation. A CNN-based method is employed for data fusion,
in which the performance is evaluated by visual comparison. Next, the proposed SSViT is
utilized to classify land-cover on the intertidal zone of the Yellow River estuary wetland.
The superiority of the proposed SSViT is measured by the precision corresponding to some
related methods. Finally, the correlation between land-cover and benthos is established
by the sampling on the selected site. Thus, biodiversity estimation in the intertidal zone is
achieved at a coarse scale.

4.1. The Performance of Data Fusion

HSI and MSI of ZY1-02D are utilized for collaborative land-cover classification. Firstly,
the advantages of HSI and MSI are fused through the CNN-based method, and then
the fused image with high spatial-spectral resolution is classified to generate land-cover
mapping. In this paper, visual comparison and spectral angle mapper (SAM) are used
to measure the quality of the fused image. Considering that the reference image is not
available, the spectral information of the original HSI is used as the reference spectrum.
Table 5 reports the SAM of each class according to the reference HSI. The visualized result
of data fusion is shown in Figure 6. It is observed that the visual quality of the fused image
is improved.

(a) The original HSI

(b) The fused image

Figure 6. Visualized results of data fusion using HSI and MSI.

Table 5. The SAM of each class according to the reference HSI.

Class No. 1 2 3 4 5

SAM 0.1227 0.0782 0.0801 0.0971 0.0797

4.2. Classification Performance

To validate the superiority of the proposed SSViT, several comparison methods are se-
lected to conduct the experimental validation, including SVM [23], LBP-ELM [24], S2FL [41],
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Residual CNN [42], two-branch CNN [31], and DFINet [34]. Note that the SVM and
LBP-ELM are the spectral classifiers, and other comparison methods are spatial-spectral
classifiers together with the proposed SSViT. The S2FL, two-branch CNN, and DFINet are
the joint classification framework through multisource feature fusion. Overall accuracy
(OA), average accuracy (AA), and kappa coefficient (Kappa) are utilized for quantita-
tive assessment.

4.2.1. Analysis of the Image Patch Size

The spatial-spectral information boosts the performance of land-cover classification,
which is affected by the image patch size. The proposed SSViT is employed to extract the
sequential features from image sub-patches. The number of image sub-patches is set as 9.
Therefore, the image patch size r is set to a multiple of 3 ([9, 12, 15, 18, 21]). The relationship
between OA and image patch size is shown in Figure 7. It is found that, when r = 9
and r = 12, the classification results are not satisfactory. This is because the land-cover
in the intertidal zone are mixed and patchy, and a smaller image patch size leads to the
fragmentation of the classification results. In contrast, when r > 15, the OA value decreased
gradually. Excessive spatial neighborhood reduces the discrimination of spatial information.
Moreover, the computational burden of the model increases. Therefore, r = 15 is selected
as the best choice.

9 12 15 18 21

Image patch size

74

76

78

80

82

84

86

88

90

O
A

 (
%

)

Figure 7. Relationship between OA and image patch size.

4.2.2. Ablation Experiment

The spatial and spectral transformers are used to extract the sequential relationship
of spatial and spectral information, and the external attention module is employed for
feature integration. Next, the benefits of different modules on classification results are
further discussed. In Table 6, spatial transformer and spectral transformer only mine
the relationship of spatial or spectral information, which obtains low OA values. When
combing the spatial transformer and spectral transformer, the OA value increased by at
least 1.99%. In addition, the external attention module further improves the classification
performance, in which the OA improvement of the full model by 0.91% is achieved. It
confirms that the relationship of spatial-spectral tends to generate accurate land-cover
mapping, and feature integration through external attention emphasizes the relationship
among the whole training set.
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Table 6. Ablation experiment of the proposed SSViT on the Yellow River estuary dataset.

Method OA (%)

Spatial transformer 83.48

Spectral transformer 83.37

Without external attention 85.47

Full model 86.38

4.2.3. Classification Results on the Yellow River Estuary Dataset

Figure 8 presents the land-cover mapping corresponding to the experiments reported
in Table 7. The land-cover mapping obtained by SVM, LBP-ELM, and S2FL tends to be
rather noisy, resulting in serious landscape fragmentation. The continuity of land-cover
distribution is ignored because only the spectrum is introduced. For Residual CNN,
the boundaries in different types suffer from artifacts to some extent, mainly because the
spectral information is not specifically considered. Regarding the land-cover mapping
produced by Two-branch CNN and DFINet, the fragmentation and artifacts are alleviated.
Compared with other methods, the proposed SSViT generates better results in terms of
class consistency.

(a) SVM

(e) Two-branch CNN

(b) LBP-ELM

(f) DFINet (g) SSViT

(c) Residual CNN

(h) Ground truth

Tamarix forestSpartina alterniflora Suaeda salsa Tidal creek Mudflat

(d) S2FL

Cloud occlusion

Figure 8. Land-cover mapping using different methods on the Yellow River estuary dataset.

Table 7. Class-specific classification accuracy (%) using different methods.

No.
SVM LBP-ELM Residual

CNN
S2FL Two-Branch

CNN
DFINet SSViT

HSI MSI Fused HSI MSI Fused Fused HSI+MSI HSI+MSI HSI+MSI HSI MSI Fused

1 90.95 83.68 93.75 90.52 83.44 93.68 91.66 89.74 92.82 92.89 93.23 92.92 93.45
2 82.04 90.18 83.58 86.53 93.89 89.38 83.53 90.35 87.82 86.10 84.33 85.36 87.96
3 71.41 48.68 62.23 71.45 44.01 65.16 78.60 65.80 68.04 76.20 76.24 75.23 77.78
4 79.05 71.36 72.42 69.74 64.43 63.61 80.57 68.46 86.03 84.40 81.89 81.62 82.43
5 70.30 36.82 78.08 69.17 21.44 75.31 74.83 57.19 80.28 78.41 77.36 77.05 80.69

OA (%) 80.68 76.43 81.10 82.17 75.54 83.58 83.14 81.87 85.08 85.00 83.87 84.15 86.38
AA (%) 78.75 66.14 78.01 77.48 61.44 77.43 81.84 74.31 83.00 83.60 82.61 82.44 84.46
Kappa 0.7185 0.6273 0.7209 0.7341 0.5987 0.7514 0.7559 0.7213 0.7792 0.7802 0.7649 0.7683 0.7994
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From the results reported in Table 7, the original HSI performs the upsampling of
bilinear interpolation to obtain the same spatial size of MSI. In Table 7, “HSI” denotes
that the original HSI performs the upsampling of bilinear interpolation to obtain the same
spatial size of MSI, and “MSI” represents the original MSI. “Fused” represents the fused
image generated by the CNN-based method in Section 3.1, and “HSI+MSI” indicates
that the upsampled HSI and original MSI are fed into the classifiers based on feature
fusion. From the experimental results, it is possible to observe that the fused image
achieves better performance than merely using HSI and MSI. For the proposed SSViT,
the OA value is increased by at least 2.23%. The fused image significantly improves the
classification accuracy of Spartina alterniflora. In addition, deep learning methods achieve
better performance than traditional methods in most cases. In particular, the two-branch
CNN and DFINet achieve competitive results, but the improvement is finite. Generally
speaking, the proposed SSViT outperforms the precision on most classes compared with the
considered methods. The comparison demonstrates that the proposed SSViT is powerful in
sequential feature extraction which encourages discrimination between different classes.

119°10′ E119°4′ E 119°6′ E 119°8′ E

36°48′ N

36°46′ N

36°50′ N
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Figure 9. The dominant species of different sites in the intertidal zone of the Yellow River
estuary wetland.

Table 8. Diversity index and species number of different sites.

Site Diversity Index Species Number

A1–A3 0 1.406 1.914 1 3 6

B1–B3 0.918 1.568 1.665 2 4 5

C1–C3 1.485 2.419 2.298 3 5 7

D1–D2 1.640 2.256 - 4 6 -

4.3. Biodiversity Estimation

After obtaining the land-cover mapping, the biodiversity estimation is further achieved
using biomass information of the 11 sites. The location and dominant species of different
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sites are shown in Figure 9, and the corresponding diversity index and species number are
listed in Table 8.

4.3.1. Biodiversity Estimation in the Intertidal Zone

Species richness, species evenness, and diversity index are introduced for biodiversity
estimation in the intertidal zone. As listed in Table 8, the sections A, B, and C are sampled
from high-tide to low-tide, respectively. Considering the diversity index and dominant
species, it is found that the species distribution is continuous.

Combined with the land-cover mapping, it is found that most of the Tamarix forest
is located in the high-tide with lower biodiversity, and the dominant species are mainly
annelids such as Macrophthalmus japonicu and Helice tridens sheni. For the Suaeda salsa area in
the middle-tide (A2 and B2), the biodiversity is relatively high, while the Spartina alterniflora
area distributes in the low-tide areas (A3, B3, C2, C3). The Tidal creeks are beneficial to
high biodiversity. In addition, section D is selected in the intertidal zone near the Tidal
creek. The diversity index and species number are relatively high, which proves that the
benthos diversity is closely related to the connectivity of tidal creeks. The low-tide sites
(A3, B3, C2, C3) exhibit an increasing trend of the diversity index and species number as
well as the sites (D1 and D2) near the tidal creeks.

4.3.2. Biodiversity Estimation in the Spartina alterniflora Area

Spartina alterniflora is one of the first invasive species in China. It competes with
other vegetation in the intertidal zone, resulting in the disappearance of large salt marsh
plants. Moreover, Spartina alterniflora with developed roots destroys the habitat of offshore
organisms, affecting the seawater exchange capacity and hence leading to the decline
of water quality. Consequently, biodiversity in the Spartina alterniflora area is inevitably
destroyed to a certain extent. The biodiversity estimation in the Spartina alterniflora area is
executed according to the real landscape in Table 1.

According to the real landscape reported in Table 1, three typical sites A3, C1, and C2
are selected, which are located in sparse area, dense area, and mixed area of Spartina alterni-
flora and Suaeda salsa (mixed area). As illustrated in Figure 10, the lowest species density and
biomass are collected in the dense area. In the sparse area, the species density and biomass
are relatively high. The diversity index of the mixed area was slightly higher than that of
a dense area, mainly because Suaeda salsa played a positive role in soil remediation [43].
Furthermore, the species richness, species evenness, and diversity index of Spartina alterni-
flora area are further discussed. As shown in Figure 11, the species richness and diversity
index of considered sites conform to the state in Figure 10. Note that site C1 has the highest
species evenness, which is used to measure the stability of biological communities. This is
because the lower benthos diversity in the dense area is difficult to change. Conclusively,
Spartina alterniflora damages biodiversity, whose growth density is negatively correlated
with biodiversity. Monitoring the expansion and management of Spartina alterniflora by
remote sensing is of great significance for wetland biodiversity protection.

4.3.3. Biodiversity Estimation in the Suaeda salsa Area

Suaeda salsa is widely distributed in the intertidal zone of the Yellow River estuary
wetland, which is conducive to the restoration of the ecological environment. As shown
in Figure 12, the biodiversity estimation in the Suaeda salsa area is executed according to
the real landscape in Table 1, from which sites A2, B2, and B3 are utilized for diversity
analysis. Site B2 has the largest coverage, followed by site A2, and the lowest is site B3.
Both sites A2 and B3 are located in the middle-tide area, and it is found that the dense area
of Suaeda salsa is conducive to the distribution of benthos. For the sites B2 and B3 in section
B, site B3 at the low-tide area does not realize the expected increase in the diversity index,
which indicates that the distribution of Suaeda salsa has a positive effect on the distribution
of benthos.
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Figure 10. The species density and biomass (g/m2) of the Spartina alterniflora area.
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Figure 11. The species richness, species evenness, and the diversity index of the Spartina alterniflora area.
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Figure 12. The species richness, species evenness, and diversity index of the Suaeda salsa area.

4.4. Discussion

Considering the complex environment in the wetlands, recognizing land-cover and
estimating biodiversity based on remote sensing is full of challenges. In this paper, the de-
signed remote sensing image processing framework is used to realize the classification
of land-cover in the study area. The benthos diversity of the study area is estimated by



Remote Sens. 2022, 14, 850 17 of 19

integrating the collected data of benthos and land-cover mapping. In general, the proposed
framework is capable of mining the sequential features of spatial-spectral information,
which improves the precision of land-cover classification. Due to the mixed pixels of
medium resolution remote sensing data, how to extract the subspace information for
classification needs to be specially studied.

Different from [44,45], this paper realizes the coarse-scale monitoring of biodiversity
by the distribution law between benthos and land-cover. In other words, biodiversity
estimation is indirectly achieved by land-cover mapping. It is observed that most of
the Spartina alterniflora and mudflat are distributed in the low-tide area with developed
tidal creeks. Therefore, the diversity of benthos is higher. The middle-tide area is also
covered by the semidiurnal tide, and the land-cover are mainly salt-tolerant Suaeda salsa.
Due to the low frequency of tide covered in the high-tide area, Tamarix chinensis begins
to grow. The diversity of benthos in a high-tide area is the lowest because of the little
tidal, and the dominant species is arthropods such as crabs. In addition, it is found that
Spartina alterniflora deteriorates the ecological environment and the biodiversity. In the
future, the fine classification and time-series monitoring of land-cover combined with
high-resolution remote sensing will become the focus of works.

5. Conclusions

This paper constructed a systematic framework for a multisource remote sensing image
process in the wetland scene. The proposed framework benefits from two aspects. On the
one hand, a CNN-based fusion method has been conducted over multisource data, thus
the complementary merits have been assembled into the fused image. High-quality fused
images consequently serve wetland monitoring. On the other hand, a spatial-spectral vision
transformer (SSViT) has been designed for land-cover mapping. The sequential features of
the fused image in spatial and spectral dimensions are extracted by the spatial transformer
and spectral transformer, respectively. After that, the external attention module is utilized
to integrate the spatial-spectral features. In addition, the biodiversity estimation of the
study area is further achieved by combining the benthic data and land-cover mapping.

Extensive experiments are conducted on the Yellow River estuary dataset, which
reveal the effectiveness of the established systematic framework for multisource remote
sensing images. The proposed framework has superior performance in terms of improving
data quality and classification accuracy. Combined with the benthic data, the biodiversity
of the study area is achieved.
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