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Abstract: Typhoons are known for causing heavy precipitation, very strong winds, and storm 
surges. With climate change, the occurrence, strength, and duration of typhoons are changing. 
Daily, weekly, and monthly precipitation from in situ stations from the NOAA Global Historical 
Climatological Network (GHCN) were compared in the Western North Pacific from 2000 to 2018 
against two widely used datasets: NASA’s TRMM TMPA and PERSIANN-CDR. Additionally, pre-
cipitation levels during twenty-five typhoons were compared using precipitation estimates. There 
have been reductions in the average number of typhoons per year from 1959 to present and by 
month during the months of August, September, and October. Satellite-derived precipitation esti-
mates from PERSIANN and TRMM TMPA explained approximately 50% of the variation in weekly 
cumulative precipitation and approximately 72% of the variation in monthly cumulative precipita-
tion during the study period (March 2000–December 2018) when using all available stations. When 
analysis was completed using only stations close to the best track for the entire duration of a ty-
phoon, 62% of the variation was explained, which is comparable to the weekly and monthly cumu-
lative comparisons. However, most of the stations available and with sufficient data were not lo-
cated in the tracks of the typhoons. It is of utmost importance to better understand typhoon events 
by utilizing precipitation data from satellite remote sensing in the Western North Pacific. 

Keywords: precipitation; tropical cyclone; remote sensing; TRMM TMPA; PERSIANN-CDR;  
Western North Pacific; typhoon 
 

1. Introduction 
Precipitation is one of the most widely studied phenomena worldwide because of 

the role it plays in the productivity of aquatic and terrestrial environments [1]), food pro-
duction and security [2], and the climate [3]. The desire to understand the variability of 
precipitation across time and space dates back to the fourth century in India [4]. Since that 
time, there have been studies to measure and predict precipitation across the globe using 
rain gauges [5], modeling [6], and remote sensors [7–9] The technological advancements 
in the observation of precipitation have evolved from simple bucket-like rain gauges to 
sophisticated satellite sensors [10]. Rainfall data are collected in the most rural and rugged 
terrains without in situ rain gauges due to the development of remote sensing and pre-
dictive precipitation using state-of-the-art models, with most of these data accessible via 
the Internet. Furthermore, with the development of satellite remote sensors and precipi-
tation models, there now exist numerous estimates (described later) of precipitation [9,11]. 
These estimates vary in availability, accessibility, and accuracy. While some precipitation 
estimates have been shown to be more accurate over land, others are more accurate over 
water [12]. Some are more accurate at daily time scales while others are more accurate at 
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monthly time scales [13]. As a result, the appropriateness of these estimates for the accu-
rate representation of precipitation over a specified area and duration is called into ques-
tion. For satellite remote sensing precipitation estimates, accuracy generally implies being 
comparable and equivalent to measurements from in situ rain gauges [11,13,14] based on 
an accumulation period and spatial spacing of the gauges. However, there is a known 
discrepancy between in situ measurements and remotely sensed precipitation estimates 
[11], as a rain gauge is a point measure of rainfall and satellite sensors averaged over a 
certain region in space. In addition, comparing remotely sensed satellite estimates to in 
situ measurements in areas that do not currently have any or very few in situ rain gauges 
presents a challenge. Measurements of precipitation by rain gauges can vary spatially and 
temporally due to the type of measurement, drop size, and intensity [15]. Furthermore, 
during extreme weather events such as tropical cyclones, in situ rain gauges can be af-
fected by high wind [16] and storm surges [17], which impact the accuracy. Additionally, 
precipitation estimates from satellite products have known limitations, including under-
estimation in mountainous or complex terrain [18]; the differing cloud types (depending 
on the type of methods used, i.e., IR vs. VIS/IR), which influence the brightness tempera-
ture; precipitation from convective versus non-convective systems; and infrequent sam-
pling [19]. 

Our approach to better understand typhoons and the precipitation associated with 
them was to first investigate how the number of typhoons has changed over time and then 
to estimate the precipitation during several of these typhoon events. Daily precipitation 
estimates were compared during typhoon events in the Western North Pacific from 2000 
to 2018 using NASA’s Tropical Rainfall Measuring Mission (TRMM TMPA), Multi-Satel-
lite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks–Climate Data Records (PERSIANN-CDR). 
There have been many studies conducted to investigate these specific precipitation prod-
ucts, and some studies have used similar products to study specific typhoons. For exam-
ple, in a 2014 study [20], daily precipitation estimates from PERSIANN Cloud Classifica-
tion System (CCS) were mapped to track the precipitation for the 2014 Typhoon Haiyan. 
Both Lanfont et al. 2004 [21] and Feng and Shu 2018 [22] utilized TRMM TMPA precipita-
tion to better understand precipitation patterns for tropical cyclones. Lonfat et al. 2004 
used TRMM TMPA precipitation estimates for precipitation patterns for 260 tropical cy-
clones worldwide. They used satellite precipitation to improve quantitative precipitation 
forecasts (QPF), as estimating absolute precipitation is very difficult. Additionally, Guz-
man and Jiang [23] used both TRMM TMPA and NASA’s Global Precipitation Measure-
ment (GPM) to understand how precipitation during TCs have changed from 1998 to 2016. 
They were able to show that precipitation during TCs have increased across all the TC-
prone basins, especially within the Western North Pacific (NWP), using only precipitation 
from satellite estimates. 

However, there have been only a few studies conducted comparing different satellite 
remote sensing precipitation products across several typhoon events. Typhoons are 
known for causing heavy precipitation, very strong winds, and storm surges. These lead 
to flooding, heavy run-off, and landslides, which often result in water contamination, 
heavy sedimentation, and collapse of buildings and other man-made structures. With cli-
mate change, the occurrence, strength, and duration of typhoons is changing, and it is 
generally acknowledged that typhoons are becoming stronger [24,25]. 

Our approach is focusing on the NWP to investigate precipitation across several ty-
phoon events using the PERSIANN-CDR, TRMM TMPA, and I -situ gauges. There are 
several reasons that we chose to use these products for this study: 

PERSIANN-CDR: 
1. Long data records—Provides daily precipitation data from 1983 to the present; 
2. Large spatial coverage—Quasi-global (60°S–60°N; 180°W–180°E) spatial coverage 

and 0.25° × 0.25° spatial resolution; 
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3. Proven use in variety of environments—Used for estimating precipitation around the 
world in varied topographical areas, complex terrains, and over oceans; 

4. Tested across years—Widely used (more than 2000 publications) and easily accessi-
ble to the public; 

5. Verification and validation—It has been corrected using an in situ gauge network. 
TRMM TMPA: 

1. 10+ year record—Provides daily precipitation data from 1998 to 2019; 
2. Large spatial coverage—Quasi-global (50°S to 50°N; 180°W to 180°E) spatial coverage 

and 0.25° × 0.25° spatial resolution; 
3. Proven use in a variety of environments and for tropical cyclones—Used for estimat-

ing precipitation around the world in varied topographical areas, complex terrain, 
and over oceans; 

4. Tested across years—Widely used (more than 160 publications since 2007) and easily 
accessible to the public; 

5. Verification and validation—It has been corrected using an in situ gauge network at 
the monthly scale. 

There were two main objectives of this study: (1) to determine whether typhoon oc-
currence in the NWP has changed over time; (2) to determine which precipitation product, 
namely PERSIANN, TRMM TMPA, or in situ gage data, should be used to estimate pre-
cipitation during typhoons in the NWP. Since in situ rain gage data are generally accepted 
as accurate, the satellite-based precipitation products were compared to these data. To 
determine which precipitation product should be used, we conducted a comparison of 
remotely sensed precipitation with in situ precipitation results to provide a general un-
derstanding of how well the satellite products estimated in situ rainfall for gauges located 
within the best track areas. The results allowed us to understand how well satellite prod-
ucts estimate in situ precipitation in general across the entire study period (2000–2018). 
By completing this analysis, we can better understand how well satellite precipitation ob-
servations really compares during “normal” conditions and extreme (typhoon) condi-
tions. 

2. Methods 
The distribution of Western North Pacific Tropical Cyclones published in the 2018 

Annual Tropical Cyclone Report [26] was used to display the average number of typhoons 
(defined by maximum sustained winds greater than 64 knots) by month and year from 
1959 to 2018. The best track data from the Naval Oceanography Portal [27] from 2000 
through 2018 were also utilized. Only the best track data for the Western North Pacific for 
storms that developed into typhoons were used (Figure 1). The area of interest (AOI) for 
our study extended from 10°S 100°E to 50°N 180°E, encompassing the primary location of 
typhoon development in the Western North Pacific Ocean. This large area was the focus 
due to the complexity and variation in typhoon development and tracking [21,28–30]. 
Twenty-five typhoons occurring in the region from 2000 through 2018 were studied (Table 
1). These typhoons varied in duration, time of occurrence, and area affected. Example cu-
mulative rainfall results from TRMM TMPA maps for a subset of typhoons with best track 
and gauge locations are shown in Figure 2. 

Daily precipitation data from the NOAA Global Historical Climatological Network 
(GHCN) [31] were used to provide in situ observations for comparison against satellite 
remote sensing estimates. Both the TRMM TMPA Near Real-Time 3B42 daily precipitation 
product [32] and the PERSIANN-CDR daily precipitation product [14,33] were used, as 
both products have been widely used for finer-scale analyses over both terrestrial and 
marine environments [34–36]. Additionally, both products have long temporal records 
(TRMM TMPA: 2000-present; PERSIANN CDR: 1983-present), high spatial resolution 
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(0.25° × 0.25°), and have been used to estimate precipitation over the tropics with convec-
tive systems [9]. TRMM TMPA is a precipitation product that combines precipitation es-
timates from microwave, radar, and IR data to produce a high temporal (3-hourly and 
daily) and spatial (0.25° × 0.25°) resolution dataset that is available across the globe (50°S–
50°N) and is corrected with gauge climatology from the Global Precipitation Climatology 
Project (GPCP) [37]. 

Table 1. Information about the twenty-five typhoons, including the duration, locations affected, and 
Oceanic Niño Index (ONI) value for each typhoon. 

Year Month Duration Name ONI 
2000 August  10 Bilis −0.5 
2002 June, July 17 Chata’an 0.7, 0.8 
2002 July 15 Halong 0.8 
2002 December 11 Pongsona 1.1 
2003 April 22 Kujira 0.0 
2004 April 17 Sudal 0.2 
2004 June, July 17 Ting Ting 0.3, 0.5 
2004 August, September 19 Chaba 0.6, 0.7 
2007 March, April 7 Kong-rey 0.0, −0.2 
2008 December 10 Dolphin −0.7 
2009 September 5 Ketsana 0.7 
2013 October 12 Francisco −0.2 
2013 November 9 Haiyan −0.2 
2014 July 12 Neoguri 0.1 
2014 July, August 20 Halong 0.1, 0.0 
2015 May 19 Dolphin 1.0 
2015 June, July 15 Chan-hom 1.2, 1.5 
2016 July 7 Nepartak −0.3 
2017 October 9 Lan −0.9 
2018 March, April 10 Jelawat −0.6, −0.5 
2018 June, July 9 Prapiroon 0.1 
2018 July 10 Maria 0.1 
2018 July 6 Wukong 0.1 
2018 August 10 Soulik 0.1 
2018 August 8 Cimaron 0.1 

PERSIANN uses an algorithm based on infrared GridSat-B1 satellite data and is ad-
justed using the GPCP to produce daily, high spatial resolution (0.25° × 0.25°) precipitation 
estimates that extend across the globe (60°S–60°N) [14]. 
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Figure 1. Maps showing best tracks for typhoons for each year from 2000 to 2018. Center locations 
shown for the typhoons (red circles) and stations (black triangles). 
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Figure 2. Cumulative precipitation maps of six of the storms analyzed showing best track locations 
and all gauges in the map. 

The total or cumulative precipitation for each typhoon was calculated using the daily 
precipitation estimates starting with the beginning of the typhoon development through 
to the end of the typhoon. For example, the 2000 Typhoon Bilis had a start date of 18 Au-
gust 2000 and an end date of 27 August 2000. Daily precipitation values within that date 
range were added together to determine the total or cumulative precipitation for the 2000 
Typhoon Bilis. 

Widely accepted error metrics were used—namely the correlation coefficient (CC), r-
squared (r2), and root mean square error (RMSE)—to evaluate the comparison between in 
situ precipitation from gauges, TRMM TMPA, and PERSIANN. Cumulative precipitation 
results at the daily, weekly, and monthly time scales were compared. Each gauge location 
corresponded to one pixel for TRMM TMPA and one for PERSIANN. Comparisons at 
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each time scale occurred using data from 1 March 2000 through to 31 December 2018. 
Comparisons between in situ gauges, TRMM TMPA, and PERSIANN precipitation were 
conducted for each typhoon. 

In Section 3.1, only data from the distribution of Western North Pacific Tropical Cy-
clones published in the 2018 Annual Tropical Cyclone Report [26] are shown. The number 
of typhoons defined by maximum sustained winds greater than 64 knots was averaged 
by month and year to show the interannual and intra-annual variations from 1959 through 
2018. 

In Section 3.2, we compare gauge precipitation to satellite remote sensing data across 
the entire study period from 2000 through 2018. We used the gauge locations to determine 
which pixel from TRMM TMPA and PERSIAN would be used for the comparison. Then, 
we compared cumulative precipitation at the daily, weekly, and monthly time scales. For 
these comparisons, we utilized correlation coefficient, r-squared, and root mean square 
error methods to measure the accuracy of the estimates. These statistics are the most com-
monly used to compare the accuracy of satellite remote sensing data to gauge data. This 
portion of the analyses was meant to show how accurate the satellite remote sensing prod-
ucts are during normal conditions via the daily, weekly, and monthly time scales from 
2000 through 2018. 

In Section 3.3, we use the correlation coefficient, r-squared, and root mean square 
error results to compare the accuracy of the satellite estimates to gauge estimates during 
typhoons. The analysis was conducted to determine how well the satellite precipitation 
products estimated in situ rain gauges. A total of 41 stations (Table 2) were selected using 
the following criteria: (1) stations located within 1° of the best track data (Figure 1); (2) 
stations that were missing minimal data for the time interval measured (i.e., only stations 
that had at least 25 days of data to calculate cumulative monthly rainfall); (3) stations that 
did not have any quality flags. These criteria drastically reduced the number of stations 
that were able to be used for the analysis. 

Table 2. Station descriptions for the forty-one in situ rain gauges located within 1° of the best track 
locations with 329 or more days of data available (2000–2018). 

Station ID Latitude Longitude Elevation (m) Gauge (mm/Year) 
CHM00059838 19.10 108.62 8 1072 
CHM00059417 22.37 106.75 129 1182 
CHM00059316 23.40 116.68 3 1208 
CHM00059431 22.63 108.22 126 1231 
JAW00043323 35.28 139.67 53 1245 
CHM00059134 24.48 118.08 18 1299 
CHM00058457 30.23 120.17 43 1364 
JA000047648 35.73 140.85 28 1383 

CHM00058477 30.03 122.12 37 1386 
CHM00058847 26.08 119.28 14 1416 
JAW00043324 34.15 132.23 3 1484 
CHM00058921 25.97 117.35 204 1555 
CHM00058834 26.63 118.00 128 1589 
JA000047971 27.10 142.18 8 1633 

CHM00058752 27.78 120.65 38 1650 
GQC00914156 13.52 144.85 107 1680 
CQC00914855 15.12 145.72 66 1802 
JAW00042215 26.27 127.75 84 1819 
GQC00914950 13.55 144.89 160 1867 
CHM00059758 20.00 110.25 24 1870 
CHM00059501 22.78 115.37 5 1872 
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CQC00914874 15.00 145.63 82 1939 
RP000098232 18.37 121.63 3 2079 

CHM00059632 21.95 108.62 6 2109 
GQC00914727 13.35 144.77 3 2151 
CHM00059855 19.23 110.47 25 2170 
CHM00059663 21.87 111.97 22 2280 
JA000047927 24.82 125.13 16 2319 
JA000047945 25.93 131.32 24 2327 

CQC00914080 15.21 145.75 252 2350 
CQC00914801 14.17 145.24 179 2384 
GQC00914025 13.58 144.93 190 2469 
GQC00914001 13.39 144.66 3 2492 
GQC00914468 13.45 144.80 18 2498 
JA000047778 33.45 135.75 76 2545 

GQW00041415 13.48 144.80 77 2554 
JA000047936 26.20 127.68 53 2651 

FMC00914892 10.03 139.80 2 2843 
RP000098430 14.63 121.02 46 4077 
RP000098444 13.13 123.73 17 4702 

Finally, in Section 3.4, we focus on specific typhoons for the analysis to determine 
whether the satellite remote sensing precipitation is more accurate when gauges are lo-
cated closer to the track of the typhoon. As with the previous sections mentioned, we used 
correlation coefficient, r-squared, and root mean square error results to determine the ac-
curacy. 

3. Results 
3.1. Rates of Occurrence of Typhoons Changed over Time from 1959 to Present Day 

The average number of occurrences of typhoon events (≥64 knots) per month during 
the portion of the typhoon season (July through October) from 2000 to 2018 has decreased 
compared to the average number of typhoons from 1959 through 1999 (Figure 3). The av-
erage numbers of typhoon events in the months of August, September, and October dur-
ing 1959–1999 were 3.49, 3.39, and 3.15, respectively. The average numbers of typhoons 
for the same months during the 2000–2018 time period were 3.32, 2.84, and 2.68, respec-
tively. By examining Figure 3 more closely, it can be seen that the curve for the average 
number of typhoon events for 2000–2018 for the months of August–December clearly falls 
below those for 1959–1999 and 1959–2018. The gap between the two sets of curves in-
creases from about 0.2 in August to 0.6 in September to 0.7 in October and decreases to 0.2 
and 0.1 in November and December, respectively. The biggest gap is in the month of Oc-
tober and the smallest gap is in August in the August–October typhoon season. 
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Figure 3. Average number of typhoons (≥64 knots) by month for three different periods 
of time (1959–1999, 1959–2018, and 2000–2018), showing that the numbers of typhoons 
by month have decreased. Standard error bars are shown for the average number of ty-
phoons for the 1959–2018 line. 

The total number of typhoons (≥64 knots) occurring each year has fluctuated from 
1959 to 2018 with oscillating patterns (Figure 4). While the average number of typhoons 
during this period is 16.9, there are certain decades when the number of typhoons is well 
above the average and well below the average. The average numbers of typhoons during 
the 1959–1968, 1969–1978, 1979–1988, 1989–1998, 1999–2008, and 2009–2017 time periods 
were 20.6, 15.2, 16.0, 19.3 was 16.2, and 13.8, respectively. The average number of typhoons 
is well above the average for 1959–1969, with a peak of 26 in 1964, and well below the 
average for 2005–2014, with a minimum in 2011 of 7. 
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Figure 4. Total number of typhoons from 1959 through 2018. The average for 1959–2018 
was 16.85 typhoons, which is shown along with 10-year average lines. 

3.2. Comparison of Precipitation Results between In Situ Gauges and Satellite Remote Sensing 
Estimates in the Western North Pacific 

Daily precipitation data from 1 March 2000 to through 31 December 2018 were used 
to determine how precipitation results compare between in situ rain gauge and satellite 
remote sensing estimates. The daily data were used to calculate weekly and monthly pre-
cipitation values for each station and the corresponding pixels from TRMM TMPA and 
PERISANN. The correlation coefficient, r-squared, and root mean square error results are 
shown in Table 3. The was a weak relationship between in situ rainfall and TRMM TMPA 
or PERSIANN at the daily time scale, with only 17% of the variation explained by the 
satellite estimates and RMSE of 13 mm (Table 3). However, 57% and 48% of the variation 
in weekly rainfall was explained by TRMM TMPA and PERSIANN, respectively, and 
RMSEs varied from 36 mm to 39 mm. Furthermore, 68% and 64% of the variation in 
monthly in situ rainfall was explained by TRMM TMPA and PERSIANN, respectively, 
with RMSEs ranging from 78 mm to 90 mm. The correlation coefficients were 0.754 and 
0.691 for weekly cumulative precipitation and 0.825 and 0.803 for monthly cumulative 
precipitation for TRMM TMPA and PERSIANN, respectively (Table 3). Scatterplots of cu-
mulative weekly and monthly rainfall are shown in Figure 5 to provide more visual infor-
mation about the statistics presented above. When examining these scatterplots, one can 
see that the majority of the values are zero or very close to zero, with few values over 500 
mm. In fact, 75% of the weekly gauge rainfall values were equal to or less than 47.5 mm 
and 75% of the monthly gauge rainfall values were equal to or less than 216.4 mm. Addi-
tionally, rainfall measurements from gauges on average were higher than the estimates 
from PERSIANN or TRMM TMPA. 
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For example, an in situ gauge measured almost 1500 mm, while the TRMM TMPA 
pixel estimated 1000 mm (see Figure 5b). However, TRMM TMPA did estimate closer to 
the in situ rainfall than PERSIANN, as indicated on the scatterplots. 

Table 3. Correlation coefficient (CC), r-squared (r2), and root mean square error (RMSE) results for 
daily, weekly, and monthly data. 

Statistic Parameters 
Cumulative Precipitation 

Day 
(mm/d)_ 

Week 
(mm/w) 

Month 
(mm/m) 

CC 
TRMM TMPA 0.412 0.754 0.825 

PERSIANN 0.430 0.691 0.803 

r2 

Gauge = m * TRMM TMPA + b 0.170 0.568 0.680 
Gauge = m * PERSIANN + b 0.185 0.478 0.645 

Gauge = m * TRMM TMPA + Station + b 0.178 0.587 0.725 
Gauge = m * PERSIANN + Station + b 0.195 0.511 0.726 

RMSE 

Gauge = m * TRMM TMPA + b 13.707 35.870 85.148 
Gauge = m * PERSIANN + b 13.588 39.436 89.727 

Gauge = m * TRMM TMPA + Station + b 13.641 39.060 78.502 
Gauge = m * PERSIANN + Station + b 13.501 38.170 78.407 

The root mean square error was also calculated for each in situ rain gauge for daily 
cumulative (Figure 6), weekly cumulative (Figure 7), and monthly cumulative precipita-
tion (Figure 8). Root mean square error values varied across stations, at 0–25 mm for daily 
rainfall, 0–99 mm for weekly rainfall, and 0–187 mm for monthly rainfall. The RMSE is a 
unit-based measure that shows how well the satellite precipitation results estimate the in 
situ observations. The RMSE values for daily cumulative precipitation for PERSIANN 
varied from 5.42 mm to 25.80 mm and for TRMM TMPA varied from 5.42 mm to 22.90 
mm across the entire AOI. One might think that the individual stations would have simi-
lar RMSE values; however, this is not always the case, as can be seen in Figure 6a–c. For 
example, in Figure 6a, 2 stations in Japan have RMSE values < 10.50 mm for PERSIANN 
and RMSE values > 20 mm for TRMM TMPA. This can also be seen in the RMSE values 
for the weekly cumulative precipitation results shown in Figure 6b and monthly cumula-
tive precipitation results shown in Figure 6c. Two of the stations in the Philippines have 
RMSE values < 37 mm for PERSIANN and RMSE values > 41 mm (Figure 6b). Several 
stations (stations in Japan, the islands of Japan, and in the Philippines) in Figure 6c show 
larger differences in RMSE values between PERSIANN and TRMM TMPA. It appears that 
these variations in RMSE are due to differences in location, elevation, and the amount of 
rainfall the stations receive (Table 2). Together, these figures help show how similar and 
different the estimates from satellites can be depending on the location and time scale. At 
the daily time scale, there is only a range of about 20 mm in the RMSE values, while there 
is a range of 187 mm in the RMSE values at the monthly time scale. When the precipitation 
amounts from the stations are considered (yearly cumulative range of 1072–4702 mm from 
Table 2), this can help one to understand the RMSE values. The lowest yearly cumulative 
precipitation is 1072 mm, which is approximately 89 mm/month and 3 mm/day. The high-
est yearly cumulative precipitation is 4702 mm, which is approximately 392 mm/month 
and 13 mm/day. 
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Figure 5. Scatterplots of cumulative weekly (a,b) rainfall and cumulative monthly (c,d) rainfall be-
tween in situ rain gauges and satellite estimates for PERSIANN (a,c) and TRMM TMPA (b,d). 
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Figure 6. (a) Root mean square error (RMSE) values for daily rainfall for TRMM (top) and PER-
SIANN (bottom) for each station. (b) Root mean square error (RMSE) values for weekly rainfall for 
TRMM (top) and PERSIANN (bottom) for each station. (c) Root mean square error (RMSE) values 
for monthly rainfall for TRMM (top) and PERSIANN (bottom) for each station. 

 
Figure 7. Scatterplots of satellite precipitation and in situ gauge precipitation during the 2004 Ty-
phoon Ting (left) and 2007 Typhoon Kong-rey (right). Linear regression lines are shown along with 
r-squared values for TRMM TMPA and PERSIANN. 
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Figure 8. Cumulative precipitation values from PERSIANN, TRMM TMPA, and in situ gauges for 
the 2002 Typhoon Chataan. 

3.3. Comparison of Precipitation Results between In Situ Gauges and Satellite Remote Sensing 
Estimates during Typhoons 

This portion of the analysis was completed to determine how well daily precipitation 
estimates from satellites compared to in situ gauges during typhoons. 

Comparisons of daily precipitation from in situ rain gauges and satellite remote sens-
ing estimates were completed for all twenty-five typhoons. There was a lot of variation in 
how well the satellite precipitation data estimated in situ rainfall because of the duration 
of the typhoons, timing of the typhoons, and available measurements from in situ gauges. 
All available in situ gauges were used during each typhoon, regardless of the location. 
This means that many of the rainfall measurements from the in situ gauges equaled zero 
because they were either collected far away from the typhoon track or because they were 
collected on days before or after the typhoon passed the area. For example, during the 
2000 Typhoon Bilis, 34 in situ gauges were able to be used for comparison with TRMM 
TMPA and PERSIANN results, while only 9 in situ gauges were used for the 2017 Ty-
phoon Lan (Table 4). This resulted in r-squared values of 0.2 and 0.3 for PERSIANN and 
TRMM TMPA, respectively, for Typhoon Bilis (Table 4). Across all twenty-five typhoons, 
the r-squared values ranged from 0.00 to 0.46, with the most variation explained during 
the 2004 Typhoon Ting-Ting and 2007 Typhoon Kong-rey (Table 4). While 35% of the var-
iation was explained by TRMM TMPA during the 2004 Typhon Ting-Ting, only 25% was 
explained by PERSIANN (Figure 7; Table 4). Conversely, during the 2007 Typhoon Kong-
rey, PERSIANN explained 46% of the variation, while TRMM TMPA only explained 34% 
(Figure 7; Table 4). Many of the observations equaled zero during both typhoons because 
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of when and where the observations were collected, as previously mentioned. Both PER-
SIANN and TRMM TMPA underestimated daily precipitation during the typhoons, as 
indicated by the linear regression lines falling below the 1:1 line on the scatterplots (Figure 
7). Overall, PERSIANN estimates were closer to the in situ gauge precipitation during the 
2004 Typhoon Ting-Ting and the 2007 Typhoon Kong-rey, as can be seen by the linear 
regression lines on each scatterplot (Figure 7). Interestingly, there were many precipita-
tion estimates from PERSIANN and TRMM TMPA that were much higher when the in 
situ gauge values equaled zero. 

Table 4. R-square values, degree of freedom, and number of stations for each typhoon for TRMM 
TMPA and PERSIANN. 

Storm TRMM TMPA PERSIANN DF # of stations 
2000 Bilis 0.327 0.214 330 34 

2002 Chata’an 0.081 0.230 457 31 
2002 Halong 0.125 0.207 398 29 

2002 Pongsona 0.038 0.083 298 30 
2003 Kujira 0.144 0.073 602 30 
2004 Sudal 0.092 0.040 440 28 

2004 Ting-Ting 0.349 0.251 463 28 
2004 Chaba 0.299 0.302 501 29 

2007 Kong-rey 0.344 0.459 172 26 
2008 Dolphin 0.094 0.201 228 26 
2009 Ketsana 0.012 0.004 121 27 

2013 Francisco 0.042 0.354 46 4 
2013 Haiyan 0.004 0.011 34 4 
2014 Neoguri 0.044 0.278 99 9 
2014 Halong 0.233 0.331 171 9 
2015 Dolphin 0.042 0.091 154 9 

2015 Chan-hom 0.072 0.099 120 9 
2016 Nepartak 0.023 0.000 55 9 

2017 Lan 0.037 0.046 73 9 
2018 Jelewat 0.115 0.217 74 11 

2018 Prapiroon 0.143 0.093 66 11 
2018 Maria 0.260 0.340 84 11 

2018 Wukong 0.025 0.072 46 9 
2018 Soulik 0.077 0.238 98 11 

2018 Cimaron 0.114 0.192 78 11 

3.4. Comparison of Precipitation Results between In Situ Gauges and Satellite Remote Sensing 
Estimates during a Specific Typhoon 

When the analysis was performed using specific in situ rain gauges close to the ty-
phoon track, more variation was explained, but only at specific stations. The cumulative 
rainfall from TRMM TMPA, PERSIANN, and the in situ rain gauges for the 2002 Typhoon 
Chataan are shown in Figures 8 and 9. As can be seen in the figures, there was spatial 
variation between the PERSIANN and TRMM TMPA estimates, with PERSIANN estimat-
ing higher precipitation values in many areas within the AOI (Figure 8). Furthermore, the 
cumulative in situ precipitation did not reach the same amount of precipitation from the 
satellites, although this was due to the locations of the stations. The highest cumulative 
precipitation value from the satellite estimates occurred (spatially) outside of the best 
track of the 2002 Typhoon Chataan (see Figure 2), to the west of the Philippines. The high-
est cumulative precipitation value from the in situ gauges occurred in Japan (Figure 8). To 
gain a better understanding of precipitation within the track of the 2002 Typhoon Chataan, 
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analysis was conducted using a subset of stations (Figure 9c,d). The differences in precip-
itation estimates are more obvious in Figure 9, where a smaller spatial extent is shown. 
The extent shown in Figure 9 shows a dramatic change in precipitation from the southwest 
to the northeast direction. There are very clear differences and similarities in precipitation 
between PERSIANN and TRMM TMPA. The similarities include the “boundary” of the 
2002 Typhoon Chataan path in the northeast extent of the map (Figure 9a,b) and the high 
cumulative precipitation in the southwest extent of the maps (Figure 9c,d). Some of the 
differences between PERSIANN and TRMM TMPA are highlighted within the best track 
portions of the maps, where there is an almost circular pattern for the PERSIANN esti-
mates versus a more heterogeneous linear pattern for the TRMM TMPA estimates. Unfor-
tunately, there are not many stations located within the area, but those that are fall across 
the “boundary”. Since the cumulative precipitation results shown in Figures 8 and 9 do 
not show how the precipitation values varied across the duration of the typhoon, time 
series plots with inset scatterplots are provided to provide a precipitation comparison 
(Figures 10 and 11). The time series and scatterplots provided are for all of the stations 
within the extent of Figure 9c,d for which more than 50% of the data were available during 
the typhoon. Stations CQC00914855 (15.12°N, 145.72°E), CQC00914080 (15.21°N, 
145.75°E), and CQC00914801 (14.17°N, 145.24°E) are all stations that are located north of 
the boundary of the 2002 Typhoon Chataan, as seen in Figure 9. The elevation and annual 
precipitation vary in Figure 7. Scatterplots of satellite precipitation and in situ gauge pre-
cipitation during the 2004 Typhoon Ting-Ting (left) show value ranges across the stations 
from 66 m to 252 m and 1802 mm/year to 2385 mm/year (Table 2). Due to the track of the 
typhoon, the daily precipitation was lower at these stations than the stations located fur-
ther south (compare Figures 10 and 11). Stations GQW00041415 (13.48°N, 144.80°E), 
GQC00914468 (13.45°N, 144.80°E), and GQC00914025 (13.58°N, 144.93°E) are all located 
on the island of Guam, which is within the track of the typhoon. Elevation ranged from 
18 m to 190 m and annual precipitation ranged from 2469 mm/year to 2554 mm/year at 
these stations (Table 4). Since these stations were located within the typhoon track, there 
were much higher daily cumulative precipitation measurements and estimates (Figure 
11). There was greater variation in rainfall from 3 July through 6 July, when the typhoon 
crossed over Guam. Interestingly, TRMM TMPA estimated higher precipitation on 4 July 
2002, while the in situ gauges measured higher precipitation on 5 July (GQQ00041415 and 
GQC00914025 in Figure 11) and 6 July 2002 (GQC00914468 on Figure 11). The most varia-
tion explained by the satellite estimates was from PERSIANN (r2 = 0.615, p-value < 0.05) 
at station GQC00914025 (Figure 11). TRMM TMPA only explained at most 12% of the var-
iation in in situ rainfall values from the same station, but the result was not significant 
(Table 5). 
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Figure 9. Cumulative rainfall values from PERSIANN (a,c) and TRMM (b,d) at two different spatial 
scales during the 2002 Typhoon Chataan. 

Table 5. R-squared values for daily cumulative rainfall estimates during the 2002 Typhoon Chataan 
for PERSIANN and TRMM TMPA. 

Station ID PERSIANN TRMM TMPA 
CQC00914855 0.204 * −0.003 
CQC00914080 0.305 * 0.000 
CQC00914801 0.035 −0.065 
GQW00041415 0.482 * 0.110 
GQC00914468 0.389 * −0.032 
GQC00914025 0.615 * 0.124 

CQC00914877 a 0.399 * 0.044 
 

Note: * p-value < 0.05; a figure not shown. 

a. b.

c. d. 
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Figure 10. Time series and scatterplots of daily cumulative precipitation for in situ gauges, PER-
SIANN, and TRMM TMPA during the 2002 Typhoon Chataan. 
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Figure 11. Time series and scatterplots of daily cumulative precipitation for in situ gauges, PER-
SIANN, and TRMM TMPA during the 2002 Typhoon Chataan. 

4. Discussion 
Developing a better understanding of precipitation variation during typhoons is of 

the utmost importance in understanding the effects that these typhoons have on commu-
nities and the global climate [38]. However, determining which precipitation estimates are 
more accurate and should be used in specific instances (i.e., terrestrial vs. aquatic, moun-
tainous vs. flat terrain) is no easy task. In this paper, comparisons were made between two 
well-known and commonly used precipitation datasets to understand precipitation vari-
ation from 2000 to 2018 and during twenty-five typhoons in the Western North Pacific. 
This was achieved by comparing precipitation results from in situ rain gauges with rain-
fall results from satellites. 

Satellite-derived precipitation estimates from PERSIANN and TRMM TMPA ex-
plained approximately 20% of the variation (RMSE ~ 14 mm) in daily precipitation, 50% 
of the variation (RMSE ~ 40 mm) in weekly cumulative precipitation, and approximately 
72% of the variation (RMSE ~ 85 mm) in monthly cumulative precipitation during the 
study period (March 2000–December 2018) when using stations located within the best 
track area. The correlation coefficients were 0.41 and 0.43 for daily precipitation, 0.754 and 
0.691 for weekly cumulative precipitation, and 0.825 and 0.803 for monthly cumulative 
precipitation for TRMM TMPA and PERSIANN, respectively. These results are compara-
ble to other similar comparisons of PERSIANN and TRMM TMPA to in situ rainfall esti-
mates [39]. Ayugi et al. 2019 [39] obtained RMSE values ranging from 44 mm to 110 mm 
for PERSIANN and TRMM TMPA. The root mean square error values for PERSIANN and 
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TRMM TMPA at daily, weekly, and monthly time scales varied across stations, with the 
highest values being more than 150 mm at the monthly time scale. These results are com-
parable with other research studies comparing PERSIANN and TRMM TMPA to in situ 
rainfall estimates [39]. 

Due to the lack of spatial coverage and temporal coverage of in situ rainfall measure-
ments close to the typhoon best track data, at most 35% (TRMM TMPA) or 46% (PER-
SIANN) of the variation in in situ rainfall was explained by satellite estimates. However, 
being able to explain 35% of the variation using TRMM TMPA or PERSIANN during a 
typhoon was a higher rate than at the daily time scale for values from all available stations. 
When the analysis was completed using only stations close to the best track for the entire 
duration of a typhoon, 62% of the variation was explained, which was comparable to the 
weekly and monthly cumulative comparisons. While 62% of the variation does not seem 
high, it is much higher than expected given the estimates were made during the 2002 Ty-
phoon Chataan. While being able to use in situ gauges to accurately estimate precipitation 
during typhoons is ideal, this is very unlikely in the Western North Pacific due to the 
locations of the stations. We focused attention on the 2002 Typhoon Chataan to highlight 
the potential accuracy of satellite precipitation estimates had stations are located within a 
typhoon track. However, most of the stations available that with enough data were not 
located in the tracks of the typhoons. This means that it is of the utmost importance to 
better understand the typhoon events by utilizing precipitation values from satellite re-
mote sensing data in the Western North Pacific. 

Our results show that there have been reductions in the average number of typhoons 
per year from 1959 to the present day and per month during the months of August, Sep-
tember, and October, which in some ways contradicts some studies. Specifically, we see a 
contradiction with the study by Stowasser et al. 2007 [40]. In their study, they modelled 
tropical cyclones under warmer conditions. They utilized the same best track data that we 
used with the starting year of 1970 (versus 1959 for our study) and found more tropical 
storms from 1971 to 2003 than from 1991 to 2000. However, it is important to recognize 
that we only utilized typhoon data and not all tropical cyclones. Additionally, we only 
utilized best track data and no modelled data, and the study period was different. Accord-
ing to previous research, these changes were likely due to multi-decadal oscillations in sea 
surface temperature (SST) [41] and sea level pressure [42] in the region. Chan [41] showed 
that during years with higher SST, there was a higher frequency of intense typhoons be-
cause of more convection. While the intensity of a typhoon is not always indicative of the 
amount of precipitation associated with the typhoon, often warm temperatures result in 
higher precipitation from typhoons in the Western North Pacific [43]. Further investiga-
tion is needed to determine whether having less typhoons in the Western North Pacific 
means less precipitation or more precipitation. However, past research suggest that pre-
cipitation is becoming more extreme and persisting longer. Research conducted by Tu and 
Chou (2013) [44] and Chu et al. (2014) [45] looked at changes in precipitation over Taiwan 
and showed that the frequency of rainfall events follows a decreasing trend for non-ty-
phoon events versus an increasing trend for typhoon events. 

Based on our research, we obtained promising results using satellite remote sensing 
products to estimate precipitation during typhoons. Our results showed good agreement 
between satellite precipitation and in situ gauge precipitation when there were gauges 
located within the best tracks of the typhoons. In fact, during specific typhoons with gauge 
data from locations within the best track, the results were better than for the overall com-
parison of daily precipitation estimates across the entire study period of 2000–2018. How-
ever, there were more times that a typhoon passed over an area with no gauges available 
to make a comparison. As such, it is very important to recognize that comparing satellite 
estimates to in situ gauges is not always possible to determine the accuracy of satellite 
remote sensing products. As stated in the introduction, generally for satellite remote sens-
ing precipitation estimates to be considered accurate and precise, they need to be compa-
rable and equivalent to in situ rain gauges. This is the approach we used to determine 
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which product estimated precipitation more accurately. However, in these types of situa-
tions where accurate representations of precipitation are needed in areas where no in situ 
rain gauges are located, satellite remote sensing products need to carry more weight and 
be trusted. To build this trust, more comparisons are needed of remotely sensed precipi-
tation estimates during normal and extreme events to determine how precipitation is 
changing. Two recent studies that we would like to highlight in this regard are those Guz-
man and Jiang [23] and Yang et al. [46]. Guzman and Jiang (2021) very recently published 
a paper in Nature Communications showing a global increase in the tropical cyclone rain 
rate from 1998 to 2016 using only NASA TRMM TMPA data. They concluded that the 
positive trend in precipitation over time was due to increases in sea surface temperature 
and total precipitable water. They were able to look at precipitation during tropical cy-
clones in all active ocean basins across the study period. They found that the greatest 
changes in precipitation occurred in the Western North Pacific. Furthermore, they found 
that the inner-core rainfall rate decreased while there was increased rainfall in the rain-
band region. Additionally, in a recent study by Yang et al. (2021), the authors found that 
the storm intensity greatly influenced where the precipitation fell and the amount of pre-
cipitation using satellite remote sensing products. Yang et al. used a new approach in-
volving the characteristics of tropical cyclones to understand precipitation. Precipitation 
data from the TRMM satellite sensor have been extensively used in the past over land 
surfaces to quantify extremes [47] and have been compared to data from rain gauges in 
India [48], the United States [49], and Vietnam [13]. 

We need to continue to build upon this knowledge repository of precipitation during 
extreme events by using multiple remotely sensed products and in situ gauges (when 
available) across spatial and temporal scales. 
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