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Abstract: This study investigated the extent to which subjectively and objectively measured street-
level perceptions complement or conflict with each other in explaining property value. Street-scene 
perceptions can be subjectively assessed from self-reported survey questions, or objectively quanti-
fied from land use data or pixel ratios of physical features extracted from street-view imagery. Prior 
studies mainly relied on objective indicators to describe perceptions and found that a better street 
environment is associated with a price premium. While very few studies have addressed the impact 
of subjectively-assessed perceptions. We hypothesized that human perceptions have a subtle rela-
tionship to physical features that cannot be comprehensively captured with objective indicators. 
Subjective measures could be more effective to describe human perceptions, thus might explain 
more housing price variations. To test the hypothesis, we both subjectively and objectively meas-
ured six pairwise eye-level perceptions (i.e., Greenness, Walkability, Safety, Imageability, Enclosure, 
and Complexity). We then investigated their coherence and divergence for each perception respec-
tively. Moreover, we revealed their similar or opposite effects in explaining house prices in Shang-
hai using the hedonic price model (HPM). Our intention was not to make causal statements. Instead, 
we set to address the coherent and conflicting effects of the two measures in explaining people’s 
behaviors and preferences. Our method is high-throughput by extending classical urban design 
measurement protocols with current artificial intelligence (AI) frameworks for urban-scene under-
standing. First, we found the percentage increases in housing prices attributable to street-view per-
ceptions were significant for both subjective and objective measures. While subjective scores ex-
plained more variance over objective scores. Second, the two measures exhibited opposite signs in 
explaining house prices for Greenness and Imageability perceptions. Our results indicated that ob-
jective measures which simply extract or recombine individual streetscape pixels cannot fully cap-
ture human perceptions. For perceptual qualities that were not familiar to the average person (e.g., 
Imageability), a subjective framework exhibits better performance. Conversely, for perceptions 
whose connotation are self-evident (e.g., Greenness), objective measures could outperform the sub-
jective counterparts. This study demonstrates a more holistic understanding for street-scene percep-
tions and their relations to property values. It also sheds light on future studies where the coherence 
and divergence of the two measures could be further stressed.  
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1. Introduction 
1.1. Street Environment and Property Values 

Urban street is a vital medium for urban residents to thrive—its perceptual quality 
has significant impacts on residents’ behaviors and quality of life [1,2]. On the one hand, 
physical disorder visible in the street (e.g., broken windows, abandoned housings, graffiti, 
and decayed street lighting) correlates to crime, decreases residents’ sense of safety, and 
consequently lowers residents’ willingness to live there [3,4]. On the other hand, a well-
designed and maintained street environment increases residents’ physical activities, less-
ens their stress [5], and improves their health [6,7] in part due to the outdoor thermal 
microclimate [8–10] or perceived safety [1]. Streetscapes affect pedestrians’ route choices 
[11], perceived thermal comfort and walking comfort [12] influenced by heat exposure 
[13]. Streetscapes also affect driving safety as a result of sun glare effects in urban roads 
[14].  

Most importantly, the physical appearance of street environments such as greenness 
quality [15], as well as the derived perception (e.g., sense of place) [16] can be linked to 
neighborhood socioeconomic status [15] such as housing prices [17–21] and price appre-
ciation [22]. The hedonic price model (HPM) has been widely applied to quantitatively 
reveal to what extent the street environment affects house prices along with other neigh-
borhood, location, and structure characteristics [21,23–25]. Poor street views can directly 
and indirectly relate to property value variance [26]. As an example of the indirect rela-
tion, less vegetation coverage can lead to a less-comfortable thermal environment that is 
correlated to decreasing housing prices [27]. Therefore, a better understanding of percep-
tual qualities of the street can help cities to improve public health, safety, quality of life, 
and sustainability including economic and environmental resilience against climate 
change [19]. 

Along this line, street-view perceptions have be measured subjectively, objectively, 
or in combination [28–30]. On the one hand, subjective measures are self-reported percep-
tions from survey questionnaires or interviews [4,29–32]. However, their definitions were 
found to be inconsistent across studies, while their results were difficult to provide in-
structive policy implications. On the other hand, the objectively measured counterparts, 
either come from land use data in Geographical Information System (GIS) [33], or visual 
indices extracted from street-view imagery (SVI) [19,25,34,35]. Although objective 
measures could be translated into intervention strategies, they might fail to capture the 
subtle human perceptions which are a subjective sensory information process [28,31,36]. 

1.2. Hypothesis and Knowledge Gap 
We hypothesize that human perceptions have a subtle relationship to physical fea-

tures that cannot be comprehensively captured by recombining objective indicators meas-
ured from SVIs [35]. Instead, the subjectively assessed perceptions using visual surveys 
might exhibit a stronger association with housing prices. To test the hypothesis, we pro-
posed measuring pairwise (i.e., subjective vs. objective measures) human perceptions. 
Their coherence and divergences, and associations with housing prices can be compared 
to reveal the effectiveness of these two converse measurements.  

Notably, we must acknowledge that the intention is not to make causal inference be-
tween street perception and housing prices. The research design is to address the diver-
gent correlations with housing prices between the two measurements. No causal state-
ment can be made, although association is the necessary condition for causality, and the 
theory from architecture, urban planning, sociology, and economics seem to suggest such 
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a causal relationship. However, it could be in the reverse direction, or it could be mutual 
relationship, or a confounding variable that affects both house price and the street envi-
ronment, such as a policy beautifying the district and investing in new urban infrastruc-
tures. Nevertheless, this points to future studies where the causal relationship between 
housing price and the street environment is a very important topic to work on. Due to 
data limitations, full panel data for both SVIs and housing price are difficult to acquire, 
thus our results and implications should be limited to correlations. 

Along this line, existing studies have not simultaneously stressed subjectively and 
objectively measured streetscape perceptions sufficiently, nor in the discussion related to 
housing prices. There exist at least three knowledge gaps.  

First, the extent to which subjective and objective perceptions of the street environ-
ment complement or overlap each other in influencing property values has not been 
stressed in the HPM literature. Prior studies that investigated the effects of both measures 
concentrated on walkability and health [28,29,35] or urban design [37]. However, they 
indicated poor agreements between the two measures [33]. One study showed that objec-
tive measures of the urban environment had more significant relationships with pedes-
trian behaviors [28], while another study indicated that the two measures were comple-
menting each other [29]. 

Second, prior studies of street environments and house prices focused on objective 
measures and took physical features such as street greenery and sky view as perception 
indicators [18,19,21,25]. Few studies have addressed the impact of subjectively measured 
street perceptions (such as safety and imageability) on surrounding housing prices. 

Third, even within objective measures, comprehensive and eye-level street percep-
tion have not been addressed enough. First, limited by the availability of large-scale urban 
perception data, prior objective measures mainly relied on GIS data. They often took the 
acreage of, distance to, or accessibility of the amenities (e.g., parks and plazas, green areas, 
and lakes) as indices, which did not capture eye-level perceptions. Very few eye-level fea-
tures such as the greenery and sky have been investigated. Many other important visual 
elements such as street furniture, pedestrians, and commercial signs were not considered. 
Second, only individual impact was tested while the collective effect of these elements on 
house prices was ignored. 

1.3. Contribution 
Our contribution was fourfold. First, we enriched the literature in urban design 

measures with a scalable, automated, and high-throughput framework using online sur-
vey, open-source SVIs, and deep learning. The framework was efficient and accurate in 
measuring both subjective and objective eye-level streetscape perceptions. Second, we 
filled in the gap between the subjectively measured perceptual qualities and property val-
ues, where most prior studies merely focused on the impact of objective measures. Third, 
we quantified the associations between objective perceptions and housing prices using 
more comprehensive street features than prior studies, which relied on no more than three 
individual features. Fourth, we investigated the divergence and coherence between these 
two types of street perceptions. With a comprehensive investigation into the relationship 
between both subjective and objective streetscape perceptions and property values, this 
study provides a scientific basis for policy makers, planners, and real-estate developers to 
adequately address the economic value of street environments. It is also an applicable tool 
for formulating street design and maintenance policy and studying housing price charac-
teristics. 

2. Related Works 
2.1. Conventional Street Environment Measures in HPM Studies 

The most measured feature—street greenery—is often measured using indicators 
that were not human perception centered, such as the number of trees fronting the 
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property [38], the size of tree canopy [39], the percentage of ground cover [40], or the dis-
tance to large green areas [41]. While the literature in street greenery and housing price 
have been well developed, only several have explored the effects of other individual vis-
ual elements, for instance, street lighting [42], open space [17], and ground traffic [43]. 
However, traditional indicators such as tree canopy cover cannot fully incorporate the 
human eye-level perceived streetscape due to large variances in the field and direction of 
view [21,34,44]. Additionally, objectively measured visual elements alone failed to com-
prehensively represent residents’ experiences on the street [37]. 

2.2. Measuring Objective Streetscape Features from SVI 
More recently, with deep learning and publicly available geo-referenced street-view 

imagery (SVI), emerging studies started to apply semantic segmentation to extract the 
pixels of various physical features from SVIs as indices for objectively measured 
streetscape perceptions. On the one hand, SVIs are different from conventional GIS da-
tasets, as they reflect a ground-level view of the street [45]. On the other hand, SVI data 
are easier to obtain, provide finer resolution with more details, and have wider data cov-
erage (e.g., often publicly available at the city scale) over traditional methods such as on-
site auditing [46–48]. Additionally, crowdsourcing, computer vision (CV), and machine 
learning (ML) technologies have also proven their accuracy and efficiency for large-scale 
application [4,49]. In particular, new studies within this regard have objectively detected 
curb ramps [50], measured eye-level greenery view index (GVI) [34], counted pedestrian 
numbers [51], and predicted sun glare [14]. This novel trend integrating big data and 
street-level perceptions has potential capacity to enable a more human-centric under-
standing of urban form, streetscape, micro-level environmental comforts, and societal sus-
tainability at a larger scale [52]. 

Several studies emerged to measure how objective measures of the eye-level percep-
tual qualities of streetscapes affect resident’s daily lives and consequently their willing-
ness to pay and housing prices. A study used computer vision to quantify the street-visi-
ble greenery as GVI and estimated its positive economic benefits on property value in 
Beijing [21]. Ye et al. [25] found that GVI obtained the third-highest and positive regres-
sion coefficient in the housing price hedonic model in Shanghai. Fu et al. [1] extracted the 
view indices for tree, sky, and building from Baidu panoramas in Beijing and Shanghai, 
and found that tree and sky view significantly related to higher house prices. Chen et al. 
[18] revealed the non-linear relationship between house prices and GVI in Shanghai that 
higher GVI were associated with higher value properties. 

Nevertheless, although these new studies were able to address the associations be-
tween the objective measures of streetscapes and housing prices, they only accounted for 
less than three individual physical features. While the impact of greenery and sky view 
has been increasingly addressed, many other important streetscape features affecting 
housing prices have never been tested.  

Additionally, prior studies failed to incorporate subjectively measured perceptual 
qualities. Perception is a seemingly comprehensive and subjective process of attaining 
awareness of sensory information [37]. The street environment comprises various visual 
elements, and these features individually cannot represent human-scale perceptions. 
Therefore, subjectively measured perception is likely to vary and complement the effects 
of objective measures, such as the recombination of visual elements or the individual view 
indices. No research exists to quantify the relationship between the eye-level and subjec-
tive assessment of streetscape perceptions and property values within the current trend 
of utilizing deep learning and SVI frameworks. 

2.3. Lack of Urban-Scale Perception Mapping 
The number of studies on objective street measures have increased since 2006 [53] as 

objective measurement exhibits advantages in translating perception results directly into 
actionable design interventions. However, the divergence and coherence between 
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subjective and objective measurement protocols need to be examined comprehensively. 
On the one hand, few studies have sufficiently assessed important physical features that 
affect human-scale perceptions of the street environment that may influence property 
value. For instance, HPM studies contained little discussion of transparent facades on the 
ground floor [37], urban furniture [11], pedestrians [54], and commercial signs [55]. On 
the other hand, people’s perceptions of streetscapes can be complex and are not reflected 
by individual physical features. Subjective perceptions may be complex or subtly related 
to physical features [37].  

Subjective measures such as perceived assessments could serve as a tangible and 
firsthand counterpart to objective measures, helping clarify or even corroborate the mean-
ing of the objective measures, and possibly justifying the value of using both types of 
measurements. While the impacts of objectively measured street environment perception 
on housing prices have been explored in a few studies in recent years [19,21,25], very few 
have considered the impact of subjectively measured streetscape perception (i.e., eye-level 
perceived qualities) on housing prices. The few studies incorporating human perceptions 
[16,22,56] were all built on MIT Place Pulse datasets [1,2].  

This is a result of the scarcity of large-scale urban perception data. Most existing data 
on the appearance and perceptual qualities of urban environments rely on low-through-
put surveys [57,58,59]. For example, Ewing et al. [60] have quantified five subjective urban 
design qualities (i.e., imageability, enclosure, human scale, transparency, and complexity) 
with a small sample size and a low-throughput method (see Table 1). They correlated 
expert ratings to the number of physical features that appeared in video clips, which re-
quired extensive human labor—a single video clip could take an hour. Moreover, the re-
sults of conventional methods such as visual collage, mail or phone surveys [53] were not 
reliable. Individual differences would make the evaluation inconsistent [58]. Therefore, 
conventional survey methods are expensive, low throughput, and coarse in spatial reso-
lution [55]. Their conclusions are limited to the particular sample conditions [45,46], which 
weakens their generalizability. 

2.4. Crowdsourcing Visual Survey and Deep Learning for Perception Mapping 
More recently, participants can evaluate images using experts or crowdsourcing with 

online data collections, which have largely increased the data availability for built envi-
ronment perceptions [1,2,36,55]. At the same time, crowdsourced studies are ideal sources 
of the training dataset required by ML and CV frameworks to build scene understanding 
algorithms [4]. In turn, the trained scene understanding algorithm is useful to create fine-
grained urban perception maps across geographical regions. For instance, in Place Pulse 
1.0, Salesses et al. [2] measured the perception of "safety”, “class”, and “uniqueness” with 
thousands of geo-tagged images. In Place Pulse 2.0, Dubey et al. [1] collects more than a 
hundred thousand images and 1.2 million pairwise comparisons from 81,630 online vol-
unteers regarding six perceptual attributes: safe, lively, beautiful, wealthy, depressing, 
and boring.  

On the one hand, built on Place Pulse, a cluster of studies trained deep learning 
frameworks to predict urban perceptions. For example, based on Place Pulse 1.0, Naik et 
al. [4] predicted the perceived safety of street scenes by extracting the generic image fea-
tures (i.e., low-level features such as hue, saturation, lightness (HSL) histogram and edge 
detection) with a scene understanding algorithm; Rossetti et al. [61] extracted both low- 
and high-level (e.g., sky and tree) features as explanatory variables to predict the six per-
ceptions. They implied that high-level features (e.g., view indices) increased not only the 
fit but also the interpretability of predictions. Based on the Place Pulse 2.0 dataset, Zhang 
et al. [55] used ML algorithms to predict the six perception scores from SVIs using high-
level features (i.e., streetscape elements). They also identified the visual elements that may 
cause a place to be perceived as different perceptions [55]. Kang et al. incorporate the per-
ceptions to improve predicting housing prices [16] and appreciation rate [22] in US cities. 
Although this cluster of emerging studies have investigated the role of subjective 
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perceptions on housing prices, they relied on secondary perception data (i.e., the Place 
Pulse dataset) which is not appropriate for urban landscapes in China.  

Notably, within this trend, fewer studies examined the correlations between human 
perceptions measured from visual surveys and housing prices. Naik et al. [56] imple-
mented an idea to investigate the co-volution of urban appearance, socioeconomic out-
comes, and housing costs. However, their SVI and housing cost data only partially over-
lap, so they could not make causal statements. Kang et al. [22] modelled a housing appre-
ciation rate, but it was also limited to single-year street view image. However, no study 
was able to reveal the causal relationship between housing prices and street perception 
using a panel dataset/time series dataset of both SVIs and housing prices, which points to 
a very important area for future studies. 

On the other hand, a group of studies started to assemble their own perception data 
by recombing objective indicators extracted from SVIs. For example, Zhou et al. [62] con-
structed an Integrated Visual Walkability Index with four sub-indicators (psychological 
greenery, visual crowdedness, outdoor enclosure, and visual pavement) comprised of 
physical feature indices extracted from Baidu SVIs. Ma et al. [35] formed five objectively 
measured perceptions openness, greenness, enclosure, walkability, and imageability) to 
inform the effectiveness of urban renewal. Wang et al. [14] asked ten experts to subjec-
tively score ten greenspace quality measures (e.g., accessibility, maintenance, variation, 
naturalness, colorfulness, safety, and general impression) of 2000 training images col-
lected from Guangzhou, China and revealed greenspace exposure disparities are linked 
to neighborhood socioeconomic status including local hukou, education, unemployment, 
occupation, and housing condition. The above advancements using deep learning frame-
works and SVI data for either subjective [2,4] or objective [35,55,62] streetscape perception 
measures were only concentrated on the urban design and walkability literature. We aim 
to fill the gap where no systematic investigation of the impacts of subjective and objective 
measures of streetscape perceptions on housing price has been conducted. 

3. Data and Methods 
3.1. Research Framework and Study Area 
3.1.1. Conceptual Framework 

To what extent subjective and objective environmental measures are complementary 
or conflicting is never clearly stated in the housing price literature. Three clusters of 
emerging studies are particularly relevant to construct our framework: (1) the definitions 
of five subjective perceptual qualities [37,60], (2) the method to quantify five objectively 
measured perceptual scores [35], and how computer vision and machine learning are ef-
ficient to understand street scenes using street view images [4]. Based on these prior stud-
ies, six perceptual qualities (i.e., Greenness, Walkability, Safety, Imageability, Enclosure, 
and Complexity) were chosen. On the one hand, agreements of their significances in af-
fecting residents’ behavior, as well as their qualitative definitions have converged in the 
literature. On the other hand, their operational definitions for objective measures have 
also been achieved (see Table 1). Figure 1 illustrates the conceptual framework of the as-
sociations between human perception and housing prices. It also lists the key literature 
that inspired our study.  

First, the presence of physical features such as sidewalk, tree canopy, building, and 
people affects residents’ perceived street design qualities such as Safety and Imageability. 
In turn, these physical features, together with the perceived qualities, influence residents’ 
overall behaviors including decisions to walk, to stay, and to live there, and consequently 
affect the housing prices. Notably, there were disagreements on whether sense of walka-
bility, safety, and comfort belong to the perceptual qualities [63] or actually count for in-
dividual reactions [37]. Since our focus is the impact of perceptual qualities on house 
prices, we treat Safety and Walkability as perceptions (e.g., like Imageability) rather than 
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individual actions by Ewing and Handy [37]. This is consistent with Mehta [63] and Zhang 
et al. [55].  

  
Figure 1. Conceptual framework. (Inspired by Ewing and Handy, 2009 [37]). 

3.1.2. Analytical Framework 
Subjective ratings of six perceived qualities were collected based on 300 randomly 

sampled SVIs across the Shanghai area (Figure 2). An online survey where a participant 
can choose her preferred street scene from pairwise SVIs regarding a perceptual quality 
question such as “Which place looks greener?” was carried out to extract the subjective 
ratings from 45 participants. Such a crowdsourced survey method has been proven to 
efficiently and accurately reveal people’s true preferences [2]. Because the definitions of 
the six perceptions are not self-evident to the average person, it was not feasible to ask a 
random sample of residents to rate street environments with regard to qualities such as 
“imageability” [37]. Therefore, all participants were graduate students in Architecture, 
City Planning and Landscape Architecture who attended a design workshop [64]. They 
comprised an expert panel similar to Ewing and Handy [37]. The spatial location of SVIs 
was not revealed to participants and the pairwise comparison did not allow a draw. Sec-
ond, the pairwise preferences were translated to ranked perception scores using the Mi-
crosoft TrueSkill [4,65] rating algorithm. TrueSkill is a Bayesian skill rating system [65,66] 
that provides balance between reliable ranking scores and size of participants. On aver-
age, every SVI in the survey only needed to be compared to the other 15 SVIs for the scores 
to converge. Third, we extracted and quantified the percentile indices of approximately 
thirty important physical features using a semantic parsing deep learning framework. We 
then trained ML models to predict the perceived scores using the physical feature indices 
extracted from the images as independent variables. The perception score prediction al-
gorithms achieved high accuracy rates. Fourth, we predicted the six subjective perceptual 
scores for all SVIs sampled across the Shanghai metropolitan area (in total 25,276 images) 
based on their semantic feature pixel indices.  

Last, we added both the subjective rating scores and objectively measured street fea-
ture indices to a hedonic price model with other important structural, locational, and 
neighborhood attributes using housing transaction data in Shanghai collected from 
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HomeLink (Lianjia.com), which is the largest real-estate website in China [19,25]. The pre-
dictability of subjective and objective measures of street perceptions on housing prices 
was compared based on the HPM approach. Specifically, we compared their achieved 
standardized coefficients to investigate three questions. (1) To what extent would subjec-
tively-measured eye-level streetscape perceptions explain housing price variations? (2) 
Are subjective measures more effective than the objective counterparts? (3) What are the 
divergence and coherence between the two measurements? 

 
Figure 2. Analytical framework. 

3.1.3. Study Area 
As a financial hub of China, Shanghai’s population density is 17,000 people/km2. 

Since the housing reform in 1998, Shanghai has become one of the most costly and vibrant 
real-estate markets in China [18]. An empirical analysis for the city-wide area of Shanghai 
would provide essential implications for relevant studies.  

3.2. Selection of the Six Perceptual Qualities 
Prior studies have revealed that the level of walkability [67,68], greenery [21,25], 

openness [18,19], safety [4,69,70], aesthetics [26,71,72], and risks [70] in a neighborhood 
are all correlated with residents’ daily behaviors, which eventually would affect the hous-
ing prices. Built on prior studies for walkability measurement [37] and urban renewal as-
sessment [35] that integrated open source SVI data and deep learning frameworks, we 
selected six “operationalized” street-view perceptions: (1) Greenness, (2) Walkability, (3) 
Safety, (4) Imageability, (5) Enclosure, and (6) Complexity to present eye-level streetscape 
qualities. Table 1 lists their definitions and underlying physical feature determinants. 

In urban design and urban scene understanding literature, both agreements and di-
vergence exist regarding the qualitative definitions and quantitative methods for each 
perception. First, Ewing and Handy [37] provided the qualitative definitions for five of 
the six perceptions selected in this study (i.e., imageability, enclosure, transparency, hu-
man scale, and complexity). They statistically revealed the contributing streetscapes (like 
trees and pedestrian) that affect subjective perceptions collected from expert panels [37]. 
Their study laid the theoretical and operational foundations regarding measuring subjec-
tive perception for this study. Second, Ma et al. [35] objectively measured five perceptions 
(i.e., greenness, openness, walkability, enclosure, and imageability) by re-combining pixel 
indices of important streetscape elements extracted from SVIs using a deep learning 
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framework. Their study provides the foundation for objective perception measurement 
for this study. Third, prior studies also indicate that greenness [18,19,21,25] and walkabil-
ity [67] are significantly related to property value, therefore we incorporated these two 
perceptions. Fourth, to avoid multicollinearity issue, perceived openness was not selected 
as it is opposite to perceived enclosure. They both focus on vertical elements in street view, 
and by operation sky view and building view are among the most significant elements. 
Last, safety (regarding violent crimes) has been consistently indicated to affects residents’ 
behaviors and is associated with housing prices [3,4,55,63,73]. For instance, property value 
is highly discounted in districts perceived as insecure from surveys [73] or with higher 
crime rates [69]. Therefore, safety was included to complement the other five operational-
ized qualities to advance the measurement.  

To quantify the subjectively perceived and objectively measured scores for these six 
perceptions, we took a twofold approach. On the one hand, subjective scores are predicted 
from SVIs using ML models, built upon the results generated by an online survey as train-
ing data. Notably, prior scene understanding deep learning frameworks [4,49,55] have 
largely inspired our approach. On the other hand, objective scores are calculated by inte-
grating the indices of selected physical features extracted from SVIs [35,37,60,62]. Table 1 
also includes the definitions and formulae to construct the six perceptions. 

Table 1. Definitions and equations for six perceptual qualities. 

Perceptual Quality Qualitative Definition 
Significant Physical Fea-

tures 
Subjective Score 

Questions 
Objective Score Equations  

(Based on Their Operational Definitions) 

1. Greenness 

Urban green spaces that are an 
essential element in 

streetscape, including forests, 
greenbelts, and lawns [35] 

Tree view [34,35,45] 
Which place looks 

greener? 

The proportion of green space intermixed with 
building façades [35] 𝑂1_𝐺𝑟𝑒𝑒𝑛𝑠௜ = 𝑉𝐼௧௥௘௘ (2.1) 

2. Walkability 

The psychological impact of 
the surrounding visual ele-

ments on the walking experi-
ence, such as the sense of com-
fort and pleasure for walking 

[35] 

Pavement, sidewalk, fence, 
tree, grass [35,62] 

Which place looks 
more Walkable? 

The proportional relationship between the pave-
ment, fence, and the overall road on walking ex-

perience [35] 𝑂2_𝑊𝑎𝑙𝑘𝑏௜ = ௏ூೞ೔೏೐ೢ೗ೖା௏ூ೑೐೙೎೐௏ூೝ೚ೌ೏  (2.2) 

3. Safety 

An individual’s experience of 
the risk of becoming a victim 
of crime and disturbance of 

public order [74] 

Visual and physical con-
nection and openness to 
adjacent spaces, physical 

condition and mainte-
nance, lighting quality in 
space after dark, presence 

of surveillance cameras, se-
curity guards, guides, ush-

ers, etc. 

Which place looks 
safer? 

Perceived safety from crime is affected by the 
physical condition and maintenance, the configu-
ration of spaces, the types of land uses, the altera-
tions and modifications made to the environment, 

and the presence or absence of, and the type of, 
people [63] 𝑂3_𝑆𝑎𝑓𝑡𝑦௜ = 𝑉𝐼௣௘௥௦௡ + 𝑉𝐼௦௜௚௡௕ + 𝑉𝐼௦௧௥௟௚௧ + 𝑉𝐼௙௘௡௖௘ +𝑉𝐼௪௜௡ௗ௪௣ (2.3) 

4. Imageability 
The quality of a place that 

makes it distinct, recognizable 
and memorable [37].  

People, proportion of his-
toric buildings, court-

yards/plazas/parks, out-
door dining, buildings 

with non-rectangular sil-
houettes, noise level, major 
landscape features, build-
ings with identifiers [37]  

Which place has 
better Imageabil-

ity? 

The proportions of the buildings, signs, and sym-
bols as a proxy of street richness and diversity 

[35] 𝑂4_𝐼𝑚𝑔𝑏𝑙௜ = 𝑉𝐼௕௟ௗ௚ + 𝑉𝐼௦௞௬௖௥௣ + 𝑉𝐼௦௜௚௡௕ (2.4) 

5. Enclosure 

The degree to which streets 
and other public spaces are 

visually defined by buildings, 
walls, trees, and other vertical 

elements [37] 

Proportion of street wall, 
proportion of sky, long 

sight lines, proportion of 
sky ahead [37]  

Which place has 
better Enclosure? 

 

The degree to which street canyons are visually 
enclosed by the sides of buildings, walls, trees 

and other vertical elements and the space of the 
horizontal ground between them [35] 𝑂5_𝐸𝑛𝑐𝑙𝑠௜ = ௏ூ್೗೏೒ା௏ூ೟ೝ೐೐௏ூೝ೚ೌ೏ା௏ூೞ೔೏೐ೢ೗ೖା௏ூ೐ೌೝ೟೓శೇ಺೒ೝೌೞೞ (2.5) 

6. Complexity 

The visual richness of a place, 
which depends on the variety 
of the numbers and types of 
buildings, ornamentation, 
landscape elements, street 

People, buildings, domi-
nant building colors, ac-
cent colors, outdoor din-

ing, public art [37] 

Which place has 
better Complex-

ity? 

The numbers and kinds of buildings, architectural 
diversity and ornamentation, landscape elements, 
street furniture, signage, and human activity [60] 𝑂6_𝐶𝑚𝑝𝑙𝑥௜ =௏ூ೛೐ೝೞ೙ା௏ூೞ೔೒೙್ା௏ூೞ೟ೝ೗೒೓ା௏ூ೟ೝ೐೐ା௏ூ೎೓ೌ೔ೝା௏ூೢ೔೙೏ೢ೛௏ூ್೗೏೒ା௏ூೝ೚ೌ೏  (2.6) 
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furniture, signage, and human 
activity [37]  

Notes: (1) 𝑉𝐼௙௘௔௧௨௥௘ denotes the view index of a physical feature (proportion of the visual element’s 

pixels in a street-view imagery (SVI)), and is calculated as: 𝑉𝐼௙௘௔௧௨௥௘ = ∑ ௉௜௫௘௟೑೐ೌ೟ೠೝ೐೙೔సభ∑ ௉௜௫௘௟೟೚೟ೌ೗೘೔సభ =ଵ௡ ∑ 𝑃𝑖𝑥𝑒𝑙௙௘௔௧௨௥௘௡௜ୀଵ , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ∈ ሼ𝑡𝑟𝑒𝑒, 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑠𝑘𝑦, 𝑒𝑡𝑐ሽ [1]. (2) 𝑉𝐼௧௥௘௘, 𝑉𝐼௦௜ௗ௘௪௟௞, 𝑉𝐼௙௘௡௖௘, 𝑉𝐼௥௢௔ௗ, 𝑉𝐼௣௘௥௦௡, 𝑉𝐼௦௜௚௡௕, 𝑉𝐼௦௧௥௟௚௧, 𝑉𝐼௪௜௡ௗ௪௣, 𝑉𝐼௦௞௬௖௥௣, 𝑉𝐼௘௔௥௧௛, 𝑉𝐼௚௥௔௦௦, 𝑉𝐼௖௛௔௜௥ denotes the view index of tree, 
sidewalk, fence, road, person, signboard, streetlight, windowpane, skyscraper, earth, grass, and 
chair, respectively. 

3.3. Scoring Subjective and Objective Perceptions 
SVIs provide a horizontal perspective of the street environment, which is closer to a 

pedestrian’s eye-level perception [34,45], and therefore it becomes an ideal data source for 
the measures of human-centered streetscapes (Figure 3a). Prior studies have established 
efficient frameworks to predict subjective or objective perceptual scores from SVIs. On the 
one hand, Naik et al. [4] demonstrated that the combination of generic image features and 
the scores of perceived safety from a crowdsourced study can accurately predict the safety 
scores of streetscapes not used in the training dataset. Their methods for the subjective 
score prediction have significant inspiration for this study. On the other hand, many stud-
ies [35,37,62] objectively measure seemingly subjective urban design qualities such as en-
closure, complexity, greenness, and walkability based on establishing the statistic rela-
tionships between crucial physical features and the quality ratings; they provide an oper-
ationalized framework for the objectively measured scores in this study. 

Five steps were conducted to calculate both subjective and objective perceptual qual-
ities from SVI: (1) downloaded SVIs from sampled sites; (2) collected and converted expert 
ratings to ranked scores as training labels using an online visual survey; (3) extracted pixel 
indices of different visual elements from SVIs as independent variables; (4) trained ML 
models to predict subjective scores; and (5) calculated objective scores based on formulae 
(Table 1) that recombine view indices of selected visual elements. 

3.3.1. Collection of SVIs 
We have sampled SVI data at intervals of 50 m [35] along the centerline of public 

streets (i.e., outside gated communities and resident blocks) within a 1 km radius of a 
property’s coordinates. On the one hand, only public street data are available. On the 
other hand, the green space inside gated communities is designed and developed by real-
estate developers [75,76], a practice of land-speculation-oriented local entrepreneurialism 
[77]. Developers also compete to offer good landscapes and environments to lure buyers 
[78]. Excluding the “interior” street environment will alleviate the endogenous issue of 
housing prices on inner-community environmental design. 

The typical block size in Shanghai is 6.8 hectares [79], with block width and length 
ranging between 300 and 500 m. Therefore, a 50 m interval will ensure 6–10 images sam-
pled for each block edge. A 1 km radius was determined because Chinese cities advocate 
a 15 min walking distance for delineating a neighborhood which is approximately 1 km 
[62]. The sampling was processed in ArcGIS. 

Each sample’s SVI was downloaded by feeding coordinates into Baidu Street View 
API [80,81], which is the most used web map service in China. To ensure a consistent view 
angle, we maintained the same camera settings and image resolution (Figure 3b). In addi-
tion, for each SVI, we also selected similar a shooting time (summer and fall 2017) identi-
fied by filename to eliminate the seasonal variance in street environments. In total, we 
downloaded 25,276 valid SVIs. 
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(a) A random SVI sample (b) Configurations (c) 300 sample sites 

Figure 3. Downloading SVIs from Baidu. (a) A SVI sample selected randomly. (b) Consistent view-
points: the “heading” (view direction) was set parallel to the street centerline, the “FOV” (horizontal 
field of view) was 120 degrees, and the “pitch” (the up or down angle of the camera) was 0 degree. 
In addition, the resolution was 640 × 360 pixels. (c) 300 training images were sampled across a range 
of citywide locations in Shanghai. 

3.3.2. Collecting Subjective Perception Scores from the Online Survey 
To collect training labels reflecting subjective streetscape perceptions, we adopted a 

high-throughput urban scene understanding framework [2,82] that integrated 
crowdsourced survey data, deep learning, and ML. We built a survey website, where par-
ticipants were shown two pairwise SVIs and were asked to click on the preferred image 
in response to six perceptual evaluation questions (Figure 4a). Taking Imageability as ex-
ample, we first gave a qualitative definition on this quality. Participants were then asked, 
“Which place has higher degree of Imageability?”  

To ensure the SVIs shown in the survey capture a variety of streetscapes from city 
center, suburban, to countryside, we randomly sampled 300 SVIs across Shanghai (Figure 
3c). The 300 samples was chosen to balance between prediction accuracy and participants’ 
workload. On the one hand, prior studies in statistics [83] revealed that the training sam-
ple size needed to train good models is at least 75 to 100 [84], or approximately ten times 
the number of parameters [85]. Given that we extracted over 30 streetscape elements from 
SVIs, the sample size of 300 would be sufficient. On the other hand, recall that in the sur-
vey, participants’ pairwise preferences were converted to ranked scores with the TrueSkill 
algorithm [65,66]. On average, every SVI in the survey needed to be compared to 15 other 
SVIs for TrueSkill to converge [4]. Therefore, the 300 sample SVIs converged to stable 
ranked scores when we collected 4426 pairwise clicks by 45 participants in total. On aver-
age, each participant looked at approximately 100 pairwise photos, which was a reasona-
ble workload for the individuals. Scores were then normalized to a 0–10 scale, where 1 is 
the best and 10 is the worst. These 300 SVIs labelled with six subjective scores became the 
training labels that we later used to train ML algorithms to predict subjective scores for 
all other unranked SVIs. 

Regarding results of rater preferences, for perceived Greenness, participants pre-
ferred more greenery including trees, plants, and grass; for perceived Imageability, par-
ticipants seemed to prefer streetscapes with iconic buildings and landmarks; for perceived 
Walkability and Enclosure, street views with less sky exposure, and more sidewalks, tree 
canopy and plants are preferred; for perceived Complexity and Safety, scenes with com-
mercial activities on the ground floor are chosen (Figure 4b). 
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(a) (b) 

Figure 4. An online survey platform to collect subjective streetscape perceptions. (a) The website 
invited participants to choose one of pairwise images in response to the six evaluative questions. (b) 
Examples with a high and a low score for the six subjective perception qualities. 

3.3.3. Classification of the Physical Features 
Physical features, extracted from streetscape that lead to different perception quali-

ties, have been statistically identified by previous studies [35,37,55,62]. Particularly, prior 
studies often utilized the view index of individual visual element as an important indica-
tor, which was calculated by the percentage of the feature’s pixels to the total pixels in an 
SVI [19]. For instance, building view index can be defined as the percentage of building 
pixels in an SVI. The importance of a visual element can be measured by view index 
through a pedestrian’s eye-level view. Therefore, the appearance of various physical fea-
tures in SVIs can be measured by the general formula (1) as follows. 𝑉𝐼௙௘௔௧௨௥௘ = ∑ 𝑃𝑖𝑥𝑒𝑙௙௘௔௧௨௥௘௡௜ୀଵ∑ 𝑃𝑖𝑥𝑒𝑙௧௢௧௔௟௠௜ୀଵ = 1𝑛 ෍ 𝑃𝑖𝑥𝑒𝑙௙௘௔௧௨௥௘௡௜ୀଵ , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒∈ ሼ𝑡𝑟𝑒𝑒, 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑠𝑘𝑦, 𝑒𝑡𝑐ሽ 

(1) 

where 𝑉𝐼௙௘௔௧௨௥௘ is the view index of a physical feature, ∑ 𝑃𝐼𝑋𝐸𝐿௧௢௧௔௟௡௜ୀଵ  is the total number 
of pixels, and ∑ 𝑃𝐼𝑋𝐸𝐿௢௕௝௡௜ୀଵ  is the number of pixels related to the physical feature in an 
SVI. 

To extract and calculate the view index of each feature from SVIs efficiently, a Pyra-
mid Scene Parsing Network (PSPNet), which addressed object recognition and classifica-
tion at a pixel level [86], was applied. Recently, the PSPNet framework achieved remark-
able progress in semantic segmentation—it reached more than 93.4% pixel-level accuracy, 
and has been applied by multiple studies to extract features for property value [19]. Figure 
5 showed SVIs randomly sampled with their results. 

Figure 5. Five random sample results achieved by computer vision (CV) segmentation. Pairwise 
photos demonstrate semantic segmentation results and the raw SVIs. 
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3.3.4. Prediction of Subjective Perception Scores 
With the 300 training images whose ranked scores from the online survey were taken 

as labels and the extracted view indices as explanatory variables, we trained and com-
pared various ML models to predict the six subjective scores.  

In terms of the selection of predictors, we notice the trend is to integrate the “low-
level” (or generic) features [61,87,88] such as HSL histogram, saturation histogram, blob 
detection, and edge detection, with “high-level” features (i.e., the streetscape objects) [87–
89]. Such a method has been proven to improve prediction accuracy. However, to align 
with the design practice [37] and provide more interpretability, we took a rule-based ap-
proach [55] which uses only high-level features for prediction.  

The selection of features used in the final regression is first based on literature review 
in housing price studies and urban design studies with SVI and CV. Sky, tree, and build-
ing view indexes have been tested by prior housing studies [18,19,25], while other features 
such as person, sidewalk, car, fence were indicated by walkability studies [35,90]. Addi-
tionally, these ten objective streetscapes all have modest to large existence in street views, 
as well as large Gini importance scores. 

The 300 samples were split to 80% and 20% for training and testing purposes, which 
was a common practice [55,84]. Widely applied ML models that have been proven to be 
efficient in predicting classes and continuous labels, especially those that have been tested 
in prior studies predicting streetscape perception scores using physical features extracted 
from SVIs, were tested [55], including Support Vector Machine (SVM), Random Forest 
(RF), Decision Tree (DT) and Gradient Boost (GB). To choose the optimal model, we com-
pared model performances in terms of the R-square (R2) and the Mean Absolute Error 
(MAE). The performance of results were also compared to cross-study of similar methods 
and sample sizes in related fields [61,87,88]. 

3.3.5. Calculation of Objective Perceptual Scores 
To construct objective perceptual scores, we followed the framework of Ma et al. [35] 

using equations to recombine important streetscape views (see Table 1). We took the per-
centile indices of those physical features including sky, tree, road, sidewalk views of each 
image to generate the objective scores for 300 training images and all the SVIs sampled 
across Shanghai. After calculation, these scores were normalized to a 0–1 scale (0 is the 
worst and 1 is the best) for interpretation purposes. While taking such an existing ap-
proach [35] without alterations, we must acknowledge that objective scores were 
constructed with arbitrary equations, which is a significant drawback. However, 
this is indeed our intention. We designed such a pairwise comparison to justify 
the hypothesis that “subjective measures of perceptions are more effective to rep-
resent users’ sense of place and related behaviors”, by comparing the pairwise 
subjective and objective measurement of the same concept. 

3.3.6. Verification of Scores 
For the 300 training images, their objective scores were also compared with subjective 

scores to investigate the coherence and divergence between the visually experienced per-
ceptual qualities and the formula-derived qualities. Additionally, for both subjective and 
objective scores, Pearson’s correlation analysis was also applied to validate the multicol-
linearity of the six qualities, respectively, to investigate the multicollinearity. 

3.4. Hedonic Housing Price Model 
The HPM method assumes housing is a heterogeneous good whose price determi-

nants can be investigated by regressing the house price on three main groups of explana-
tory variables capturing the property’s structure, location, and neighborhood attributes 
[24]. The HPM method has been widely applied to quantify to what extent built environ-
ment factors affect property values [18,21,43]. Specifically, structure attributes are 
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comprised of variables illustrating the characteristics of the house including floor area, 
house orientation, building age, number of bathrooms, and elevator. Location character-
istics are often characterized as the distance to the city center [91]. The accessibility of 
important urban facilities (such as trees, parks, plazas, metro stations, and health care, 
finance, and education services) is captured by neighborhood attributes. Although the 
scores for streetscape could be incorporated into neighborhood attributes, it is still neces-
sary to divide them into a new group (STRE) to better reflect the effects of human percep-
tions. Therefore, the conventional HPM is extended as follows in our study: PRICE = α + β1 𝐒𝐓𝐑𝐔 + β2 𝐋𝐎𝐂𝐀 + β3 𝐍𝐄𝐈𝐆 + β4 𝐒𝐓𝐑𝐄 + ε (2)

where PRICE is the housing price per square meter, β1 to β4 are the coefficients estimated 
for structure (STRU), location (LOC), neighborhood (NEIG), and streetscape (STRE) at-
tributes, respectively, α is the constant, and ε is the error term. 

3.4.1. Housing Transactional Price 
Transaction records of apartments occurring in 2019 within the municipality region 

of Shanghai were downloaded from Lianjia.com, a Chinese real-estate brokerage com-
pany which provide pre-owned apartment’s information. The property’s structure attrib-
utes and coordinates were included in the transaction records. The total 65,000 records 
were collected, and the dataset was cleaned for (1) outlier records whose transaction price 
seemed not trustworthy (e.g., zero value, or per unit price was more than ten times greater 
or smaller than the average); and (2) records lacking property attributes. In the end, 40,159 
geo-tagged records were included for further studies, with an average price at 57,349 
RMB/m2. Figure 6a illustrated the price distribution. For the regression model, transaction 
price was then transformed to the natural logarithm form as the dependent variable 
[18,24]. 

3.4.2. Independent Variables 
This study selected four categories of independent variables (Table 2) based on liter-

ature and data availability. Structure attributes included continuous variables such as 
number of bathrooms, building age, and total floor area. Categorical variables such as 
building height, building structure type, unit orientation, interior decoration quality, ele-
vator were transformed to dummy variables. 

With respect to location attributes, many studies have revealed that housing prices 
decreased as their distance to the city center increased [18,24,91,92]. Therefore, the road 
network distance from each property (1) to the central business district (CBD) of Shanghai 
and (2) to their nearest county center was calculated as locational attributes. Dummy var-
iables were included to indicate the property’s district or ring-road location to capture 
sub-market effects [92]. Through QGIS and Open Street Map (OSM), we calculated the 
distance based on 2018 road network data. 

Density, distance to, and the accessibility of different urban amenities and services 
were captured in neighborhood attributes. POI density calculated the number of ameni-
ties such as retailing, restaurants, cafes, groceries, hospitals, and gyms per km2 within the 
neighborhood’s administration (district) boundary. Moreover, school district setting and 
education are influential factors on housing prices [93]: a good school district can bring a 
high price premium. Therefore, we incorporated 68 excellent educational facilities that are 
schools recognized by Shanghai government into calculation. Distance to the closest metro 
station and high schools was calculated by the road network. Accessibility was measured 
by counting the reachable numbers of metro stations or high schools within 1 and 5km 
[36], respectively. Neighborhood boundary was delineated based on Shapefile of Shang-
hai GIS in 2018. Data for public amenities and living services were extracted from 
Dazhongdianping.com in 2019 while metro stations and schools’ data were from Au-
toNavi’s map service in 2019, respectively (Figure 6b). 
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Regarding streetscape perception attributes, six ML-predicted subjective scores or 
the formula-derived objective counterparts were incorporated into HPM separately. 

  

Figure 6. Spatial distribution of (a) 2019 transaction housing price data from HomeLink, and (b) 
neighborhood attributes including living amenities, metro station, job opportunities, and high 
schools. 

Table 2. General descriptive statistics of the housing characteristics. 

Variables Description  Count Mean Std. Dev. Min Max Data Source 
PRICE Transactional price (RMB/m2) 40159 57349 21683 10400 250813 Lianjia.com 

STRUCTURAL ATTRIBUTES 
FLAREA Total floor area of the unit (m2)  40159 85 43 15 588 

Web scraping from Lian-
jia.com 

BEDRM Number of bedrooms  40159 2.1 0.8 1 8 
LIVRM Number of living rooms 40159 1.4 0.6 0 5 
KITCH Number of kitchens  40159 1.0 0.2 0 5 
BATH Number of bathrooms  40159 1.2 0.5 0 7 

TTLFLR Total floors of the building  40159 11.0 7.9 1 62 
CSTRYR Construction year of the building 40159 1998 9.4 1912 2019 

  Values Count % 
Ave. Price 

(¥/m2) 
Ave. Area  

(m2) 
Data Source 

HGHT 
Categorial variables, on which floor in the 

building is the unit located? 

Base 1 0.0% 34,452 87  

Web scraping from Lian-
jia.com, converted to 

dummy variables with Py-
thon to dummies library 

High 17,084 42.5% 55,092 79  

Low 11,231 28.0% 59,160 93  

Mid 11,843 29.5% 58,891 86  

LAYT Categorial variables, the layout of the unit 
Duplex 1632 4.1% 58,108 154  

Flat 38,527 95.9% 57,317 82  

BTYPE 
Categorial variables, the size and shape of 

the building 

Bungalow 5 0.0% 76,376 114  

Mix 207 0.5% 72,013 106  

Slab 36,379 90.6% 56,346 85  

Tower 3568 8.9% 66,706 88  

STH_NTH 
Categorial variables, is the unit south-fac-

ing? 
Else 7993 19.9% 56,110 94  

South 32,166 80.1% 57,657 83  

STRC 
Categorial variables, the structure of the 

building 

Brick 17,944 44.7% 53,060 61  

Other 59 0.2% 58,984 81  

Steel 22,156 55.2% 60,819 105  

DÉCOR 
Categorical variable, the interior quality of 

the unit 

Blank 1903 4.7% 47,779 84  

Other 2863 7.1% 53,395 79  

Refined 20,859 51.9% 61,322 96  
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Simple 14,534 36.2% 53,680 72  

ELEVTR 
Categorical variable, is an elevator availa-

ble? 
No 24,106 60.0% 52,764 69  

Yes 16,053 40.0% 64,235 110  

LOCATION ATTRIBUTES 
   Count Mean Std. Dev. Min Max Data Source 

D2SCBD Network distance to its district center  40,159 4.77 3.04 0.02 16.29 Computed in ArcGIS, with 
Shanghai (2018) shapefile D2CBD Network distance to the center (Bund)  40,159 12.62 7.48 0.03 35.11 

  Values Count % 
Ave. Price 

(¥/m2) 
Ave. Area  

(m2) 
 

RING_X 
Categorical variable, within which ring 

road is the unit located? 

Ring1 9290 23.1% 81,151 88  

Web scraping from Lian-
jia.com, converted to 

dummy variables with Py-
thon to dummies library 

Ring2 9835 24.5% 63,057 79  

Ring3 8742 21.8% 52,356 81  

Ring4 12,292 30.6% 38,345 92  

CTY_XX 
Categorical variable, in which district is the 

unit located? The letters XX after CTY_ 
stands for the district name 

BS: Baoshan 3390 8.4% 44,159 81  

CN: Changning 2400 6.0% 70,051 83  

FX: Fengxian 992 2.5% 24,524 95  

HK: Hongkou 1513 3.8% 66,210 80  

HP: Huangpu 1267 3.2% 92,725 103  

JA: Jin’an 964 2.4% 95,101 90  

JD: Jiading 1662 4.1% 37,527 87  

MH: Minhang 4806 12.0% 49,479 91  

PD: Pudong 9389 23.4% 57,590 87  

PT: Putuo 2941 7.3% 58,412 76  

QP: Qingpu 678 1.7% 30,976 94  

JS: Jinshan 2201 5.5% 36,432 100  

XH: Xuhui 3060 7.6% 74,879 79  

YP: Yangpu 3091 7.7% 62,677 72  

ZB: Zhabei 1805 4.5% 63,647 79  

NEIGHBORHOOD ATTRIBUTES 
   Count Mean Std. Dev. Min Max Data Source 

DENSRV Density of Living Service (thousand/km2) 40,159 0.115 0.187 0 3.5 from Dazhongdi-
anping.com, density calcu-

lated in ArcGIS DENWRK Density of Office (thousand/km2)  40,159 9.5 22.4 0 573.5 

D2MTR Distance to Metro (km)  40,159 0.8 0.7 0.01 7.8 
location data scraped from 
GaodeMap.com, distances 

calculated in Python 

A2MTR Accessibility to Metro  40,159 5.7 6.8 0 46.0 
D2SCH Distance to School (km)  40,159 2.7 2.3 0.02 11.9 
A2SCH Accessibility to School  40,159 7.0 7.0 0 29.0 

SUBJECTIVE STREETSCAPE ATTRIBUTES 
S1_GREEN Subjectively perceived greenness 40,159 0.8 0.0 0.4 0.9 

Predicted with ML models 
with physical feature view 

indices as independent 
variables extracted from 

Baidu SVIs  

S2_WLKBL Subjectively perceived walkability 40,159 0.6 0.1 0.4 0.8 
S3_SAFTY Subjectively perceived safety 40,159 0.7 0.1 0.3 1.0 
S4_IMBLT Subjectively perceived imageability 40,159 0.7 0.1 0.3 0.9 
S5_ENCLS Subjectively perceived enclosure 40,159 0.7 0.1 0.3 0.9 
S6_CMPLX Subjectively perceived complexity 40,159 0.6 0.0 0.5 0.9 

SUBJECTIVE STREETSCAPE ATTRIBUTES 
O1_GREEN Objectively derived greenness 40,159 0.4 0.1 0.0 0.8 

Equation derived scores 
by recombining selected 

physical feature view indi-
ces  

O2_WALKB Objectively derived walkability 40,159 0.6 0.1 0.2 0.7 
O3_SAFTY Objectively derived safety 40,159 0.4 0.1 0.1 0.7 
O4_IMBLT Objectively derived imageability 40,159 0.6 0.1 0.0 0.9 
O5_ENCLS Objectively derived enclosure 40,159 0.6 0.0 0.1 0.7 
O6_CMPLX Objectively derived complexity 40,159 0.3 0.1 0.0 0.6 

3.4.3. Model Architecture 
The hedonic modeling comprised four steps. First, as a preliminary test, we added 

each group of attributes, namely, the (1) structural, (2) locational, (3) neighborhood, (4) 
subjective streetscape scores, and (5) objective streetscape scores into separate OLS models 
to understand the individual and collaborative contributions of each attribute group. Sec-
ond, we constructed a base model using former three groups of attributes. No streetscape 
variables were included, and all insignificant variables were removed. Thus, we con-
structed the base model (Model 1). Third, based on Model 1, we added all six subjective 
scores (Model 2) and all six objective scores (Model 3) separately to examine the different 
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impacts between perceived scores and objectively derived scores. Durbin–Watson results 
were checked to ensure final models where autocorrelation effects were not significant. 
Variance Inflation Factor (VIF) was calculated to examine variables with correlation prob-
lems (VIF value > 10), of which less important variables with multicollinearity were re-
moved [94]. The global importance of individual variables was tested with the Scikit-learn 
library in Python. 

4. Analysis Results 
4.1. Descriptive Statistics of the Segmentation 

We calculated the view indices of more than thirty physical features from the 300 
training images through a PSPNet pre-trained semantic segmentation algorithm accord-
ing to the general formula (1). These view indices were regarded as the explanatory vari-
ables to predict six subjectively perceived scores (see Section 4.2.1) as well as inputs for 
the equation-derived objective scores (see Table 1 and Section 4.2.2). Prior urban design 
literature [35,37,55,62] has revealed that at least ten elements (building, sky, tree, curbs, 
roads, street wall, proportion windows, street furniture’s, street lights, and signboard) 
were conceived to have significant effects on human perception among features shown in 
Table 3. 

Table 3. Summary of the physical features extracted from the training street view images. 

Sort Feature Mean Value Std. Dev. 
1 Sky 39.68% 17.11% 
2 Tree 21.75% 17.66% 
3 Road 11.60% 6.37% 
4 Building 11.52% 13.83% 
5 Plant 2.15% 3.86% 
6 Wall 2.06% 5.37% 
7 Sidewalk 1.84% 2.62% 
8 Fence 1.66% 2.80% 
9 Grass 1.53% 2.79% 

10 Car 1.52% 2.58% 
11 Earth 1.11% 2.84% 
12 Ceiling 0.61% 5.09% 
13 Railing 0.35% 1.31% 
14 Bridge 0.34% 2.59% 
15 Signboard 0.26% 0.88% 
16 Water 0.26% 1.43% 
17 Van 0.09% 0.67% 
18 Person 0.08% 0.27% 
19 Skyscraper 0.08% 0.78% 
20 Streetlight 0.06% 0.16% 
21 Column 0.06% 0.51% 
22 Minibike 0.05% 0.29% 
23 Bicycle 0.04% 0.26% 
24 Awning 0.02% 0.30% 
25 Ashcan 0.01% 0.09% 
26 Windowpane 0.01% 0.32% 
27 Mountain 0.01% 0.19% 
28 Fountain 0.00% 0.14% 
29 Pier 0.00% 0.08% 
30 Chair 0.00% 0.04% 



Remote Sens. 2022, 14, 891 18 of 34 
 

31 Booth 0.00% 0.05% 
32 Sculpture 0.00% 0.04% 
33 Bulletin board 0.00% 0.06% 
34 Lamp 0.00% 0.00% 
35 Sofa 0.00% 0.00% 

4.2. Subjective and Objective Scores and Correlation Analysis 
4.2.1. Subjective Scores 

The performance of different ML models varied across six perceptual scores. GB out-
performed other ML models in Greenness, Walkability, and Imageability scores, while 
SVM was selected to predict Enclosure and Complexity scores and RF performed best in 
predicting Safety scores (Table 4). The accuracies of the different subjective scores pre-
dicted varied. The accuracy rates for predicting Imageability, Greenness, and Complexity 
were slightly higher than that of the remaining three, which might be caused by how par-
ticipants vary in different scene perceptions [55]. Participants tend to exhibit more simi-
larity in what kind of street view is greener/more imageable/more complex. Another rea-
son might be due to the small sample size (i.e., only 300 images rated by 45 participants). 
This points to an important area to be improved for future studies: (1) incorporating low-
level features such as HSL, saturation, blob, and edge detection to complement high-level 
features can improve prediction accuracy [61,87,88]; (2) while collecting large training da-
taset with inputs of more raters can also improve the results.  

Nevertheless, the prediction accuracy was acceptable. First, the range of R2s is be-
tween 0.47 and 0.51, meaning that all selected models explained approximately half of the 
variance, indicating a significant improvement from Ewing and Handy [37,60] and Park 
et al. [90], where the variance explained ranged from 0.21 to 0.37.  

Second, MAEs ranged between 1.2 and 1.51, indicating the prediction errors would 
not offset fitted value far from true scores in the 0–10 range. In other words, if we trans-
form the 0–10 scale scores to categorical labels, e.g., 0–2.5 terrible, 2.5–5 normal, 5–7.5 
good, and 7.5–10 very good, then the interval of each category is 2.5: apparently, predic-
tions of MAEs in the range 1.2–1.51 are within the categorical interval, and the accuracy 
of predicting correct labels would be acceptable. Notably, our MAE performance is rela-
tively better than that of Yao et al. [89] (MAE ∈ [1.597 − 3.282]). 

Third, we tried to justify our results with cross-study comparison to relevant studies 
with similar/comparable sample size (in terms of numbers of raters and training sample) 
and modeling method (i.e., integrating ML/deep learning framework with visual SVI sur-
veys). Regarding R2, the performance of our models is close to that of Naik et al. [82] 
(average R2=0.568), partially better than Yao et al. [89] (R2 ∈ [0.34 − 0.76]), and stronger 
than that of Ito and Biljecki [88] (R2 below zero) who also locally collected own perception 
training samples, and is relatively lower than Dubey et al. [1] and Verma et al. [87] 
(R2=0.56-0.79). 

Table 4. Performance of machine learning algorithms. 

  S1_Green S2_Wlkbl S3_Safty  S4_Imblt S5_Encls  S6_Cmplx 
Model R2 MAE (std) R2 MAE (std) R2 MAE (std) R2 MAE (std) R2 MAE (std) R2 MAE (std) 
SVM  0.39  1.46  0.51  1.35  0.41  1.25  0.24  1.79  0.48* 1.51(0.6)  0.49 * 1.50(0.8)  

Random Forest 0.41  1.43  0.46  1.36  0.47* 1.19 (0.7)  0.29  1.73  0.43  1.55  0.27  1.63  
Decision Tree 0.12  1.96  0.13  1.94  0.18  1.58  0.05  2.36  0.26  2.29  0.08  2.14  

Gradient Boosting 0.49 * 1.39 (0.6)  0.48 * 1.33 (0.7)  0.47  1.21  0.51 * 1.62(1.0)  0.41  1.52  0.14  2.01  
Note：* denotes the best-performing model selected to predict scores; (#) reports the std.dev. of 
the best model prediction. 

The best-performing models were applied to predict the six subjective scores for the 
25,276 SVIs, respectively. Because the objective counterparts were derived with view in-
dices that ranged from 0 to 1, to make these two sets of results comparable, subjective 
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scores were also re-scaled to the 0–1 range. We then assigned the predicted scores to the 
property data points by taking the average scores from the SVIs located within the 1 km 
radius of the property to represent the average quality of a 15 min walking distance which 
describes surrounding neighborhood [62]. 

In addition, both urban design theory [37] and statistic inference suggest that not all 
visual elements extracted from SVIs are relevant to predicting perceptions. Therefore, we 
ranked the global importance (GI) of individual elements using Tree-Based Regressor 
with Scikit-learn in Python [4,18]. GI computed how much each variable contributes to 
decreasing the weighted impurity, thus providing the importance score. As a result, view 
indices of sky, tree, building, car, and road ranked highest in their sum importance (Table 
5), which is consistent with prior findings in urban design [37]. Figure 7a reported the top 
15 important features and their GI score for each subjective perception, respectively. Sur-
prisingly, several visual elements that have been proven to be important, such as person, 
sidewalk, signboard, and street furniture, were not in the top ten for predicting Walkabil-
ity (Figure 7b). 

Table 5. Features global importance (GI) in predicting six subjective scores. 

 S1_Green S2_Wlkbl S3_Safty S4_Imblt S5_Encls S6_Cmplx Sum Importance 
Feature Imp. Score Sort Imp. Score Sort Imp. Score Sort Imp. Score Sort Imp. Score Sort Imp. Score Sort Sum Score Sort 

sky 0.033 8 0.183 1 0.197 1 0.162 1 0.492 1 0.139 1 1.205 1 
tree 0.288 1 0.042 7 0.186 2 0.130 2 0.042 4 0.042 7 0.730 2 

building 0.133 2 0.102 3 0.108 3 0.053 5 0.098 2 0.099 2 0.594 3 
car 0.057 4 0.133 2 0.072 4 0.038 9 0.027 6 0.098 3 0.423 4 

road 0.072 3 0.037 8 0.059 5 0.049 6 0.046 3 0.038 12 0.301 5 
wall 0.032 9 0.030 10 0.041 7 0.066 4 0.021 9 0.054 4 0.244 6 
plant 0.056 5 0.050 4 0.024 12 0.031 10 0.033 5 0.042 9 0.236 7 
grass 0.044 7 0.029 11 0.015 13 0.073 3 0.022 8 0.044 6 0.228 8 
fence 0.021 13 0.050 5 0.033 9 0.041 7 0.015 12 0.042 8 0.202 9 
earth 0.048 6 0.048 6 0.024 11 0.031 11 0.017 10 0.027 13 0.196 10 

person 0.026 10 0.028 13 0.036 8 0.040 8 0.022 7 0.038 11 0.191 11 
sidewalk 0.025 12 0.026 15 0.050 6 0.029 14 0.016 11 0.042 10 0.188 12 
signboard 0.018 14 0.034 9 0.030 10 0.024 16 0.015 13 0.027 14 0.147 13 

truck 0.026 11 0.017 18 0.010 16 0.030 12 0.013 15 0.020 17 0.116 14 
bicycle 0.010 18 0.025 16 0.005 21 0.013 20 0.006 23 0.046 5 0.104 15 

streetlight 0.016 16 0.028 14 0.014 15 0.016 18 0.015 14 0.016 19 0.104 16 
railing 0.017 15 0.028 12 0.015 14 0.010 21 0.011 16 0.020 18 0.102 17 
chair 0.010 19 0.017 17 0.002 25 0.030 13 0.008 19 0.024 15 0.091 18 

minibike 0.005 22 0.010 21 0.005 22 0.024 15 0.009 18 0.021 16 0.073 19 
mountain 0.003 23 0.015 19 0.007 18 0.014 19 0.010 17 0.007 23 0.054 20 



Remote Sens. 2022, 14, 891 20 of 34 
 

 

(b) Top 10 visual elements’ in predicting 6 subjective qualities, respectively 

 

 

Figure 7. Important features in predicting six subjective scores. (a) Top 15 physical features for each 
subjective score and their sum importance. (b) Top 10 important visual elements in predicting each 
subjective score, respectively. 

4.2.2. Objective Scores 
Based on formulae defined in Table 1, six objective scores were generated by recom-

bining the view indices of selected physical features. According to the formulae, there are 
significant differences in the quantity and proportion of dominant visual elements from 
different locations in Shanghai. Particularly, six objective scores have been affected by 
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variations resulted from physical features with vast and ubiquitous existence, such as 
trees, sky, buildings, and roads. 

4.2.3. Correlation Analysis for Subjective and Objective Scores Respectively 
Human perceptions can be complex and intertwined; therefore, intuitively, various 

perceptual qualities could be correlated. A previous study has shown that some pairs of 
perceptions measured from SVIs exhibited high correlation, including “beautiful–
wealthy” and “depressing–safe” [55]. Therefore, we conducted Pearson’s correlation anal-
ysis to validate the multicollinearity (Figure 8). 

(a) Subjective scores 

 

(b) Objective scores 

 
Note: All coefficients are significant at the 0.01 level.  
To interpret coefficients: 0.0 to ±0.3: negligible; ±0.3 to ±0.5: low; ±0.5 to ±0.7: moderate; ±0.7 to ±0.9: high; and ±0.9 to ±1.0: very high. 

Figure 8. Pearson’s correlation coefficients among the (a) six subjective scores and (b) six objective 
scores. 

On the one hand, several pairwise coefficients between subjective perceptual quali-
ties, including Walkability–Enclosure, Walkability–Complexity, Safety–Imageability, and 
Enclosure–Complexity, have a moderate (between ±0.30 and ±0.5) to high (between ±0.50 
and ±1) degree of correlation. This is consistent with [37] that enclosure and complexity 
was positively correlated to walkability. This is reasonable as they share similar qualita-
tive definitions determined by common visual features such as sky, signboards, street fur-
niture and persons. Conversely, objective scores mostly exhibit a low (between 0.1 and 
0.3) to moderate degree of correlation. In other words, the formula-derived objective per-
ceptions reduced multicollinearity. Notably, only the Safety–Complexity pair has a high 
degree of correlation. Meanwhile, complexity score should be excluded from hedonic 
price regression in later sections: it was highly correlated to at least one other score for 
both subjective and objective frameworks. 

4.2.4. Coherence and Divergence between Subjective and Objective Scores 
First, for both predicted and formula-derived scores, data were closed to normal dis-

tribution (Figure 9), indicating the perception qualities fit the most common and natural 
phenomenon in probability distribution. Second, three qualities, namely, Walkability, Im-
ageability, and Enclosure, see more coherence in their mean value and variance. Third, 
the other three qualities, i.e., Greenness, Safety, and Complexity, exhibit more divergence 
in score distribution. People tend to overstate the perceived qualities since subjective score 
means are all significantly larger than objective score means. In addition, the variation in 
objective and subjective Greenness and Enclosure scores indicates that people are less sen-
sitive to the exact number of perceived Greenery in a scene indicated by tree view, while 
they are more sensitive to the perception of enclosure (or openness) than the single indi-
cator of sky view. Such divergence between two measurement systems indicates that the 
underlining mechanism of subjective perception would be quite different from objective 
formulae. Summing up or recombining view indices of selected visual elements cannot 
reflect all factors exhaustively with some unobserved factors that can never be captured. 



Remote Sens. 2022, 14, 891 22 of 34 
 

. 

Figure 9. Score distribution. (a) Histogram of six subjective scores. (b) Histogram of six objective 
scores. 

Meanwhile, five SVI samples were randomly selected with the segmentation results 
and perception scores illustrated by Figure 10. The scores of the six perceptual qualities 
are shown with radar charts with divisions of ten levels from 0 to 1 from the inside out. 
Greenness, Complexity, and Safety are found to exhibit larger differences, while the Walk-
ability, Imageability, and Enclosure scores are relatively closer. 

4.3. Hedonic Price Model Selection 
We first tested the overall importance in explaining housing prices for the five groups 

of attributes (see Table 6), using coefficient of determination (R2) as a criterion. Our study 
indicated the ranking of importance as follows: location (0.678) > neighborhood (0.556) > 
subjective streetscape scores (0.322) > structural attributes (0.188) > objective streetscape 
scores (0.068). 

Table 6. Model performance with different groups of attributes. 

OLS Diagnosis Structure Attributes Location Attributes Neighborhood  
Attributes 

Subjective 
Streetscape Score 

Objective 
Streetscape Score 

Adjusted R2 0.188 0.678 0.556 0.322 0.068 
Pro (F-statistic) 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 
Durbin–Watson 1.986 1.999 1.9835 1.998 2.003 

Notes: p value * < 0.1, ** p < 0.05, *** p < 0.01. 

All structure, neighborhood, and location attributes were then incorporated into an 
OSL model and insignificant variables such as the structure of the building, number of 
living rooms and kitchens, and some submarket dummy for certain districts were aban-
doned. In addition, continuous variables associated with large VIF values (>5) indicated 
moderate to high correlations. We removed the less important variable using Gini im-
portance. For example, distance to service variables were removed because they corre-
lated with accessibility measures, while accessibility outperforms distance measures in 
Gini score. It is also intuitively reasonable that the convenience to access a bundle of ser-
vices was more important than being located close to a particular service. We formed the 
baseline model (Model 1) consisting of significant structure, location, and neighborhood 
attributes, which explained 78.3% of the housing price variances. 
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Original Baidu SVI Semantic Segmentation Results Perception Scores 

  

 

 

 

 

 

Figure 10. Samples of origin SVIs, semantic segmentation results, and the corresponding predicted 
subjective and derived objective perception scores. 

Based on the baseline model, we added five subjective (Model 2) and objective scores 
(mode 3) except for Complexity score, respectively. Complexity was removed because 
Pearson’s correlation analysis indicated that this quality had strong correlation with at 
least one or two other qualities, and its VIF indicated serious multicollinearity issues. Ta-
ble 7 reported the results for the three models. All variables were significant, and most 
VIFs were smaller than five, indicating no evidence of strong multicollinearity. Appendix 
Table A1 provides the interpretated economic value of the explanatory variables using 
averaged coefficients of the three models. 
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Table 7. OLS regression results and diagnosis for the three models. 

Variable 
Feature  

Importance 

Model 1 
(Base Model) 

Model 2 
(Base + Subjective Scores) 

Model 3 
(Base + Objective Scores) 

Coef std err VIF Coef Std Err VIF Coef Std Err VIF 
Constant / −0.671 *** 0.106 / −0.691 *** 0.106 / −0.770 *** 0.106 / 

Structure Attributes          

FLAREA 0.831 −0.0002 *** 0.000 5.4 −0.0002 *** 0.000 5.4 −0.0002 *** 0.000 5.4 
BEDRM 0.145 −0.003 *** 0.001 3 −0.002 *** 0.001 3 −0.002 *** 0.001 3 
BATH 7.596 0.023 *** 0.001 3 0.023 *** 0.001 3 0.023 *** 0.001 3 

CSTRYR 0.831 0.003 *** 0.000 2.3 0.003 *** 0.000 2.3 0.003 *** 0.000 2.3 
ELEVTR 0.831 0.039 *** 0.001 3.5 0.040 *** 0.001 3.6 0.039 *** 0.001 3.6 
HGHT 0.831 −0.015 *** 0.001 1.2 −0.015 *** 0.001 1.2 −0.015 *** 0.001 1.2 

TOWER_SLAB 0.001 −0.064 *** 0.001 2 −0.062 *** 0.001 2 −0.062 *** 0.001 2 
STH_NTH 0.001 0.007 *** 0.001 2.1 0.007 *** 0.001 2.1 0.007 *** 0.001 2.1 

REFNDECOR 0.534 0.023 *** 0.001 4.4 0.023 *** 0.001 4.7 0.023 *** 0.001 4.5 
Location Attributes          

CTY_FX 2.017 −0.167 *** 0.002 2.1 −0.164 *** 0.002 2.1 −0.172 *** 0.002 2.1 
CTY_HK 2.136 0.018 *** 0.002 1.1 0.030 *** 0.002 1.1 0.023 *** 0.002 1.1 
CTY_HP 2.017 0.057 *** 0.002 1.3 0.069 *** 0.002 1.3 0.069 *** 0.002 1.3 
CTY_JA 2.017 0.065 *** 0.003 1 0.073 *** 0.003 1 0.075 *** 0.003 1 
CTY_JD 2.017 −0.060 *** 0.002 1.1 −0.059 *** 0.002 1.1 −0.059 *** 0.002 1.1 
CTY_JS 2.017 −0.170 *** 0.004 1.3 −0.137 *** 0.004 1.3 −0.168 *** 0.004 1.4 
CTY_PD 2.017 0.027 *** 0.001 1.6 0.022 *** 0.001 1.7 0.027 *** 0.001 1.7 
CTY_PT 1.407 −0.021 *** 0.002 1.3 −0.014 *** 0.002 1.3 −0.013 *** 0.002 1.3 
CTY_QP 0.831 −0.050 *** 0.003 1.2 −0.057 *** 0.003 1.3 −0.057 *** 0.003 1.3 
CTY_SJ 0.831 −0.050 *** 0.002 1.2 −0.046 *** 0.002 1.2 −0.053 *** 0.002 1.2 
CTY_YP 0.831 0.033 *** 0.002 1.1 0.041 *** 0.002 1.2 0.038 *** 0.002 1.2 
CTY_ZB 0.831 0.022 *** 0.002 1.9 0.024 *** 0.002 2 0.029 *** 0.002 1.9 

LND2CTR 0.534 −0.109 *** 0.001 1.3 −0.108 *** 0.001 1.4 −0.108 *** 0.001 1.4 
Neighborhood Attributes         

LNDENWRK 0.534 0.002 *** 0.000 1.2 0.002 *** 0.000 1.2 0.002 *** 0.000 1.2 
LNDENSRV 0.534 0.003 *** 0.000 1.3 0.001 *** 0.000 1.4 0.002 *** 0.000 1.3 
LNA2MTR 0.534 0.021 *** 0.000 2.3 0.021 *** 0.000 2.3 0.021 *** 0.000 2.3 
LNA2SCH 0.534 0.053 *** 0.001 1.4 0.051 *** 0.001 1.4 0.052 *** 0.001 1.4 

Subjective Street Scores         

S1_GREEN 0.534 / / / −0.327 *** 0.015 2.5 / / / 
S2_WALKB 0.475 / / / −0.189 *** 0.009 4.1 / / / 
S4_SAFTY 0.001 / / / 0.188 *** 0.010 7.7 / / / 
S4_IMGBL 0.001 / / / 0.134 *** 0.008 3.6 / / / 
S5_ENCLS 0.001 / / / −0.040 *** 0.010 8.9 / / / 

Objective Street Scores         

O1_GREEN 0.534 / / / / / / 0.034 *** 0.006 4.8 
O2_WALKB 0.534 / / / / / / −0.013 * 0.007 1.4 
O3_SAFTY 0.534 / / / / / / 0.053 *** 0.005 1.2 
O4_IMGBL 0.534 / / / / / / −0.074 *** 0.008 4.8 
O5_ENCLO 0.534 / / / / / / −0.030 *** 0.011 1.6 
Diagnosis           

Adj. R2  0.783   0.791   0.787   

Prob (F-statistic) 0 ***   0 ***   0 ***   

Durbin–Watson 2.009   2.007   2.007   

No. Observation 40,159   40,159   40,159   

Note: ***, **, and * indicate significance level of 1%, 5% and 10%, respectively. 

4.3.1. Streetscape Perception Attributes 
Subjective measures significantly outperformed the objective counterparts in ex-

plaining house price: the former explained 32.2% data variance, while the latter only ex-
plained 6.8% (see Table 6). Comparing Model 2 and Model 3, first, the impacts of 
streetscape scores were all significant at the 0.01 confidence interval except for the objec-
tively measured Walkability. Their coefficients were all non-negligible. However, their 
contributions to the overall goodness-of-fit improvement were minimal, with 0.08 and 
0.04 larger R2 values compared to the base Model 1, respectively. Their feature importance 
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score ranking indicated that besides Greenness, all other subjective measures had stronger 
explanation power than the objective counterparts (Figure 11a). In addition, subjectively 
measured Walkability had the largest importance score. 

Most importantly, the results indicated coherence as well as large divergence. On the 
one hand, while three perceptual qualities, i.e., Walkability, Safety, and Enclosure, im-
plied consistent signs in their subjective and objective measures, the other two also 
showed large divergence in their coefficient magnitudes (Figure 11b). On the other hand, 
two subjective and objective scores, i.e., Greenness and Imageability, exhibited opposite 
signs (Figure 11c). With a 10% increase in Greenness score, the subjective measure was 
correlated with a −3.3% (or −1876 RMB) decrease in house prices while objective counter-
part was correlated with a 0.3% increase. In addition, for Imageability score, a 10% in-
crease in the subjective score was correlated with a 1.3% increase while objective measure 
saw a −0.7% decrease. These demonstrate future areas for further studies.  

Figure 11. Comparing subjective and objective streetscape scores in (a) global importance ranking, 
(b) impact on housing price percentage changes and (c) per square meter price change if score in-
creases by 10%. 

4.3.2. Location Attributes 
Location attributes were the most dominant, explaining 67.8% of the price variance. 

First, centrality to city center represents the level of potential services and have implica-
tions on living costs such as commuting and education, therefore the distance to city cen-
ter largely affected sales price. Second, whether located in certain districts captured the 
fixed spatial effects that are highly correlated the larger-scale neighborhood quality; there-
fore, its price premium incorporated willingness to pay for being closer to school districts 
and metro stations from neighborhood attributes. In general, with other variables con-
stant, sales price decreased by approximately 1.1% with a 10% increase in distance to CBD. 
Given the average distance of 12.6 km and average house price of 57,349 RMB/m2, per 
square meter house price decreased by 4935 RMB if it is 10 km or greater from CBD. 

Price premiums for certain submarkets were identified by submarket dummy varia-
bles (e.g., the CTY_XX variables indicating property was within the administrative bound-
ary). For example, on average, prices in Jing’an were 6.45% (or 3699 RMB/m2) more ex-
pensive than the average, while prices in Fengxian were 13.7%–17.03% (or 7857 to 9767 
RMB/m2) cheaper than average. 

4.3.3. Neighborhood Attributes 
The density of working opportunities (lnDenWrk), the density of living services 

(lnDenLiv), and accessibility to schools (lnA2Schl) and metro stations (lnA2Metro) were 
all significant as included in neighborhood attributes and they explained 55.6% of the data 
variance. All neighborhood variables were positively related to house prices, which was 
consistent with the literature [21,93]. Particularly, a remarkable price premium has been 
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found in school districts and subway stations: with every five kilometers away from the 
nearest metro station or excellent high schools recognized by Shanghai government, the 
house prices dropped by 8.8% and 2.5%, respectively. 

4.3.4. Structure Attributes 
The structural attributes collectively explained 18.8% of the variance. The signs of 

their coefficients were consistent with the literature. With other variables being constant, 
apartments with a refined interior design were sold at 2.3% (or 1330 RMB/m2) more. The 
attributes of south-facing rooms bring the sales price up by 0.7%. In addition, apartments 
with elevators exhibit a price premium of 3.9%. 

5. Discussion 
5.1. The Significance of Streetscape Perceptual Qualities 

First, the HPM studies implied that house prices in Shanghai can be significantly in-
fluenced by both subjectively assessed and formula-derived objective measures of 
streetscape perception. Second, using coefficient of determination as a criterion, the rank-
ing of the importance for five attribute groups was as follows: locational > neighborhood 
> subjective streetscape scores > structural > objective streetscape scores. Specifically, ex-
cept for Greenness score, all other subjectively assessed qualities (i.e., Walkability, Safety, 
Imageability, and Enclosure) largely outperformed objective counterparts in explaining 
house prices variance. 

However, the objective measure also has advantages when the perception definition 
is clear, and its operationalized protocol captures fewer visual elements. In our case, ob-
jectively measured Greenness won the subjective counterpart (Figure 11a) and the sign of 
its coefficient was also consistent with much of the literature [18,19,21,25] that street green-
ery was positively related to house price. In our study, a 10% increase in the objective 
Greenness score was related to a 0.3% (or 197 RMB/m2) increase in transaction price, which 
was smaller in magnitude than a prior study [18], where every one percent increase in the 
GVI increased housing prices by 71 RMB/m2. 

Notably, traditional location and neighborhood attributes, such as being in a certain 
sub-city (district), the accessibility to school, the distance to CBD, and the accessibility to 
metro stations, were still among the top six determinants of house prices (see Table 7 re-
garding feature importance). Three structure variables, including decoration, elevator, 
and number of bathrooms, were also among the top ten. However, perceptual qualities 
such as subjective Walkability were more important than having a south-facing room, and 
objective Greenness score and subjective Enclosure score were more important than the 
floor height in the building, number of bedrooms, and building age. 

While increasing studies with deep learning and SVIs focus on the influence of single 
or multiple visual elements, this study implied the non-negligible impacts of more com-
prehensively measured human perception on house prices. Particularly, objective Green-
ness, subjective Safety and Imageability scores indicated a positive relationship to house 
prices. In other words, a better street environment in these qualities provided non-negli-
gible price premiums to real-estate developers, while the cost of investment and mainte-
nance in public street’s streetscape was mainly taken care of by the cities.  

More specifically, in practice, developers in Chinese cities, such as Guangzhou, are 
required to pay fees to cities, with commonly a portion of the cost for constructing sur-
rounding infrastructure, especially in new town projects [75,76], as a practice of local land 
value capture [77]. Developers also compete to offer good landscape and environment to 
lure buyers [78]. Increasing attention has been devoted to beautifying residential grounds 
and landscape designs within the gated community [78,95]. However, the general urban 
design of these streets is still determined solely by the will of cities (e.g., urban designers 
and planners). The implicit value of environmental design quality of public streets is sel-
dom incorporated into the valuation of properties [18,25,26,78]. Although it is intuitive for 
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most developers to believe the value of green spaces and pleasant neighborhood environ-
ment, compared to investments in apartment building constructions, inputs into engaging 
and facilitating beatifying streets are still not sufficient. While the implicit return from 
investing in streetscapes on improving property values is noneligible [32,36,96], our find-
ing suggests that the urban design process for deciding the streetscape could be more 
participatory, allowing different stakeholders to contribute to a better street environment 
[30]. On the other hand, our findings asserted that while real-estate developers have al-
ready benefitted from the surrounding street environment, they should have taken more 
responsibility such as contributing to maintaining the street greenery [21,25]. Hence, mu-
nicipal government could potentially levy a street environment tax to compensate the 
public budget invested in designing and maintaining street environments where a prop-
erty price premium has been enjoyed by developers. The tax amount could be calculated 
according to the method established in our study if the perception score of a residential 
unit is within the range. 

In addition, the findings also advocate urban planners and real-estate developers to 
not limit their focus on the micro-level environment such as the tree canopy within resi-
dential blocks, but also extend their attention to the public domain: street-level neighbor-
hood environment that pedestrians and residents perceive on the daily basis. Street per-
ception scores can be used as a novel metric for street design and urban design guidelines, 
and can inform urban renewal strategies [35]. Most importantly, better street perceptual 
qualities provide improved streetscape aesthetics and appreciation during residents’ ac-
tivities and incentivize home buyers’ willingness to pay. 

5.2. Coherence and Divergence between Subjective and Objective Measures 
This study also demonstrated promising areas for future studies which call for more 

efforts to stress the coherence and divergence of the two measurements. First, the subjec-
tive and objective measures of Greenness and Imageability implied opposite signs in af-
fecting house prices: being consistent with the literature [19,25], the objective Greenness 
was positively related to house prices, while the subjective counterpart exhibited a nega-
tive sign. This might be due to subjective Greenness, which captured more factors than 
simply the tree canopy. Second, the subjective Imageability indicated a positive associa-
tion while its objective counterpart depicted a negative sign.  

In short, simply summing up or recombining visual elements could not comprehen-
sively capture or represent more comprehensively defined perceptual quality. There are 
underlying mechanisms that relate to the psychological, social-demographical character-
istics of street users that cannot be exhaustively incorporated by view indices or recombi-
nation of them but were significantly affecting home buyers’ willingness to pay. Our re-
sults indicated that when choosing between subjective and objective measurement, the 
familiarity to the perceptual quality’s operationalized definition is the driving factor for 
daily street users to make final decisions. Objective measures might outperform subjective 
measures when perceptual quality is self-evident and not complicated, such as the Green-
ness score. For the other four dimensions—Walkability, Safety, Imageability, and Enclo-
sure—whose concepts were not familiar to the average person [37], a subjective frame-
work exhibits better performance over objective counterparts. 

5.3. The Effectiveness of the Integrated Big Data Framework 
Few studies have stressed the economic value of subjectively measured human-scale 

perception quality considering housing prices at a large scale. Prior studies that focused 
on streetscape as a determinant were constrained to top-down indicators from GIS and 
remote sensing imagery datasets, including tree canopy area, green area ratio in land use, 
and the distance to parks. Although previous studies in this regard focus on human eye-
level perception, only minor attention was focused on objective features, such as the view 
index of tree, sky, and building. Our study provides a comprehensive framework for both 
subjective and objective measures in six important perceptual qualities and integrated 
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crowdsourcing and open-source SVIs to establish an automated approach. The framework 
offers strong generalization capability and can be applied across scales where SVIs are 
available. 

6. Conclusions 
This study proposed a new approach for urban-scale application to quantify both 

subjective and objective human-scale streetscape perceptual quality. Built on prior quan-
titative studies on urban design quality [35,60,97] and emerging applications in deep 
learning and SVIs in urban scene perceptions [62,82], we integrated and extended existing 
frameworks to (1) effectively collect and evaluate both subjectively and objectively meas-
ured perceptions; (2) investigate the coherence and divergence in ML-predicted subjective 
scores and formula-derived objective scores; and (3) compare the effects on house prices 
with the two perception measurements taking Shanghai as a case study. 

Particularly, we investigated the divergence and coherence between subjective and 
objective measures for six perceptual qualities, i.e., Greenness, Walkability, Safety, Image-
ability, Enclosure, and Complexity. We quantified their associations with housing price 
variations in Shanghai. First, regarding the collective explanatory power within each at-
tribute group, subjective scores explained more variance over structural attributes and 
objective scores. Second, the percentage increase in sales price attributable to perceived 
street quality is significant for both subjective and objective measurements. Except for 
Greenness score, all other subjectively measured qualities outperformed objective coun-
terparts. Particularly, objective Greenness, subjective Safety, and Imageability scores pos-
itively affected house prices in Shanghai. Objective Greenness was more important than 
the structure attributes of floor height, number of bedrooms, and building age, which 
were conventionally conceived as important in HPM. This is the first study comprehen-
sively expanding HPM with both subjectively and objectively measured streetscape qual-
ities. We suggested that city authorities could levy a street environment tax to compensate 
the public budget invested in street environments where developers secured benefits from 
a price premium. 

Second, this study also sheds light on promising areas for future studies which call 
for the coherence and divergence of the two measurements to be further stressed. Specif-
ically, for Greenness and Imageability scores, the subjective and objective measures im-
plied opposite signs in affecting house prices. On the one hand, there might be mecha-
nisms related to the psychological, social-demographical characteristics of street users that 
have not been fully incorporated by view indices or recombination of them but were sig-
nificantly affecting home buyers’ willingness to pay. On the other hand, when choosing 
between subjective and objective measurement, final decision could be made based how 
straightforward the perceptual quality’s operationalized definition is to daily street users. 
Objective measures might outperform subjective measures when perceptual quality is 
self-evident and not complicated, for example the Greenness. For perceptual qualities that 
were not familiar to the average, a subjective framework exhibits better performance. The 
strong generalization capability of this study also called for expanding the measurement 
of streetscape by incorporating street thermal comfort given that the unique perspective 
of SVIs can better reflect the vertical dimension of urban geometry. 

Limitations  
There are several limitations: (1) failing to indicate causal inference with a more com-

prehensive panel dataset; (2) ignoring the endogenous effect on green space and housing 
price, (3) data quality and the prediction accuracy of subjective perceptions could be im-
proved; and (4) the weak interpretability of perception scores.  

First, we must acknowledge that the intention was not to make any causal statements. 
Instead, this study aimed to use correlation to justify the effort and value of incorporating 
extra micro-scale urban perception data and provide references for selecting measurement 
methods. Association does not imply causation, as there could be a reverse causal 
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relationship, or a confounding factor with housing prices and street environments that 
was omitted. Moreover, as our reviewer pointed out, research findings can only be used 
as a reference by policy makers when there is a clear causal pathway. Whether simply 
improving certain indicators can consequently improve real-estate market values still 
needs to be further demonstrated, especially when it comes to recommendations to deci-
sion makers. We should be cautious about any biased estimations in cross-sectional data 
that overestimate/underestimate the monetized value of street environments, which 
might result in wasting/lacking public investments.  

This also points to an important area of consideration—future studies should care-
fully design the model procedure to validate that the findings are stable. The causality 
relationships between housing price and the many variables can provide much more con-
vincing policy recommendations to decision makers as well as more profound empirical 
results that will largely enrich the literature. Future studies can plan for more serious 
panel or pseudo panel data to investigate the causal relationship.  

Second, thanks to our reviewers, even before taking policy effect into consideration, 
the green space inside communities is indeed developed by property developers them-
selves. Considering strategic behavior, greenery will be endogenous in the regression of 
housing price on greenery, and the research question asked in this work could be a false 
proposition. 

Third, data source and prediction accuracy could be further improved. On the one 
hand, housing data acquisition was limited by the real-estate website which indispensably 
contains missing or biased data, which might lead to bias in model estimation. Although 
the street-level images acquired help us understand the quality of public streets, the im-
pacts of private streets of inner blocks remained unknown due to the lack of SVI data. 
Moreover, current subjective scores were collected from a specific and small study 
group—designers. Inputs from potential homebuyers will be more desirable and would 
likely shed light on more relevant user preferences. Future studies can work on homebuy-
ers’ street scene preferences by randomly selecting group of people who visit real-estate 
offices. 

On the other hand, the prediction of subjective perceptual scores has much room for 
improvement. We intentionally took a rule-based approach [55] using only high-level fea-
tures (i.e., streetscape view indexes) for prediction in order to align with urban design-
oriented measures [37] and ensure interpretability for designers. However, we must 
acknowledge that incorporating low-level features can complement high-level features to 
significantly improve prediction accuracy [61,87,88]. Meanwhile, collecting a large train-
ing dataset with inputs of more raters can also improve the results [1,2].  

Fourth, the street view scores could be difficult to interpret. Future studies can focus 
on converting these scores into more actionable urban design guidelines and interventions 
that facilitate better streets. Moreover, since the method seems highly scalable and appli-
cable, applying it to other cities to discover common or divergent impacts of street per-
ception on property values would be highly desirable. Additionally, the proposed ap-
proach has demonstrated the capability to assess the economic value of thermal comfort 
and heat-related design considerations in streets given its capacity to proxy streetscape 
across scales. More factors that directly or indirectly relate to streetscape and can affect 
housing prices could be captured in future studies. 

Author Contributions: Conceptualization, W.Q., X.X. and Z.Z.; methodology, W.Q., W.L. and X.L. 
(Xiaojiang Li); software, W.Q., W.L and X.L. (Xiaojiang Li); validation, W.Q. and X.X.; formal anal-
ysis, W.Q.; investigation, W.Q.; resources, W.Q., X.L. (Xun Liu) and D.L.; data curation, W.Q. W.L. 
and X.L. (Xun Liu); writing—original draft preparation, W.Q., X.X. and Z.Z.; writing—review and 
editing, W.Q., W.L., Z.Z. and X.X.; visualization, W.Q. and X.L. (Xun Liu); supervision, W.Q.; project 
administration, W.Q. and X.X.; funding acquisition, W.Q. All authors have read and agreed to the 
published version of the manuscript. 



Remote Sens. 2022, 14, 891 30 of 34 
 

Funding: This research was supported by the Kermit C. & Janice I. Parsons Scholarship (2019) and 
the Portman Family Graduate Student Award (2021) from the Department of City and Regional 
Planning, Cornell University. 

Institutional Review Board Statement: Ethical review and approval were waived for this study due 
to the analyzed datasets are properly anonymized, no participant can be identified. 

Informed Consent Statement: Written informed consent was waived as the analyzed dataset was 
properly anonymized, so no participant can be identified. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Acknowledgments: We would like to thank the participants who helped to rank SVI perception 
qualities in the Digital Future Workshop (2020) as well as the sponsor and organizer of the work-
shop—Prof. Philip YUAN and Tongji University. Additionally, this research was supported by the 
Kermit C. & Janice I. Parsons Scholarship (2019) and the Portman Family Graduate Student Award 
(2021) from the Department of City and Regional Planning, Cornell University. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Interpretation of regression coefficients (converted to RMB/m2). 

 Model1 Model2 Model3 Average Delta X Mean X 
Structure Attributes      

FLAREA −11.5 −11.5 −11.5 −11.5 1 unit change 85m2 
BDRM −154.8 −114.7 −137.6 −135.7  2.1 
BATH 1342.0 1307.6 1307.6 1319.0  1.2 

CSTRYR 160.6 166.3 160.6 162.5  1998 
ELEVTR 2248.1 2265.3 2225.1 2246.2 Y/N (1/0) 0.4 
HGHT −843.0 −860.2 −854.5 −852.6 Y/N (1/0) 0.4 

TOWER_SLAB −3641.7 −3549.9 −3532.7 −3574.8 Y/N (1/0) 0.09 
STH_NTH 412.9 372.8 401.4 395.7 Y/N (1/0) 0.8 

DÉCOR 1330.5 1301.8 1313.3 1315.2 Y/N (1/0) 0.52 
Location Attributes      

CNTY_FX −9560.1 −9422.4 −9864.0 −9615.5 Y/N (1/0) 0.025 
CNTY_HK 1026.5 1726.2 1290.4 1347.7 Y/N (1/0) 0.038 
CNTY_HP 3280.4 3974.3 3934.1 3729.6 Y/N (1/0) 0.032 
CNTY_JA 3699.0 4197.9 4278.2 4058.4 Y/N (1/0) 0.024 
CNTY_JD −3418.0 −3395.1 −3400.8 −3404.6 Y/N (1/0) 0.041 
CNTY_JS −9766.5 −7856.8 −9611.7 −9078.3 Y/N (1/0) 0.055 

CNTY_PD 1525.5 1278.9 1548.4 1450.9 Y/N (1/0) 0.234 
CNTY_PT −1175.7 −820.1 −751.3 −915.7 Y/N (1/0) 0.073 
CNTY_QP −2873.2 −3286.1 −3268.9 −3142.7 Y/N (1/0) 0.017 
CNTY_SJ −2878.9 −2615.1 −3016.6 −2836.9 Y/N (1/0) 0.055 
CNTY_YP 1892.5 2334.1 2202.2 2142.9 Y/N (1/0) 0.077 
CNTY_ZB 1250.2 1382.1 1645.9 1426.1 Y/N (1/0) 0.045 

lnD2Ctr −622.8 −617.1 −621.1 −620.3 10% change 12.62 km 
Neighborhood Attributes      

LN(DENWRK) 11.5 11.5 10.3 11.1 10% change 9500/km2 
LN(DENSRV) 14.3 6.9 9.7 10.3 10% change 115/km2 
LN(A2MTR) 122.7 119.3 122.7 121.6 10% change 5.7 
LN(A2SCH) 306.2 293.6 300.5 300.1 10% change 7 

Subjective Street Perception     

S1_GREEN / −1876.5 / −1876.5 
0.1 score 
change 

0.8 

S2_WALKB / −1081.6 / −1081.6 
0.1 score 
change 

0.6 
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S4_SAFTY / 1075.9 / 1075.9 
0.1 score 
change 

0.7 

S4_IMGBL / 768.5 / 768.5 
0.1 score 
change 

0.7 

S5_ENCLS / −228.8 / −228.8 
0.1 score 
change 

0.7 

Objective Street Scores     

O1_GREEN / / 197.3 197.3 
0.1 score 
change 

0.4 

O2_WALKB / / −73.4 −73.4 
0.1 score 
change 

0.6 

O3_SAFTY / / 306.2 306.2 
0.1 score 
change 

0.4 

O4_IMGBL / / −422.1 −422.1 
0.1 score 
change 

0.6 

O5_ENCLO / / −173.2 −173.2 
0.1 score 
change 

0.6 

Y: Average Price 57,349 RMB/m2     
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