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Abstract: Computer vision for large scale building detection can be very challenging in many 
environments and settings even with recent advances in deep learning technologies. Even more 
challenging is modeling to detect the presence of specific buildings (in this case schools) in satellite 
imagery at a global scale. However, despite the variation in school building structures from rural to 
urban areas and from country to country, many school buildings have identifiable overhead 
signatures that make them possible to be detected from high-resolution imagery with modern deep 
learning techniques. Our hypothesis is that a Deep Convolutional Neural Network (CNN) could be 
trained for successful mapping of school locations at a regional or global scale from high-resolution 
satellite imagery. One of the key objectives of this work is to explore the possibility of having a 
scalable model that can be used to map schools across the globe. In this work, we developed AI-
assisted rapid school location mapping models in eight countries in Asia, Africa, and South 
America. The results show that regional models outperform country-specific models and the global 
model. This indicates that the regional model took the advantage of having been exposed to diverse 
school location structure and features and generalized better, however, the global model was the 
worst performer due to the difficulty of generalizing the significant variability of school location 
features across different countries from different regions. 
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1. Introduction 
Reliable and accurate data about school locations have become vital to many 

humanitarian agencies and governments to effectively plan, manage, and monitor the 
provision of quality education and learning in accordance to the UN sustainable 
development goal 4 (SDG4 [1]) that ensure equal access to opportunity (SDG10 [1]) [2]. 
For example, UNICEF and ITU (International Telecommunication Union) launched a 
program named Giga [3] which is a global initiative to connect every school in the world 
to the internet and every student to information, opportunity, and choice by 2030. Lack of 
internet connectivity does not just limit students’ ability to connect online, it prevents and 
isolates them from competing in the modern economy. Connecting schools to the internet 
starts by mapping the locations and other attributes of these schools. In addition, 
understanding the location of schools can help governments and international 
organizations gain critical insights into the needs of vulnerable populations, and better 
prepare and respond to exogenous shocks such as disease outbreaks or natural disaster 
development programs aiming to provide internet connection to schools in developing 
countries which requires accurate and comprehensive datasets of school locations [2]. 
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However, in many countries, data about educational facilities is often inaccurate, 
incomplete, outdated, or even non-existent. Open data sources such as the 
OpenStreetMap (OSM) have been very useful for many large-scale land use mapping 
projects including school locations [4,5], however, we have discovered sparse and even 
no coverage of OSM school location data in many developing countries of our interest. 
Some of the available OSM data points formed part of our training dataset as described in 
Table 1. 

Table 1. School data sources for this study from UNICEF Office of Innovation and OpenStreetMap 
(OSM). Before and after training dataset validation. 

Country 

TOTAL POINTS BEFORE 
VALIDATION 

TOTAL POINTS AFTER 
VALIDATION 

TOTAL POINTS PER TAG AFTER 
VALIDATION 

UNICEF  OSM  TOTAL UNICEF  OSM TOTAL YES UNRECOGNIZED NO 

Rwanda 4233 363 4596 4233 85 4318 3207 908 203 

Sierra Leone 9516 1909 11,425 9516 268 9784 7699 2027 58 

Niger 0 1430 1430 0 1328 1328 1062 226 40 

Mali 0 11,411 11,411 0 8299 8299 2474 4335 1490 

Chad 0 363 363 0 294 294 274 18 2 

Sudan 0 438 438 0 405 405 292 112 1 

Honduras 17,534 1064 18,598 17,534 187 17,721 4265 12,400 1056 

Kazakhstan 7410 2973 10,383 7410 480 7890 5998 1487 405 

Kenya 20,381 32,485 52,866 20,381 14,985 35,366 20,422 10,377 4567 

A recent study demonstrated that Deep Neural Network (DNN)-based models can 
deliver high accuracy and precision in identifying school buildings from high resolution 
satellite imagery [6]. Studies have shown that humans can be trained to identify school 
buildings in high resolution image tiles, and they do that effectively with over 90% 
accuracy, however, to do this at a global scale is unrealistic. 

Despite the varying structure of school location features, many school structures 
have identifiable overhead signatures that make them detectable in high-resolution 
imagery with modern deep learning techniques. Some of the identifiable features from 
space include building size, shape, and facilities. Compared to the surrounding buildings, 
school structures are usually bigger in size, and the shapes vary from U, O, H, E, or L as 
shown in Figure 1. 

This study aims at developing rapid and scalable Artificial Intelligence (AI) models 
that can deliver automated and swift mapping of schools using high resolution satellite 
imagery in eight different countries from Asia, Africa, and South America. To achieve this 
goal, we develop and test DNN models based on the Xception [7] and the MobileNetV2 
[8] models modified for application on satellite imagery at country, regional, and global 
scales. 
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Figure 1. School location structure showing identifiable signatures on overhead imagery. 
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These models are tile-based classifiers based on high-performance and accurate 
binary classification Convolutional Neural Network (CNN). The models could scan 
through 71 million zoom 18 tiles (256 × 256 pixels per tile in 60 cm meter high-resolution 
Maxar Vivid imagery) and identify schools in near real-time. This study developed and 
tested six specific country models that were tuned to perform well within the country’s 
territorial boundaries, two regional models, and a global model. The two regional models 
were the East African model that was trained with school location data from Kenya and 
Rwanda, and the West African model that was trained with datasets from Sierra Leone 
and Niger. The global models were trained with all countries’ school datasets. Both 
regional and global models were trained to generalize well in the geo-diverse landscape. 
By testing the East African regional and Kenya tile-based school classifier models in 
Kenya, we found the regional model outperformed the country-specific model. It 
indicates that the model that was exposed to diverse looks and school features can 
outperform the model that only trains with limited features.  

In summary, there has recently been a lot of research on the use of DNN to identify 
and extract different objects and infrastructure from overhead satellite imagery [9,10], 
however, the applicability, generalizability, and scalability of deep learning techniques on 
overhead satellite imagery in the context of school mapping at scale especially in 
developing countries has not yet been explored which is indeed the gap that inspires this 
paper. The major contributions of this study are two-fold: 
1. The development of scalable deep learning models to automatically map school 

locations at global, regional, and country-level scales in near real-time considering 
the variability in school structure from rural to urban and from country to country. 
From our literature review, no study has been carried out in this area with the context 
of providing a contribution to the research communities and school infrastructure 
mapping at scale for humanitarian and open-source projects. 

2. Exploring the generalizability of deep learning models in the context of transfer 
learning of school features where a DNN model trained in a given geolocation can 
generalize to detect schools in another geolocation without been re-trained with new 
datasets. 

2. Background 
Deep Neural Networks (DNNs) have proven to be very effective compared to 

traditional approaches, particularly object extraction from overhead satellite imagery at 
scale and speed [11–16]. On the other hand, the traditional approaches for object detection 
depend majorly on manual extraction processes which are inefficient and inadequate for 
generalization requirements and computationally exhausting. For deep learning 
algorithms, visual perception to extract feature hierarchies and generalization ability is 
enhanced on several levels [12]. These algorithms have shown that traditional techniques 
are slow and erroneous; they require extensive post-processing to differentiate 
infrastructure [17]. However, automatic school detection and mapping from overhead 
imagery requires very advanced DNN classifiers that work beyond task-based methods 
for object recognition and can carry out adaptive and deep learning from multi-resolution 
imagery for object detection. 

Methods utilizing DNNs are now deemed to be conventional for image segmentation 
[18–20] based on the wide adoption and many studies utilizing different DNN 
architecture for object detection such as in [21–27]. This is an evolving area, and new 
studies are frequently published on different approaches to deal with some of the 
shortcomings of DNNs. These include, for example, methods for evaluating biases in 
DNN for infrastructure mapping [6], the large computing and memory requirements [28], 
large training data requirement, difficulty in generalizing and adapting models to varying 
conditions [29], and so on. The U-Net DNN [30] architecture became very popular and the 
standard model for semantic segmentation in many applications won the IEEE 
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International Symposium on Biomedical Imaging cell tracking challenge in 2015. The 
popularity of this DNN architecture stems from its contracting path for capturing context 
and the symmetric expanding path that enables precise localization, partly due to its 
speed, and its ability to be trained end-to-end with very few images [6]. Different variants 
of U–Net have been developed for different applications including for building and road 
detection [31–34]. However, new DNN architecture with greater speed and accuracy 
requiring less training images have emerged in recent times as described below. 

Amongst the earliest works on object detection based on deep learning that achieved 
a mean Average Precision (mAP) of 98.7% with pre-trained AlexNet on a 1000 image set 
is the work of Zhao et al. [35]. 

One fundamental issue in school building detection using DNN is training data 
inadequacy because for DNN models to generalize efficiently, there is a large number of 
school structure variants to train on. Different approaches have been proposed in the 
literature to deal with deficiency in training samples such as in [36–41]. Other studies have 
explored the use of transfer learning and few-shot learning to boost training sample 
variation. Examples include Bai et al. [42] where they utilized the transfer learning 
technique on the ImageNet data kit, however, these studies dealt with items that have 
well defined structures, colors, shapes, and sizes such as insulator faults, road cracks, solar 
farms, etc., unlike school buildings that have varying structures, colors, sizes, and shapes. 

One interesting approach for specific object detection from a group of objects is the 
two-step object detection technique. First is to identify, for example, buildings from non-
buildings afterwards to detect the building structure of interest from a group of detected 
buildings. In view of this, Tao et al. [43] developed two separate backbone models for 
electricity transmission line fault detection, namely Defect Detector Network (DDN) and 
Insulator localizer Network (ILN) for insulator detection based on the Visual Geometry 
Group (VGG) model and Residual Network (ResNet) model. respectively. We explored 
this approach further in this study. 

Convolutional Neural Networks (CNNs) have emerged as one of the most popular 
DNN architectures developed for 2D images. CNNs have become very popular for many 
deep learning tasks including image classification, object detection [21], and image 
segmentation, as well as edge detection [44]. The Deep CNN was initially utilized for 
image classification problems due to the capabilities of deep convolution layers to 
recognize edges, patterns, context, and shapes which gives rise to more features with 
spatial dimensions smaller and deeper than the original [45]. AlexNet feature extractor 
developed by Krizhevsky et al. [46] with an 8-layer CNN, 5 convolutional layers + 3 fully 
connected layers won the ImageNet challenge of 2012 and could be seen as the precursor 
to image classification architecture. Different variants of Krizhevsky et al. architecture 
have been developed over the years to improve the model based on narrower receptive 
windows and increasing the network depth. 

The ImageNet challenge 2014 gave rise to the VGGNet deep learning network 
architecture which is deemed to be an improvement to the Krizhevsky et al. model. The 
VGG won the challenge in the object localization task and gained second place in the 
classification task [47]. Convolutional network has achieved high performance accuracy 
in image classification and object identification through the gradient-based learning 
process, especially through the use loss computation and the loss function [42]. The 
complexity in image classification problems such as in this case study of school building 
detection increasingly calls for deeper CNNs. However, deeper CNNs with tens of layers 
can be difficult to train because of the problem of vanishing and exploding gradients. To 
deal with this problem of exploding and vanishing gradients, the residual network 
architecture called the ResNet started to gain attention. Residual network architecture is 
designed based on the skipping concept to the VGG networks [48]. ResNet proposes a 
shallower network depth using shortcut connections, directly connecting the early layer’s 
input to a later layer. This creates a significant capability to train very deep CNNs of up 
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to 50, 101, and 152 layers with improved speed [49], thanks to the regular cut-off’s 
connection (skipping) among the Deep CNN blocks. 

Based on these CNN performances in image classification and the necessity to utilize 
the method for more complex image classification problems such as in this case study, the 
object detection variant of the CNN was developed [21]. The Faster R-CNN came to light 
as a region-based CNN for discrete object detection. Faster R-CNN carries out object 
detection based on two modules: the Regional Proposal Network (RPN) for detecting 
regions, and the Region-CNN (R-CNN) detector for classifying regions and refining 
bounding boxes [50,51]. This DNN architecture utilizes the CNN model pretrained for 
classification to generate the necessary activation feature map [52]. Afterwards, the 
extracted feature maps are passed through the RPN to generate the object proposal [21]. 
Each object proposal is then employed by the network to generate the fixed feature maps 
of objects of interest. Thereafter, the final Region-based CNNs (R-CNN) combines the 
prior output and the class details based on region proposals. Utilizing the object proposals 
extracted through RPN as well as the extracted features of the proposals (via ROI pooling), 
the final class and object localization is accomplished [53]. Although faster R-CNN is 
exceptionally reliable, it appears to be slower in training speed when compared with 
MobileNet. 

For real-time object detection purposes which requires a balance between time, 
speed, and accuracy, many multiple single-phase DNN architectures have been 
developed which includes MobileNet [8], the ‘You Only Look Once’ (YOLO) [54] and 
Single-shot detector (SSD) [55] frameworks. 

There have recently been several alterations to the SSD framework which has 
resulted in its better performance than the YOLO. Some of these changes include the 
prediction of multi-feature maps from the subsequent networking stage to allow 
multiscale detection prediction of object classes and offsets at bounding box locations 
using smaller convolutional filters, and generating the final feature map by using different 
predictors to identify objects at varying aspect ratios in the form of feature pyramids [56]. 

For low-latency applications such as for mobile and embedded systems, Howard [8] 
developed a lightweight deep neural network model referred to as Mobile Networks 
(MobileNets). MobileNets and its derivatives have been developed to improve speed 
constraint associated with deeper networks for real-time applications. This idea is that the 
regular neural network convolution layer is broken down into two filters, depth-wise 
convolution and pointwise convolution. The conventional convolutional filter is more 
computationally expensive when compared to the depth-wise and point-wise 
convolutions. In MobileNets, each channel is convolved with its kernel, called a depth-
wise convolution. Afterwards, the pointwise (1 × 1) convolution is processed to abstract 
and integrate the individual intermediate output from the depth-wise convolution into a 
single feature layer. 

In view of this, we utilized the ResNet152 and SSD MobileNet in this study for school 
building detection and the Xception CNN for tile-based school image classification. These 
are, relatively, the most suitable models based on our approach and objectives. This 
Xception [57] architecture has 36 convolutional layers forming the feature extraction base 
of the network. In this architecture, cross-channel correlations and spatial correlations in 
the feature maps of convolutional neural networks can be entirely decoupled. The 36 
convolutional layers are structured into 14 modules, all of which have linear residual 
connections around them, except for the first and last modules. In other words, the 
Xception architecture is a linear stack of depth-wise separable convolution layers with 
residual connections which makes it relatively faster to train. The Xception architecture is 
easier to define and modify as it takes only few lines of code based on the high-level 
library called Keras [58]. 
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3. Materials and Methods 
This section outlines the workflow and methods utilized for model training and 

development at scale. It also provides a description of the algorithm architecture and 
components. 

Figure 2 describes the workflow design for scalable development and deployment of 
the school classifier models. The school classifier models are developed based on the 
Xception deep learning backbone whose architecture is described in Figure 3. 

 
Figure 2. Model development and deployment workflow. 

 
Figure 3. The Xception network architecture [57]. 



Remote Sens. 2022, 14, 897 8 of 24 
 

 

This workflow is designed to quickly train, transfer-learn, and hyper-tune image 
classifiers on Google Cloud Kubernetes Engine (GKE) running Kubeflow. The model 
training and hyper-parameter tuning runs on a Fob YAML file deployment [59]. 

Figure 3 depicts the Xception network architecture that we adopted from [57]. School 
and non-school image tiles of 224 × 224 are passed through the network where the first go 
through the entry flow, through the middle flow which is repeated eight times, and finally 
through the exit flow for output. An important thing to keep in mind with respect to the 
Xception network model is that the Convolution and SeparableConvolution layers are 
followed by batch normalization [7] which were not included in this diagram. 
Additionally, all SeparableConvolution layers utilizes a depth multiplier of 1 with no 
depth expansion. 

3.1. Datasets 
We used a high-resolution satellite image tile of 224 by 224 pixels with zoom level 18 

(0.6 m spatial resolution) for each training sample location. The imagery was collected 
from MAXAR’s imagery archive under NextView license. The imagery collected from 
Worldview3 sensor was composited with R, G, and B bands using the natural composite 
method. Numbers of image tiles in various zoom levels used in this study are presented 
in Session 3.4. 

3.2. Training Image Data Preparation 
A high-quality training dataset is essential for deep learning approaches to accurately 

learn through varying object features and generalize precisely. Figure 4 describes the 4-
step process of preparing the TFRecords of training image sets for model training. 

Our first step in this regard is to prepare a set of verified school locations, as well as 
a set of non-school locations in 300 × 300 m image tiles. 

 
Figure 4. Steps followed to generate the model training dataset (TFRecords). 

Step 1: Data sources 
A preliminary list of school locations (coordinates) was acquired from UNICEF 

ProjectConnect [3] database including data from Rwanda (4233 schools), Sierra Leone 
(9516), Honduras (17,534), Kazakhstan (7410), and Kenya (20,381). An additional dataset 
was added (>52,000 schools) from OpenStreetMap from nine different countries as shown 
in Table 1 below. 
Step 2: Training data validation 

Five expert mappers reviewed the dataset and compared it to high-resolution 
satellite imagery. The locations were classified into those where (1) satellite image tiles 
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clearly contain schools as ‘confirmed’, (2) satellite image tiles clearly do not contain a 
school as ‘not-school’, and (3) it is uncertain whether satellite image tiles contain a school 
or not as ‘unrecognized’ school, see “Total Point After Validation”, Table 1. 

The ‘YES’ school class shows clear school features, e.g., building size, shape, and 
facilities from the high-resolution satellite imagery. Figure 5 contains some examples of 
the school features that were used as criteria for schools and that can be used to label the 
tiles as “confirmed” schools. 

  

A. Building with sport fields B. Group of the same type of buildings 

  

C. Building with U shape D. Buildings with L shape and empty field 

Figure 5. Examples of verified ‘YES’ school image tiles. 

The ‘UNRECOGNIZED’ school class refers to school locations that were part of the 
original country school datasets but that had no clear school features, especially in urban 
areas with high building density or, in rural areas that cannot be distinguished from 
residential buildings [2]. Another case of unrecognized schools is school building(s) that 
cannot be seen on satellite imagery because of cloud/tree cover as shown in Figure 6. 
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The ‘No’ schools refer to locations from the original country school datasets where 
the expert mappers could not find any school-like buildings at the provided school 
geolocations. As an example, some of the schools were mislocated in the middle of the 
ocean, desert, dense forest. This can be caused by the school geolocation being recorded 
incorrectly or because the satellite imagery has been updated in particular areas of the 
selected countries after schools were built. Examples are shown in Figure 7 below. 

  

A. All buildings look similar B. All buildings look similar 

  

C. School location on the highway D. All buildings look as residential (rural) 

Figure 6. Examples of verified ‘UNRECOGNIZED’ school image tiles. 
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A. School location far from residential areas B. School location in forest areas 

  

C. School location in farm fields D. School location in the ocean 

Figure 7. Examples of verified ‘No’ school image tiles. 

Step 3: Training data generation 
Training data generated were used for both tile-based image classification and direct 

school detection. A tile-based school classifier is a binary image classification based on the 
Xception deep learning backbone from ImageNet [60]. The direct school detection model 
is an Object Detection model that we based on SSD MobileNet and ResNet101 [61] models. 
Tile-based School Classifier 

For the tile-based school classifier model, two categories of datasets were generated, 
‘school’ and ‘not-school’, as the training dataset for the deep learning model training. The 
category ‘school’ tiles were downloaded based on the geolocation of schools that were 
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tagged as “YES” after training data validation (Table 1). Though, the category of “not-
school” is more diverse than “school”, because it includes the categories except schools, 
e.g., forest, desert, critical infrastructure (places of worship, government offices, hospitals, 
marketplaces, factories), residential buildings, oceans, other water bodies, etc., as shown 
in Table 2 below. To enrich the data sets for ‘not-school’, we queried all the categories 
mentioned above from OSM using OSM Map Features [62]. 

Table 2. Training datasets for country models that include negative (not-school) and positive 
(school) categories. Not-school includes buildings from urban and rural, forest, desert, water, and 
“NO” school tag list in Table 1. 

Country Urban Rural Forest Desert Water Not-School Total Negative Total Positive  

Chad 137 54 27 27 27  272 274 

Sierra Leone 3849 1539 769 769 769  7695 7699 

Niger 530 212 106 106 106  1060 1060 

Sudan 146 58 29 29 29  291 292 

Rwanda 1603 641 320 320 320  3204 3207 

Mali 1237 494 247 247 247  2472 2474 

Honduras 2132 853 639 0 639  4263 4265 

Kazakhstan 2999 1199 599 599 599  5995 5998 

Kenya 6785 3431 1697 1738 1698 4565 19,914 19,822 

3.3. Supertile Generation 
The tile-based school classifier models are trained with the image chips/tiles of OSM 

slippy map tiles. From our previous experience with an AI school mapping task in 
Colombia, we found that when a tile is in Zoom 17 [63], the classification model performed 
the best. The tiles in Zoom 17 are about 300 × 300 m and in the spatial resolution of 1.2 
m/pixel. In this study, we maximized the spatial resolution of the satellite image and 
instead of using Zoom 17, we created a supertile that is made up of 4 zoom 18 tiles as 
shown in Figure 8. The supertile still represents 300 × 300 m, but by using zoom 18, we 
have satellite image tiles in the spatial resolution of 0.6 m instead of 1.2 m. Therefore, the 
school classifier models can learn more image features from high-resolution supertiles. 

One important factor we put into consideration in generating the training dataset 
was ‘geodiversity’ of the training image set. This represents the diversity of landscapes 
that can be captured by the satellite. When it comes to optical images, they are a set of 
image features that include mountains, vegetation distribution, hurricanes, and smoke 
patterns. Then we can compare the dataset to the area we want to generalize over based 
on image similarity metrics such as the t-Distributed Stochastic Neighbor Embedding (t-
SNE) [64]. This will help to evaluate whether our training images for the deep learning 
models are a representative sample of the desired deployment region. In this context, for 
‘geodiversity’ of school and not-school for the countries of interest the supertiles can be 
plotted to showcase the distribution of the data classes from lush-like to desert-like as 
shown in Figure 9. This is done simply by reducing the image to a single feature vector 
which is the average RGB value. These vectors are passed to the t-SNE algorithm which 
is trying to map data to two dimensions (in this case) by computing ‘similarity scores’ to 
cluster the data, creating a good visual approximation of the original dimension of the 
data. 
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Figure 8. A sample image supertile. 

To assess the model performance fairly, our training dataset of two categories, school, 
and not-school tiles, is then split into a 70:20:10 ratio as train, validation, and test datasets. 
These three sets of data were generated as TFRecords. TFrecords is a data format that 
stores a sequence of binary records for Tensorflow [65] to read images and label data 
efficiently during the model training. The randomly selected 70% of tiles are used to train 
the model, the remaining 20% are used to validate the model. However, the last 10% of 
the test dataset which had not been seen by the model acts as the golden standard dataset 
to evaluate the model performance. For the direct school detection model, the training 
dataset was created using the Computer Vision Annotation Tool (CVAT) to generate 
bounding boxes around the school building complex. The resultant XML files were then 
exported from CVAT and TFRecords were generated for model development as described 
in Figure 10 below. 

 

School location diversity for Kazakhstan School location diversity for Niger 

  

Figure 9. School location diversity analysis through t-SNE shows that the school supertiles stretch 
from lush-like to desert-like in Kazakhstan and Niger. 
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Figure 10. Training data generation for Kenya direct school detection. 

We relied on population data to improve the diversity of training data as well as to 
identify areas of interest (AOI) to run inference over. This allows us to be efficient in our 
inference and validation processes. One of the considerations in the training data 
preparation was to ensure that samples are selected from populated areas. We used a 
combination of WorldPop [66] and OpenStreetMap. WorldPop is a 100 m spatial 
resolution contemporary dataset on human population distributions. We translated 
WorldPop raster pixels as points, and extracted highway, buildings, sports, amenity, 
leisure, landuse (residential) from OSM and merged the layers and converted them to get 
zoom 16 populated tiles (see the following Table 3). 

We end up having 71 million zoom 18 tiles and 18 million supertiles of zoom 17 tiles 
for all the countries that we needed to run the model inference over. 

Table 3. Populated tiles in zoom 16 were generated using OSM data and WorldPop. 

Country Zoom 16 Tiles Zoom 18 Tiles Zoom 19 Tiles 

Kenya 726,749 11,627,984 2,906,996 

Rwanda 60,846 973,536 243,384 

Sierra Leone 169,095 2,705,520 676,380 

Niger 697,118 11,153,888 2,788,472 

Honduras 233,336 3,733,376 933,344 

Kazakhstan 1,346,330 21,541,280 5,385,320 

Ghana (test) 506,143 8,098,288 2,024,572 

Uzbekistan (test) 705,648 11,290,368 2,822,592 

Total 4,445,265 71,124,240 17,781,060 

4. Results 
The process of developing the tile-based school classifier model followed a stepwise 

process by firstly developing and training the global model and assessing the accuracy of 
generalization based on a dataset from eight countries. The F1 score of the global model 
is 0.85 over the validation dataset after several hyper-parameter tuning. The need for 
higher accuracy scores prompted the development of the regional and the country specific 
models. 

The regional model was trained with country datasets that are geo-physically close 
to each other. For instance, the East African regional model was trained with Kenya and 
Rwanda datasets, and the West African regional model was trained with Niger, Sudan, 
Mali, Chad, and Sierra Leone datasets. The regional models outperformed the global and 
the country-specific models, which indicates that the models were exposed to more 
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diverse school features affirming the fact that the greater variability in the dataset the 
better the models. The F1 scores of the regional models were greater than 0.91 over the 
validation dataset. 

The trained country models performed well with the validation dataset such that 
their F1 scores were above 0.9 except for the Niger country model (0.87). The detailed 
model evaluation metrics, including precision, recall, and F1 scores for each model are 
tabulated in Table 4 below. 

Table 4. Model evaluation metric report for all the tile-based school classifier models. 

MODEL TRAINING  BEST SCORES FROM MODEL EVALUATION 
Honduras 8528 F1_Score: 0.90, Precision: 0.90, Recall: 0.90 

Sierra Leone 15,394 F1_Score: 0.91, Precision: 0.92, Recall: 0.91 
Niger 8195 F1_Score: 0.87, Precision: 0.89, Recall: 0.89 

Rwanda 6411 F1_Score: 0.94, Precision: 0.94, Recall: 0.94 
Kazakhstan 11,993 F1_Score: 0.92, Precision: 0.93, Recall: 0.92 

Kenya 12,200 F1_Score: 0.90, Precision: 0.92, Recall: 0.92 
West Africa 23,589 F1_Score: 0.91, Precision: 0.91, Recall: 0.91 
East Africa 18,611 F1_Score: 0.92, Precision: 0.91, Recall: 0.92 

Global model 62,721 F1_Score: 0.85, Precision: 0.85, Recall: 0.84 

All the country models as well as the regional model performed better than the global 
model over the validation datasets. Part of the reason is that eight countries alone is not 
sufficient to train a global model with greater diversity in school structures and features. 
For a more accurate global model, a dataset from many countries of the world is needed 
to train the model to increase feature variability and enable the model to generalize well 
at a global level. However, despite their varying structures, many schools have 
identifiable overhead signatures that make them possible to detect in high-resolution 
imagery with deep learning techniques. Approximately 18,000 previously unmapped 
schools across five African countries (Kenya, Rwanda, Sierra Leone, Ghana, and Niger), 
were found in satellite imagery with a deep learning classification model. These 18,000 
schools were validated by expert mappers and added to the map. We also added and 
validated nearly 4000 unmapped schools to Kazakhstan and Uzbekistan in Asia, and an 
additional 1100 schools in Honduras. In addition to finding previously unmapped 
schools, the models were able to identify already mapped schools up to 80% depending 
on the country. Figures 11 and 12 show the maps of AI-discovered schools in yellow, 
existing school locations on OSM reconfirmed by the model shown in blue, and original 
school locations used to train the models in red. 



Remote Sens. 2022, 14, 897 16 of 24 
 

 

 
Figure 11. Map showing AI-discovered schools in Sierra Leone and Rwanda. 
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Figure 12. Map showing AI-discovered schools in Honduras and Kazakhstan. 

The detailed findings from tile-based school classifier country models are in the 
following Table 5. 

Table 5. Model inference summary across different countries. 

COUNTRY 
Known 
School 

Total 
Detected  

ML Output 
Validation  

True 
Capture Difference 

Double 
Confirmed Unmapped 

   Yes Un-Reg No     

Kenya 20,422 36,792 17,616 18,582 594 57% 7100 9968 7648 

Rwanda 3207 6510 3669 2726 115 58% 1400 2139 1530 

Niger 1060 4885 1733 1569 1583 79% 1542 151 1582 

Sierra Leone 9784 16,940 5002 8963 2975 75% 703 3730 1272 

Ghana (test) 2943 15,485 6427 8645 413 17% 5768 509 5918 

Kazakhstan 5998 8282 3989 4256 37 61% 1273 2433 1556 

Uzbekistan (test) 3646 10,013 3141 6860 12 29% 2184 894 2247 

Honduras 4265 14,410 1915 12,402 93 43% 876 818 1097 

The column “Known school” presents validated school geolocations that have clear 
school features. The column “Total detected” shows the total number of detected schools 
with the given ML threshold scores. The “ML output validation” indicates after the expert 
mapper’s validation of the ML outputs. The number of confirmed schools “Yes”, 
unrecognized schools “Un-reg”, and “No” schools. The “True capture” column presents 
the percentage of known schools that are correctly predicted by ML model and then 
confirmed by our expert mappers. The higher the percentage means the country ML 
model performed better. 
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“Difference” is the number of schools that ML models did not find but are in “Known 
school”. “Reconfirmed” is the number of schools detected by ML models, validated by the 
expert mappers, and are also in the “Known school”. The Unmapped schools are the 
schools that currently are NOT on the map or in “Known school” but detected by ML 
models and validated by the expert mappers. 

Differences in Model Performances 
Kenya is the only country that has over 20,000 known schools that have been 

validated by expert mappers. Only 6000 schools in Kenya were randomly selected to train 
the Kenya country model. 

It means that there are more than 14,000 known schools left over as “test data” that 
were never exposed to the model. Therefore, Kenya is the perfect country to answer 
questions including: 
o How do regional and country models perform differently? 
o Is it necessarily true to build country-specific models or can we rely on only the 

regional model that is generalized well across countries? 
Figure 13 shows the true positive and negative of the model performance in Kenya 

(on the left); the model was able to separate the two categories well. The ROC curve (on 
the right) for the Kenya country model tells us that when we use the DNN threshold of 
1.0, there will only be a 6% false-positive rate. 

 
Figure 13. True positive, true negative scores, and ROC curve of the Kenyan model 

By plotting the results from the Kenya model, inferences with the Kenya country, 
East African regional and global models, we found that the regional model outperformed 
the country model in that it produced fewer ML-detected schools (Figure 14-blue bar), 
which means fewer false positives. It was able to detect more schools (the red bar) that fell 
under unknown schools. 
- Both country and regional models performed very well even though the models were 

only exposed to a quarter of the available known schools in Kenya. Figure 13 also 
showed that the global model had more false negatives with less true and false 
positives when compared with the country and regional models, respectively. There 
is only the blue bar for the global model in the figure because the model result 
validation has not been done yet due to the lack of man-hours, but we have plans to 
do that as soon we have the capacity. 
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- In the future, model transfer-learning or fine-tuning will be used to train a regional 
model instead of developing country-specific models. 

 
Figure 14. Model performance in Kenya. 

5. Discussion 
In this section, we discuss some of the challenges that were faced in terms of model 

scalability, pros and cons of the AI models, the roadmap for the future work that may 
involve human-in-the-loop and active learning methods. 

5.1. Model Scalability 
To develop global scale school classifier, the scalability context is non-trivial. 
Some of the scalability challenges in developing models that can generalize from 

country to country, urban to rural from diverse school features and millions of image tiles 
were handled from the context of hyper-parameter optimization by exploring variations 
in model architecture, loss functions, regularization, pre-training and post-processing to 
increase the model performance. 

Additionally, data tooling, best practices in model training, and inference speed 
helped to increase the scalability of the models across the globe. Massive data validation 
exercises over geo-diverse landscapes and varying school structures from rural to urban, 
from culture to culture, and nation to nation were important factors that positively 
influenced the model’s generalizability and scalability. The models were trained with 
diverse selected school features to create a generalized model that can search for school-
like building complexes from millions of satellite image tiles across the regions. We also 
made some important contributions around the technical challenges of scaling school 
classifiers in very high-resolution imagery to the country- and continent-wide 
applications. We were able to solve model technical scalability issues by mindfully 
designing the internal data validation, model training on Google Kubernetes Cluster 
Engines (GKE) with Kubeflow, and model inference with our open-sourced tools. We 
have also started working on a roadmap for addressing remaining technical challenges 
around model generalizability especially with the global model which could not be 
generalized as well as the regional and country models. This roadmap includes increasing 
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the global sample training data to encompass diverse school structures from each country 
of the world, more hyperparameter optimization, human-in-the-loop, and active learning 
methods. 

5.2. Comparative Performance of Our Xception Network Model 
We further carried out a performance comparative analysis of our Xception network 

model with other two state-of-the-art deep learning networks, the MobileNet and ResNet 
152 which have been ranked on par with the Xception Network [60]. This exercise became 
essential to scientifically justify our choice of the Xception network model and to ascertain 
the claim from ImageNet [60] literature that Xception was better than the rest in terms of 
performance accuracy. This test was carried out on the Sudan school training dataset of 
over 16,400 image tiles (6400 schools and 10000 non-schools) of 224 × 224 size, and ran on 
the same AzureML GPU configuration over 25 training epochs. 

Though all three networks produced great accuracy as well as their F1 score, 
precision, and recall, our Xception network performed slightly better as shown in Table 
6. This 0.003 improvement in accuracy means a lot to us in terms of the number of false 
positives and false negatives we were able to reduce as compared to using MobileNet and 
RestNet networks. The Xception network reduced the number of false positives from the 
MobileNet model by 15%, that of ResNet by 11%, and the false negative was reduced by 
19% and 14% for MobileNet and ResNet networks, respectively. For humanitarian 
purposes where higher accuracy is paramount [6] and efforts are made to minimize false 
positives and negatives, this is significant. 

Table 6. Xception comparative performance against MobileNet-v2 and ResNet 152. 

Model Architecture F1_Score Precision Recall Overall Accuracy False Positives False Negatives 
Xception 0.955 0.951 0.959 0.945 91 74 

ResNET-152 0.928 0.934 0.922 0.942 102 86 
MobileNet-v2 0.924 0.930 0.918 0.939 107 91 

5.3. AI-Assisted School Mapping Pros and Cons 
AI and ML models are particularly good at recognizing the image features they have 

been exposed to. Schools are like other building infrastructure, and they have their 
primary purpose. They provide functions such as public gatherings, public recreation, 
shelter, and even polling stations. Therefore, schools may have unique features that other 
buildings do not have. From overhead imagery they can show as U, O, I, H shapes, as they 
have basketball courts, playgrounds, swimming pools or a cluster of buildings with same 
roof color. The building size is bigger compared to surrounding residential buildings. AI 
models can be trained to recognize school buildings very well. At the same time, we can 
utilize cloud computing and modern deep learning techniques to speed up model training 
and inference that can scan and search for schools rapidly. However, distinguished school 
features that have been feature engineered to train the models could introduce human 
bias to the model. In the end, the model may be able to recognize schools that are in 
distinguished building complexes, have similar building rooftops, swimming pools, or 
basketball courts, but are really bad at recognizing schools that have smaller building sizes 
and in poorer neighborhoods or even densely populated urban areas. 

A limitation of our approach, therefore, is that it relies on human validators for both 
the training data creation and school validation. As a result, we acknowledge that we 
introduced a bias for schools that follow common patterns and are recognizable from 
space. In the end, the model may be able to recognize schools that are in distinguished 
building complexes, have similar building rooftops, swimming pools, or basketball 
courts, but may perform poorly at recognizing schools that have smaller building sizes, 
are in densely populated urban areas, or are housed in “non-traditional” structures. It is 
reasonable to assume that this bias might disproportionately miss schools that serve 
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poorer neighborhoods or already underrepresented communities. This bias would not 
exist in alternative (and likely more costly) approaches such as field surveys and 
supporting community mapping. 

Using a human-in-the-loop process is critical, especially leveraging people with local 
knowledge about local school features. Such knowledge is harder to transfer to expert 
mappers who may grow up in a different culture and architectural context of schools. We 
engaged in active research and development of human-in-the-loop active learning 
methods that allow non-expert human mappers and AI to work more efficiently together 
and improve the model’s prediction power. By creating greater accessibility to providing 
human input into these models, we hope to increase the diversity of human knowledge 
contributing to these models and reduce sources of bias. An active learning platform that 
allows human–AI to work together and improve the model prediction power is the next 
phase of this study, considering that we have developed all the necessary tooling and 
technology under this phase of the work that will help us to achieve the next goal. 

5.4. Conclusions 
This study aimed at developing rapid and scalable AI models that can deliver 

automated and swift mapping of schools using high resolution satellite imagery at 
country-wide, regional, and even global scales. The study was designed to apply scalable 
deep learning techniques over high-resolution satellite imagery to map schools globally 
with the aim to help accelerate the Giga (UNCEF and ITU) initiative and mission to 
connect every school to the internet and reduce the global digital divide across schools. 

In spite of the varying features of school locations across countries and regions, this 
study proved that there are still yet identifiable overhead signatures common to school 
locations that made it possible to detect schools from high-resolution satellite imagery 
with modern deep learning techniques. 

Furthermore, one of the contributions of this study is also to test the generalizability 
of different DNN models in identifying the presence of these school features from satellite 
image snapshots. For example, we were interested in finding out if the digital signature 
of school locations in Colombia are close enough to those of neighboring countries such 
that a model trained on Colombia data can be used to identify school locations in 
neighboring countries. We tested this by using the model developed in Colombia to detect 
schools in 11 Eastern Caribbean nations including Anguilla, Antigua, Barbuda, British 
Virgin Islands, Dominica, Grenada, The Grenadines, Montserrat, St Kitts and Nevis, St 
Lucia, and St Vincent. The model did not only find already mapped schools in these 
Caribbean nations but was also able to identify previously unmapped schools with more 
than 80% precision and recall. 

The DNN models we developed in this study which are based on the Xception 
architecture produced satisfactory performance for the target use, especially at regional 
and country level inferences. As future work, we plan to improve the global model using 
an object-based (vectorized training dataset instead of image tile) approach. 
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