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Abstract: Pine wood nematode disease is a devastating pine disease that poses a great threat to
forest ecosystems. The use of remote sensing methods can achieve macroscopic and dynamic
detection of this disease; however, the efficiency and accuracy of traditional remote sensing image
recognition methods are not always sufficient for disease detection. Deep convolutional neural
networks (D-CNNs), a technology that has emerged in recent years, have an excellent ability to learn
massive, high-dimensional image features and have been widely studied and applied in classification,
recognition, and detection tasks involving remote sensing images. This paper uses Gaofen-1 (GF-1)
and Gaofen-2 (GF-2) remote sensing images of areas with pine wood nematode disease to construct
a D-CNN sample dataset, and we train five popular models (AlexNet, GoogLeNet, SqueezeNet,
ResNet-18, and VGG16) through transfer learning. Finally, we use the “macroarchitecture combined
with micromodules for joint tuning and improvement” strategy to improve the model structure. The
results show that the transfer learning effect of SqueezeNet on the sample dataset is better than that
of other popular models and that a batch size of 64 and a learning rate of 1 × 10−4 are suitable for
SqueezeNet’s transfer learning on the sample dataset. The improvement of SqueezeNet’s fire module
structure by referring to the Slim module structure can effectively improve the recognition efficiency
of the model, and the accuracy can reach 94.90%. The final improved model can help users accurately
and efficiently conduct remote sensing monitoring of pine wood nematode disease.

Keywords: deep convolutional neural networks; pine wood nematode disease; SqueezeNet; trans-
fer learning

1. Introduction

Pine wood nematode disease is one of the most dangerous forest biological infections
worldwide, and it is a disease that is devastating to pine tree species. Because of its high
infectivity and its high fatality rate, pine wood nematode disease is also called the “cancer”
of pine trees. Pine wood nematodes originated in North America and have spread to other
areas through the timber trade. The disease is currently prevalent in America, Canada, and
Mexico in North America, China, Japan, South Korea, and North Korea in East Asia, and
Portugal in Europe as well as in other countries. Japan has experienced the worst losses due
to pine wood nematode disease. Pine wood nematode disease was reported in Nagasaki
Prefecture in Japan in 1905. In the following decades, pine wood nematode disease spread
to most parts of the country and caused serious economic losses [1]. In 1982, pine wood
nematode disease was first reported in China in Nanjing, Jiangsu Province, and in the
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following decades the disease spread to the surrounding areas. At present, the disease has
spread to high-altitude areas, such as the Qinling Mountains, where it seriously threatens
more than 300,000 km2 of pine forests [2]. Pine wood nematode disease has caused great
losses to China’s forestry ecology and economy. In the 35 years between 1982 and 2017, the
disease killed more than 50 million pine trees, and clear and selective pine forest cutting for
epidemic control was conducted over an area of more than 4667 km2. The related economic
losses amount to tens of billions of dollars, and the epidemic has caused massive damage
to China’s forest resources and ecological environment [3].

The use of remote sensing technology to monitor forest pests offers the advantages of
real-time dynamic monitoring, coverage of a large area, limited susceptibility to environ-
mental interference, and short periods. The use of remote sensing technology to monitor
pine wood nematode disease has recently made some progress. In the past, remote sensing
to monitor pine wood nematode disease was mainly based on spectral histogram analysis
of multispectral images. Kim et al. combined the normalized difference vegetation index
(NDVI) with spectral histogram analysis of IKONOS images to identify areas affected
by pine wood nematode disease [4]. Then, based on on-site spectral observations, the
researchers identified the characteristics of typical bands (green, red, and near-infrared
bands) and constructed spectral characteristic indicators (red-edge parameters, vegetation
indices, and time series characteristics). Determining the relationship between observed
spectral characteristics and plant physiological characteristics, such as chlorophyll content,
transpiration rate, and water content can help detect pine wood nematode disease [5–7].
Huang et al. analyzed the hyperspectral time series characteristics and sensitive charac-
teristics of healthy and susceptible plants, and they reported that the time series of plants
infected with pine wood nematode disease showed large spectral differences, including
a decrease in red-edge spectral reflectance and red-edge blueshift [6]. Multiple spectral
feature values in the near-infrared, red and blue edges are significant hyperspectral features
that indicate the presence of pine wood nematode disease [6]. Xu et al. collected the spectral
characteristics of lodgepole and Masson pines at different susceptibility levels, and they
found that the reflection spectrum curve and spectral characteristic parameters of different
bands in the hyperspectral image can be used to analyze pathogenic mechanism at different
stages, and the relationship model between spectral characteristics and chlorophyll can
provide a reference for remote sensing monitoring of pine wood nematode disease [7]. The
existing studies generally rely only on the spectral characteristics of images as the basis for
the identification of pine wood nematode disease, and few studies have attempted to use
new technological means of analyzing high-resolution satellite remote sensing images to
recognize pine wood nematode disease.

Deep convolutional neural networks (D-CNNs), which have efficient and accurate
image recognition capabilities, have been widely used in computer vision and other fields.
In recent years, D-CNNs have been introduced into the field of remote sensing and used
in remote sensing big data analysis [8,9]. However, the current remote sensing processing
methods based on D-CNNs have most often been applied to land use classification and
feature target recognition [10–12], and only a few studies have addressed forest pest
monitoring and control. Ha et al. used deep learning to process images captured by
unmanned aerial vehicles (UAVs) at low altitudes and to identify infected radish plants.
The CNN obtained an accuracy of 93.3% [13]. Rançon et al. obtained and labelled pictures
of diseased and healthy vine plants, and 91% overall accuracy was obtained using deep
features extracted from the MobileNet network trained on the ImageNet database [14].
The above studies show that the use of deep learning can achieve higher accuracy than
traditional machine learning methods provide. At the same time, the use of deep learning
for pest detection can use pretrained networks without the need to redesign the network
structure. In the monitoring of forest diseases and insect pests based on aerial images,
Sylvain et al. used a D-CNN to identify the health status of trees, and the accuracy
reached 94% [15]. Safonova et al. used D-CNNs to detect Siberian fir trees at different
susceptibility stages based on UAV images and achieved an accuracy of 98.77% in detecting
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susceptible fir trees at different stages [16]. Qiao, Deng et al. used deep learning methods
to classify and detect pine wood nematode disease based on UAV images and achieved
high accuracy [17,18]. Most current studies of forest diseases and insect pests that use
remote sensing technology are based on images obtained by UAVs or aerial imagery. UAV
images have higher image resolution and richer detailed information than satellite images,
making it easy to classify and detect ground objects accurately. Satellite remote sensing
images, which offer large coverage, low cost, and relatively rough spatial resolution, are
not fully utilized.

At present, research on deep learning for satellite remote sensing recognition of pine
wood nematode disease is lacking, especially research that focuses on suitable deep learning
networks and manually labelled samples. This study explores a deep learning model that
is suitable for remote sensing image classification of pine wood nematode disease and
uses China’s Gaofen-1 (GF-1) and Gaofen-2 (GF-2) images of pine wood nematode disease
occurrence areas to construct a D-CNN sample dataset. Based on these samples, five
excellent D-CNN models (AlexNet, GoogLeNet, SqueezeNet, ResNet-18, and VGG16) are
selected for transfer learning, and the model with the best transfer learning effect is chosen
for hyperparametric and structural optimization. The resulting model can accurately
identify pine wood nematode disease. This study constructs a D-CNN model that is
suitable for identifying satellite remote sensing images of pine wood nematode disease
occurrence areas and provides technical support for the monitoring, prevention, and control
of pine wood nematode disease.

2. Materials and Methods
2.1. Study Area

The spatial range of the remote sensing images used in this study is 41.6–42.2◦ N,
123.5–124.8◦ E (Figure 1), covering Shenyang City District, Tieling City District, Fushun
City District, Kaiyuan City, Tieling County, Fushun County, Xinbin Manchu Autonomous
County, Qingyuan Manchu Autonomous County, Liaoning Province, China. The research
area is rich in vegetation resources and is dominated by mountain forests, such as those of
the Daxi, Tiebei, and Nantianmen Mountains. The genus Pinus has a wide range of distri-
bution and is present in large numbers. Among the species in the area, Pinus densiflora
Sieb. et Zucc., Pinus tabuliformis Carr., Pinus thunbergii Parl., and other pine tree species
are hosts to pine wood nematodes. The study area has a northern temperate seasonal
continental climate with cold, dry winters and warm, rainy summers, and its altitude
ranges from 5.3 m to 1346.7 m. The average annual temperature is approximately 6–10 ◦C.
The maximum temperature in August can reach 38 ◦C, and the minimum temperature
in January can be below −35 ◦C. The average daily minimum temperature is above 0 ◦C
beginning in April, and the average daily minimum temperature is below 0 ◦C beginning
in November. An average of 600 to 850 mm of rainfall occurs yearly, and there are approx-
imately 2500 h of sunshine annually, with longer sunshine hours in May and June and
shorter sunshine hours in November and December. The annual average wind speed is
4.5 m per second. Relevant studies have shown that pine wood nematodes have a strong
ability to adapt to temperatures above 0 ◦C [2]. The range of latitude within the study area
is also suitable for pine wood nematodes, and the study area provides suitable breeding
conditions for pine wood nematodes [2]. The studied area is a key area for the detection,
prevention, and control of pine wood nematode disease. In recent years, the incidence
of pine wood nematode disease in Fushun, Dandong, and Liaoning Province has been
expanding, the degree of damage caused by these pests has been increasing, and massive
economic losses have occurred [19].
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Figure 1. Liaoning Province, China. 

  

Figure 1. Liaoning Province, China.

2.2. High-Resolution Remote Sensing Image Data

This study used 99 GF-1 and 50 GF-2 images with 1A product grades. The images
were obtained from May to October of each year from 2013 to 2017. Pine wood nema-
tode disease has been reported to occur in many cities and counties in Liaoning. The
images from 2015–2017 provided information on the susceptible area, and the images from
2013–2014 provided reference information for normal forestland. High-spatial-resolution
satellite images with a wide imaging range and short revisit period have advantages in
forestry remote sensing applications. Such images have been widely used in forest resource
monitoring and forest information extraction research, and can be used effectively to detect
dynamic changes in forestland and vegetation cover [20,21]. The GF-1 images were ob-
tained using 2 panchromatic/multispectral (PMS) cameras with spatial resolutions of 2 m
for the panchromatic bands and 8 m for the multispectral bands and a width greater than
69 km. The multispectrum contains 4 bands (blue, green, red, and near-infrared bands),
and the revisit period is only 4 days; the system thus integrates the advantages of high
spatial resolution and high temporal resolution and can accurately reflect the spatial texture
characteristics of the target. The GF-2 images were obtained using two PMS cameras with
a spatial resolution of 1 m panchromatic bands/4 m multispectrum at a width of 45 km.
The multispectral bands are the same as those of the GF-1 system and the revisit period is
5 days, further expanding the spatial resolution to the submeter level while maintaining
excellent time resolution. The width reaches the highest level among international satellites
with submeter resolution.

To build a deep learning model that is suitable for remote sensing image classification
of pine wood nematode disease, we mainly go through three steps: dataset construction,
transfer learning, and model optimization (Figure 2).
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Figure 2. Flow diagram of experiment. Figure 2. Flow diagram of experiment.

2.3. Construction of a Manually Annotated Sample Dataset

The sample dataset is the basis for building the D-CNN. The D-CNN iteratively learns
a large number of samples and uses that information to adjust the weight parameters of
each neuron to achieve the extraction and recognition of multidimensional image features.
The sample dataset acts directly on the parameters of the D-CNN, which has a profound
impact on the recognition performed by the model.

We constructed the sample dataset in seven steps, including image selection, image
fusion, band combinations, visual interpretation, sample cutting, Jeffries–Matusita distance
separability calculation, sample balance, and augmentation. First, 76 remote sensing images
with low cloud cover were selected from among 149 remote sensing images. To obtain re-
mote sensing images with high spatial resolution and containing multispectral information
as the basis for constructing the samples, the multispectral bands and the panchromatic
bands of the remote sensing images were merged using the NNDiffuse pan sharpening
method. The use of a combination of bands highlights the spectral characteristics of the
vegetation disturbed by pine wood nematode disease. A large number of studies have
confirmed that the red and green bands are very sensitive to color and to physiological
changes caused by pine wood nematode disease. The red–green ratio index (RGRI = R/G)
was calculated as one of the discriminant spectra. The near-infrared band is the most
sensitive to changes caused by pine wood nematode disease, and the spectral difference
between diseased and healthy plants is the largest in this range [22]. The blue band can
be used to increase the dimensionality of the spectral features. Therefore, RGRI, the near-
infrared band, and the blue band are used as the input bands of the R, G, and B channels to
synthesize the base image used to label the sample.

In the visual interpretation of the preprocessed remote sensing images based on the
field survey data provided by the Forest and Grassland Pest Control Station of the State
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Forestry and Grassland Administration of China (http://www.forestpest.org/ (accessed
on 20 December 2018)), the spectral, textural, and other characteristics of the images ob-
tained from each area in the corresponding periods are compared and evaluated for the
presence of features characteristic of pine wood nematode disease, and the visual inter-
pretation characteristics of the pine wood nematode disease-affected area are determined
(Figure 3). Plants in areas affected by pine wood nematode disease often present dark
blue-green/blue-violet/dark green discolored areas, needles that show wilting and a clear
granular texture without a large amount of shedding, and a clustered spatial distribution.
Healthy forests are mostly characterized by green/light green areas with dense canopies
and no obvious texture.
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Figure 3. Examples of the samples. The first row shows images of a pine wood nematode disease-
affected area. In the second row, from left to right, are images of healthy forestland, agricultural land,
construction land, and water.

The samples are labelled according to their visual interpretation features. ENVI
is used for precise positioning and cutting of the samples. The uniform sample size is
200 × 200 × 3 pixels, and all of the sample images are in TIFF/GeoTIFF format. After classi-
fication and labelling of each image, the labelled samples are divided into positive samples
and negative samples. Positive samples represent woodlands infected with pine wood
nematode disease and provide a direct reference for the identification and classification of
research targets. They were generated from images obtained during the period of onset of
pine wood nematode disease (2015–2017) in the study area. The negative samples present a
collection of noninfectious surface features, including healthy forestland, agricultural land,
construction land, and water (Figure 3).

To avoid training errors caused by the phenomenon of “different bodies with the same
spectrum” and “the same bodies with different spectra” between high-resolution images
in susceptible forest land, healthy forest land, and agricultural land, this study uses the
above three types of samples from the same image data source to calculate the separability
of the Jeffries–Matusita (JM) distance for each image, and the result is used for separability
testing and sample optimization [23]. To minimize the feature learning bias that may result
from the use of imbalanced data, this research uses the label shuffle algorithm proposed by
Hikvision as the sample category balancing strategy [24]. The labelled samples are flipped
horizontally and vertically to increase the sample size 3-fold and thereby obtain the final
sample size. When training and verifying samples, random image flipping is performed to
improve the generalizability of the model.

According to the network training requirements, the samples are further divided into
a training/validation dataset and a test dataset. A total of 3570 samples were used for
training and testing. Of these, 3030 samples were used for model training and validation,

http://www.forestpest.org/
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and 540 samples were used for model testing. Of the 3030 training/validation samples,
2424 samples were used for training, and 606 samples were used for validation.

2.4. Transfer Learning of D-CNN

This study implements the transfer learning of CNNs. Five commonly used mod-
els pretrained on ImageNet, including AlexNet [25], GoogLeNet [26], SqueezeNet [27],
ResNet-18 [28], and VGG16 [29], are selected for training. These five models exhibit high
accuracy in many tasks. We carried out the experiment with MATLAB software, and the
training environment used in this study is: Windows10 64 bit operating system, 8 GB
RAM, i7-5500U quad-core processor, and NVIDIA GeForce920M was used to accelerate
the training of the models. The commonly used hyperparameters for transfer learning are
set as follows: the batch size is 64, the learning rate is 0.001, and a total of 20 epochs of
training are performed. To reduce memory usage during VGG16 model training, training
is performed under the conditions of small sample size, small batch size (16), and a high
learning rate (0.1). According to (i) the training time of the model, (ii) the classification
accuracy result of the validation data, (iii) the convergence speed (runtime) of the model,
and (iv) the stability of the accuracy and loss after convergence, we compare the effects
of these pretrained network models on the transfer learning of the sample dataset and
determine the best model for subsequent research.

2.5. Training Parameter Optimization of the Deep Convolution Neural Network

Not only the structure of the D-CNN but also the hyperparameters set in the training
model have a direct impact on the transfer learning effect of the network. The initial
training parameters that have a decisive effect on the feature learning performance are the
batch size and the learning rate.

Increasing the batch size within a reasonable range can improve the efficiency of
hardware memory usage, reduce the number of parameter updates (iterations) during
each epoch, speed up processing of the same amount of data, improve the accuracy of
the stochastic gradient descent direction, and stabilize the model training process. If the
batch size exceeds a reasonable range, the full batch learning strategy may, in extreme cases,
lead to insufficient hardware memory capacity and slow changes in the direction of the
stochastic gradient descent, resulting in slow model training.

A learning rate that is too high will cause the model to fall too rapidly and thereby fail
to arrive at the solution needed to minimize the loss function, and this will limit or even
reduce the model’s classification accuracy. In contrast, a learning rate that is too low will
cause the correction of the weight parameter to be slow, and this may make the model fall
into the local optimal solution of the loss function instead of the global optimal solution;
this not only reduces the network training speed but also fails to achieve appropriate
model accuracy.

In this study, the batch size is set to 32, 64, 128, and 256, values that are commonly
used in previous research and applications, and the transfer training effects of suitable
models under these 4 batch size conditions are compared. To compare the transfer training
effects of suitable models under different learning rates, the learning rate parameter is set
to a constant learning rate series and to a variable learning rate. The constant learning
rate series includes 1e−4, 5e−4, 1e−3, 3e−3, and 5e−3, the initial value of the variable
learning rate is 1e−3, the drop coefficient is 0.5, and the variable learning rate changes
every 5 training epochs.

2.6. Structure Optimization of the Deep Convolution Neural Network

The diversity of the structural design of D-CNNs and the complex interactions between
the various layers of the network provide room for improving the network model, making it
possible for the existing model to achieve optimal training accuracy and efficiency through
structural adjustments. This study adopts the strategy of “macroarchitecture combined
with a micromodule for joint tuning and improvement” to improve the best model obtained



Remote Sens. 2022, 14, 913 8 of 16

by transfer learning. The macroarchitecture of the model is improved using two model
structure optimization methods: one method is based on a simple bypass connection
structure [27], and the other is based on a Slim module structure [30]. The micromodules
are adjusted by replacing the activation functions, introducing a batch normalization (BN)
layer and a dropout layer and reducing the network structure. For model optimization, we
compare the learning effect of each adjustment strategy using the sample dataset.

The improvement based on the simple bypass connection structure involves adding
shortcut connections to the D-CNN that skip one or more layers and one or more mod-
ules [27,28]. When the network deepens, the use of shortcut connections can partially solve
the network degradation problem and alleviate the disappearing gradient problem during
back propagation.

Based on the improvement of the Slim module structure, one or more modules in the
model are replaced with a Slim module. The Slim module introduces the idea of group
convolutions and singular bottlenecks. The group convolution is for the channel: the
input channel is divided into multiple groups so that the convolutions reduce the number
of parameters and the number of calculations. The singular bottleneck is a nonlinear
transformation that is preserved only once in the structure of the bottleneck, thereby
improving the classification accuracy [30].

The input layer of the proposed network follows the squeezenet, with the input size
of 227 × 227 × 3 and zero-center normalization. The output layer is the softmax layer. It
per-forms the classification by respectively calculating the probability of five categories
(pine nematode disease-affected area, healthy forest, agricultural land, construction land,
and water) of each feature map.

2.7. Evaluation of the Recognition Effect

This study uses evaluation indicators that are widely used in existing studies [31],
namely, overall accuracy (OA), recall (true positive rate, TPR), and false alarm rate (false
positive rate, FPR), to evaluate the recognition effect of the improved D-CNN model
on the test samples. In addition, considering that pine wood nematode disease-affected
areas and healthy forestlands are easily confused, the inter-forestland TPR (TPRF) and the
inter-forestland FPR (FPRF) indicators for the two classifications are also calculated. The
formulas used to calculate the evaluation indices are as follows:

OA =
TP + TN

TP + TN + FP + FN
, (1)

TPR =
TP

TP + FN
, (2)

FPR =
FP

FP + TN
, (3)

TPRF =
TP

TP + FNforest
, (4)

FPRF =
FPforest

FPforest + TNforest
, (5)

In the formulas, OA represents the ratio of correctly identified samples to total sam-
ples, TP represents the number of correctly identified samples from susceptible areas, FN
represents the number of samples from susceptible areas that were incorrectly identified as
nonsusceptible areas, FP represents the number of samples from nonsusceptible areas that
were incorrectly identified as susceptible areas, and TN represents the number of correctly
identified samples from nonsusceptible areas. FNforest represents the number of samples
from susceptible areas that were incorrectly identified as healthy forestlands, FPforest
represents the number of samples from healthy forestlands that were incorrectly identified
as susceptible areas, and TNforest represents the number of correctly identified samples
from healthy forestlands. The TPR represents the accuracy of samples from pine wood
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nematode disease-affected areas identified by the network model; the FPR represents the
false positive rate of samples from nonsusceptible areas identified by the network model.
The TPRF and FPRF are similar to the TPR and FPR, respectively, mainly reflecting the
correct identification of positive samples and the misclassification of negative samples
between forestlands. In general, the larger the OA, TPR, and TPRF are, the smaller the
FPR and FPRF are and the better is the model’s ability to recognize pine wood nematode
disease-affected areas.

3. Results
3.1. Transfer Learning of D-CNN

Research has shown that SqueezeNet is the most suitable model for automatically
identifying pine wood nematode disease-affected areas. The model achieved a good balance
between training time and classification accuracy (Table 1). SqueezeNet’s training time and
verification sample accuracy are better than those of VGG16. Compared with GoogLeNet,
SqueezeNet needs less than 1/2 of the training time to exceed the former’s verification
sample accuracy. Compared with AlexNet, SqueezeNet increases the classification accuracy
by 3.25% at the cost of only 3 min of training time. In contrast, compared to ResNet-18,
SqueezeNet’s classification accuracy is only 0.32% lower, but the training time required
by SqueezeNet is nearly 42 min less than that required by ResNet-18. In addition, the
convergence speed of the SqueezeNet training process is better than that of the other
networks, and its recognition accuracy of the verification samples is closest to that of the
training samples.

Table 1. Comparison of the training effects of the different network models.

AlexNet VGG16 GoogLeNet ResNet-18 SqueezeNet

Training time 27 min, 54 s 282 min, 29 s 67 min, 21 s 72 min, 29 s 30 min, 46 s

Validation sample accuracy 95.45% 47.57% 98.05% 99.02% 98.70%

Convergence rate (time) 3 epochs 4 epochs 2 epochs 1 epoch 1 epoch

Stability after convergence Stable Fluctuating Stable Very stable Very stable

3.2. Suitable Training Parameters

Comparing the transfer training effects of SqueezeNet under different batch sizes
and learning rates, it is found that a batch size of 64 is optimal for SqueezeNet’s transfer
learning on the sample dataset. A learning rate of 1 × 10−4 is appropriate for SqueezeNet
to perform transfer learning on the sample dataset.

From the comparison results (Table 2), it can be inferred that a batch size of 64 is
the appropriate batch size for SqueezeNet to perform transfer learning on the sample
dataset. First, a batch size of 64 will be more representative of the samples during each
parameter update than a batch size of 32, making the direction of the stochastic gradient
descent more accurate; the convergence speed of the model can thereby be accelerated or
maintained at a high-speed level, with less fluctuation occurring during training. Second,
increasing the batch size to 64 reduces the number of iterations in each epoch and enables
the model to make full use of the amount of sample information to achieve a balance
between the parameter update frequency and the accuracy of the gradient descent direction;
this improves the classification accuracy and achieves a balance between the number of
iterations and the amount of learning each time. The time required for training is shortened
by nearly 1.5 min. Therefore, it can be concluded that a batch size of 64 is reasonable.
Comparing the effect of increasing the batch size to 128 or 256, it can be found that these
excessive increases reduce the number of parameter updates. In addition, the memory
occupancy and computation time increase, resulting in a degradation of convergence speed
and training duration.
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Table 2. SqueezeNet training effects of different batch sizes.

32 64 128 256

Training time 32 min, 11 s 30 min, 46 s 32 min, 55 s 58 min, 9 s

Validation sample accuracy 98.05% 98.70% 98.86% 99.19%

Convergence rate (time) 1 epoch 1 epoch 2 epochs 3 epochs

Stability after convergence Stable Very stable Very stable Stable

From the comparison results (Table 3), it can be inferred that a learning rate of 1 × 10−4

is the appropriate learning rate for SqueezeNet to perform transfer learning on the sample
dataset. First, when a small learning rate is used as the initial parameter, as is the case in
this study, differences in the learning rates did not lead to significant changes in the training
time; all of the training times are close to 30 min and 40 s, indicating that the parameters set
for each training process do not fall into the local optimum solution that causes the gradient
to decrease slowly. Second, comparison of the learning rates over the commonly used range
of 5 × 10−3 to 1 × 10−3 shows that a reasonable decrease in the learning rate increases
the model classification accuracy, accelerates the convergence speed, and enhances the
stability. This phenomenon may arise from the fact that the features of the sample dataset
are complex, and the network needs to realize fine learning for the features through a small
learning rate within a reasonable range. Furthermore, reducing the learning rate again by a
constant or variable amount can still improve the training effect of the model. The overall
effect of the model is best when the learning rate is 1 × 10−4, the model accuracy converges
quickly, the validation sample accuracy reaches nearly 100%, and the model remains stable
during the short training process.

Table 3. Effect of different learning rates on SqueezeNet training.

5 × 10−3 3 × 10−3 1 × 10−3 5 × 10−4 1 × 10−4 Piecewise

Training time 30 min, 48 s 30 min, 39 s 30 min, 46 s 30 min, 46 s 30 min, 40 s 30 min, 39 s

Validation sample accuracy 57.07% 94.80% 98.70% 99.67% 99.84% 98.86%

Convergence rate (time) 9 epochs 7 epochs 1 epoch 1 epoch 1 epoch 1 epoch

Stability after convergence Greatly
fluctuating Fluctuating Stable Stable Stable Stable

3.3. Structure Optimization of SqueezeNet

Simple bypass connections are added to the network, and microscopic modules, such
as the replacement activation function are adjusted to train the model using the appropriate
initial training parameters obtained in the previous section.

Comparing the training results for each tuning strategy (Table 4), based on the simple
bypass connection structure condition, the best improved model can be obtained by the
following adjustments (Figure 4): the BN layer is introduced into Fire8 and Fire9, an
additional dropout layer is introduced, Fire3 and Fire5 are reduced, and a rectified linear
unit (ReLU) function is selected as the activation function. Through this adjustment strategy,
the accuracy of the model with respect to the validation samples reaches 97.89%. Although
the accuracy of the adjusted model is not the highest, its training time is 12 min and 29 s
less than the adjustment strategy with the highest accuracy. Therefore, the best improved
model based on the simple bypass connection architecture is chosen as a suitable improved
model for subsequent comparative analysis.



Remote Sens. 2022, 14, 913 11 of 16

Table 4. Comparison of the effects of individual tuning strategies based on a simple bypass connec-
tion.

Strategies Training Time Validation Sample
Accuracy

Convergence
Rate (Time)

Stability after
Convergence

ReLU 42 min, 28 s 71.38% 2 epochs Greatly
fluctuating

Leaky ReLU 43 min, 24 s 93.50% 14 epochs Fluctuating

ELU 59 min,6 s 92.20% 10 epochs Fluctuating

tanh 38 min,44 s 92.36% 7 epochs Greatly
fluctuating

A + ReLU 42 min, 15 s 96.91% 3 epochs Fluctuating

A + Leaky ReLU 43 min, 41 s 98.54% 3 epochs Stable

A + ELU 59 min,19 s 96.59% 2 epochs Fluctuating

A + tanh 39 min,19 s 96.91% 1 epoch Stable

A + B + ReLU 31 min, 9 s 97.24% 3 epochs Fluctuating

A + B + Leaky
ReLU 32 min, 7 s 96.26% 3 epochs Fluctuating

A + B + ELU 43 min, 16 s 95.12% 2 epochs Fluctuating

A + B +tanh 30 min, 47 s 96.91% 1 epoch Fluctuating

A + B + C + ReLU 31 min, 12 s 97.89% 4 epochs Stable

A + B + C + tanh 30 min, 25 s 94.15% 1 epoch Stable
Note: A, B, and C in the table represent different adjustment strategies. A represents the introduction of a BN
layer into Fire8 and Fire9, B represents the removal of Fire3 and Fire5, and C represents the introduction of a
dropout layer to the model.
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Unlike simple bypass connections, which improve the cascading mode between
modules, the Slim module implements another macrostructure improvement mode of
SqueezeNet and improves the network module organization. Based on the experience
gained through the previous model adjustment process, this study uses an improved
structure of SqueezeNet based on the Slim module structure as a suitable improvement
model. The specific adjustments are as follows(Figure 5): (1) introduce the idea of the
bottleneck convolution structure in the Slim module and reduce the activation layer, re-
duce the convolution operation parameters, reduce the nonlinear calculation amount, and
improve the network training speed; (2) reduce redundant convolutional layers, retain
the two complete Slim module structures (Slim8 and Slim9) at the end of the model, and
reduce Slim3, Slim5, and Slim7; (3) add the BN layer to the last two Slim modules to reduce
the model’s dependence on the initial parameters and improve the model training speed;
and (4) introduce an additional dropout layer in Slim8 to improve the generalizability of
the model.
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Comparing the training effects for the original SqueezeNet model, the improved model
based on the simple bypass connection structure, and the improved model based on the
Slim module structure, it is found that compared with the training results obtained for
the original SqueezeNet model (Table 5), the improvement in the module cascading mode
through the simple bypass connection did not obviously improve the training effect of the
network, but the convergence speed and the stability of the model decreased significantly.
The improvement in the model based on the Slim module structure has the advantage of
shortening the training time, and the accuracy, convergence speed, and stability of this
model are basically equivalent to that of the original SqueezeNet model. This structure
has a training time that is faster than that of SqueezeNet by nearly 8 min, equivalent to an
approximately 25% increase in efficiency.
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Table 5. Comparison of effects before and after improvement.

Original SqueezeNet Improved Model Based on the
Simple Bypass Connections

Improved Model Based on the
Slim Module Structure

Training time 30 min, 40 s 31 min, 12 s 22 min, 59 s

Validation sample accuracy 99.84% 97.89% 96.59%

Convergence rate (time) 1 epoch 4 epochs 2 epochs

Stability after convergence Very stable Fluctuating Stable

Test data processing time 11.75 s 11.21 s 9.76 s

OA 96.68% 91.93% 94.90%

TPR 99.42% 94.74% 95.91%

FPR 4.39% 6.59% 1.80%

TPRF 99.42% 95.58% 96.76%

FPRF 10.71% 18.03% 4.69%

Comparison of the classification accuracy of the test samples between each improved
model and the original model (Table 5) showed that both improved methods shorten the
classification processing time of the same number of samples; this is more obvious for the
improved network based on the Slim module structure, in which the classification time is
shortened by 3.2 s. After the improvement, the overall classification accuracy of the model is
slightly reduced, but compared with the original model, the TPR and FPR of the improved
model based on the Slim module structure are reduced; in particular, the FPR is significantly
reduced to 1.80%. When considering only the classification accuracy between forestland
types, the improved model based on the Slim module structure achieves a significant
decrease in the FPRF (6.02%) at a smaller accuracy cost (1.78%). The performance of the
improved model regarding avoiding misclassifications of healthy forestland is even better.

Compared with the original SqueezeNet model, the improved model based on the
Slim module structure has higher training and classification efficiency, good classification
accuracy, and a more balanced distribution of the accuracy and FPR of the test sample. It
can sensitively identify diseased areas and reduce false alarms and is consistent with actual
application requirements. Therefore, in this study, this model was selected for use in the
image classification of areas in which pine wood nematode disease occurs.

4. Discussion

This study mainly explored the method and effect of using D-CNN technology to
identify pine wood nematode disease-affected areas using high-spatial-resolution satellite
remote sensing images. A sample dataset is constructed based on GF remote sensing
images of areas in which pine wood nematode disease is present. Using five commonly
used CNN models for transfer learning, SqueezeNet is found to be the best model for
transfer learning of the sample dataset. The training parameters of SqueezeNet are then
optimized, and it is found that a batch size of 64 and a learning rate of 1 e−4 are suitable.
Then, using the strategy of “macroarchitecture combined with micromodule for joint tuning
and improvement” to optimize the SqueezeNet structure, it is found that an improved
model based on the Slim module structure has the best accuracy for identifying pine wood
nematode disease occurrence areas. The improved model can be used to identify areas
susceptible to pine wood nematode disease and provides an important technical method
for the monitoring and control of pine wood nematode disease.

Although some studies have shown that conventional image processing techniques can
accurately identify trees infected with pine nematode disease [32,33], such identification has
two basic requirements. The first is the need for a large amount of data, including ground
survey data, forest cover data, satellite remote sensing data, airborne aerial photography
data, and other types of data, from multiple sources. Second, airborne images with a
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resolution of 20 cm or higher are needed, and even satellite images with a resolution of
0.5 m cannot meet the requirements for identification of areas affected by the disease. The
cost of traditional technology is very high and this limits its scope of application. A few
previous studies [16–18,34,35] have applied deep learning techniques to remote sensing
images to detect and identify forest pests. In these studies, deep learning technology is
basically applied to UAV remote sensing images to enable the identification, classification,
and detection of damaged trees; for this purpose, airborne images of 20 cm or higher
resolution are needed, and no studies based on high-resolution satellite remote sensing
imagery have been performed. Based on UAV images, Deng et al. used the improved
faster region convolutional neural network method to detect trees killed by pine wood
nematode disease, and the detection accuracy reached approximately 90% [18]. Safonova
et al. used a D-CNN based on UAV images to detect fir trees in different susceptible stages,
and the detection accuracy of fir in some stages reached 98.77% [16]. UAV images have
higher resolution and more richly detailed information than high-resolution satellite remote
sensing images and can be used to classify and detect objects more accurately. However,
high-resolution satellite remote sensing images have the advantages of large coverage,
wide monitoring area, richness of time-series information, and low cost, and they can
therefore be applied over large areas. This study, which is based on high-resolution satellite
remote sensing images, uses the improved SqueezeNet model based on the Slim module
structure to classify the test samples with an accuracy of 94.90%; thus, it can better identify
and classify images of areas in which pine wood nematode disease is present than the
comparison methods.

In many cases, when we use deep learning technology for classification and recognition
tasks, we do not create a new D-CNN model but select existing network models that
have strong feature extraction ability, high classification accuracy, and pretraining for
transfer learning. Based on the powerful ability of the existing weighting parameters in
the pretrained network to extract rich features from natural images and the basic features
common among samples from different datasets, the network model can be adapted to new
visual tasks with minimal weight readjustment. However, different network models employ
different design philosophies, model structures, and weighting parameters, and these
differences have different effects on the classification and recognition of new datasets. In
this study, we use five popular pretrained models with strong feature extraction capabilities,
namely, AlexNet, GoogLeNet, SqueezeNet, ResNet-18, and VGG16, for transfer learning on
sample datasets to find the most appropriate network model for our task.

D-CNN models have much room for design optimization. A number of scholars have
proposed excellent model optimization strategies, such as the use of a 1 × 1 convolution
kernel in GoogLeNet to reduce the number of parameters and the use of a residual structure
to solve the network degradation problem in ResNet. SqueezeNet uses fire modules and
global average pooling to replace the fully connected layers and thus to compress the
parameters significantly. At the same time, it retains large feature maps before global
average pooling, thereby preserving more information and improving the classification
accuracy of the model. This study optimizes SqueezeNet using improvements based on a
simple bypass connection structure and improvements based on the Slim module structure.
The training speed of the improved method based on the Slim module structure is faster
than that of the model based on a simple bypass connection; this is directly related to
the former’s use of the group convolution strategy to reduce the number of weighting
parameters and operations, and the reduction in the number of weighting parameters
does not have a significant impact on the accuracy of identification of areas in which pine
wood nematode disease is present. In addition, the optimization strategies of replacing
the activation function, introducing a BN layer, reducing the number of modules, and
introducing a dropout layer were conducted in a step-by-step manner. The results show
that these methods are very helpful in improving the performance of the network model in
terms of both speed and accuracy. Introducing a BN layer can improve gradient dispersion
and thus improve the training accuracy; reducing the number of modules can remove
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redundant layers and thus speed up network training, and introducing a dropout layer can
prevent network overfitting in some structures, thereby improving generalizability.

In this study, deep learning technology was applied to the classification of pine wood
nematode disease satellite remote sensing images, and good results were achieved with
an accuracy of 94.90%. However, some aspects of this work need to be improved and
expanded. In this study, only GF-1 and GF-2 images were used in the construction of the
datasets. The use of only a few data types limits the scope of application of the trained
network model. In addition, this study used D-CNN to identify and classify satellite
remote sensing images of pine wood nematode disease occurrence areas, but it did not
attempt to detect dead wood or to study how factors, such as the age of the trees and the
characteristics of the terrain affect the results. Other causes, such as drought, can also kill
pine trees, combined with ground investigation, the error can be limited to an acceptable
range. These areas of research are key areas in which research will be conducted next.

5. Conclusions

Satellite remote sensing image processing methods based on deep learning have
seldom been applied for the detection of forest pests and diseases, especially pine wood
nematode disease. In this paper, through transfer learning of five commonly used D-
CNN models and structural parameter adjustment, an improved model based on the
Slim module structure is obtained, and the classification accuracy of the test samples
reaches 94.90%. The experimental results show that the improved model based on the Slim
module structure can obtain good results in identifying and classifying remote sensing
images of pine wood nematode disease-affected areas and that it can achieve dynamic
macroscopic, accurate, and efficient monitoring of pine wood nematode disease-affected
areas. Information and decision support should be provided for the monitoring and control
of pine wood nematode disease, and ecological and economic losses should be reduced.
This study also provides a reference for the application of D-CNN technology to forest
disturbance and forest resource monitoring.
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