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Abstract: Maps can help governments in infrastructure development and emergency rescue opera-
tions around the world. Using adversarial learning to generate maps from remote sensing images
is an emerging field. As we now know, the urban construction styles of different cities are diverse.
The current translation methods for remote sensing image-to-map tasks only work on the specific
regions with similar styles and structures to the training set and perform poorly on previously
unseen areas. We argue that this greatly limits their use. In this work, we intend to seek a remote
sensing image-to-map translation model that approaches the challenge of generating maps for the
remote sensing images of unseen areas. Our remote sensing image-to-map translation model (RSMT)
achieves universal and general applicability to generate maps over multiple regions by combining
adversarial deep transfer training schemes with novel attention-based network designs. Extracting
the content and style latent features from remote sensing images and a series of maps, respectively,
RSMT generalizes a pattern applied to the remote sensing images of new areas. Meanwhile, we
introduce feature map loss and map consistency loss to reinforce generated maps’ precision and
geometry similarity. We critically analyze qualitative and quantitative results using widely adopted
evaluation metrics through extensive validation and comparisons with previous remote sensing
image-to-map approaches. The results of experiment indicate that RSMT can translate remote sensing
images to maps better than several state-of-the-art methods.

Keywords: map translation; adversarial transfer learning; remote sensing image; attention mechanism

1. Introduction

Using remote sensing images to generate maps enables people to understand the
natural and cultural elements of the world entirely. With significant progress in remote
sensing combined with deep learning methods, automatically generating maps from remote
sensing images has become promising in the geographic information field. Traditional
map-making methods are time consuming, especially for emergency scenarios such as fire
disasters, earthquakes, and terrorist attacks. Automated map generation methods can trans-
late remote sensing images to maps rapidly, unlike man-made cartography. Automated
map generation cannot replace traditional map-making methods completely nowadays,
since it only conducts style transferring for remote sensing images to maps rather than map
vectorization, but it plays a critical role in emergency geographic services.

In essence, generating maps from remote sensing images is deemed an image-to-image
translation task, which learns to map an image in a specific domain to an analogous image
in a different domain. The current image-to-image translation methods such as Gc-GAN [1],
CycleGAN [2] and MapGen-GAN [3] can translate remote sensing images to maps for a
specific area. However, it is well known that the style of urban construction infrastructure
varies greatly in different regions. In some metropolises of China, high-rise office buildings
and apartments are relatively typical and dense, while in the United States, the majority
of the population live in single-family houses with private gardens. Specifically, if we
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train an image translation model (such as MapGenGAN [3]) to generate maps of some
areas in Beijing, we should use remote sensing images and maps of the areas in or around
Beijing as the training set. If we use a well-trained translator (MapGen-GAN) that adopts
Beijing images as training data to generate maps of Los Angeles (LA), the results will be
distorted and blurred, as illustrated in Figure 1. Meanwhile, we adopted a well-trained
MapGen-GAN using Los Angeles datasets as the training set to generate maps for areas
in Beijing, and the comparison results are shown in Figure 2, from which we can draw
a similar conclusion. Apparently, the remote sensing image-to-map translation model
trained with data from one region does not perform well in another region with a different
style. General one-to-one mapping image-to-image translation models for map generation
are limited by cognate training and testing datasets. They cannot learn the capability to
generalize an unseen class based on prior knowledge. If we use both Beijing and Los
Angeles datasets as training sets, the model may be confused because of the mixed inputs.
Therefore, designing a generalizable translation model that can transfer the mapping from
source class to target class is a challenging task. The source class we use in this paper
contains several cities’ remote sensing images (RS class) and corresponding maps (Map
class), which refers to the training set. The target class comprises a few of unseen cities’
remote sensing images and maps, indicating the testing set.

(a) (b) (c) (d)

Figure 1. Comparison of output maps generated by Los Angeles-dataset-trained MapGen-GAN and
Beijing-dataset-trained MapGen-GAN testing on Los Angeles datasets.(a) Remote sensing image
of Los Angeles(LA). (b) Man-made Google Map of Los Angeles. (c) LA map generated by trained
MapGen-GAN using LA training set. (d) LA map generated by trained MapGen-GAN using Beijing
training set.

(a) (b) (c) (d)

Figure 2. Comparison of output maps generated by Los Angeles-dataset-trained and Beijing-dataset-
trained MapGen-GAN testing on Beijing datasets. (a) Remote sensing image of Beijing. (b) Man-made
Google Map of Beijing. (c) Beijing map generated by trained MapGen-GAN using Beijing training set.
(d) Beijing map generated by trained MapGen-GAN using LA training set.

In recent years, adversarial deep transfer learning has thrived with good effectiveness
and strong practicability. Deep transfer learning based on the adversarial mechanism aims
to find a representation suitable for both the source class and target class. As an attempt
to train a map translation model that can generalize the mapping to the unseen target
class, we seek a GAN (generative adversarial network)-based remote sensing image-to-
map translation framework under the inspiration of transfer learning methods [4,5]. The
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map translation model aims to learn a strong extensible applicability from transforming
remote sensing images to maps. Furthermore, in the application of remote sensing image-
to-map translation tasks, the translation model must focus on the critical areas of the
image. Attention mechanisms can help the image-to-image translation model locate points
of interest and improve generative adversarial networks’ performance [6–8]. Hence, we
employ the attention mechanism directly to translation model to estimate regions of interest,
which helps networks pay more attention to geographic structure information of remote
sensing images, generating more realistic maps.

The proposed model RSMT is an extension of our previous work MapGen-GAN [3],
which solves the limitation that the map generation model is only applied to the datasets of
the same region and improves the applicability of map generation model. RSMT is based
on an adversarial transfer training scheme coupled with attention mechanism design. The
adversarial deep transfer network is to generalize the mapping to unseen areas’ remote
sensing images of target class by learning to extract the content and style latent features
from remote sensing images and maps, respectively. Attention mechanisms are added
to the adversarial deep transfer network to predict the region of interest and learn more
critical information by assigning different weights to the input of generator. We also find
that adopting an additional feature map loss produced by discriminator is beneficial for
computing the discriminative regions from both real and generated maps. In addition, we
introduce map consistency loss to preserve the consistency of domain-specific features and
enhance the transfer ability of the generator. Through extensive experimental verification on
several map datasets of different cities worldwide, we adopt three widely used performance
metrics to evaluate RSMT and several baseline methods. The qualitative and quantitative
results verify that RSMT can translate remote sensing images to maps more competitively
than other state-of-the-art methods. The main ideas and major contributions of this study
are summarized as follows:

1. We propose a novel remote sensing image-to-map translation framework named
RSMT which extensively achieves functional capabilities to generate maps for multiple
regions using adversarial deep transfer learning schemes. RMST has the ability to
learn generalized patterns by extracting the content and style representations from
remote sensing images and maps, which solves the limitation that the previous
map generation model only applied to the testing datasets of the same region with
training sets.

2. RSMT uses spatial attention feature maps extracted from the discriminator to help
the generator explicitly capture the point of interest in source classes and unseen
target classes. To further improve the proposed model’s performance, we proposed a
feature map loss function based on the spatial attention computed by discriminator
to preserve domain-specific features during training. Moreover, we also introduce a
novel map identity loss to improve the transfer capability of generator.

3. To demonstrate the effectiveness of deploying spatial attention mechanism in re-
mote sensing image-to-map translation tasks, we conduct extensive experiments on
different datasets worldwide to validate the usability and applicability of the pro-
posed method. The quantitative and qualitative results show that RSMT significantly
outperforms the state-of-the-art models.

The rest of our work is structured as follows: We enumerate related works of map
generation techniques and cutting-edge image-to-image translation methods based on
generative adversarial network in Section 2. In Section 3, the proposed remote sensing
image-to-map translation framework RSMT is presented. Furthermore, in Section 4, we
conduct objective and subjective experiments to verify the validity of RSMT. In Section 5,
conclusions and discussions are mentioned.

2. Related Work

We divide the current related work into three aspects. Firstly, we review the develop-
ment of image-to-image translation methods. Secondly, we introduce attention mechanisms



Remote Sens. 2022, 14, 919 4 of 20

used in GAN (generative adversarial network)-based models. Finally, deep transfer learn-
ing based on the adversarial mechanism are presented.

2.1. Image-to-Image Translation

In recent years, the Generative Adversarial Network (GAN) [9] has developed rapidly
in computer vision, bringing impressive results for image generation. The GAN-based
image-to-image translation methods have been widely used and achieved good results,
aiming to learn the mapping between the source domain and target domain. In the un-
paired image-to-image translation field, the most pioneering algorithm is DiscoGAN [10],
DualGAN [11] and CycleGAN [2]. They propose frameworks to map source domain images
to target domain images and use cycle-consistency loss which preserves some properties
of the original images. However, the loss function of the transformation algorithm with
cycle-consistency constraint has certain defects, which needs to assume that the two do-
mains of the translation are bi-directional mapping. Therefore, Park et al. [12] propose a
simple method based on contrastive learning, aiming to maximize the mutual information
between the input image and the corresponding patch in target field, which pays attention
to the content of the object rather than its appearance. Additionally, the attribute vector
of previous image-to-image methods is binary, and the results’ control is not satisfactory
enough. RelGAN [13] uses the relative attribute vector to solve this problem. Instead of
using encoder and reconstruction loss, Alharbi et al. [14] retain the structure and discrimi-
nation loss of traditional GAN, avoiding complex network structure and superabundant
parameters.

Classical image-to-image models merely learn the one-to-one mapping between do-
mains, and each input only corresponds to a single output image. Almahairi et al. [15]
design a many-to-many mapping model called Augmented CycleGAN. The model can
generate multiple output images with different styles for one input image by learning a
mapping to capture the diversity of outputs. It takes the sample and latent variable of the
source domain as input and outputs a sample of the target domain. In the meanwhile,
Choi et al. [16] propose the StarGAN structure, which can train multi image-to-image in a
network and load multiple datasets in the same network. It attaches a domain classifier
to the discriminator and proposes a domain classification loss. The mask vector is used
to make GAN ignore the unknown labels of multiple datasets and aggregate them on the
known ones. Many other kinds of studies such as [17–19] utilize different methods to
discuss how to transform one image into multiple images with different styles. The training
datasets used in our work contain multiple remote sensing images and maps of different
urban architectural styles. Although our model is similar to these methods using multiple
remote sensing images and maps in source classes, we test remote sensing image-to-map
translation model on previously unseen target classes.

2.2. Attentional Mechanism

At present, various kinds of deep learning tasks use attention mechanisms widely.
Inspired by the human visual system, when people observe external things, they usually
do not see things as a whole and tend to obtain essential parts of the observed things
selectively according to their needs. Similarly, the attention mechanism is added to the deep
learning model in order to predict regions of interest and learn more critical information
by assigning different weights to the input, making the model judge accurately without
bringing overheads to the calculation. It improves the performance in diverse tasks, such as
machine translation [20,21], Seq2Seq model [22,23], image segmentation [24,25] and image
caption [26,27].

Recent studies have shown that combining attention learning with a GAN-based
model can obtain more realistic images in image-to-image translation tasks. Zhang et al. [28]
design a long-range dependency and attention-driven GAN, which is proficient in finding
the dependency in images and coordinating the details of every position in the generated
images. Then, image-to-image translation tasks employ attention learning. For example,
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Emami et al. [29] use a segmentation annotation of the input images as additional supervi-
sion information and adopt the attention map to improve the generated images’ quality.
AttentionGAN [30] is improved based on CycleGAN to generate not only images but also
attention maps, and then it combines attention maps and generated images with original
images to obtain the final outputs. As a step towards remote sensing community, Zhang
et al. [31] propose a channel attention mechanism adopted to re-scale channel features by
considering the interdependence between channels. Our work further explores the plausi-
ble usage of attention learning in a GAN-based remote sensing image-to-map translation
model.

2.3. Deep Transfer Learning Based on Adversarial Mechanism

Inspired by generative adversarial network (GAN) [9], deep transfer learning employ-
ing the adversarial mechanism aims to learn a representative pattern between source and
target domains. Deep transfer learning is on the basis of assumption that “For effective
transfer, good representation should be discriminative for the main learning task and
indiscriminate between the source domain and target domain” [32]. Recently, adversarial
deep transfer learning has thrived with its good effectiveness and strong practicability. A
new deep architecture for domain adaptation was proposed by Ganin et al. [33], which
is trained with a great deal of labeled data. Ajakan et al. [34] introduce an adversarial
framework called DANN to transfer information for domain adaption. DANN is suited to
the context of domain adaptation, in which training and testing datasets have similarities
but come from disparate distributions. Tzeng et al. [35] use a new CNN architecture for
transferring knowledge cross-domain and cross-task. For adversarial adaptation, Tzeng
et al. [36] then first outline a new generalized framework called ADDA. ADDA provides a
simplified and cohesive view by understanding the similarities and differences between
recently proposed adaptation methods. At the same time, Luo et al. [37] propose a new
framework that efficiently learns a transferable representation across different domains by
generalizing the embedding to the new tasks. At present, deep transfer learning is mainly
based on a supervised manner. Our framework is based on adversarial deep transfer
learning, which is designed for remote sensing image-to-map translation tasks.

3. Methods

In this section, we first describe the overall architecture of our model RSMT, and then
we detail how the generator and discriminator modules work in an adversarial manner.
Finally, we formulate the minimax optimization problem by applying the adversarial loss
function, feature map loss function, and map consistency loss function.

3.1. Overall Architecture

We design our model combined with a generator G and a spatial attention-guided
discriminator D. The generator G contains a content encoder Ec, a style encoder Es, and a
decoder Fcs. Like [4], the proposed model RSMT aims to learn the mapping pattern from
remote sensing images to maps of source classes and transfer the mapping to unseen target
classes. Unlike other object class transformation problems, the model is never shown the
style of remote sensing images in target class but is required to generate corresponding
maps. During training, as shown in Figure 3, we use a remote sensing image from a
random RS class as the input of the content encoder. Simultaneously, we extracted one
map from each kind of map class (a total of K) as the input of the style encoder. The style
encoder obtains K types of maps. The content encoder aims at extracting variant latent
representations of remote sensing images, and the style encoder extracts class-specific latent
representations of map style. A generalizable feature extractor is obtained by learning to
extract latent patterns from diverse source classes, extending translation applicability to
multiple regions. During testing, the unseen remote sensing images belonging to the target
class are obtained from a new urban region. When we provide the well-trained model a few
of remote sensing images from the target class, it has to generate the corresponding maps.
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Figure 3. The flow path of RSMT training. The training set consists of paired remote sensing images
and maps of various regions, like Barcelona, Bangkok, . . . , Cairo (In this work, we use 12 cities’
remote sensing images and maps as the training set). The generator takes two inputs: one is a remote
sensing image, the other is a set of K random maps {y1, y2, . . . , yK} obtained from map classes. The
model aims to transfer the generation pattern to the unseen remote sensing images and generate
realistic maps during testing. FC is the fully connection network.

Detailed information of RSMT are present in Figure 4. Since discriminator classifies
images into real or fake, it is apparent that the discriminator can capture discriminative
features in latent space. Hence, we introduce spatial attention features computed by
discriminator and assist generator focus on relevant parts. The discriminator provides
attention as the spatial feature map [38]. It indicates the areas that the discriminator pays
attention to, and discriminates the input map as real or fake. Then, we feed the extracted
spatial attention feature maps to the generator, forcing it to pay more attention to the
discernable regions of source classes, generating more realistic maps.

Formally, we denote the data distribution as x ∼ P(x) and y ∼ P(y), where x denotes
remote sensing images and y denotes map images (maps). The spatial attention feature
map obtained from discriminator is defined as MDm (y). Unlike generators for other existing
image-to-image translation models [12,39], which only input one image at a time, we split
the input of generator into two parts. One takes a remote sensing image x combined
with a spatial attention feature map MDm (y) as input, and the other takes a set of K maps
{y1, y2, . . . , yK} belonging to K Map classes as input. By combining the input MDm(y)� x
with K maps {y1, y2, . . . , yK}, the generator learns correlative latent features between RS
classes and Map classes, and produces the output image ỹ via:

ỹ = G(MDm(y)� x, {y1, y2, . . . , yK}) (1)

where � is matrix dot product [29].

3.2. Generator

The remote sensing image-to-map translation model RSMT contains a modified gener-
ator and an attention-based discriminator. Generator G is composed of a content encoder
Ec, a style encoder Es and a decoder Fcs. As depicted in Figure 4, content encoder Ec
consists of four 2D convolutional layers with instance normalization and ReLU nonlinearity
followed by several residual blocks. It extracts a feature map from the input map x, which
is element-wised with spatial attention feature map MDm (y). The content encoder Ec is



Remote Sens. 2022, 14, 919 7 of 20

designed to encode the regions of interest part for the input MDm(y)� x and produces a
feature map zx (content latent code). On the other hand, the style encoder Es maps a set of
K maps of different regions {y1, y2, . . . , yK} to an intermediate latent vector. It consists of
five 2D convolutional layers with ReLU nonlinearity that followed by a mean operation to
acquire the vector zy (style latent code).

Figure 4. Details of the RSMT architecture. At first, the discriminator computes the spatial attention
feature map of the corresponding map y (paired with remote sensing image x) by deploying MDm (y),
and then feeds it back into the generator concating with the remote sensing image x. The content
encoder Ec encodes the input MDm (y)� x to the content latent code zx, and the style encoder Es

extracts K maps {y1, y2, . . . , yK} belonging to K Map classes to the style latent code zy. Finally, the
decoder Fcs uses vector

〈
µ, σ2〉 as affine transformation parameters to obtain the output map ỹ. CA is

the channel attention, FC is the fully connected network, SE is the Squeeze-and-Excitation network.

Following the few-shot unsupervised image-to-image translation (FUNIT) [4], the
decoder is composed of two adaptive instance normalization residual blocks [40] using
adaptive instance normalization (AdaIN) [41] as the normalization layer and three upscale
convolutional layers followed by ReLU nonlinearity. AdaIN first normalizes the activations
of content latent code zx in each channel. Meanwhile, the decoder Fcs computes the style
latent code zy generated from style encoder to a mean and variance vector

〈
µ, σ2〉 via two

fully connected layers. Then, we use vector
〈
µ, σ2〉 as affine transformation parameters

in adaptive instance normalization residual blocks to scale the activations, where µ is the
biases and σ2 is the scaling factor. The parameters

〈
µ, σ2〉 are applied to each residual block

of the decoder to obtain global appearance information. With the content encoder Ec, style
encoder Es and decoder Fcs, the output map can be described as:

ỹ =Fcs(zx, zy)

=Fcs(Ec(MDm(y)� x), Es({y1, y2, . . . , yK}))
(2)

3.3. Discriminator with Spatial Attention Mechanism

Introducing attention learning into the GAN model can make remote sensing image-
to-map translation more realistic. Inspired by several methods [25,38] that transfer a teacher
network’s attention to a student network, the proposed model RSMT deploys a spatial
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attention mechanism to share knowledge between the discriminator and generator aiming
at the relevant parts during translation. We employ the discriminator not only to classify
the map as real or fake but also generate attention feature map fed back to the generator.
The attention feature map indicates the discriminative area of the discriminator, making it
distinguish the input image correctly. Feeding attention feature maps into the generator
propels the network give higher weight to the region with obvious distinction, which can
retain some specific features of the domain to a greater extent.

Like [29], we use normalized spatial attention feature maps produced from the dis-
criminator to transmit the map’s specific features. Specifically, by feeding the discriminator
a map y, we obtain the spatial attention map MDm(y). The size of spatial attention map
MDm(y) is identical to the input remote sensing image x. As illustrated in [38], RDm(y)
denotes the sum of the absolute values of activation maps in each spatial location in a
residual block across the channel dimension, which can be described as:

RDm(y)=N(
C

∑
j=1

∣∣Aj(y)
∣∣) (3)

where Aj(y) denotes the activation of y in the jth feature plane, and C denotes channels’
number in the output of each residual block layer in discriminator for the input map y.
N(·) is to normalize the input to [0,1] range and upsample the activation maps to match
the original image size. RDm(y) indexes the value of the potent information at each spatial
location to discriminate an input map as fake or real directly. Discriminator’s detailed
architecture is shown in Figure 4, while there are five residual blocks in it. Considering that
different layers of the discriminator network pay attention to different features, L attention
maps are extracted from various layers in latent space for L residual blocks. Hence, the
spatial attention map MDm(y) obtained from discriminator is described as:

MDm(y) = N(
L

∑
i=1

RDm(y)) = N(
L

∑
i=1

N(
C

∑
j=1

∣∣Aij(y)
∣∣)) (4)

3.4. Loss Function

The remote sensing image-to-map model RSMT is trained by solving a minimax
optimization problem:

min
G

max
D
LGAN(G, D) + λFMLFM(D) + λMCLMC(G) (5)

where LGAN(G, D), LFM(D), LMC(G) are the adversarial loss, feature map loss, and map
consistency loss, respectively. In the following, we describe the expressions of these three
loss functions detailedly.

3.4.1. Adversarial Loss

We summarize the principle of RSMT as transforming a remote sensing image x
belonging to the RS class to a map y belonging to the Map class. The model trains the
generator G in a generative adversarial network in order to learn the mapping from the RS
class to Map class. By learning patterns from the real map y, we also train the discriminator
D to distinguish whether the generated map is real or fake. The target of generator G is to
minimize the loss against an adversary discriminator D. In contrast, discriminator D tries
to maximize the objective function. The equation is expressed as:

min
G

max
D
LGAN(G, D) = Ey∼P(y)[log D(y)]

+Ex∼P(x),y∼P(y)[log(1− D(G(x, y)))]
(6)

In addition, we utilize the architecture of an attention-guided discriminator and
introduce an attention feature map loss for the spatial attention feature computed by
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the discriminator. The spatial attention feature indicates the discriminative area of the
discriminator, making it distinguish the input image correctly. The discriminator needs to
classify the similar region, while the feature map loss penalizes it to pay attention to distinct
locations in both real map y and generated map ỹ. Thereby, the feature map loss function
between the real map y ∼ P(y) and generated maps ỹ ∼ P(ỹ) is computed as follows:

LFM(D) = Eỹ∼P(ỹ),y∼P(y)[‖MDm(ỹ)−MDm(y)‖1] (7)

where MDm(·) is the deployment of spatial attention maps obtained from discriminator,
which is described in Equation (4) explicitly. ‖·‖1 is the L1-normalization [29]. The features
of images by acting on L1-normalization often achieve good results like [42]. Thus, we
use L1 to calculate the feature map loss and enhance performances of remote sensing
image-to-map translation. We explain the accountable results of adding feature map loss in
the ablation study in Section 4.

3.4.2. Map Consistency Loss

The map consistency loss helps generator reinforce the translation capability. When
the map samples of source class are considered as the input to generator, we normalize
generator to be closer to a consistent mapping. Specifically, during training, we put one
map in content encoder Ec and K maps in style encoder Es at the same time. Inspired by [2],
generator G is used to generate map-style images. When a map is sent to G, it should
still generate a map, which proves that the generator has the ability for map translation
tasks. Thereby, map consistency loss penalizes the differences between the real map y and
generated map G(y, {y1, . . . , yK}). We define the map consistency loss as:

LMC(G) = Ey∼P(y)[‖y− G(y, {y1, . . . , yK})‖1] (8)

where ‖·‖1 is the L1-normalization.
The ablation study experimental results in Section 4.6 prove that the map consistency

loss helps the translation model RSMT improve the performance of generating maps.

4. Results

In the experimental section, we present the well-selected datasets and hardware
equipment used in experiments firstly. Next, we compare RSMT with previous image-to-
image methods quantitatively by using three evaluation metrics. Then, we find that the
training ability of RSMT is related to the input Map class conditions by conducting different
numbers of maps in style encoder. In the end, the ablation study is employed to analyze
each component’s effect in RSMT.

4.1. Datasets and Experimental Setups

Unlike other object class transformation problems, the paired datasets used for the
remote sensing image-to-map translation tasks in this work are available from Google Maps,
and the use of paired datasets can significantly improve the efficiency of training. To make
it fair, we use paired datasets to train all comparable methods in this work. To verify the
proposed map translation model’s effectiveness, we explicitly selected paired datasets of 15
representative cities distributed around the world, such as Beijing and Bangkok in Asia; Los
Angeles and Toronto in North America; Oslo and Pairs in Europe; Cairo in Africa; St.Paul
in South America; Melbourne in Oceania, etc. All the maps were obtained from Google
Map at zoom-17. We divided the datasets into a source class set representing a training set
and a target class set representing testing set for transfer learning, which contains 12 and
3 cities, respectively. The source class contains 15,234 remote sensing images and paired
15,234 maps, including datasets of Beijing, Bangkok, Cairo, St.Paul, Toronto, Melbourne,
Oslo, Pairs, Teheran, Barcelona, Las Vegas, and San Diego, while the target class contains
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3000 remote sensing images composed of Los Angeles, Riyadh, and Vancouver. All the
images’ sizes are 256 × 256.

Details of the network design are shown in Figure 4. We set λFM = 10 and λId = 1 by
fine tuning. An Adam optimizer was used in both the generator and discriminator, the
initial parameters, with the same learning rate of 0.0002. We adopted Python 3.7 and the
PyTorch deep learning framework to accomplish the whole experiment. Two NIVIDA GTX
1080Ti GPU with 2 × 12GB GPU memory were employed to train the proposed model.

4.2. Evaluation Metrics

To evaluate the performance of our model RSMT and previous image-to-image meth-
ods quantitatively, we used three evaluation metrics: RMSE (Root Mean Square Error),
SSIM (Structural Similarity), and ACC (Pixel Accuracy).

4.2.1. Root Mean Square Error

Root Mean Square Error (RMSE) [43] reflects the degree of difference between variables.
It is an objective evaluation indicator of image quality based on pixel Error. Differences
between the fusion image and reference image are measured by RMSE. The smaller the
RMSE is, the better the quality of fusion image is. We express RMSE’s general function as
follows:

RMSE =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(I(i, j)− K(i, j))2 (9)

where M and N represent the length and width of the image, respectively; K(i, j) and I(i, j)
are the pixel values at the pixel (i, j) of the original image and the image to be evaluated,
respectively.

4.2.2. Structural Similarity

As an implementation of structural similarity (SSIM) theory [44], the structural simi-
larity index defines structural information concerning image composition as an attribute of
luminance, contrast, and structure. The mean value is used to estimate luminance, contrast
is estimated by standard deviation, and covariance is measured by structural similarity.

Given an image x and a compared image y, the SSIM can be computed as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(10)

where µx is the mean value of x, µy is the mean value of y, σ2
x represents the variance of x,

and σ2
y represents the variance of y. Constant c1 = (k1L)2 and c2 = (k2L)2 are calculated to

maintain stability. L is the range of pixel values. Generally, k1 = 0.01, and k1 = 0.03. SSIM
ranges from −1 to 1. The smaller the difference between the two images, the closer SSIM is
to 1.

4.2.3. Pixel Accuracy

The abbreviation of pixel accuracy is ACC(%). Given a pixel i with the RGB value
(ri, gi, bi) of a ground-truth map and the generated map with RGB value (r

′
i , g

′
i , b
′
i), if

max(| ri − r
′
i |, | gi − g

′
i |, | bi − b

′
i |) < δ [1], we estimate this to be the precise generated

map that is similar to the ground truth. We set δ = 5 in this paper.

4.3. Baselines

We evaluate the RSMT’s performance by three state-of-the-art image-to-image ap-
proaches and FUNIT [4]. For the experiment, all methods work with paired datasets.
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• CycleGAN: The cycle-consistency constrains are proposed by CycleGAN [2], which
makes a mapping from X to Y, GXY:X→ Y and its inverse mapping from Y to X, GYX :Y
→ X. The objective function restricts to GYX(GXY(x)) = x, and GXY(GYX(y)) = y.

• DualGAN: DualGAN [11] conducts dual learning for image-to-image translation by
applying Wasserstein GAN loss [45].

• MapGen-GAN: MapGen-GAN [3] is our previous work for map translation tasks. The
framework is based on circularity and geometrical consistency constraints, transform-
ing remote sensing images to maps directly and reducing the translation’s semantic
distortions.

• FUNIT: FUNIT [4] is an image-to-image translation framework based on few-shot
learning that can translate images for previous unseen target classes. It can train
multiple image-to-image processes in a network and even load multiple datasets in
the same network.

4.4. Comparisons with Baselines

We compare our model with previous image-to-image methods in both objective
and subjective ways to show the effectiveness of RSMT. The evaluation and analysis are
presented from these two perspectives.

4.4.1. Objective Evaluation

This section compares the remote sensing image-to-map model RSMT with four previ-
ous methods to validate the RSMT’s effectiveness. We evaluate the performance of RSMT
by putting K = 10 maps of different regions {y1, y2, . . . , yK} into the style encoder Es and
use three kinds of image quality measurement indexes. Since baselines we choose are
representative image-to-image translation methods that only learn a one-to-one mapping
between two domains, to be fair, we extend the source class to the same as RSMT (12 dif-
ferent cities mixed). We use same target class to test the translation results between our
method and baselines to compare the generalization ability.

Table 1 presents the mixed training for the previous image-to-image methods com-
pared with FUNIT and RSMT on three testing datasets. The highest score is bold, and the
runner-up is underlined. Clearly, the proposed RSMT framework significantly outperforms
all baselines for the remote sensing image-to-map translation task on three performance
metrics. RSMT achieves about 46% accuracy with parameter δ = 5, which is almost two
times the improvement over the CycleGAN. In particular, RSMT yields a 22–18% improve-
ment in RMSE and a 34–55% increment in SSIM among the previous image-to-image
methods. The experiment results demonstrate that previous image-to-image methods
cannot learn the capability to generalize an unseen class based on prior knowledge. That is
because general one-to-one mapping image-to-image models only focus on a particular do-
main and do not have the ability to learn generalized features. RSMT learns the content and
style of source class images through two kinds of encoders, which can apply the learned
latent mapping patterns to the remote sensing images that have never been seen before.

Table 1. Scores for different methods on three testing datasets by three evaluation metrics. RSMT
keeps K = 10, compared with other four models by mixed training. (bold: best; underline: runner-up).

Method
Los Angeles Riyadh Vancouver

RMSE SSIM ACC (%) RMSE SSIM ACC (%) RMSE SSIM ACC (%)

CycleGAN 30.2375 0.4931 22.1454 34.2375 0.4683 20.8642 27.9847 0.5543 23.8743
DualGAN 32.4654 0.4865 22.5231 35.1483 0.4526 19.3203 28.4632 0.5499 24.0580

MapGenGAN 33.7613 0.5046 25.6213 34.0984 0.4659 21.6732 27.0352 0.5460 26.8993
FUNIT 24.8874 0.6673 34.4627 27.4577 0.6475 32.7814 23.6244 0.6698 35.9849
RSMT 20.2485 0.6822 45.7756 23.5894 0.6622 42.6528 20.0353 0.6964 43.5721
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The qualitative results of the mixed training comparison are displayed in Figure 5. We
took two generated maps from each of the three cities. The first line of the figure is the input
of remote sensing images, including Los Angeles, Riyadh, and Vancouver in order. As
the baselines are not designed for the transfer learning settings, they failed in challenging
translation task. On the other hand, our method can successfully translate remote sensing
images to maps of novel classes and generate more impressive translations empirically. The
general image-to-image translation methods only generate the buildings’ rough outlines,
and they do not approach the details. Comparatively, our method identifies the accurate
contours of objects, making the geographical layout more regular. RSMT performs better
than others due to the attention-guided discriminator collaborating with the generator,
which makes the generator more exquisite to roads’ transformation. It is evident that
our model can translate the maps more similarly than FUNIT, which does not adopt the
attention mechanism regarding the generation of roads and buildings. The comparisons
verify the effectiveness of integrating the attention mechanism to the discriminator and
constraining the network with feature map loss.

4.4.2. Subjective Evaluation

From Table 1, we can seethat the accuracy scores of all models are less than 50%, which
is because these evaluation metrics are from a pixel-wise perspective. Maps are considered
as an abstraction of human recognition of the world. From a subjective point of view, the
slight changes in resolution and size will not affect the application of generated maps in
emergency practice. However, these changes will degrade the quantitative accuracy of the
generated maps. Therefore, we employed twenty persons with experience in cartography
to separately grade the above methods’ outputs subjectively in terms of similarity, fidelity,
and availability to further discuss the performance of RSMT and baselines. The three
indicators are rated on a scale from 1 to 10. Similarity means comparisons between the
generated map and ground truth intuitively; a score of 10 means that the generated map is
exactly the same as the ground truth, while a score of 1 indicates that the generated map
is entirely different from the ground truth. Fidelity refers to whether the generated map
matches the corresponding remote sensing image; a score of 10 represents an exact match
between the generated map and the corresponding remote sensing image, while a score
of 1 means that the generated map does not match the remote sensing image at all. Aside
from the remote sensing image and ground truth, availability is to evaluate whether the
generated maps can be used in real-world map services; 10 points means the generated
map can be applied directly in the emergency map service; in contrast, 1 point means the
generated map is completely unusable. As shown in Table 2, we calculate the average
value of each method marked by each person on three testing sets. The winner is RSMT,
and CycleGAN obtains the lowest score. The anthropogenic evaluation demonstrates that
although the generated maps of RSMT do not score highly on pixel-wise quantitative
metrics, it does not affect generated maps applied in practical emergency map services.
Furthermore, we intend to improve the quantitative accuracy of generated maps for future
studies.

Table 2. Average scores of subjective evaluation from human perceptual for RSMT and baselines on
three testing datasets. (bold: best; underline: runner-up).

Method
Los Angeles Riyadh Vancouver

Similarity Fidelity Availability Similarity Fidelity Availability Similarity Fidelity Availability

CycleGAN 3.55 3.70 2.85 2.65 3.40 3.35 3.55 3.30 3.45
DualGAN 4.15 4.10 4.20 3.60 3.75 3.55 4.15 4.00 3.90

MapGenGAN 5.45 5.30 5.75 4.45 4.20 4.80 4.60 4.05 4.55
FUNIT 7.70 7.95 8.30 7.35 7.60 8.15 7.40 7.35 7.95
RSMT 8.95 9.25 9.20 8.65 8.50 9.00 9.05 8.75 8.90
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4.5. Numbers of Input Map Classes During Training

In this section, we intend to figure out whether the generation ability of RSMT is
related to the number of input Map classes conditions. As mentioned in Section 3, during
training, we used a remote sensing image from a random RS class as the input of the
content encoder. Simultaneously, we extracted one map from each kind of Map class (a
total of K) as the input of the style encoder. The style encoder obtains K types of maps. In
this part, we changed the number of input maps classes K fed to style encoder Es from 1 to
12 with an interval of 2. Then, we evaluated the scores of testing datasets by three different
evaluation metrics separately.

Figure 5. Selected results of remote sensing image-to-map translation performance for three testing
datasets. Images from top to bottom: input remote sensing images; translation results of baselines;
translation results of our model RSMT; the ground truth.
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In Figure 6, we display our model’s performance using different numbers of available
Map classes during training and test RSMT-K on five testing datasets: Los Angeles, Riyadh,
Vancouver, Milan, and Mexico City. We varied the number of Map classes from 1, 3, 5,
7, 9 to 12 and drew the performance trend chart, calculated by three evaluation metrics.
The RMSE value is inversely proportional to image quality for grading schemes, whereas
the SSIM and ACC values are directly proportional to the image quality. We found that
the curves of scores on five testing datasets follow the same trend, which gives evidence
that the performance of RSMT improves as the number of input Map classes increases.
Although the performance of RSMT improves with the increase in the number of input
Map classes in the source class, obtaining suitable quality map datasets is labor consuming,
and a lot of time will be spent on data preprocessing. At the same time, as the amount of
datasets grows, the training cost will also aggravate, considering time and GPU processing
capacity.

(a) (b)

(c)

Figure 6. Remote sensing image-to-map translation performance of RSMT by deploying different
numbers of input Map classes during training on five testing datasets. During training, the perfor-
mance of RSMT is positively related tos the number of Map classes. (a) Trend chart of RMSE scores
for RSMT-K (K = 1, 3, 5, 7, 9, 12) on five testing datasets. (b) Trend chart of SSIM scores for RSMT-K
(K = 1, 3, 5, 7, 9, 12) on five testing datasets. (c) Trend chart of ACC scores for RSMT-K (K = 1, 3, 5, 7,
9, 12) on five testing datasets.

The evaluation demonstrates that the number of input Map classes during training
impacts RSMT’s performance, indicating that the remote sensing image-to-map translation
model seeing more diverse Map classes during training performs better during testing.
In addition, the two encoders work separately: content encoder extracts variant latent
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representations of remote sensing images, and style encoder extracts class-specific latent
representations of map style. They do not interact with each other.

4.6. Ablation Study

The ablation study was conducted to verify the rationality of remote sensing image-
to-map translation framework RSMT further. As explained in Section 3, we inputted one
remote sensing image and corresponding K maps of different cities during training. During
testing, we used remote sensing images of Los Angeles datasets to validate the importance
of core components in RSMT. From the beginning, we kept all components and divided
the experiments into two parts; one is setting the number of input maps K = 5 of 5 Map
classes (RSMT-5); the other is setting K = 10 (RSMT-10). Then, we removed the spatial
attention feature map computed by discriminator but retained the feature map loss (RSMT-
no-MDm ), because the feature map loss was calculated between real and generated maps
by an attention-guided discriminator. Further, the spatial attention feature map was fed
to the generator from the discriminator without adding feature map loss (RSMT-no-LFM).
Finally, the map consistency loss was removed (RSMT–no-LMC). We describe these several
ablation methods as follows:

• RSMT-no-MDm : RSMT without spatial attention fed to the generator.
• RSMT-no-LFM: RSMT without feature map loss function constraint.
• RSMT-no-LMC: RSMT without map consistency loss function constraint.

The quantitive scores testing on Los Angeles datasets are reported in Table 3. In general,
the performance score of RSMT-10 is slightly higher than RSMT-5 on three evaluation
indicators. Under the same number of input Map classes, RSMT outperforms RSMT-no-
MDm and RSMT-no-LFM, demonstrating that the spatial attention mechanism applied to
the discriminator has the ability to drive network learning strong extensible applicability for
remote sensing image-to-map translation task. Obviously, the feature map loss restricts the
comparability between the distinguished regions of ground truths and the generated maps
at the level of abstraction, which can help the model achieve realistic outputs. However, in
comparison, the impact of map consistency loss on the model is minimal.

We display the qualitative results of RSMT by removing spatial attention, feature map
loss, and map consistency loss testing on Los Angeles datasets in Figure 7. Our model
can generate high-quality maps considering translation accuracy and image quality. We
outline the most discriminative areas on the output maps in red. From the figure, RSMT
can translate more impressive maps from remote sensing images than RSMT-no-MDm ,
RSMT-no-LFM, and RSMT-no-LMC. This suggests that calculating feature map loss and
applying spatial attention mechanism to the discriminator lead to higher performance,
including the generation of roads and buildings.

Table 3. Scores of ablation study testing on Los Angeles datasets by removing core elements of RSMT
calculated by three evaluation metrics. (bold: best; underline: runner-up).

Method
K = 5 K = 10

RMSE SSIM ACC(%) RMSE SSIM ACC(%)

RSMT-no-MDm 25.9228 0.5212 40.2405 24.8307 0.5456 41.7637
RSMT-no-LFM 23.1028 0.5738 43.7245 22.9706 0.5869 44.0631
RSMT-no-LMC 21.2417 0.6446 45.2739 21.0378 0.6798 45.0195

RSMT 20.7162 0.6784 45.5392 20.2485 0.6822 45.7756
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Figure 7. Qualitative comparisons over removing the core elements from the remote sensing image-
to-map translation model RSMT. From top to bottom, the lines are input remote sensing images,
translation results of RSMT-no-MDm , RSMT-no-LFM, RSMT-no-LMC by setting K = 5 and K = 10,
translation results of RSMT, and ground truth.



Remote Sens. 2022, 14, 919 17 of 20

4.7. Limitations

Although RSMT can generate maps much more impressively from remote sensing
images of unseen areas than other general one-to-one mapping image-to-image translation
methods and multi-class image-to-image translation methods, the results are not uniformly
positive, especially for obscure areas with roads and sparse distributions of buildings.
Through repetitious attempts and experiments, we drew the conclusion that the model’s
performance relies on the quality of training datasets. We have noticed two issues on maps
that may affect the quality of the training datasets. Firstly, as shown in Figure 8a, buildings
are artificially divided into two colors (pale yellow and gray) in maps, but there is no
significant difference in remote sensing images. Secondly, as shown in Figure 8b, human
map annotators often label vegetation green, while some remote sensing imagery green
areas are often artificially ignored on maps. These issues would lead to chaotic learning
for the network during training, which decreases the transformation performance and the
quality of generated maps. Obtaining suitable quality map datasets is labor consuming,
which will spend a lot of time in data preprocessing.

On the other hand, as illustrated in Section 4.5, the generation ability of RSMT is
related to the number of input Map classes conditions. Experimental results give evidence
that the performance of RSMT improves as the number of input Map classes increases.
However, as the amount of datasets grows, the training cost will also aggravate, considering
time and GPU processing capacity. In addition, our method is currently only applicable to
urban areas and performs poorly on datasets in rural areas. This is possible because the
distribution of ground objects in rural areas is sparse, and the features are not specific.

(a)

(b)

Figure 8. Issues on artificial maps. (a) The colors of the buildings in the map are artificially divided
into two types (pale yellow and gray), but there is no difference in the remote sensing images.
(b) Green areas in maps are not marked.

5. Conclusions

We propose a novel remote sensing image-to-map translation model named RSMT. For
map generation, RSMT can extensively achieve functional capabilities in multiple regions
based on an adversarial deep transfer network, which is designed to extract content and
style representations from remote sensing images and maps. With the help of a spatial
attention mechanism, RSMT attends to the regions of interest and produces more semblable
images by learning features from the discriminator. Moreover, we applied feature map
loss and map consistency loss to preserve domain-specific features and improved the
transfer capability of the model. After extensive experimental comparisons on different
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map datasets, our model can produce more competitive generations than previous remote
sensing image-to-map approaches objectively and subjectively.

For future works, we intend to pre-process the datasets comprehensively while im-
proving translation accuracy. Adopting a weak or semi-supervised approach may alleviate
the data collecting pressure. Additionally, we will also take the consistency of maps at
different levels into consideration.
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