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Abstract: Due to the sharp increase in global industrial production, as well as the over-exploitation
of land and sea resources, the quality of drinking water has deteriorated considerably. Furthermore,
nowadays, many water supply systems serving growing human populations suffer from shortages
since many rivers, lakes, and aquifers are drying up because of global climate change. To cope with
these serious threats, smart water management systems are in great demand to ensure vigorous
control of the quality and quantity of drinking water. Indeed, water monitoring is essential today since
it allows to ensure the real-time control of water quality indicators and the appropriate management
of resources in cities to provide an adequate water supply to citizens. In this context, a novel IoT-
based framework is proposed to support smart water monitoring and management. The proposed
framework, named SmartWater, combines cutting-edge technologies in the field of sensor clouds,
deep learning, knowledge reasoning, and data processing and analytics. First, knowledge graphs are
exploited to model the water network in a semantic and multi-relational manner. Then, incremental
network embedding is performed to learn rich representations of water entities, in particular the
affected water zones. Finally, a decision mechanism is defined to generate a water management plan
depending on the water zones’ current states. A real-world dataset has been used in this study to
experimentally validate the major features of the proposed smart water monitoring framework.

Keywords: smart cities; smart water monitoring; sensor cloud services; knowledge graph; network
representation learning; incremental embedding

1. Introduction

Water is essential and vital for sustaining human life on earth. Although about 71% of
the earth is covered with water, only 3% of the world’s water is freshwater, and two-thirds
of this water is hidden in glaciers that are frozen or not available for use [1]. Besides, most of
the world’s people lack clean and safe drinking water. Drinking water is defined, according
to World Health Organization (WHO) and the United States Environmental Protection
Agency (USEPA) guidelines [2,3], as water that presents no risks to human health over a
lifetime of consumption, including different sensitivities that may arise between stages of
his life. Every year, millions of people around the world suffer from various fatal diseases
caused by drinking water pollution. The WHO stated in its report, which is released in June
2019 (https://www.who.int/news-room/fact-sheets/detail/drinking-water, accessed on
15 November 2021) that “Globally, at least 2 billion people use a drinking water source
contaminated with feces. Contaminated water can transmit diseases, such as diarrhea,
cholera, dysentery, typhoid, and polio. Contaminated drinking water is estimated to cause
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485,000 diarrhea deaths each year”. The WHO also states that, by 2025, half of the world’s
population will be living in water-stressed areas. These facts show the severe threats
and diseases caused to the global population by water scarcity, which encompasses water
availability and quality.

Today, with the exponential increase in water use due to the rapid development of
the human population, ensuring a safe and accessible water supply is a vital need for all.
An effective smart water management system is a must in order to avoid the severe reper-
cussions of water scarcity. In recent years, significant efforts have been made to monitor
water quality using a set of Key Performance Indicators (KPIs), such as temperature, the
potential of Hydrogen potential (pH), dissolved oxygen, turbidity, conductivity, etc. [4–7].
The measures of these KPIs are collected and analyzed using IoT platforms. To rationalize
water consumption, with the goal of achieving a reduction in consumption, several water
management systems have been developed using different technologies. However, the
main drawback of these attempts is the high cost and energy consumption [8,9].

Over the past few years, the Internet of Things (IoT) technology has gained significant
prominence in several areas, and this is thanks to its added-value capabilities and competitive
advantages [10–12]. IoT enables the control and processing of information in its ecosystem in
order to provide smart applications in different domains, including the water management
domain. In this context, the IoT consists of networks of smart devices equipped with physical
sensors that collect and monitor water data. For analysis, the latter are transferred to com-
putational platforms. IoT-based water management systems are low-cost solutions that can
be easily scaled up while guaranteeing easy access for remote monitoring and control. In
fact, low-cost sensors are efficient for measuring water quality indicators. In addition, the
adoption of commonly used communication technologies by the IoT allows the deployment
in pre-existing systems with few configurations and adaptations carried out.

In the present work, the main objective is to develop a smart water solution to support
different water stakeholders (e.g., water and sanitation institutions, agricultural and en-
vironmental sectors, farmers, urban consumers, industrial consumers, etc.) in controlling
and protecting their provisioned/consumed water resources. To achieve this goal, a novel
IoT-based framework is defined to ensure the smart monitoring of water environments.
The main contributions are summarized as below:

• Designing a service-oriented and an IoT-based multi-layer framework that trans-
forms the water environments into smart zones endowed with sensing and intelligent
management capabilities.

• Modeling the water environment as a knowledge graph [13] that defines the involved
elements, including water entities, sensors, water problems, monitored data, water
management operations, etc. Such a multi-relational and semantic structure will serve
as a dictionary that encompasses each information related to the water environment.

• Exploiting network embedding [14,15] to learn semantics and enrich representations
of water entities incrementally and to map them into a low-dimensional vector space
according to their similar features, behaviors, and deviations. This step helps classify
the affected water entities and efficiently select and trigger the appropriate correc-
tive measures.

• Defining a decision mechanism that recommends the appropriate management plan
for each class of water problem. This mechanism reduces the complexity of exploring
the whole network of water entities and their management costs.

• Evaluating and validating the developed solution through several use-cases repre-
senting relevant water problems (e.g., sediment detection, bacterial contamination,
discoloration, etc.) and using a real-world dataset.

The rest of this paper is organized as follows. Section 2 discusses recent state-of-the-art
solutions related to IoT-based water management. Section 3 details the architecture of the
proposed framework for water quality monitoring. Sections 4 and 5 introduce the water
knowledge graph (WKG) and the way it is updated at each monitoring time frame. In
Section 6, an incremental embedding method is proposed to map the water network into
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a low-dimensional vector space and to classify its content for the decision purpose. In
Section 7, a decision mechanism is defined based on the classification of affected water
entities. Implementation and experimental analysis are provided in Section 8. The summary
of this work and the future research directions are provided in Section 10.

2. Related Work

Many causes have engendered water scarcity in several regions of the globe, such as
climate change, altered meteorological conditions, including droughts or floods, increasing
pollution, growing human demand, excessive water usage, global warming, governmental
access, local conflicts, illegal dumping, and natural catastrophes. To face the dramatic
consequences of water scarcity, real-time water management is a critical necessity to ensure
a sustainable and safe water supply. Recently, the application of new technologies such
as IoT [16,17] and service and cloud computing [18–21] have proved their efficiency in the
water sustainability field [22]. In the present study, the focus is on reviewing the use of
these technologies in the context of water scarcity management.

Using IoT and remote sensing technologies, the authors in [23] presented a smart
water quality monitoring system. For analysis, the proposed system measures four water
parameters KPIs (pH, Oxidation-reduction potential (ORP), conductivity, and water tem-
perature) using remote sensors. The collected data are transferred to a cloud server, where
the data analysis is performed. For the validation of the system’s measurement accuracy,
four different water sources were tested within a period of 12 h at hourly intervals.

Shahanas et al. [24] developed a Smart Management Water (SMW) system based on
IoT techniques and analytics. The authors collected their dataset manually. The proposed
solution starts by collecting the water level from different tanks using smart sensors. These
collected data are transferred to a centralized server using Arduino and Raspberry Pi to
be analyzed, then visualized through a Web interface. The proposed solution allows the
detection of the water level in a tank. When the level goes below a threshold, an alert will
be sent to the users.

In [25], the authors presented a context-aware ontology-driven approach to ensure
the right water resource management in a smart city. The developed approach is based
on the Multimedia Web Ontology Language (MOWL) and consists of three layers: data
acquisition layer, context-aware service layer, and application layer. The first layer is
responsible for collecting data from different sources through heterogeneous IoT devices
such as climate and water-level sensors. Since the collected data are in various formats, they
are converted into a predefined RDF format in the second layer resulting in MOWL files.
These ontologies support the Dynamic Bayesian Network (BBN), which is responsible for
analyzing data and predicting the changing situations in real time. The last layer ensures a
clear presentation of the learned knowledge to the water authorities and determines the
appropriate recommendation or warning to take suitable actions.

Myint et al. [26] designed a Water Quality Monitoring (WQM) system for IoT envi-
ronments based on a reconfigurable smart sensor network. The proposed WQM system
collects five water-related data measurements, including pH, water level, turbidity, carbon
dioxide on the water’s surface, and water temperature. These data are accumulated from
multiple sensor nodes in parallel, in real-time, and at high speed, to be finally checked for
monitoring. WQM minimizes the time and cost of detecting water quality, contributing to
smart environmental management.

Simmhan et al. [27] proposed a smart water management application for smart city
utilities. The system architecture is based on open Web standards and involves network
protocols, cloud computing, edge resources, and big data platforms. The proposed software
has been tested on a smart campus at the Indian Institute of Science (IISc). The results
have shown the scalability of the application to be applied in the city or for other areas of
intelligent utilities.

Mukta et al. [28] proposed an IoT-based system for Smart Water Quality Monitoring
(SWQM) based on four parameters collected using IoT sensors. The used metrics include



Remote Sens. 2022, 14, 922 4 of 26

water temperature, pH, electric conductivity, and turbidity. SWQM system analyzes the
extracted sensor data using a fast forest binary classifier to determine whether the tested
samples of water are drinkable or not. The performance of this classifier is compared with
three other binary classifiers, including support vector machine, logistic regression, and
average perceptron algorithms. Among these techniques, the fast forest binary classifier
provided the highest accuracy for the same test data. In their work, Mukta et al. used this
classifier to develop a desktop application named “Sprinkle: Water Quality Checker” that
monitors and assesses the water quality.

Liu et al. [29] proposed a method based on Long Short-Term Memory (LSTM) deep
neural networks to predict the quality of the drinking water in IoT-based environments.
For model training, the authors used the water quality monitoring data collected by the
automatic monitoring station of Guangzhou Water Source in Yangzhou City for the two
years 2016 and 2017. The collected data include temperature, pH, dissolved oxygen,
conductivity, turbidity, chemical oxygen demand, and ammoniacal nitrogen (NH3–N). To
assess the effectiveness of the proposed model, the predicted results were compared to the
measured data. The experimental results have shown that the proposed model offers a
feasible approach for predicting the quality of drinking water.

In [30], a real-time water quality measurement system called Smart Water Quality
Monitoring System (SWQMS) was proposed. SWQMS is capable of investigating and pro-
viding information related to the local water quality by monitoring four key performance
indicators, which are temperature, pH, oxidation-reduction potential, and conductivity.
This system is designed on the basis of IoT technologies integrated within a network of wire-
less sensors. SWQMS is tested to monitor various water sources available in Fiji like coasts,
coves, seas, rivers, and taps. The obtained data are analyzed using statistical methods and
verified by comparing them to the Fiji national drinking water quality standards.

In [31], a semantic modeling method based on ontologies and rules building was
proposed to monitor the water quality of rivers and to process relevant observational
data. It is based on the Observation Process Ontology (OPO) and allows the description
of semantic properties related to water resources and the collected observation data. In
addition, it can provide semantic relevance among the different concepts involved in
the water quality monitoring process. OPO is constructed on the basis of the DOLCE
Ultra-Light ontology.

A water management information system architecture, based on the micro-services
paradigm and called WISdoM, was proposed in [32]. WISdoM integrates core functionali-
ties that support the implementation of three use cases of water utilities, namely: long-term
water demand forecasts, groundwater data management, and precipitation data manage-
ment. WISdoM uses several internal and external data sources (e.g., precipitation data,
water consumption data, weather data, etc.). Each data source is encapsulated by a micro-
service that allows querying the desired data. Data sources can be combined using a
message broker service that ensures data reception from different sources. The applicability
of the proposed approach and the usability of WISdoM are evaluated by expert users and
by executing different scenarios.

The goal of the work presented in [33] is the implementation of near-term and iterative
ecological predictions for freshwater management. A forecasting framework named FLARE
was developed to help manage water quality in critical lakes and reservoir ecosystems. Flare
uses water quality sensor observations and models to make forecasts of future water quality
conditions (i.e., temperature and dissolved oxygen). Forecasts provided by Flare are used
by decision support tools for managers. Remote management and transfer orchestration of
observations data and decisions are ensured by cloud computing tools.

An architecture for water quality monitoring for an irrigation precision agriculture
system was provided in [34]. The canals for irrigation, the fields, and the urban areas were
all considered. The data were being sent via both WiFi and LoRa wireless technologies,
with the cluster head node, serving as a WiFi/LoRa bridge that connects the WiFi and
LoRa nodes. A tree topology for LoRa with several hops was also provided. This tree
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enabled for greater distances to be covered while also lowering the quantity of data and
messages transferred from one node to another. A heterogeneous communication protocol
for a precision agricultural system was also proposed. The protocol was intended to allow
communication between devices that use WiFi and LoRa communication technologies. To
assess the performance of the proposed protocol, tests were carried out in a real-world
context using WiFi and LoRa nodes.

It is clear from the above attempts that water monitoring is essential to ensure the
appropriate resource management and provide adequate water supply to the citizens.
Efficient management of water requires the identification of the prevailing causes of water
scarcity in a geospatial environment. This identification is ensured by analyzing the
historical and real-time water-specific information captured through IoT sensor networks.
To deal with uncertainties in water resources, a context-aware approach is also needed to
predict environmental and climate change and offer timely guidance to the local water
authorities. This approach will provide accurate knowledge of the available water resources
to meet the competing demands. Besides, a knowledge management system ensuring
water flow and quality modeling is needed to predict the drinking-water quality in the
future and offer tracking capabilities to manage the issues generated as consequences of
water shortages.

Analyzing the above water monitoring systems, the following major drawbacks have
been identified:

• Most approaches concentrate on the monitoring phase without providing an un-
derstanding or taxonomy of water environment entities. Although some attempts
have used ontologies to represent the semantics of water-related information, the
specification of the water environment entities (water objects, water sensors, man-
agement policies, etc.) is performed in isolation, which may lead to conflicting or
failed corrective measures. A possible solution to this issue is to provide a semantic
and multi-relational modeling of the water network through the use of knowledge
graphs [13] that allow us to explicitly represent the relationships between entities of
the smart water environment.

• Existing water monitoring systems suffer from scalability and management complexity
issues due to the large size of the water networks and the huge volume of water data.
This fact leads to an inaccurate analysis of the collected water information and may
affect the decision on the water management operations (e.g., predictions, warnings,
recommendations). Aiming to face the high computational cost caused by the analysis
of the water resources’ monitored data, the incremental representation learning of the
water network could be an elegant solution. To this end, metapath2vec [35] is applied
as an embedding technique ensuring the application of incremental learning of partial
changes in the water information network (WIN).

• Current monitoring systems trigger water management actions for each detected
event (e.g., change in the water level), which leads to an increase in the cost of treating
abnormal/failed aquatic objects. Since some water areas may experience the same
deviations or degradation in water quality, the idea is to exploit the representations
learned from the water zones’ features to classify them according to their common fea-
tures/problems. This enables the appropriate water management plan to be triggered
for each class of water zones rather than treating each zone in isolation.

3. Sensor Cloud Architecture for Smart Water Monitoring

The proposed monitoring framework, called SmartWater, is abstracted and summa-
rized in the form of a layered service-oriented system that runs based on a distributed
sensor-cloud architecture (see Figure 1).
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Figure 1. Layered model of the smart water monitoring framework.

The proposed framework is composed of four layers: smart sensors’ layer, data
management layer, workflows layer, and water analytics layer.

1. Smart sensors layer: This layer is based on a sensor-cloud architecture that transforms
the water environment into a set of smart and self-monitored water zones. This layer
utilizes well-known computing paradigms, such as autonomic computing, sensor
networks, and reinforcement learning. The synergy between these technologies will
endow the sensors at each water zone with autonomic and analytics capabilities that
will offer an intelligent control of water zones’ states.

2. Data management layer: This layer represents the data processing and management
facilities that allow realizing various operations on the water data, which were pre-
viously collected and outputted by a cloud of sensors. To achieve this goal, this
layer takes advantage of service-oriented computing (SOC) paradigm to define a set
of sensor-cloud services that perform various data management operations. These
operations are achieved thanks to the combination of robust analysis and reasoning
methods and tools, including machine learning, auto-scaling, ETL (Extract-Transform-
Load) [36], filtering and aggregation, data storage, micro-services, etc.

3. Water workflows layer: This layer serves as a repository of abstract water management
plans. Depending on the water zones’ current status, i.e., captured events, a plan
is triggered by invoking the corresponding water management workflow. Using
software reuse principles, this latter is instanciated by orchestrating the appropriate
sensor cloud services from the data management layer, to be aggregated as executable
workflows that perform advanced water management operations.

4. Water analytics layer: At the higher level of the smart water’s surveillance system, a
set of predefined workflow templates denotes the decision support and recommen-
dations regarding the state of water zones. Taking advantage of techniques, such as
collaborative filtering, predictive analytics, knowledge-based reasoning, as well as
other emerging technologies from Google (e.g., knowledge graphs), a recommenda-
tion module will be defined to allow triggering the appropriate water management
actions.

The water zones’ monitoring and management process is summarized in Figure 2.
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Figure 2. System workflow of the smart water management process.

After transforming the water zones’ information into a knowledge graph structure,
the monitoring phase starts at each water zone. The data collected by water quality
sensors are, then, filtered and employed to update the WKG. This change in the WKG
triggers the re-embedding of the water network’s entities by incrementally learning the
new representations of the ones affected by changes. At this stage, the new distribution
of water entities in the embedding space is used to group these latter according to their
similar states (e.g., poor water quality). Finally, each class of problem (e.g., leakage) is
mapped to a corrective measure, by evaluating the available water management policies.
The whole routine is repeated following a monitor-learn-decide loop. As depicted in
Figure 2, the smart sensors layer is in charge of the water zones’ monitoring activity. The
data management layer is responsible for: (i) modeling the smart water environment,
(ii) updating the water information network, and (iii) selecting the corrective actions. As
for the water workflows layer, it will assist the data management layer in determining
corrective actions. Finally, the water analytics layer will be involved in the re-embedding of
the water information network, as well as the classification of water zones to ensure their
management.
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4. Modeling of Smart Water Environment

The first step towards intelligent monitoring of water zones is the correct represen-
tation of its related information. Given the complexity, heterogeneity, and large-scale
nature of the water network, which requires multi-relational and semantic modeling of
its elements, the present approach exploits the strengths of knowledge graphs [37] as
a recent Google technology to explicitly represent the relationships among smart water
environment’s entities (see Figure 3). This new kind of knowledge base was launched,
for the first time, in 2012 by Google. Since then, it has been adopted by leading service
companies, such as Amazon, Facebook, IBM, Yahoo, etc. These latter’s services (e.g., search,
recommendation, advertising, etc.) have been improved thanks to knowledge graphs’
abilities to represent and store complex relationships between real-world entities [37].

In the present approach, the WKG, also called Water Information Network includes
various entities, such as sensors, services, water stations and data, water workflows,
management plans, etc. Such entities are the cornerstone of each water zone.

Definition 1. (Water Knowledge Graph) is an heterogeneous information networkG = (V , E ,F ,D+),
where nodes in V =< Vs,Vc,V f ,Vz > denote the set of water-related entities (sensors, services, water
zones, management policies, etc.), edges in E correspond to the connections between the water environ-
ment’s actors, and F is the set of features characterizing the water network’s entities. D+ = {(ei, r, ej)}
denotes the set of facts (triples) in G. A fact is a 3-tuple f = (vi, r, vj), where vi, vj ∈ V are the head
and tail entities (e.g., sensors, monitoring hubs, distribution pipelines, management rules, etc.), and
r ∈ E denotes a relation (connection) between vi and vj. A relation r : vi

r→ vj ∈ E in the WKG is a
typed link (e.g., Monitor, ManagedBy, Trigger) between entities vi and vj.

Figure 3 shows the software and hardware entities that are involved in the construction
of the WIN. Examples of hardware entities include storage reservoirs (Res), distribution
pipelines (DP), IoT water sensors (Sen), water supply chain components (SCC), pump
stations (PS), water transportation pipelines (TP), rain gauges (RG), smart meters and
monitoring hubs (MH) for measuring consumption, acoustic devices (AD) for real-time
leakage detection, pressure monitoring hubs (PMH) for leakage detection and pump
optimization, etc. Other types of entities include services (e.g., sensor cloud services) and
water’s smart management policies (e.g., leakage prediction, burst repair, etc.), which are
related to the different water zones (WZ).

Figure 3. Water knowledge graph.

Since the WKG results from the aggregation of various types of resources, it is treated
as a combination of information sub-networks, also called views [38]. In fact, the WKG
can be seen as a multi-view information network, where each view denotes a sub-network
of knowledge (see Definition 2). For instance, the sensors’ view (φsen) denotes all of the
information regarding the hardware entities that are responsible for monitoring the water
zones. Whereas the services view (φser) is a sub-network of G that groups all the information
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regarding the value-added and sensor cloud services that process, transform, and aggregate
water zones’ data. Each water zone could also be modeled as a view of the water network.

Definition 2. (Water view) A view φi = (Vi, Ei,Fi,D+
i ) is a sub-network of the water network

G = (V , E ,F , D+), where Vi ⊂ V is a subset of nodes, Fi is a subset of features specific to the
elements of the ith water zone Zi, and Ei ⊂ E is the subset of relations r ∈ Ei within Zi. The whole
WKG can be seen as the aggregation φ of all views, where φ = {φ1 ∪ φ2 ∪ · · · ∪ φk}.

5. Water Zone Monitoring

This section is devoted to the description of SmartWater’s sensing capabilities, as well
as some examples of water monitored data. It also shows how the monitored data are
processed to decide on the water zones’ states and update the WKG.

5.1. Sensing Capabilities

Sensors can detect events or changes in their surroundings and send the data to other
connected electronic devices. Chemical, physical, and biological aspects of water can all
be detected with sensors. In this work, to identify the water regions that suffer from
qualitative problems, the smart water management system takes advantage of numerous
sensors that form a cloud of IoT objects. The distribution of sensors depends on each
zone’s requirements and restrictions. These requirements include the monitoring range,
the response time, the data interference, and the sensitivity measurements, etc. Despite
the enormous number of water monitoring KPIs [39], only a limited number of significant
parameters is used to monitor water quality [40,41].

The proposed Smart water solution can be used in many applications, such as water
and sanitation institutions, agricultural and environmental sectors, farmers, urban consumers,
and industrial consumers. Each of these applications requires a specific type of sensors to be
involved in the IoT solution. Table 1 depicts some examples of water sensors that can be used.
The type of sensors included in the IoT solution depends on the type of application of the
Smart water system. The proposed solution aims to reduce the time required for gathering
data and includes advanced analytics that can measure, catalog, and analyze the acquired data.

Table 1. Examples of water quality sensors.

Sensor Description Measured KPI Range

Temperature Sensor with no calibration
It ensures the measurement of water temperature that has a substantial
impact on water quality [42]. The WHO recommends a maximum temper-
ature of 30 degrees Celsius for drinking water.

−5 to 50 ◦C

pH / ORP Optional ORP sensor is com-
bined with pH sensor

It measures water-based solution’s acidic and basic properties. A basic
solution has a higher pH value, whereas an acidic solution has a lower
pH value. WHO [43] suggests a pH range of 6.5–9.5 for optimum quality.

0 to 14 units / −999
to 999 mV

Turbidity
Filtered for non-turbidity
spikes; includes wiper to
clean the optics

This sensor measures the turbidity metric, which is used for determining
the clarity of water. It is a crucial indicator of water quality. It is usually
measured in Formazin Turbidity Unit (FTU) or Nephelometric Turbidity
Unit (NTU) (NTU). The value of turbidity in drinking water should be
less than 5 NTU, according to WHO rules [44].

0 to 1000 FNU 1000
to 4000 FNU

Total Dis-
solved Oxy-
gen (TDO)

Optical sensor compensated
for temperature and salinity

It measures how much organic and inorganic material is dissolved in
water. The presence of a substantial number of minerals is indicated by
high TDS levels. TDO in drinking water should not exceed 500 mg/L.
Water with a TDO level of more than 1000 mg/L is unsuitable for drinking.

0 to 500% saturation

Pressure

Compensated for temper-
ature, salinity, barometric
pressure included with
depth sensor

Pump rate and pressure affect the flow of drinking water. Water pressure
sensors are used to determine the amount of water in a tank, as well as the
rate at which that level changes. They can also be used to automatically
decide whether pumps should be activated to increase the flow rate in
pumps where water is flowing.

Vented depth in
[0, 10] m, Total
dissolved gas in
[400, 900] mm Hg

The integration of sensors with cloud computing, as depicted in Figure 1, transforms
the bottom layers as a cloud of sensors [45]. The motivation behind using Sensor-Cloud [46]
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lies in the numerous advantages that this promising technology offers in terms of large-scale
data sharing and mining, cloud-based powerful and low-cost computational and storage
resources, and automatic provisioning and supervision provided by virtualized sensor
services. This highly scalable infrastructure not only enables the smart water management
system to gather, filter, and aggregate water-related data, but also access, process, and store
a huge volume of collected data, thanks to the computing capabilities offered by the cloud
resources. These latter include a kind of sensor cloud services endowed with analytics
and learning capacities, such as MLaaS (Machine Learning as a Service) and DLaaS (Deep
Learning as a Service) to help infer valuable knowledge and recommend adequate water
management plans. As presented by the novel SmartWater framework, the data collected
by the various water quality sensors is transmitted to the cloud storage. Then, they are
filtered and verified by cloud services and compared with previously specified threshold
values. Each cloud service can manage one or more sensors depending on the size of the
water zone and the amount of data collected. The data collected are mined by various
services (e.g., MLaaS and DLaaS) so that abnormal states of water zones are identified
and addressed in real-time, ensuring, therefore, the selection of the appropriate corrective
action that will be applied.

5.2. Water Management Policies

The selection of the appropriate water management operations mainly depends on
the water quality and the water zones’ hardware capacities. In fact, in each zone, water
sensors and monitoring hubs collect useful data, such as pH, water temperature, tur-
bidity, conductivity, dissolved and chemical oxygen demand, NH3–N, hardness, solids,
amount of chloramines, amount of sulfates, electrical conductivity, organic carbon, tri-
halomethanes, potability, etc. Using these real-time data, the distributed autonomic
service-based managers decide about the appropriate water management policy and
corrective measures, taking into account the filtered, aggregated, and analyzed water
data. The water measurements are evaluated against the WHO’s standard values (https:
//www.who.int/publications/i/item/9789241549950, accessed on 15 November 2021).
Then, they are transformed into usage patterns (e.g., leakage, burst, over-consumption,
quality of raw catchment water, changes in the storage reservoirs’ levels, pressure in the
distribution pipeline, etc.) that will be exploited to run over the WKG and locate the
appropriate management operations. Other events can be detected using sensors or direct
video surveillance. Examples include contaminated hydrants, defective pipes and leaks,
contamination during repair and maintenance of tanks and pipes, toxic substances in pipe
materials, cross-connections between potable water storage tank and non-potable water
storage tank or pipe, damage to wire mesh in overflow or vent pipe, defective back-flow
preventers at outlets throughout the distribution system. Table 2 depicts some examples of
corrective actions and their triggering events, following the ECA (Event-Condition-Action)
rules representation.

The monitoring and prediction of each water zone’s state are performed at each time
frame t. The granularity of the time periods (minutes, hours, days, etc.) depends on the
frequency of changes in water quality and the requirements of each water zone. In this
version, for simplicity reasons, the time variable t is considered as a traditional window
time. The variable t means the number of observations (i.e., sample data) in t periods. In this
work, the monitoring history is modeled as a set of matrices, where each one corresponds
to the data collected from a specific water zone (see Table 3). As shown by Table 3, rows
represent the water features, whereas columns denote the monitoring timeframes. Entries
correspond to the collected data by water IoT sensors. For instance, the collected data at time
t is represented by the column (PH = 8.5, TDO = 3.1, Temperature = 37, Turbidity = 0.42).

https://www.who.int/publications/i/item/9789241549950
https://www.who.int/publications/i/item/9789241549950
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Table 2. Examples of corrective actions for water quality management.

Event Condition Action

Leakage, contaminated water Pipes buried, no sign of leaks Repair leaks, bury pipes and reinforce joints

Filter performance Air sourcing ≤ 38.7 m3/h at 0.9 bar Replace air scourers and automate filter operation

Intake of water effluent Poor general hygienic quality Discharge to canal

Low nitrites level DT− 5580− ST in [400, 600] (cold), in [600, 800]
(hot) Increase the amount of 5580-ST

Pressure loss pressure ≤ 20 psi Restore pressure, disinfect and flush the affected
zone

Flow through intake insufficient Pumping rate ≤ 3000 m3/h Set intake at appropriate depth

Cross-connections with non-potable water - Break cross-connection

Chlorination Dosing rate ≤ 3kg/h AND Residual
chlorine ≤ 1 NTU

Replace buried feeder pipe and install chlorinator
on high level line

Pollution or temperature change Poor water quality Sediment removal

The management operations are triggered when the analysis of water changes after
each time period t results in at least one affected water zone. Once the monitoring task
is performed, the water state at time t + 1 is outputted, and the water quality or eventual
problems are deduced. The WIN is then updated by considering the new features of
each water zone. The updated WIN in Figure 4 shows that the abnormal behaviors are
represented by labeled nodes (see red colors) denoting the deviation patterns. That will
facilitate and accelerate the selection of corrective plans/actions by adopting a classification
of the WIN nodes with similar features/states, as will be demonstrated in the next section.

Table 3. Example of water monitoring matrix.

t-n . . . t-2 t-1 t

PH 6.5 . . . 7.6 8 8.5
TDO 2.3 . . . 2.1 2.5 3.1

Temperature 25 . . . 27 35 37
Turbidity 0.3 . . . 0.4 0.55 0.42

Figure 4. Updated WIN after the monitoring phase.

6. Smart Water Analytics Based on Network Representation Learning

Once the WKG is updated based on the monitoring data, the next step is to select
and trigger the corrective measures for each infected water zone. However, the water
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environment’s large-scale and complex nature makes it challenging to explore the WKG to
locate suitable management operations. Since several water zones may encounter similar
problems, classifying their elements (pipelines, reservoirs, etc.) according to their current
states (e.g., pipelines’ pressure level) will accelerate the decision process.

To achieve this goal and to reduce the complexity of processing such a huge infor-
mation network, network representation learning (NRL) [14] is adopted, as an efficient
solution to project the WKG into a low-dimensional vector embedding space, in which
the nodes with similar features will be close and classified together. For example, the
distribution pipelines with abnormal behavior will be tight in the vector space, whereas
the storage reservoirs with similar capacities and the reservoirs with non-drinkable water
will be mapped into the same vector embedding space. This powerful approach will allow
performing various tasks (e.g., classification, clustering, link prediction, anomaly detection,
etc.) on the information network’s content in an efficient and accurate manner [14]. In the
present work, learning the representation of water network nodes is the first step towards
efficiently performing some of the following downstream tasks: clustering of sensed data,
classification of drinking and non-drinking water zones, repair or substitution of failed
hubs or services, anomaly detection at each water zone, etc.

In this paper, a water-specialized network embedding method is proposed to infer
meaningful representations of water zones. The proposed method maps the water objects
into a low-dimensional vector space. To learn the semantics of water-related information,
metapath2vec is adopted, as an incremental embedding technique [35]. Suitable for dy-
namic and heterogeneous information networks, the proposed method first learns the
embeddings of each node in the water network. Then, at each monitoring time-frame,
incremental learning is applied to the updated water network to take the new changes (e.g.,
water zones’ state) into consideration and to update the closeness degrees between water
entities (see Figure 2).

Inspired by metapath2vec, we propose a two-step incremental embedding method
that maps the water network into a vector space, facilitating consequently the classification
of water zones’ entities, as well as the decision task (see Figure 5). The embedding model is
preceded by a guided random walk that allows extracting the node sequences as input to
the Skip-Gram learning model. To correctly capture the semantics and structural relation-
ships between the water network’s nodes and properly incorporate their heterogeneous
neighborhood into Skip-Gram, the proposed model follows a metapath-guided random
walk in the water network. The basic notations are presented in Table 4.

Figure 5. Incremental embedding of the water network.

Meta-path-based random walks: In this work, a meta-path is a set of heterogeneous
nodes which are connected based on their typed relations in the WKG. Formally, a meta-

path P has the form e1
r1→ e2

r2→ e3 . . .
rl−1→ el , wherein r = r1 ◦ r2 ◦ · · · ◦ rl−1 denotes a

composite relation between the node types e1 and el . The created meta-paths help training
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the Skip-Gram learning model, based on complex relations, such as water–water object
relations (e.g., distribution pipeline, water reservoirs) and sensor–water object relations.
Taking Figure 6 as example, the meta-path P : S-W-R denotes a management relationship
between a water reservoir W being monitored by a sensor S and repaired using a manage-
ment policy (e.g., repair) R. Two nodes from the same type can be connected via multiple
meta-paths, e.g., E-S-E, and E-R-E. Each one reveals different semantics. For example, the
latter meta-path indicates that a water zone’s management policy could be delivered for
two water entities with similar behavior.

Table 4. Symbols and basic notations.

Symbol Definition

G Water knowledge graph

Gw, Gs, G p knowledge subgraphs for water entities and sensors, and manage-
ment policies, respectively

Ew, Ep, E f Subsets of water entities, management policies, and feature entities

R Set of typed relations between entities

(ei, r, ej) A fact in G

w,p, f Embeddings of water entities, management policies, and feature
entities, respectively

d The dimension of embeddings

Rd d-dimensional continuous vector space

vw, vp, v f , vr Vector representations of WKG entities (w,p, f ) and relations (r)

D+, D− Sets of positive and negative instances

Ge Factual context for an entity e ∈ E = {Ew ∪ Ep ∪ E f } (Ĝe denotes the
top-m facts)

L Loss function for the incremental embedding

Figure 6. A simple water network schema and two possible meta-paths in the water network.
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The meta-paths are used to recursively guide random walkers based on a transition
probability, defined as follows [35]:

p(vi+1|vi
t,P) =


1

|Nt+1(vi
t)|

(vi+1, vi
t) ∈ E, ∅ (vi+1) = t + 1

0 (vi+1, vi
t) ∈ E, ∅ (vi+1) 6= t + 1

0 (vi+1, vi
t) /∈ E

(1)

Here, vi
t ∈ Vt and Nt+1(vi

t) denote, respectively, the node v of type t and its neighborhood
type, which is outputted by the neighborhood function Nt+1(vi

t), where vi+1 ∈ Vt+1.
p(vi+1|vi

t, P) = 0, if the transition (vi+1, vit ) does not exist in the set of edges E, or the
neighbor node’s type is different from the expected node type given in the meta-path P .

The recursive guidance for the meta-path random walkers is defined as: p(vi+1|vi
t) =

p(vi+1|vi
1), if t = 1. For example, the neighborhood of a water pipeline p11 (see Figure 4)

can be structurally close to other water entities (e.g., pipeline p12, reservoirs v11, v13). Using
the meta-path P : W-W-R, the random walkers could traverse the water network and
incorporate the following node sequence into a neighborhood function: p11

r1→ p12
r2→

v11
r3→ v13. Hence, given a water node and a predefined meta-path, the random walkers can

determine the node representation that maximizes the probability of predicting an unseen
node from a partially seen path in the water network.

The above guided random walk strategy preserves the semantic relationships between
the types of nodes for each sequence, which leads to proper learning when these latter are
incorporated into Skip-Gram.

Incremental embedding: As in the original metapath2vec, the water meta-paths are
used as input to Skip-Gram. This latter is trained in order to obtain node (water objects)
representations. The resultant node embeddings are frequently updated by taking into
account the monitoring data, i.e., observations at each window time, due to the ever-
changing nature of the water network. To do so, consider a set V ′ = V + ∆V of the nodes
whose states are changed after the monitoring task, where ∆ is an increment denoting the
amount of water network changes (e.g., pipeline removal, newly added reservoir, etc.). For
example, a reservoir that is represented by the node v ∈ V may undergo a change in the
water quality. In this case, v′ will represent the updated embedding for the node v.

To learn high-quality representations of the water network’s updated content, the
model needs to maximize the likelihood of each water node to each context, as well as
maximizing the probability that a context Nt(v) (v ∈ V , t ∈ TV) is heterogeneous. Such
probability is computed as follows [35]:

arg max
θ

∑
v∈V

∑
t∈Tv

∑
ct∈Nt(v)

log p (ct|v; θ) (2)

where Nt(v) denotes the neighborhood of a water object v ∈ V, and log p (ct|v; θ) is defined
as a softmax function.

To efficiently predict each node’s neighborhood, the embedding model is based on a
heterogeneous negative sampling strategy, in which a heterogeneous set of typed nodes
is selected for the normalization and optimization of softmax function, w.r.t. the node
context ct. Hence, given a typed node-set Vt in the WKG and a node context ct, the softmax
function is defined as follows:

p(ct|v; θ) =
eXct .eXv

∑ut∈Vt eXut .eXv
(3)

By considering the updates in the water network, the overall loss function is decom-
posed and defined as follows:
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O(X) = log(Xct .Xv) + ∑
m=1

MEum
t

Pt(ut)[log(−Xum
t

.Xv)] (4)

As in most approaches, the stochastic gradient descent (SGD) algorithm is used to
optimize the embedding model.

Classification of water zones based on incremental embedding: Based on the embed-
dings of the water network, and knowing that the water entities that share similar features
or encounter the same deviations in their characteristics are close in the embedding space,
the last step aims at inferring additional knowledge regarding the water zones, such as
their quality (e.g., drinkable, pH level, etc.). By classifying the water network’s entities
according to their proximity in the low-dimensional vector space, corrective measures will
be triggered for each set of water objects, rather than selecting conflicting management
actions for each individual water object. The correct decision on the water quality mainly
depends on the accuracy of the learned embeddings in capturing the label of each water
entity, based on the monitored data. In the embedding space, the water entities with similar
behavior (indicated by the colored labels in Figure 4) are located closely, which facilitates
their classification and, consequently, the selection of non-conflicting corrective measures.

The whole embedding and classification process is summarized in Algorithm 1.

Algorithm 1 Water zones’ embedding

1: Input: G—Water knowledge graph, L—Set of labels.
2: Output: V p

l —Classification of node embeddings in the water network.
3: Begin
4: {E p

t }T
t=1 ← ∅

5: for each node vi ∈ V do
6: X = MetaPathRandomWalk(G, P, vi, l)
7: X = HeterogeneousSkipGram(X, k, MP) ;
8: for each node type t ∈ T do
9: Learn the representations of node vi

10: L ←Minimize relation’s inference loss for vi
11: V p

l ← V
p
l ∪ vi

12: end for
13: end for
14: Return {V p

l }
|L|
l=1

Given a water network G and a finite set L of labels denoting the possible water states,
Algorithm 1 determines, for each node v ∈ G, the set of sequences that result from the
guided random walks with a length l (lines 5–6). Then, based on Skip-Gram, the node paths
are incorporated into the neighborhood function (line 7). Finally, using the labels set L, the
vectorized forms of each water entity are grouped using a classifier while minimizing the
inference loss (lines 8–12).

The complexity of Algorithm 1 mainly depends on the meta-paths length (l) and
the number of nodes (|V|) in the WIN. The guided random walks and the probability
calculation based on Skip-Gram are iterated for each water node vi ∈ V . Then, these latter
representations are determined by considering |T| node types. The complexity of this
algorithm is of the order of O(|V|.l2.|T|).

7. Decision Process

At this stage of the smart water surveillance process, the water zones with common
abnormal behaviors (e.g., water quality degradation, turbidity, pipeline bursts, etc.) are
repaired by triggering suitable management operations. Rather than running throughout the
whole WIN, the decision mechanism exploits the groups of labeled nodes that resulted from
the classification step (see Section 6). Since each group of water entities that encounters the
same problem (e.g., reservoirs leakage) is mapped into close vectors in the same embedding
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subspace, a unique management plan is generated for those affected water entities, avoiding
then conflicts between corrective measures and reducing the decision complexity.

Knowing that each label denotes a triggering situation, an algorithm is defined in
this work, to explore the embedding space and to locate the vectors representing the most
appropriate water management actions for each class of water problem (e.g., leakage,
high-pressure, etc.). Algorithm 2 takes, as input, the vectorized form of the updated labeled
graph G, and outputs a set P of corrective measures.

Algorithm 2 Smart water decision-making

1: Input: W—Water knowledge graph, Lp—Set of triggering events.
2: Output: P—Set of water management actions.
3: Begin
4: P← ∅
5: for l = 1 : Lp do
6: for each we ∈ W(l) do
7: Locate we in G
8: for each action ai ∈ Context(we) do . Get management actions for the water

entity we
9: if < Lp(i), Trigger, ai >⊂ W AND ai 6∈ P then . Check the fact’s existence

inW
10: add ai to P . Save corrective measure ai for the water entity we
11: end if
12: end for
13: end for
14: end for
15: Return P

Based on a subset Lp ⊂ L of labels (line 5) denoting the classes of detected problems
(triggering events), Algorithm 2 starts by locating the affected water entitiesW(l) for the
water event l (lines 5–7). Then, for each one, its context is extracted (line 8) so that to
evaluate the candidate water management operations. For each class l ∈ Lp of problem,
the suitable corrective measure is selected and saved to repair each water entity we ∈ W(l)
(line 10). Finally, a set P of water management operations is returned as the algorithm’s
output (line 15).

The computational complexity of Algorithm 2 mainly depends on the number of
triggering events (|Lp|) and the water network’s size (|V|). The processing of each event
requires parsing the WKG to locate the event context (C(we)), including candidate manage-
ment actions, which also need to be evaluated to select the best corrective measure. Hence,
the whole decision process takes O(|Lp|.|V|.|C(we)|).

8. Experiments
8.1. Dataset and Experimental Protocol

In this work, Google Colaboratory was used to encode the whole water management
process with Python 3.7.12. The incremental embedding of the WIN was implemented
using PyTorch: an open-source, flexible, and modular framework based on the Torch
library. PyTorch Geometric (PyG) library was also used to enable a distributed and scaled
representation of WIN entities. PyG provides a wide range of methods for deep learning
on graphs, such as the creation and training of Graph Neural Networks (GNNs), and deals
with irregular structures of input data, such as graphs and manifolds. The t-distributed
stochastic neighbor embedding (t-SNE) library is also employed to project and visualize
the water environment’s data and to reduce their dimensionality.

Experiments were conducted utilizing a dataset containing water quality data from
several locations to evaluate the proposed approach, briefly called SWM-INRL (Smart Water
Management with Incremental NRL). This dataset contains a total of 1600 samples with
9 parameters: temperature, pH, turbidity, Dissolved Oxygen (DO), conductivity, Biological
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Oxygen Demand (BOD), Nitrate (NI), Fecal Coliform (FC), and Total Coliforms (TC). Since
the dataset lacked triggering events and their associated conditions, this information was
added based on the case of water quality, by computing the Water Quality Index (WQI)
and classifying water samples based on the WQI values. WQI has been calculated using
the following formula [47]:

WQI =
∑N

j=1 qj ∗ wj

∑N
j=1 wj

(5)

where N is the total number of parameters included to compute the WQI, qj presents the
quality rating scale of the used parameters calculated through Equation (6), and wj is the
unit weight of the used parameters calculated by Equation (7).

qj =

∣∣∣∣∣ vj − vper f ect

rvj − vper f ect

∣∣∣∣∣ ∗ 100 (6)

where vj is the measured value of the jth parameter for each station, vper f ect is the perfect
value of the jth parameter in case of a good quality of water, and rvj is the recommended
value for this parameter. Since perfect values are rarely available in real water environments,
the recommended values are the standard values determined by the WHO. The perfect
and recommended values for each parameter are as follows: pH {7,8.5}, turbidity {0,5}, DO
{14.6,10}, conductivity {0,1000}, BOD {0,5}, NI {0,45}, FC {0,100}, TC {0,1000}.

wj =
K

rvj
(7)

where K is the proportionality constant calculated using Equation (8):

K =
1

∑N
j=1 rvj

(8)

Table 5 depicts the four classes of water quality and their distribution added to the
considered dataset, namely Excellent with a WQI range of less than 25, Good with a WQI
range in [26, 50], Poor with a WQI range in [51, 75], and Very poor with a WQI range greater
than 75. Table 6 shows a sample from the water dataset with different measures of the nine
parameters used to identify the water quality.

Table 5. Water quality classification.

WQI Range Water Quality Number of Samples

Less than 25 Excellent 867
26–50 Good 708
51–75 Poor 22

Greater than 75 Very poor 3

Table 6. Sample from the used dataset.

Station ID Temperature PH Turbidity DO Conductivity BOD NI FC TC WQI Class

Z124 24 7 0.1 8 0.29 0.7 0.2 3 15 15.415 Excellent
Z245 25 6.8 0.22 7.8 4 1.092 0.7 1 17 24.12 Excellent
Z127 24.5 6.6 0.45 7.5 24 0.91 1.1 15 98 27.52 Good
Z123 24 7.2 0.75 7.2 9 1.5 1.7 14 78 28.81 Good
Z435 27 6.94 2.3 5.1 95.8 2.3 2.151 10 26 43.87 poor
Z129 27 7 2.5 5.7 88.5 2.7 2.186 27 105 43.94 poor
Z212 30 9.3 4.7 3.3 236.7 4.5 4.08 233 158 80.959 Very poor
Z231 39 9.7 4 2.85 176.5 3.36 7.52 214 155 78.779 Very poor
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The WKG was built as an information network with three sorts of nodes: water zone,
event, and action. The location IDs are extracted to represent the water entities, while
the changes in WQI for each water zone are used to represent the event entities. For the
actions, the entities representing the management policies were randomly generated. The
relationships among these entities represent the topology of the water network. In addition,
the water zone and event nodes are labeled to present the quality of water according to
WQI values. To continuously update the WKG structure, metapath2vec implementation
was applied and the model was configured according to the setting and hyper-parameters
depicted in Table 7. The P : W-E-C-E-W was defined as the guided meta-path followed to
generate the random walks. In fact, W-E-C-E-W represents the heterogeneous semantic of
water zones that have events belonging to the same class.

Table 7. Settings and hyper-parameters for metapath2vec model.

Parameter Description Value

Node walk number The number of walks for each node in the graph 3

Walk length The length of metapaths is determined by the total
number of walks 10

Embedding vector dimension This parameter limits the size of each embedding vector 16

Size of neighborhood The node similarity is captured through a fixed size of
neighbor nodes 7

Batch size The batch size is the number of training instances that
will be passed to the model in one iteration 16

Optimizer Optimization methods are used to control and mini-
mize the loss value in order to get an accurate result

Sparse
Adam

Optimizer Learning rate The learning rate is a tuning parameter for the used
optimizer 0.025

Since some entities may feature the same behavior or deviation, our idea is to trigger
a corrective action for a group of water entities, not for a single entity. That has several
advantages: (i) reducing the complexity of processing each water entity in isolation (ii) uni-
fying water management policies to avoid incompatibility and conflicts between them. For
this purpose, we opted for the classification of water zones according to their water quality
levels. By this way, a poor quality situation, for example, will trigger the same corrective
action for all the low-quality water zones. In the current version, for simplicity reasons,
we focused on the classes of water quality degradation, based on 9 water features, while
the other triggering events, such as pressure loss, chlorination, leakage, etc. (see Table 2),
will be considered in a more complete version of our smart water management system.
This will be achieved by incorporating additional features of various water entities into the
water knowledge graph, as well as the embedding and classification model.

8.2. Experimental Results
8.2.1. Water Zones Embedding Visualization

To capture semantic and structural correlations between different zone locations, the
proposed SWM-INRL approach is based on metapath2vec, as an incremental embedding
technique, as previously mentioned. Figure 7 visualizes the latent vectors learned by
metapath2vec model of 1600 water zones. It is clear that the water zones with similar
characteristics are classified (see Section 8.2.2) and grouped to each other. They also were
separated from other nodes according to the water quality.

As can be noticed, most of the water zones belong to the excellent and good water quality
classes (54.98%, 43.49%, 1.35%, 0.18%, for excellent, good, poor, and very poor, respectively).
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Figure 7. Embedding visualization of the constructed WKG.

Figures 8 and 9 depict respectively the water zones with poor and very poor water quality.

Figure 8. Water zones with poor quality.

Figure 9. Water zones with very poor quality.

8.2.2. Water Zones Classification

This section’s goal is to compare the performance of water zone classification with and
without embedding. To do this, three classifiers are considered: Support Vector Machines
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(SVM), Logistic Regression (LR), and K-Nearest Neighbors (KNN). The node represen-
tations are learned from the dataset, which was transformed into a knowledge graph.
The embeddings of the above-labeled nodes are then fed into the classifiers. Classifica-
tion results, based on the 9 parameters of the dataset (see Section 8.1), are presented in
Tables 7 and 8. Confusion matrices of the three classifiers SVM, LR, and KNN according to
the four classes (excellent, good, poor, and very poor) are depicted in Figures 10 and 11.
It is noticed that the SVM classifier outperforms other classifiers for both cases (with and
without embedding). Furthermore, adopting incremental network embedding improved
classification scores for all three classifiers by at least 3%. The results prove the role of
latent representations learned by embedding for a correct water zone classification. The
metapath2vec model has a solid ability to generate appropriate embeddings for the WIN.

Table 8. Classification results using the water zones embedding.

Model Accuracy Precision Specificity F1-Score

SVM 100 100 100 100
LR 99.75 99.87 99 99.76

KNN 99.95 99.97 99 99.94

Figure 10. Normalized confusion matrices for the water zones’ embedding classification with:
(a) SVM, (b) LR, (c) KNN.

Figure 11. Normalized confusion matrices for the water zones’ classification without embedding
using: (a) SVM, (b) LR, (c) KNN.
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8.3. Evaluation of NRL-Based Method
8.3.1. Comparison of Classification Accuracy

The goal of these test series is to evaluate the ability of the proposed approach to
correctly classify the water zones’ entities, which is essential to trigger the appropriate
corrective measures. We also leverage the importance of incremental learning in mapping
water entities with similar behavior into close vector representations, which facilitates their
classification. For this purpose, tests were conducted with three different classifiers (SVM,
LR, and KNN). After that, the same tests were repeated without executing the incremental
embedding step. For all the compared methods, the number of water entities was set to
1600 and the number of classes, i.e., water quality deviations, to 4. Results are recorded in
Figure 12, Tables 8 and 9.

Table 9. Classification results of water zones without embedding.

Model Accuracy Precision Specificity F1-Score

SVM 97.46 97 97 97
LR 95.77 96 95 95.3

KNN 96.11 95 92 96

Figure 12. Comparison of the classification quality with and without incremental embedding.

Figure 12 shows that the proposed approach performs better with the incremental
learning step and outperforms the traditional classification methods. Regardless of the
applied classifier, the gap in accuracy results reached 3% with the SVM classifier. It is
worth noting that the used dataset is with an imbalanced classes distribution, as depicted
in Table 5. Nevertheless, we conclude from the obtained results that modeling the water
environment as a knowledge graph and exploiting network embedding have effectively
dealt with the imbalanced distribution of each class. In fact, the incremental embedding
helps learn semantics and rich representations, hence mapping the water entities as close
as possible in the embedding space, according to their similar features, behaviors, and
deviations. Therefore, the learned representations will be useful to correctly classify water
entities. The classification with embedding achieved high performance and outperformed
the traditional classification methods. Indeed, the guided random walk technique used
in the present work aided in the preservation of the semantic relationships between the
water network content, i.e., nodes for each sequence. This increased the possibility of each
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water node fitting into each context, resulting in accurate learning of water entity vector
forms. As a result, water zones with similar characteristics (e.g., volume, water quality)
and experiencing the same anomalous behavior will be close in the embedding space and
belong to the same class.

8.3.2. Computational Complexity

The goal of this test series is to study the time complexity of SWM-INRL by considering
the amount of captured changes at each water zone (variation of ∆ in [5%, 10%, 15%, 20%,
25%). For each test case, the computation time was recorded at both the water entity level
and the water class level. The recorded results in Figure 13 are computed as the sum of
incremental embedding time (TE), the time devoted to exploring the embedding space for
the classification purpose (TC), and the time spent to select a management operation for a
water zone’s critical case (TD).

Figure 13. Computation time with different amounts of changes.

It is evident from Figure 13 that SWM-INRL performs better when the decision is taken
for each class of problem (e.g., leakage, pressure loss) rather than for each affected water
entity. This ascertainment is understandable because the decision routine is not repeated for
a high number of separate water zones, which will cause extra-computation time. Thanks
to the incremental embedding, the affected water zones were mapped into close vector
representations according to their common deviations, which transformed the decision
task from a water entity-oriented recommendation to a class-oriented recommendation.
Regardless of the amount of captured changes (∆G), running through a traditional graph-
like water network requires the processing of each water entity, even those that feature
a stable state, which increases the total time of the measure-decide-actuate process. This
gap in processing time can be clearly seen from Figure 13, and has reached 5.287 s when
25% of the water zones have encountered abnormal behavior. Unlike the traditional graph
processing approach, the proposed NRL-based method transforms the whole WIN into
clusters, where the largest one (see Figure 7), which represents the stable water zones, will
not be treated by the decision algorithm. By this way, the decision process will be limited to
a small number of clusters (e.g., 2 clusters in Figure 7), denoting the affected water zones.
That positively impacts the total execution time, especially in a more complex and highly
dynamic (↑ ∆) water network.

9. Discussion

In a context of increasing scarcity of water resources and an increasingly demanding
regulatory framework, organizations concerned with the management of water resources,
government authorities, and drinking water operators, both public and private, are facing
today growing and complex challenges: monitoring water quality, improving the efficiency of
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water networks, reducing operating costs, improving energy performance, etc. The growth
of IoT sensors, the deployment of efficient and intelligent networks for data transfer, the
usage of artificial intelligence, and notably machine learning techniques, are all highlighted as
challenges that intelligent network management approaches can tackle. In this context, the so-
lution consisted in a novel IoT-based framework for smart monitoring of water environments.
The proposed framework relies mainly on the knowledge graph embedding technique that
will enable us to progressively learn the semantics and enrich representations of water entities
modeled in the form of a knowledge graph and map them into a low-dimensional vector
space, according to their characteristics, behaviors, and deviations. This technique makes
it possible to classify water entities to detect abnormalities that require effective and urgent
intervention to select and initiate appropriate corrective measures.

The experimental studies that were carried out in this work confirmed that the adop-
tion of Knowledge Graph Embedding (KGE) improved the performance of the water
management task and the decision-making process. In fact, KGE is usually performed as a
step that precedes several downstream tasks (e.g., classification, clustering, anomaly detec-
tion, link prediction, etc.) in order to improve the system’s performance and quality [14]. In
this paper, the main goal was to classify water entities in order to reduce the complexity and
cost of decision-making. Since the incremental learning of the water network representation
made it possible to map the water entities in close vectorized forms, advanced management
operations could be efficiently carried out. For example, the anomaly detection problem
could be instantiated as part of water management to determine areas of water exhibiting
abnormal behavior. These will be isolated since they do not share the same semantics
with the rest of the water entities. Another management operation concerns reassigning
surveillance actors, such as sensors and their associated services (e.g., sensor cloud services,
micro-services), to manage water areas. In fact, some areas may be characterized by a
high degree of change in the water quality, while other areas that do not undergo frequent
changes will produce a few amounts of water change-related data. In such a situation,
embedding the water network will better capture the semantics by factoring the scattered
water data into a smooth embedding space. In this way, high-performance sensors will be
placed in tight water areas with a high degree of change, making it easier to reconfigure
their placement.

In addition to the previously mentioned advantages and applicability cases, in the
case of water resource management systems, the adoption of knowledge graph integration
can overcome the limitations of usual deep reinforcement learning-based systems [48,49].
The deployment of this type of water management systems requires a huge amount of
information from IoT sensors. However, knowledge reasoning techniques can solve this
problem by using a graph already constructed on prior knowledge of the entities’ correlation
and employing integration to derive the correct classification—subsequently, the effective
selection of the appropriate corrective actions.

10. Conclusions

In this paper, a novel IoT-based framework was proposed to allow controlling water
quality and to optimize drinking water consumption through a set of intelligent corrective
measures and management policies. By combining the strengths of knowledge graph
technology [13] and NRL [14,15], the knowledge graph-like WIN incrementally mapped
into a low-dimensional vector space that is continuously readjusted to take into account
the detected changes/problems in the monitored water zones. The motivation behind the
incremental embedding step is to facilitate the decision on the appropriate management
action through the classification and grouping of affected water zones. The experimental
studies with a real-world water dataset proved that the proposed SWM-INRL solution
could provide efficient monitoring and management facilities for organizations in both
the public and private sectors to ensure high-quality water resources and services. The
experiments have also proven that the incremental learning method reduced this complexity
by exploring a vector subspace of infected water entities rather than exploring the large
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WIN. Hence, increasing the accuracy of locating the affected water zones and their related
management policies.

The present work will be improved by learning the representation of the water net-
work under uncertainty of water information, which will offer probabilistic and predictive
capacities to the monitoring system. The future work will also be focused on investigating
the impact of correlating water KPIs on the final analytics results [29]. In addition, spa-
tial time-series forecasting techniques will be explored to tackle the scalability problem
caused by processing complex and large amounts of data collected by IoT networks [50].
Finally, future extensions will also include the integration of ontological properties of water
resources and observation data to take advantage of assets offered by existing ontologies
used in the smart water domain [51].
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