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Abstract: Sea ice is an important part of the global cryosphere and an important variable in the
global climate system. Sea ice also presents one of the major natural disasters in the world. The
automatic and accurate extraction of sea ice extent is of great significance for the study of climate
change and disaster prevention. The accuracy of sea ice extraction in the Yellow River Estuary is
low due to the large dynamic changes in the suspended particulate matter (SPM). In this study, a set
of sea ice automatic extraction method systems combining image spectral information and textural
information is developed. First, a sea ice spectral information index that can adapt to sea areas with
different turbidity levels is developed to mine the spectral information of different types of sea ice.
In addition, the image’s textural feature parameters and edge point density map are extracted to
mine the spatial information concerning the sea ice. Then, multi-scale segmentation is performed on
the image. Finally, the OTSU algorithm is used to determine the threshold to achieve automatic sea
ice extraction. The method was successfully applied to Gaofen-1 (GF1), Sentinel-2, and Landsat 8
images, where the extraction accuracy of sea ice was over 93%, which was more than 5% higher than
that of SVM and K-Means. At the same time, the method was applied to the Liaodong Bay area, and
the extraction accuracy reached 99%. These findings reveal that the method exhibits good reliability
and robustness.

Keywords: Yellow River Estuary; turbid area; spectral information; textural features; sea ice extension;
automatic extraction

1. Introduction

Sea ice refers to saltwater ice that is directly frozen from seawater, and also includes
continental glaciers (icebergs and Iceland), river ice, and lake ice that enter the ocean. Sea
ice greatly inhibits the heat and steam exchange between the ocean and atmosphere and
alters the radiation budget and energy balance of the ocean’s surface. These changes have
an important impact on oceanic hydrological conditions, atmospheric circulation, and
ocean climate [1]. In addition, the production and disappearance of sea ice greatly affects
human marine activities. For example, sea ice significantly affects the development of
marine resources and marine transportation [2]. Moreover, sea ice presents a potential
freshwater resource [3]. Therefore, accurate real-time monitoring of sea ice bears an
important application value and theoretical significance.

The bottom of the Yellow River Delta contains a small flat slope, shallow water low
salinity, as a result of which seawater is easily frozen [4]. The development of conditions
conducive to ice formation and persistence in this sea area is unstable; that is, the ice
disappears as the temperature rises and reappears as the temperature drops [5]. Sea ice
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is formed at a rapid rate and responds more closely to the local climate. Sea ice disasters
frequently occur in the waters of the Yellow River Delta, and sea ice often has a major
impact on fishing ports, wharves, shallow beach aquaculture, and offshore infrastructure [6].
For example, the operation area of the Shengli Oilfield, China’s second-largest oilfield,
is mainly concentrated in the Yellow River Delta, the Bohai Sea and its adjacent waters.
Sea ice severely affects and threatens offshore oilfield production operations and various
engineering facilities in the winter [7]. According to statistics, severe and relatively serious
sea ice disasters occur roughly once every five years in China, and in some sea areas, sea
ice disasters occur almost every year [8]. In the winter of 2009–2010, the Bohai Sea and the
northern part of the Yellow Sea experienced the worst ice conditions in nearly 30 years. The
severe ice conditions had a significant impact on the society and economy of the provinces
(cities) along the Yellow Sea and the Bohai Sea. According to statistics, sea ice disasters
caused economic losses totaling nearly USD 900 million [9]. Therefore, in the context of
global warming, it is entirely possible that continuous low temperatures and severe sea
ice disasters will occur in some areas. In particular, with the rapid economic development
of the Bohai Rim region, the losses suffered by sea ice disasters are increasing year by
year [10]. In the new era, the country should promote the understanding of the ocean,
rationally develop and utilize marine resources, protect the rights and interests of the
ocean, and insist on the harmonious coexistence of man and the ocean. Faced with the new
requirements as China enters a new era and accelerates the building of its maritime power,
the existing sea ice disaster prevention and mitigation capabilities can no longer fully meet
the actual needs of the economic and social development in icy sea areas, and sea ice
monitoring capabilities remain relatively weak [11]. It is the trend of future development to
improve the three-dimensional marine disaster observation network that combines coastal
observation, offshore platform and satellite remote sensing, so as to improve the ability of
marine disaster observation [12]. Therefore, the precise extraction of sea ice provides the
basis for strengthening the analysis of and research on sea ice conditions, and is necessary
for improving early sea ice warning technology, as well as ice prevention and disaster
reduction capabilities.

Traditional sea ice monitoring methods, such as shore-based observations and ice-
breaker observations, cannot obtain large-scale sea ice information in a timely and accurate
manner. Remote sensing monitoring technology has a high timeliness, can obtain repeated
observations on a large scale, and is relatively inexpensive, providing long-term data
support for dynamic and efficient sea ice monitoring [13–15].

Large-scale monitoring of sea ice in high latitudes can be carried out using remote
sensing technologies such as microwave and optical remote sensing. Passive microwave
and synthetic aperture radar (SAR) imagery enables all-weather observations and the
ability to penetrate through clouds [16,17]. The automatic segmentation algorithm based
on statistical distance realizes the classification of C-band fully polarized sea ice data [18].
A sea ice classification method is proposed for X-band, C-band and L-band fully polarized
synthetic aperture radar images. By extracting the polarized features of sea ice classification,
the feature vector provides input into the neural network classifier to realize the extraction
of sea ice [19]. However, it is challenging to obtain due to the high cost and the long
revisit period for most of them [20]. Optical remote sensing data, although limited by
weather conditions, usually delivers better spatial resolution, lower cost, and shorter revisit
times. For example, satellites such as Moderate Resolution Imaging Spectroradiometer
(MODIS) [21], Advanced Very High-Resolution Radiometer (AVHRR), Geostationary Ocean
Color Imager (GOCI) [22], and Feng Yun 3 (FY-3) [23] has a high time resolution and can be
used for continuous monitoring of sea ice in a large-scale area and a long time sequence.
The disadvantage is that the spatial resolution is low, and it is difficult to perform refined
regional sea ice monitoring. High spatial resolution remote sensing data represented by
GF1 [24], Landsat [25], and Sentinel-2 [26] can be used to achieve refined sea ice monitoring
through data mining, and the effective combination of multi-source medium and high-
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resolution satellite data compensates for the low time resolution of the data and further
improves its sea ice monitoring capabilities.

Three main types of feature parameters are used for sea ice extraction: spectral features,
spatial features, and temperature features. The spectrum processing methods commonly
used for sea ice extraction include the band ratio, band difference, and various normalized
indexes, which highlight the sea ice information [27]. In addition, the sample point selection
and machine learning methods have also been used to extract spectral information about
sea ice. The second concerns the spatial features. The spatial feature commonly used
for sea ice extraction is the textural feature based on the gray-level co-occurrence matrix.
Generally, the surface of sea ice is rough and has conspicuous irregular and unstable
textural characteristics; while the surface of sea water is smooth and has constant textural
characteristics [28]. The third refers to the temperature feature. This parameter is used to
retrieve the surface temperature through the thermal infrared band of the remote sensing
image. The temperature feature is simple and easy to use, but has fewer data sources and a
low spatial resolution; the accuracy of the temperature retrieval algorithm is also not very
high, limiting its application [29].

Current sea ice extraction methods can be divided into threshold segmentation meth-
ods, machine learning methods, and digital image processing methods. The threshold
segmentation method mainly involves setting the threshold value of the sea ice’s spectral,
textural, temperature, and other parameters and determining the threshold values using an
artificial or bimodal histogram, scatter plots, and other methods, such as using the red band
and the ratio threshold of the near-infrared band to achieve rapid extraction of sea ice [27].
Su et al. used the red and near-infrared bands of Sentinel-3 images to establish a sea ice
information index that highlights the spectral information of sea ice, and employed the
Jenks method to determine the segmentation threshold of ice water [30]. Hayashi et al. used
reflectance scatter plots of MODIS bands 1 and 2 to derive a formula suitable for extracting
the area of thin ice [31]. Ice conditions in the Gulf of Riga in the Baltic Sea were counted by
a bimodal histogram method, the statistical results were limited by the spatial resolution of
MODIS [32]. The threshold segmentation method is simple and fast, but it is difficult to de-
termine the threshold value using this method, and the threshold value of different images
will be slightly different. Machine learning methods such as support vector machines and
Classification and Regression Trees (CART) decision trees select certain sample points and
then classify the sea ice and seawater areas [33]. The machine learning method is simple
and easy to use, but the classification process is unclear, and the sample points need to be
manually selected, making it difficult to achieve automation. In addition, the final accuracy
depends entirely on the selected sample points. The digital image processing method is to
highlight the sea ice information by processing and transforming the image. For example,
Li et al. proposed a linear spectral decomposition method based on MODIS images with
multiple constrained end members [34]. The pixels are decomposed to extract the range
of the sea ice. Liu et al. used a wavelet transform to extract the textural information from
a SAR image, converted a China–Brazil Earth Resources Satellite (CBERS-02B) optical
image from Red-Green-Blue space to Hue-Saturation-Intensity space, and finally employed
Principal Component Analysis (PCA) to fuse the HSI image and the texture images [35].
Digital image processing methods can highlight sea ice information more intuitively, but
the process is more complicated and difficult to automate.

The seawater turbidity of the Yellow River Delta is high, and the changes are quite
drastic, which intensifies the distinction between sea ice and seawater. Aiming at the
problems of the low accuracy and efficiency of the current sea ice extraction methods used
in the Yellow River Delta and based on multi-source remote sensing images, in this study, a
set of sea ice automatic extraction method systems suitable for the Yellow River Delta was
developed and the spatial and textural information about the sea ice was fully excavated.
The automatic extraction method will be further extended to other areas such as Liaodong
Bay in order to provide important technical support for the rational development of sea ice
resources and to improve the early warning capabilities of sea ice disaster prevention and
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mitigation systems. This method explores the spectral information and texture information
of different ice types. The spectral information, texture information and edge information
of sea ice are used to extract sea ice, and the completeness and accuracy of sea ice extraction
results are improved through multi-scale segmentation of images. This method can provide
a reliable method for extracting sea ice extent from high-resolution optical remote sensing
data such as GF1.

2. Materials and Methods
2.1. Study Area and Data

The Yellow River Delta is located in the southeastern part of Bohai Bay and the
northwestern part of Laizhou Bay (Figure 1). The sea area is located in a typical monsoon
climate zone. The winter is controlled by the Eurasian continental high pressure system.
The north and northwest winds are dominant, and the weather is dry and cold. When
strong cold air invades, it is often accompanied by processes such as strong winds, snowfall,
and sharp temperature drops. The coastline is more than 100 km long, and the sea water
near the coast mostly contains suspended sediment from the mouth of the Yellow River.
Therefore, the sea area has a wide intertidal bandwidth, a small and flat bottom slope,
and shallow water depths. In winter, this area is greatly affected by the meteorological
conditions and the continent. In addition, affected by the runoff from the Yellow River and
other rivers entering the sea, the salt content of the seawater in this sea area is relatively low.
The aforementioned special geographical environment and climatic conditions provide
sufficient and necessary conditions for the freezing of seawater in this sea area. Sea ice
often has a significant impact on fishing ports, wharves, shallow beach aquaculture, and
marine infrastructure in this area. With the gradual expansion of the economic scale of the
marine aquaculture industry in this area, the impact of sea ice on production activities has
become more significant.

Figure 1. The study area.

According to the development stage of sea ice, the sea ice in the Yellow River Delta
can be divided into new ice (NI), ice rind, nilas (NL), grey ice (GR), grey-white ice (GW),
and white ice. New ice is formed by direct freezing of seawater or snow falling when the
temperature is low, and the sea surface is not melted. It is mostly needle-like, flake-like,
grease-like, or sponge-like. Ice rind is formed by the freezing of new ice or direct freezing of
the calm sea surface. The surface of the ice crust is smooth, moist, and shiny. Its thickness
is about 5 cm. It can fluctuate with the wind and is easily broken by wind and waves. Nilas
ice is a thin, elastic ice crust with a thickness of less than 10 cm. It easily bends and breaks
under external forces and can produce a finger-like overlapping phenomenon. Grey ice is
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an ice cap layer with a thickness of 10–15 cm. It is developed from nilas. The surface is flat
and moist. It is mostly grey. It is less elastic than nilas ice. It is easily broken by swells and
overlaps when squeezed. Grey-white ice is an ice layer with a thickness of 15–30 cm, and is
developed from grey ice. It has a rough surface, is greyish-white, and mostly forms when
ice ridges are squeezed. White ice describes an ice layer with a thickness of greater than
30 cm. It develops from grey-white ice, has a rough surface, and is mostly white [36].

In this study, Sentinel-2 and Landsat8 images from 2017–2019 were selected to verify
the applicability of the method. The time phase and image quality information obtained
from the data is presented in Table 1.

Table 1. Image information table.

Area Date Image Band Number Resolution Cloud Cover

Yellow River Delta 21 January 2017 GF1 4 16 m 1%
Yellow River Delta 12 January 2018 GF1 4 16 m 1%
Yellow River Delta 12 January 2018 Sentinel-2 10 10 m 0%
Yellow River Delta 23 January 2019 Landsat8 7 30 m 0%
Yellow River Delta 21 January 2017 Planet 4 3 m 1%
Yellow River Delta 12 January 2018 Planet 4 3 m 2%
Yellow River Delta 23 January 2019 Planet 4 3 m 1%

Liaodong Bay 17 February 2019 Landsat8 7 30 m 0%
Liaodong Bay 17 February 2019 Planet 4 30 m 0%

The GF1 data used in this article were obtained from the China Resources Satellite
Application Center (http://www.cresda.com/CN/, accessed on 21 January 2017). The PIE-
Basic software was used for geometric correction, atmospheric correction, orthorectification,
image clipping, and other pre-processing work. The Sentinel-2 data were obtained from the
European Space Agency’s (ESA) data sharing website (https://scihub.Coppe-rnicus.eu/,
accessed on 12 January 2018). The Sentinel-2 data released is a product of the Top-of-
Atmosphere (TOA) reflectance that has been geometrically corrected and radiometrically
corrected, so it was only necessary to perform atmospheric correction of this dataset.
The SNAP software officially provided by the ESA was used to perform the atmospheric
correction on the downloaded data. The Landsat data were obtained from https://landlook.
usgs.gov/ (accessed on 23 January 2019) and the ENVI software was used to perform the
FLAASH atmospheric correction. In order to facilitate the subsequent statistical analysis,
calculations, and other operations and to reduce the data storage space, all of the reflectance
data were expanded by 10,000 times and rounded.

2.2. Sea–Land Separation

In order to avoid interference from land information, the sea and land need to be
separated before the sea ice extraction. The Normalized Difference Vegetation Index (NDVI)
and the Normalized Difference Water Index (NDWI) are the most commonly used indexes
for water and land separation. They both use the normalized ratio of the reflectance
between visible and near-infrared light. The difference is that the NDVI uses the green and
near-infrared bands; while the NDWI uses the red and near-infrared bands. In the Yellow
River Delta, the concentration of suspended sediment in some of the seawater is extremely
high, which improves the reflectivity of the seawater in the near-infrared band. Figure 2
shows the spectral curve of the seawater and sea ice in the GF1 image. The reflectivity of
the clean seawater is significantly higher in the visible light range than in the near-infrared
band, while the reflectivity of the highly turbid seawater is higher in the near-infrared
band than in the blue-green band. However, it is still lower than the reflectivity in the red
band since the reflectivity in the blue and green bands will gradually become saturated as
the concentration of suspended sediment increases, while the reflectivity in the red and
near-infrared bands will continue to increase as the concentration of suspended sediment
increases [37]. However, the near-infrared reflectivity is always lower than the red-band
reflectivity. Sea ice 1 and sea ice 2 are defined as sea ice in clean water and turbid water,
respectively, and the reflectivity in the near-infrared band is also lower than that in the

http://www.cresda.com/CN/
https://scihub.Coppe-rnicus.eu/
https://landlook.usgs.gov/
https://landlook.usgs.gov/
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red band. Therefore, the effect of using the NDVI for sea–land separation is better. Pixels
with NDVI values of less than 0 are classified as seawater, and pixels with NDVI values of
greater than 0 are classified as land. In addition, after separation, it is necessary to filter out
discrete areas such as rivers and lakes on the land and ultimately to only retain the ocean
area. The results of the sea–land separation are shown in Figure 3.

Figure 2. The reflectance of the ice and water in the GF1 image.

Figure 3. (a) True color GF1 image acquired on 12 January 2018; and (b) the results of the sea–land separation.

2.3. Sea Ice Spectral Information Extraction

Spectral information is the most commonly used feature for extraction. In this section,
a sea ice spectral information index suitable for different suspended particulate matter
concentrations based on the spectral characteristics of sea ice is developed. Generally,
the reflectance of seawater in clear seas is higher than that of seawater. However, the
suspended particulate matter (SPM) in the Yellow River Estuary increases the reflectance of
the seawater. The reflectance of seawater with a high SPM content is even higher than that
of sea ice with a lower SPM content (Figure 4). As can be seen from the box plot in Figure 4,
as the wavelength increases, the reflectivity of the seawater fluctuates more widely, and
the blue band is relatively less affected by the SPM content. This is due to the fact that as
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the SPM content increases, the blue band reaches saturation first, followed by the green
and red bands. From the perspective of the type of sea ice, in addition to grey ice and
grey-white ice, a considerable part of the new ice and ice rind has the same reflectance as
seawater. This is because grey ice and grey-white ice are thicker and have a much higher
reflectivity than seawater, whereas new ice and ice rind are thin ice with a thickness of less
than 10 cm and have a lower reflectivity. Therefore, a single waveband cannot distinguish
all types of sea ice from seawater. The difficulty of sea ice extraction in the Yellow River
Estuary is mainly the extraction of the new ice and ice rind from seawater with different
SPM contents.

Figure 4. Sea ice and water reflectance box plot.

The commonly used spectral index such as the NDVI and NDSI, cannot eliminate the
influence of SPM on sea ice extraction. Therefore, in this study, the spectral information
concerning the sea ice was extracted by searching for an optimal band combination method.
Since the visible light and near-infrared bands are the most important bands for extracting
sea ice, these four bands were selected as the best band combination from the data source.
The scatter plot can intuitively reflect the separation of the different samples. As shown
in Figures 3 and 4, each point in the scatter plot formed by any two bands represents the
position of the sea ice or seawater in this two-dimensional space. If the points of sea ice and
seawater are scattered together (Figure 5a), then the separation of the sea ice and seawater
in the two-dimensional space formed by these two wavebands is poor; and if the sea ice
and seawater each gather in one location, it indicates that the sea ice and seawater can be
separated well using this waveband combination (Figure 5b). In this way, a straight line
separating the sea ice and seawater can be drawn in this two-dimensional space.
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Figure 5. (a) Band 1 and Band 2 exhibit good separation in this scatter plot; (b) Band 1 and Band 2
display poor separation in this scatter plot.

In order to test all of the band combinations as much as possible, in this study, com-
binations of the four red, green, blue, and near-infrared bands were tested first. The
results of these combinations are presented in Table 2. There are 28 results in total. Two
of these 28 bands were chosen to construct a two-dimensional scatter plot, with a total of
378 combinations. For example, if the NDVI can better distinguish between sea ice and
seawater, then the scatter plots constructed with the NIR − R and NIR + R bands will
exhibit better separation. Finally, the reflectivity of grey ice and grey-white ice is much
higher than that of primary ice and ice skins, and the extraction is relatively simple. In
order to make the scatter plot show the separation of new ice, ice rind, and seawater better,
first only the sample points of new ice, ice rind, and seawater were selected to construct
the scatter plot. The optimal band combination was selected by averaging the Euclidean
distance and inter-class variance combined with visual interpretation.

Table 2. First band combination list.

R G R + G R + B R + NIR G + B G + NIR

B NIR R * G R * B R * NIR G * B G * NIR

B + NIR R − G R – B R − NIR G − B G − NIR B − NIR

B * NIR R/G R/B R/NIR G/B G/NIR B/NIR

The average Euclidean distance is

x =
1
n ∑n

i=1 xi, (1)

where x(y) is the average Euclidean distance of the sea ice or seawater on the x-axis or y-axis,
n is the number of sea ice or seawater sample points, and xi is the reflectivity of sea ice
or seawater.

U =

√
(xice − yice)

2 + (xsea − ysea)
2, (2)

where U is the average Euclidean distance between the sea ice and seawater in two-
dimensional space, x and y are the average Euclidean distances of the sea ice sample points
on the x-axis and y-axis, respectively, and x and y are the sea ice sample points on the x-axis
and y-axis, respectively.

The variance between classes is

σ =
n

∑
i=1

(xi − x )2, (3)
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where σ is the between-class variance of sea ice or seawater, and xi is the number of sample
points of sea ice or seawater. The larger the average Euclidean distance and the smaller the
variance between classes, the higher the degree of separation is.

According to the principle of a larger average Euclidean distance and a smaller vari-
ance between classes, the top 12 band combinations were selected and their scatter plots
were examined. As shown in Figure 6, the abscissas and ordinates of the scatter plots are
the reflectance of the band after a band combination, for example, B is the reflectance of
the green band, and R/B is the ratio of the reflectance of the red band to the green band.
It was found that in the scatter plots of B and R/B, sea ice and seawater can basically be
separated by a straight line. The mixing of seawater is more serious. Therefore, the band
combination with the best reflectivity ratio between the green band and the red band was
finally selected.

Figure 6. Scatter plots of band combinations for seawater and sea ice.

R/B and B were used as the x-axis and y-axis, respectively, to draw the scatter plots of
the seawater and different ice types (Figure 7). The seawater reflectance samples exhibit
good linearity in the scatter plots. The different types of sea ice are located above the
straight line. Therefore, the linear equation of seawater was obtained through linear fitting
as the dividing line.



Remote Sens. 2022, 14, 927 10 of 24

Figure 7. Scatter plot of the reflectivity of the different types of sea ice and seawater.

The dividing line equation is

y = 269x + 611, (4)

where x is the reflectance ratio of the red band to the green band, and y is the reflectance of
the green band.

In order to make the value of the sea ice a positive number to facilitate subsequent sta-
tistical analysis and the determination of the threshold, only the slope of the seawater linear
fitting line was used, and finally the sea ice spectral information index was constructed:

y = B − 269 × (R/B), (5)

where y is the calculated reflectance value of each pixel in the image (sea ice has a larger
value and seawater has a relatively small value); B is the reflectance value of the green
band; and R/B is the ratio of the reflectance in the red band to that in the green band.

2.4. Sea Ice Spatial Information Extraction

As shown in Figure 8, in optical images, such as GF1, Landsat, and Sentinel-2 images,
some thin ice such as new ice and ice rind exhibits spectra very similar to that of seawater
containing suspended particles. Sea ice in seawater with a higher concentration of sus-
pended particulate matter cannot be extracted using spectral information alone. Therefore,
it is necessary to distinguish this part of the sea ice from the seawater based on the spatial
information concerning the sea ice. Compared with the smooth spatial characteristics of
the seawater surface, the surface of sea ice is generally rough, with conspicuous irregular
and unstable textural characteristics. In this section, three different spatial information
extraction schemes are designed to explore the applicability of the textural features and
edge features of the gray-level co-occurrence matrix to the extraction of various types of ice;
and through comparison of these schemes, the best method for extracting sea ice spatial
information is determined.
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Figure 8. The similarity of the sea ice and seawater spectral curves for the different sensors.

The textural features represent the surface conditions of the object, such as smooth or
rough, which helps to distinguish homogeneous and heterogeneous regions. Since sea ice
has irregular and unstable textural characteristics, the textural characteristics of the image
were added when the sea ice was extracted in order to solve the problem of sea ice and
seawater bearing similar spectra. At present, the commonly used method of extracting
sea ice textural features is the gray-level co-occurrence matrix method. The gray-level co-
occurrence matrix is a matrix that counts the gray-level relationship between pixels within a
certain interval in a local area of an image. The factors affecting the gray level co-occurrence
matrix are the image quantization level, the size of the moving window, the movement
direction, and the movement step length. The gray-level co-occurrence matrix provides
information about the image’s gray direction, interval, and change range. Based on the
gray-level co-occurrence matrix, the statistical attributes that quantitatively describe the
textural features are extracted. Haralick et al. (1973) defined 14 textural features [38]. The
feature statistics commonly used to extract textural information from remote sensing images
mainly include the mean, variance, homogeneity, contrast, dissimilarity, entropy, angular
second moment, and correlation. Recently, many related studies have been conducted
on the extraction of sea ice information based on the textural features of the gray level
co-occurrence matrix, but there remains a lack of research on the applicability of textural
features to various types of ice. Therefore, the applicability and advantages of the different
textural features in extracting sea ice types were explored.

Sea ice has conspicuous edge characteristics under different SPM contents. The Sobel
edge detection operator has the advantage of easy calculations and a strong anti-noise
ability. The edge detection image value of the Sobel operator represents the gradient value
of the pixels in the region, and the edge of the sea ice has a higher gradient value. Therefore,
the edge points of the sea ice were extracted using the Sobel operator, and the edge point
density map is generated with the number of sea ice edge points in a certain range. The
edge point density map represents the density of the sea ice edges in a local area. The
higher the sea ice density, the greater the number of sea ice edge points. The edge point
density map was used to explore the edge characteristics of the sea ice.

In order to further explore the best scheme for extracting the spatial information about
the sea ice and to delve deeper into the sea ice spatial information, Scheme 3 combines the
edge point density map and the statistics of each textural feature through multiplication, and
further explores the ability to combine the edge and textural features to extract the sea ice.
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2.5. Object-Oriented Extraction of Sea Ice Extent

Object-oriented classification refers to the segmentation of images to form objects with
adjacent homogeneous pixels, which overcomes the limitations of traditional remote sens-
ing image classification methods that use pixels as the basic classification and processing
unit to contain more semantic information [39]. The object is the processing unit, which can
achieve a higher level of remote sensing image classification. The object-oriented remote
sensing image classification method is not only based on the spectral features but also uses
the textural features of the image to segment and classify the image. The classification
results avoid speckle noise and have good integrity. Image segmentation is the most basic
and critical step in the object-oriented classification method, which directly determines the
accuracy of the classification results and the workload of the classification process. In order
to improve the accuracy and efficiency of the segmentation, in this paper study, the edge
detection segmentation algorithm and the full lambda schedule merge algorithm in ENVI
were used.

The blue band is less affected by a high SPM content, and the texture and edge
information about the sea ice is clearer. Therefore, the blue band of the image was selected as
the reference image to segment the sea ice spectral information and the spatial information
in the image. The mean attribute of the segmented object was used to extract the sea ice.
Figure 9 shows that the object-oriented method can not only reduce the speckle noise in
the classification results, but also limit the influence of the spatial feature window factor
when using the spatial features to extract the sea ice and can improve the accuracy of the
classification results.

Figure 9. Object-oriented segmentation results.

2.6. Determination of Segmentation Threshold Based on OTSU

The automatic determination of the object-oriented segmentation threshold affects the
final classification result and the automatic process of sea ice range extraction. In this study,
the OTSU method was used to automatically determine the threshold. The principle of the
OTSU method is to continuously iteratively determine an optimal threshold to maximize
the variance between the target and the background. Before conducting the OTSU threshold
segmentation, the terrestrial mask pixels need to be removed. This is because the OTSU
determines the segmentation threshold based on histogram statistics. Land pixels will
affect the structure of the histogram and cause the predicted threshold to deviate. After
removing the land pixels, the double peaks in the histogram are clearer. This improves the
accuracy of the threshold.
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2.7. Accuracy Verification

In order to better evaluate the robustness and applicability of the method developed
in this study, the proposed method was compared with the extraction results of the Support
Vector machine (SVM) and K-Means methods, and the three methods were applied to GF1,
Landsat-8, and Sentinel-2 images. In order to quantitatively evaluate the accuracy of the sea
ice extraction, ArcGIS was used to randomly generate 800 test points in the sea area, and
the type was marked based on a planet satellite image with a resolution of 3 m. To ensure
that the test points were evenly distributed in the study area and that all types of sea ice
and seawater were present, their total accuracy and kappa coefficient (κ) were calculated.

3. Results
3.1. Analysis of Sea Ice Spectral Information Index

Based on a GF1 image acquired on 12 January 2018, 800 sea ice and seawater sample
points were selected, and the sea ice spectral information index was used to plot the distri-
bution ranges of the different types of sea ice and seawater reflectance values (Figure 10).
The results revealed that after the sea ice spectral information index was constructed, the
reflectance values of the different types of sea ice were larger, while the reflectance values of
the seawater were concentrated within a small interval, indicating that the sea ice spectral
information index can effectively extract the sea ice spectral information.

Figure 10. The range of sea ice spectral information index of sea ice and sea water.

The sea ice can be initially extracted by selecting a suitable threshold. Figure 11 shows
the sea ice extraction results. It can be seen that the sea ice spectral information index can
effectively extract the sea ice in seawater with different suspended sediment concentrations.
The new ice and ice rind in the high suspended sediment area can also be extracted more
accurately. However, there are still some problems in the classification results. First,
there is the salt and pepper phenomenon, which is a common problem in pixel-based
classification methods. This will be solved by object segmentation and extraction. Second,
there is still a small amount of confusion between seawater and sea ice in area c, which is
mainly concentrated in the areas where the concentration of suspended particles changes
drastically. This is because the seawater in these areas display spectral curves that are
extremely similar to those of some of the types of sea ice such as new ice and ice rind,
and this phenomenon is present in the GF1, Landsat, and Sentinel-2 images (Figure 8).
Therefore, it is not possible to completely distinguish between sea ice and seawater using
only the spectral characteristics of the image, thus necessitating the addition of the spatial
characteristics of the image.
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Figure 11. Sea ice extraction results using spectral information. (a) GF1 image (R/G/B); (b–d) The
three sub-areas of the study area; (e–h) The extraction results using spectral information, respectively.

3.2. Optimization of Spatial Feature Extraction Scheme

Scheme 1: The textural feature parameters based on the gray-level co-occurrence
matrix mainly include the quantization level, the size of the moving window, and the
movement direction and step length. Since the directional characteristics of sea ice are not
evident, default values (0,1) were used for the movement directions of the x-axis and y-axis.
Moreover, the movement step length was set to a default value of 1. The following section
only discusses the quantization level of the gray-level co-occurrence matrix and the moving
window size in detail.

Without compressing the gray level of the original image, the size of the gray level
co-occurrence matrix is the square of the gray level of the original image, which will greatly
increase the calculation load of the gray level co-occurrence matrix. Therefore, in practical
applications, in order to improve the efficiency of the calculation of the textural features,
the gray level of the original image is usually compressed, and quantization levels of 64, 32,
and 16 are generally used.

Figure 12 shows the characteristics of the sea ice and seawater in the GF1 images
under different quantitative levels. It can be observed that the images with 64 quantization
levels maintain the textural characteristics of the original images better; the images with
32 quantization levels display a reduced ability to maintain details; and the images with
16 quantization levels have lost a significant amount of textural information. Therefore,
the higher the quantization level, the better the textural details of the original image are
preserved. However, images with high quantization levels are not suitable for the extraction
of sea ice textural information. Figure 13 shows the four textural feature indexes of the
homogeneity, dissimilarity, entropy, and second moment under different quantization
levels. Due to the drastic changes in the concentration of the suspended sediment in the
Yellow River Delta, the images with 64 quantization levels exhibit a large amount of speckle
noise in the seawater area. In the 32 quantization level images, this speckle noise is greatly
suppressed. In addition, since the calculation load increases with increasing quantization
level, the calculation efficiency is lower. Therefore, the quantization level of the gray-level
co-occurrence matrix was finally set to 32.
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Figure 12. Image features at different quantization levels. (a) Sea ice areas in GF1 images; (b–d) sea
ice images at 64, 32, and 16 quantization levels, respectively; (e) Sea water areas in GF1 images;
(f–h) sea water images at 64, 32, and 16 quantization levels, respectively.

Figure 13. Images with different textural feature parameters under different quantization levels.
(a–d) Texture image of homogeneity, dissimilarity, entropy, second moment at 64 quantization levels;
(e–h) Texture image of homogeneity, dissimilarity, entropy, second moment at 32 quantization levels.

The moving window is an important factor that affects the textural feature extraction of
the gray-level co-occurrence matrix. Figure 14 shows the distribution range of the textural
feature values of various types of sea ice and seawater for different window sizes. It can
be seen that the size of the window has little effect on the textural characteristics of the
sea ice and seawater, but as the texture window increases, the calculation load increases
greatly, thus the window size selected in this study was 3. Based on the statistical results
of the textural feature index values of the various types of sea ice and seawater, grey ice
and grey-white ice have a higher degree of discrimination from seawater in terms of each
textural feature value. The types of thin ice such as new ice, ice rind, and nilas cannot
be completely distinguished from the textural characteristics of seawater. This is because
the surfaces of the ice rind and nilas are relatively smooth, which is similar to the textural
characteristic value of seawater. The surfaces of grey ice and grey-white ice are rough, and
the textural characteristic value of seawater is quite different.
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Figure 14. Cont.
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Figure 14. Plots of the ice water textural characteristic indicators for different window sizes. (a) Ice
and water texture value distribution in 3 window sizes; (b) Ice and water texture value distribution
in 5 window sizes; (c) Ice and water texture value distribution in 7 window sizes; (d) Ice and water
texture value distribution in 11 window sizes.

Scheme 2 uses the Sobel operator to generate an edge point density map to highlight
the edge features of the sea ice. The distribution ranges of the edge density values of
the different types of sea ice and the seawater for different window sizes were calculated
(Figure 15), and the optimal calculation window size for the sea ice edge points was
compared and analyzed.
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Figure 15. The effect of the window size on sea ice extraction using an edge point density map.

When the window was small, the edge density value of the seawater basically ap-
proached 0, and the edge density values of the grey ice, grey-white ice, and seawater were
significantly different. The edge density values of the new ice, ice rind, nilas, and seawater
partially overlapped. The overlapping area mainly contained the inner smooth sea ice. As
the window size increased, the number of edge points that were detected inside the thin
ice region such as new ice, ice rind, and nilas increased, and the edge point density value
gradually increased. When the window size reached 45, the edge point density values of
the various types of sea ice were significantly different from those of the seawater. As the
window continued to grow, it greatly increased the amount of calculation load, thus 45 was
selected as the best window size.

In Scheme 3, the texture feature window size was set to 3 × 3, and the quantization
level was set to 32. After the edge point density map was combined with the various
textural feature indicators, the distribution ranges of the various types of sea ice and the
seawater were determined (Figure 16). It can be seen from Figure 16 that the combination
of textural feature indicators such as the variance, homogeneity, and contrast with the
edge point density map failed to produce a better extraction effect. After the mean textural
feature was combined with the edge point density map, the range of the seawater decreased
further and became more concentrated, and the distinction between the various types of
sea ice and the seawater increased further. Therefore, the edge point density map combined
with the mean textural feature index was selected as the final solution for extracting the sea
ice spatial information.
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Figure 16. Box plots for the combinations of the edge density map and textural feature.

Figure 17 shows the comparison between the edge texture information extraction
results and the spectral information extraction results. The edge texture image can extract
the extent of the sea ice as a whole and can extract the types of ice such as new ice, nilas, grey
ice, and grey-white ice. The most important factor is that the texture images at the edges
can compensate for the similarity between the spectra of the sea ice and the seawater. As
shown in Figure 17j,o, the extraction accuracy of the spectral information is lower in areas
where the concentration of the suspended particulate matter changes drastically. The edge
texture images solve this problem. Although the seawater in the crevices between portions
of ice can also be identified as sea ice, it can be combined with the spectral information to
achieve a more accurate sea ice extraction.

3.3. Accuracy Verification

Figure 18 shows the sea ice extraction results obtained using the different methods for
a GF1 image acquired on 12 January 2018. Four scenes including new ice, ice rind, nilas,
grey ice, and grey-white ice were selected to illustrate the results of the sea ice extraction.
In addition, the results were compared with the sea ice extraction results obtained using
the K-Means and SVM methods. Taking into account the complexity of the changes
between the various types of sea ice in the seawater with different suspended particulate
matter concentrations in the Yellow River Delta, in order to improve the accuracy of the
K-Means and SVM methods as much as possible, the K-Means method categories were
set to 2–10 categories, and then, the classification post-processing was performed. The
image was finally divided into two categories, namely, sea ice and seawater. When the
SVM method was employed to select the sample points, the sample points were selected
according to the types of ice in the Yellow River delta, turbid seawater, and clear seawater
in order to improve the accuracy of the sea ice extraction.
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Figure 17. Comparison of edge texture results and spectral results. (a–e) GF1 true color images;
(f–j) results of sea ice extraction from spectral information; and (k–o) results of the sea ice extraction
from edge texture information.

Figure 18. Comparison of the sea ice extraction results obtained using different methods.
(a,e,i,m) True color images of the GF1 image acquired on 12 January 2018; (b,f,j,n) Classification
results for the method proposed in this paper; (c,g,k,o) K-Means classification results; (d,h,l,p) SVM
classification results.
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It can be observed from Figure 18c,h that the K-Means method cannot completely
extract the sea ice when extracting thin ice such as new ice and ice rind in seawater with
a high suspended particulate matter concentration. As Figure 18g,o shows, most of the
seawater was classified as sea ice in the areas with high suspended particulate matter
concentrations near the shore and in the clear water areas. This demonstrates that the K-
Means method is greatly affected by suspended sediment. The results of the SVM method
of extracting sea ice were generally better than those of the K-Means method, but most of
the seawater remained classified as sea ice in the areas with high suspended particulate
matter concentrations. In addition, there is a significant salt and pepper phenomenon
present in the extraction results. The method proposed in this paper can accurately extract
the various types of sea ice in both turbid seas and clean seas. It also greatly reduces the
salt and pepper phenomenon and improves the integrity of the sea ice extraction.

In order to quantitatively evaluate the accuracy of the sea ice extraction, the overall
accuracies and kappa coefficients of the classification results for the GF1, Landsat 8, and
Sentinel-2 images were compared and analyzed and additionally compared with those of
the K-Means and SVM methods. In addition, the method was applied to the Yellow River
Delta and Liaodong Bay. The results are presented in Table 3. The overall accuracy of the
method proposed in this paper is basically >95%, the kappa coefficient is > 80%, and the
accuracy is 5% higher than those of the SVM and K-Means methods. On 21 January 2017,
there were mixed pixels of clouds and water in some areas, which affected the accuracy
of the final sea ice extraction. In Liaodong Bay, the accuracy of the SVM was close to
that of the method proposed in this paper. This is because the sea ice in Liaodong Bay
is predominantly thick ice such as grey ice and grey-white ice, and is less affected by
suspended sediment. Therefore, both the proposed method and the SVM method achieved
better accuracies.

Table 3. Accuracy evaluation table.

Area Date Image Method OA k

Yellow River Delta 12 January 2018 GF1 This method 0.98 0.96
GF1 SVM 0.93 0.86
GF1 K-Means 0.78 0.55

21 January 2017 GF1 This method 0.93 0.81
GF1 SVM 0.84 0.59
GF1 K-Means 0.77 0.45

12 January 2018 Sentinel-2 This method 0.99 0.98
Sentinel-2 SVM 0.9 0.95
Sentinel-2 K-Means 0.81 0.60

23 January 2019 Landsat-8 This method 0.94 0.88
Landsat-8 SVM 0.89 0.77
Landsat-8 K-Means 0.76 0.46

Liaodong Bay 17 February 2019 Landsat-8 This method 0.99 0.98
Landsat-8 SVM 0.96 0.95
Landsat-8 K-Means 0.91 0.82

The final results show that the accuracy of the K-Means method was the lowest
among the three methods. This is due to the similarity between the spectra of the highly
turbid seawater and thin ice sheets in the Yellow River Delta and the complexity of the
various types of sea ice in the different turbid seawater regions. This led to the relatively
low classification accuracy of the K-Means method. The SVM method exhibited a better
classification accuracy than the K-Means method overall, but it only used the spectral
information, thus the classification accuracy of the ice types, such as in the high suspended
sediment areas and for ice rind, was lower. In addition, the SVM method is reliant on
prior knowledge. It is a time-consuming process to manually select sample points, and
the quality of the sample points directly affects the accuracy of the final classification. The
method proposed in this paper attained good accuracy in both the turbid water and clear
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water areas, and achieved automation of the sea ice extraction. All processing methods were
carried out in ENVI. The ENVI functions are called using IDL and can be easily automated.

4. Discussion

In recent years, extreme weather such as high temperatures, droughts and floods
have occurred frequently, and climate anomalies have become the norm, which has led to
people’s cognitive thinking on global climate change and human living environment [40,41].
As an indicator of global climate change, sea ice change is related to global warming, rises
in sea levels and other issues [42,43]. The development of ice conditions in the Yellow River
Delta waters in China is unstable, and the formation of sea ice is rapid, which responds
more closely to local regional climates. Accurate monitoring of sea ice extent is therefore
crucial. Suspended sediment in the mouth of the Yellow River significantly affects the
accuracy of sea ice extent extraction. This paper proposes an automatic extraction method of
sea ice that combines texture, edge and spectral information, which improves the accuracy
of sea ice extraction under highly dynamic suspended sediment changes. Compared with
SVM and K-Means, the accuracy is improved by more than 5%. This method provides a
basis for accurate sea ice identification using GF1 images, and also offers a method for other
optical remote sensing data. High-resolution satellite data based on multiple sources can
compensate for the lack of data time resolution and further improve its sea ice monitoring
capabilities. Therefore, sea ice monitoring based on multi-source remote sensing data will
be the key direction of future development. Moreover, this method provides an approach
for other optical remote sensing data, which is of great significance for making full use of
multi-source remote sensing data to study the law of sea ice change. Accurate identification
of sea ice extent is of great significance to sea ice monitoring, sea ice prediction, disaster
prevention and mitigation, and climate research in the Yellow River Delta region. Although
this paper discusses the characteristics of various sea ices in detail and enables higher-
precision sea ice extraction, it does not distinguish between various sea ice types. Accurate
identification of sea ice types is of great significance to the study of sea ice production,
ablation and migration. Most of the sea ice in the Yellow River Delta is less than 30 cm
thick, and it remains difficult to classify them with greater precision. In addition, the
spectrum, texture, and edge information of coastal ice and floes such as grey and white
ice are relatively close, and it is difficult to distinguish between coastal ice and floating ice.
Therefore, in the future, we will study the distinction of various sea ice types and realize
the identification methods of different types of sea ice.

5. Conclusions

The automatic and accurate extraction of sea ice is essential for studying the laws of
sea ice generation and migration, improving sea ice disaster prevention and mitigation, and
monitoring climate change. Accurate real-time observations of sea ice bear an important
application value and is of theoretical significance.

In order to solve the problem of the low sea ice extraction accuracy caused by the
influence of the suspended sediment in the Yellow River Delta, in this study, an auto-
matic sea ice extraction method combining sea ice spectral, texture and edge information
is proposed, where the sea ice extraction accuracy can reach over 93%, which is more
than 5% higher than SVM and K-means. Compared with previous studies, the sea ice
spectral information index suitable for different suspended sediment concentrations is
constructed by a two-dimensional scatter diagram of characteristic bands, which improves
the applicability of sea ice spectral information index. In changing from discussing the
texture characteristics of sea ice as a whole in the past, this study discusses the texture
characteristics and edge characteristics of various sea ice types in the Yellow River Delta in
detail, laying a foundation for the classification of sea ice types. In addition, the automatic
determination of threshold based on OTSU can realize the automatic extraction of sea ice.
The method in this paper uses only four bands of visible light and near-infrared to extract
sea ice, thus providing a method to be extended to other high-resolution optical remote
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sensing data and is of great significance to maximally utilize multi-source remote sensing
data for real-time monitoring of sea ice.

In future research, we may expand the research area to the Bohai Sea in China, and
realize real-time observation of sea ice through Landsat, Sentinel-2, GF1 and other optical
remote sensing data. In terms of data sources, in order to improve the frequency of sea
ice monitoring, SAR data may also be applied. We hope to conduct high-precision and
high-frequency sea ice monitoring, so as to make a certain contribution to preventing
disasters and studying climate change around the Bohai Sea.
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