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Abstract: Multi-scale object detection within Synthetic Aperture Radar (SAR) images has become
a research hotspot in SAR image interpretation. Over the past few years, CNN-based detectors
have advanced sharply in SAR object detection. However, the state-of-the-art detection methods are
continuously limited in Feature Pyramid Network (FPN) designing and detection anchor setting
aspects due to feature misalignment and targets’ appearance variation (i.e., scale change, aspect ratio
change). To address the mentioned limitations, a scale-aware feature pyramid network (SARFNet) is
proposed in this study, which comprises a scale-adaptive feature extraction module and a learnable
anchor assignment strategy. To be specific, an enhanced feature pyramid sub-network is developed
by introducing a feature alignment module to estimate the pixel offset and contextually align the high-
level features. Moreover, a scale-equalizing pyramid convolution is built through 3-D convolution
within the feature pyramid to improve inter-scale correlation at different feature levels. Furthermore,
a self-learning anchor assignment is set to update hand-crafted anchor assignments to learnable
anchor/feature configuration. By using the dynamic anchors, the detector of this study is capable of
flexibly matching the target with different appearance changes. According to extensive experiments
on public SAR image data sets (SSDD and HRSID), our algorithm is demonstrated to outperform
existing boat detectors.

Keywords: synthetic aperture radar; multi-scale object detection; feature pyramid network; convolu-
tional neural network

1. Introduction

Synthetic Aperture Radar (SAR) has been found as a microwave remote sensing system
capable of effectively acquiring SAR images at high resolutions under all-weather and
complex environmental conditions. As spaceborne SAR advances sharply (e.g., distributed
spaceborne SAR systems and spaceborne–airborne bistatic SAR), SAR turns out to be
critical to the military and civilian fields. Object detection based on SAR images is critical to
land reconnaissance, military intelligence acquisition and marine management. However,
SAR images contain numerous targets at significantly different scales (e.g., ships, bridges
and vehicles). Moreover, the shape of the target changes due to the cross-sidelobe blur and
scattering points, especially the wide distribution of the object’s aspect ratio. Accordingly,
a robust object detector is required to exhibit the learning capabilities for scale-variant and
shape-variant targets within SAR images.

According to the state-of-the-art algorithms for detection, the constant false-alarm rate
(CFAR) approach [1] has been found as a highly common technique for SAR object detection.
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The CFAR approach is capable of computing the adaptive threshold by complying with the
set false-alarm rates and the background clutters’ statistical distributions and subsequently
distinguishing object pixels according to the background through the comparison of the
pixel intensity based on the determined threshold. On the whole, the CFAR approaches can
show high performance under simple scenes. Nevertheless, the CFAR algorithm has been
significantly dependent of statistical areas of background. Overall, the description can be
more accurate, as the statistical area of the background is broadened, whereas the mentioned
approach is likely to cause more noticeable variations in background clutters and upregulate
the rates of false alarms. For the mentioned reason, target detection for large-scale SAR images
is unlikely to be achieved with the use of the conventional approaches.

Over the past few years, deep-learning-based detection algorithms have achieved satis-
factory detection performance in SAR images and gained the attentions of many researchers.
Most of these methods either employ Feature Pyramid Network (FPN) [2] structure for the
extraction of features at multiple scales or exploit anchor-based/anchor-free schemes to align
spatial features of SAR objects at various scales and with different shapes.

On one hand, FPN integrates the feature layers with various spatial resolutions and
semantic features on the basis of top-to-bottom paths as well as horizontal connections. In
this way, FPN could gather rich semantic information at all levels from a single-scale image.
On the basis of the high multi-scale feature expression ability of FPN, some subsequent
studies have adopted FPN in detection pyramid for detecting targets at various scales
within SAR images. The following are some examples. Based on feature balance and
a refined network, Fu et al. [3]. developed a multi-scale SAR ship anchorless frame
detection method and improved the semantic feature information of small objects by
setting a balanced pyramid structure under the attention mechanism. Zhao et al. [4] built
an attention-receptive pyramid network to detect ships exhibiting different sizes under
complex backgrounds. Zhang et al. [5] built a Balance Scale Global Attention FPN that
could refine features at the respective feature level in the pyramid to solve the feature-level
imbalance of different-scale ships. Given that the element-wise addition fusion method
cannot fully exploit the guiding significance of the semantic features in the feature pyramid
Network, Zhao et al. [6] developed the semantic attention module (SAM) to fuse features
in various resolutions. Zhou et al. [7] proposed a cross-scale object detection method for
SAR images based on a Scale Expansion Pyramid Network (SEPN) to address objects with
large scale differences in SAR images.

Furthermore, anchor-based and anchor-free strategies are exploited to extract targets’
spatial features in SAR detection applications. To be specific, anchor-based detectors
generally employ various scales and aspect ratio anchor boxes to improve the ability of
object detection algorithms to be generalized for a range of object shapes and scales. In
addition, anchor-free methods follow the idea of image segmentation, through which
objects are predicted based on the key points or the pixels of the object center point. For
instance, Guo et al. [8] and Liu et al. [9] use CenterNet [10] as an object detection framework
to detect multi-scale SAR targets, which is an anchor-free method based on key points.
On the other hand, Cui et al. [11] and Zhao et al. [4] employed Faster RCNN [12] as an
anchor-based detection framework to detect multi-scale SAR targets.

The CNN-based algorithms above have made significant breakthroughs in multi-scale
SAR object detection, but some problems remain unsolved.

Two defects of the existing FPN structure should be noted. (1) Feature misalignment
caused by inaccurate spatial sampling: For the existing FPN framework, the spatially
coarser (higher-level) feature maps are generally upsampled prior to merging with the
corresponding maps of features within the bottom-up path. However, impacted by common
non-learnable properties of upsampling operations (e.g., the closed neighbors) and repeated
applications of downsampling and upsampling, there is an inaccurate correspondence
between bottom-up and upsampling features (i.e., feature misalignment). The wrong
features will adversely affect the learning of subsequent layers, leading to the wrong
classification of the final prediction. (2) Ignorance of inter-layer correlation between multi-
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level scale features: In the feature pyramid, the semantic information covered in the features
at different levels shows significant differences. A wide variety of feature fusion strategies
are developed for maintaining the representation capabilities of the feature maps at different
levels to be consistent. However, the mentioned methods tend to directly add features
with identical resolutions, and they do not take the inherent properties of the feature
pyramid into account. For instance, in the feature pyramid, feature maps with adjacent
scales should have a strong correlation, whereas the correlation above is not considered in
the state-of-the-art fusion method.

Moreover, the above CNN-based detection algorithms have defects in assigning an-
chors for the targets (label assignment strategy). For instance, the existing label assignment
strategy performs inferiorly with many missed detections when handling densely arranged
targets or the ones without central features (e.g., slender or crescent-shaped ship objects).
The mentioned issues are mainly caused by the assignment by modern object detectors on
the basis of CNN to anchors in terms of a ground-truth object according to object–anchor
Intersection-over-Union (IoU) limitation [13]. Based on the premise that anchors spatially
aligned with the objects are constantly acceptable for classification and localization, the
respective anchor under the assignment can achieve independent monitoring of network
learning to predict objects. However, the space alignment is unnecessarily the only stan-
dard for assigning anchors. First, the most typical characteristics exhibited by objects with
acentric characteristics are far from their geometric cores. Thus, an anchor with spatial align-
ment is likely to be unable to comply with the most typical feature of the anchor, thereby
leading to the reduction of the performance of localization and classification. Furthermore,
when multiple objects are clustered together, it is not possible to use IoU standards for
matching objects with appropriate anchors/features.

To address the limitations above, this study builds a scale-aware feature pyramid
network (SARFNet) that largely covers a scale adaptive feature extraction sub-network and
a self-learning anchor assigning scheme. To be specific, we exploit an enhanced feature
pyramid and a scale-equalizing pyramid convolution to overcome the defects of feature
misalignment and neglect of inter-layer correlation in FPN. Our proposed feature pyramid
embeds a feature alignment module and feature selection module into the feature pyramid.
The feature alignment module acquires knowledge for the alignment of the upsampled
map of features toward several feature maps to be referenced through the adjustment of
the respective sampling position within the convolution kernel using the learning offset.
The feature selection module adaptively selects the underlying feature map with rich
spatial details through channel-attention and spatial-attention mechanisms. Furthermore,
a scale-balanced pyramid convolution (SEPC) is deployed into the detection framework
to extract the correlation information between feature layers based on FPN. To be specific,
it adopts 3-D convolution to correlate similar feature maps and explore the interaction
between scales. On the other hand, we utilize a learning and matching (LTM) method to
improve the existing IoU restriction, allowing the target to more flexibly match anchors.
The LTM achieves an updating of “free” anchor matching from anchor assignments made
by handicraft through the formulation of detector training on the basis of the structure of
Maximum Likelihood Estimation (MLE).

The main novelties our proposed model can be summarized in threefold:

(1) This study develops a scale-aware pyramid object detection framework for SAR
images, which can effectively detect objects with large-scale variation and appearance
changes by considering the target’s unique characteristics in SAR images.

(2) A novel feature pyramid structure is proposed in this study, which can address defects
of feature matching schemes in state-of-the-art feature pyramids and enhance the
feature modeling ability for targets in SAR images.

(3) Numerous experiments are carried out to verify the effectiveness of the proposed
method as compared with the existing literature.

The remainder of this article is organized as follows. In Section 2, we briefly introduce
the works related to SAR object detection and multi-scale object detection based on deep



Remote Sens. 2022, 14, 973 4 of 24

learning. In Section 3, we introduce the model architecture of the SARFNet object detector.
In Section 4, we discuss the performance of the proposed method and compare it with that
of State-of-the-Art object detection methods on two SAR object detection data sets (SSDD
and HRSID). Finally, we present a few concluding remarks in Section 5.

2. Related Works

In this section, we briefly introduce SAR object detection and multi-scale object detec-
tion based on deep learning. These studies have greatly contributed to our method.

2.1. SAR Object Detection

Object detection in SAR images has aroused rising attention over the past decade.
Conventional ship detection algorithms comply with CFAR. CFAR algorithms primarily
carry out a pixel-by-pixel detection of SAR images under local sliding windows. The
respective pixel in the SAR image participates in the sliding window operation multiple
times, which makes the calculation speed of the algorithm generally low. However, as
high-resolution SAR images emerge, complex ground interference and texture scenes
are commonly accompanied by multi-scale targets, so the calculation of considerable
background clutter pixels in large-scene SAR images turns out to be time-consuming.
To address the problem of multi-scale target detection in SAR images, some scholars
have proposed numerous improved CFAR target detection algorithms (e.g., the iterative
CFAR object detection algorithm [14], the optimized super-pixel CFAR object detection
algorithm [15] and the scale sliding window object detection algorithm [16]). To acquire
more target information and eliminate the effect of coherent speckle noise, Li et al. [15]
built a two-stage CFAR detection algorithm for object super-pixel detection, which has a
better detection effect for ships in simple scenarios. The detection results of diverse targets
at different scales are poor. To detect targets at large scales, Zhai et al. [17] proposed a ship
detection algorithm for saliency and contextual information processing, which is capable
of focusing on large ships and background targets with prominent features; however, this
method ignores small ships. The mentioned methods are only for scenes with simple
backgrounds in SAR images. Though the detection effect is high, the detection performance
will be reduced in the case of complex large-scene SAR images.

Over the past few years, thanks to the autonomous feature learning ability of deep
learning, researchers have applied object detection under deep learning to SAR images.
In Du et al. [18], the saliency information is introduced to the SSD detection algorithm
to more effectively guide the SSD deep learning network to independently learn the
salient features of the SAR target and reduce false alarms. Cui et al. [9] substituted the
spatial shuffle-group enhanced attention module into CenterNet as an SAR target feature
enhancement module to reduce the false alarms attributed to the interference of offshore
and inland. Fu et al. [3] yielded an anchor-free object detection algorithm in accordance
with feature balance pyramid, which was found to be able to detect multi-scale SAR
ships in complex scenes. Lin et al. [19] added the squeeze and excitation rank module
to the backbone network in the Faster R-CNN target detection algorithm to improve the
performance of Faster R-CNN in detecting SAR targets. Cui et al. [11] introduced the
dense attention mechanism to the feature pyramid to improve FPN’s multi-scale feature
expression ability. Zhao et al. [4] built a two-stage attention receptive pyramid network to
enhance the performance of recognizing multiscale ships in SAR pictures by improving
links between nonlocal characteristics and refining information in distinct feature maps.
Wei et al. [20] developed a detection method for the detection of ships in high-resolution
SAR images by complying with a high-resolution ship detection network. In order to
fuse SAR images with rich polarization information and optical images with spatial detail
information to improve the performance of change detection, Li et al. [21] propose a
deep-translation-based change detection network (DTCDN) for optical and SAR images

Although progress has been made, due to the inherent noise characteristics of SAR
images, existing detection networks still have limitations in improving detection perfor-
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mance. Therefore, before using SAR images for deep learning, a separate preprocessing
step is required, such as Noise (despeckle). Therefore, SAR image denoising has become
a current research hotspot. For example, Mukherjee Li et al. [22] propose interferogram
denoising and coherence prediction using two separate CNN architectures to eliminate
noise information in Interferometric Synthetic Aperture Radar (InSAR) images. To reduce
the loss of target information caused by SAR image denoising, Shin et al. [23] propose a
new target detection framework that combines an unsupervised denoising network into a
traditional two-stage detection network and uses a strategy to fuse the region suggestions
extracted from the original SAR image and the synthetic denoising SAR image.

Unlike the algorithms above, the feature alignment module and the SEPC module
are substituted into the feature pyramid to address feature misalignment and the neglect
of inter-layer correlation within the feature pyramid. Moreover, a learning-to-match an-
chors strategy is employed in anchor design to update hand-crafted anchor assignment to
learnable anchor/feature configuration.

2.2. Multi-Scale Object Detection Based on Deep Learning

Scale variation across object instances has been treated as one of the most knotty prob-
lem in modern development of detection. To address this challenge, several approaches
have been proposed. An image pyramid is an intuitive method, where SNIP [24] and
SNIPER [25] select a specific scale for each resolution during multi-scale training. Never-
theless, the image pyramid approaches significantly increase the inference time, making
them unsuitable for practical applications.

Another approach aims to employ in-network feature pyramids to approximate image
pyramids with less computational costs. The idea was first demonstrated in the construction
of a fast feature pyramid for object detection by interpolating some feature channels from
nearby-scale levels. In the deep learning era, the approximation results have become
even more accurate. For example, a single-shot detector (SSD) [26] utilizes multiscale
feature maps from different layers and detects objects of various scales at each feature
layer. DSSD [27] and MS-CNN [28] perform object detection at multiple layers for objects
of different scales. However, these bottom-up sampling methods have low accuracy for
small objects due to the insufficient semantic information in low-level features.

To compensate for the absence of semantics in low-level features, many feature pyra-
mid structures [2,26,29–32] that make more effective use of multi-scale features have been
proposed. The FPN [2] exploits a bottom-up pathway, a top-down pathway, and lateral
connections to efficiently fuse features of various resolutions and scales. However, as re-
ported by several recent studies, some problems remain in the FPN structure. For instance,
the top-down pathway FPN only introduces high-level semantic information to low-level
features, while ignoring the role of low-level features for localization. To address this
issue, SA-FPN [29], combining Top-Down style FPN and Bottom-Up style FPN, absorbs the
characteristics of both and becomes a more accurate module for scale variation perception.
Researchers at FSAF [33] stressed a flaw in the FPN’s heuristic-guided feature selection.
Furthermore, in the training process, online feature selection should be exploited to dy-
namically determine the most appropriate number of features for the respective instance.
Additionally, in FSAF, the feature representation of the respective region of interest (RoI)
is extracted at a single feature level and any valid information existing on the pyramid’s
other feature levels is ignored. As opposed to the mentioned finding, Libra RCNN [34]
and PANet [30] demonstrated that regardless of an object’s size, all feature map layers
present meaningful information for object detection. The methods above integrate valid
information at all feature levels through a common operation (an elementwise max or sum).
However, the fusion mechanism of simple addition does not consider semantic differences
between various feature layers. To solve this problem, EfficientDet [35], a bidirectional-
weighted FPN for simple and rapid feature fusion, has been presented. YOLO-ASFF [36], in
a unique adaptive spatial feature fusion technique, learns an adaptive spatial fusion weight
in the training process to filter out inconsistencies. M2Det [37] is used to discover that the
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respective feature map in a pyramid comprises single-level features primarily or entirely,
which influences detection performance. A multilevel FPN (MLFPN) is proposed. However,
the MLFPN significantly complicates the model to design a more effective feature pyramid.

However, the following approaches still face certain difficulties. For M2Det, the
MLFPN adds excessive parameters while neglecting the valid information in the low-
level features. Though Libra-RCNN and PANet attempt to fuse valid information at all
feature levels, their structure’s feature fusion operation (e.g. BFP in Libra-RCNN or AFP
in PANet) can merely take up a small portion of the feature fusion space and can be more
effectively improved with a more flexible approach. Furthermore, EfficientDet and YOLO-
ASFF ignore the multiscale information at the respective convolution layer. SEPC [38]
proposes the PConv (Pyramid Convolution) theory, in which 3-D convolution is exploited
to correlate similar feature maps and mine the interaction between scales. Moreover, since
the features of the feature pyramid vary significantly between layers, SEPC performs
deformable convolution on the high-level features of the feature pyramid, which can fit the
scale changes in practice.

Inspired by SEPC and FaPN [39], this study develops a novel Scale-Aware Pyramid
Network to build more effective feature representations for objects at different scales. First,
by establishing a global context attention mechanism and a spatial context attention mecha-
nism, contextual information is extracted from the channel and the space to improve the
ability of multi-scale feature expression. Subsequently, this study employs a 3-D convolu-
tion to correlate similar feature maps and investigates the interactions between scales.

3. Proposed Framework

In this section, we introduce the model architecture of the SARFNet object detector
and different designing choices in details.

3.1. Network Architecture

The designed scale-aware FPN (SARFNet) is mostly modified from RetinaNet [40]
with the identical backbone (Figure 1). Compared with RetinaNet, the network structure of
SARFNet involves three differences, as reflected in the feature pyramid structure, the head
structure of the classification and regression branch, as well as the label assignment strategy.
First, to address the feature mismatch problem, a feature alignment module and a feature
selection module are introduced to the feature pyramid network structure to improve the
multi-scale feature expression ability of the FPN. Second, the Scale-equalizing pyramid
convolution is employed to modify the head design of RetinaNet as an attempt to enhance
the information interaction between the classification branch and the regression branch
and extract the Cross-scale correlation in the FPN pyramid. Lastly, to solve the problem
that the label assignment by the hand-crafted IoU criterion in RetinaNet causes the low
detection performance of SAR targets with various appearances and aspect ratios, this
study introduces a learning-to-match strategy with the aim to update hand-crafted anchor
assignments to learnable anchor/feature configurations.

3.2. Enhanced Feature Pyramid Network

As shown above, the design of the classic feature pyramid shows defects in the pixel-
level upsampling and the feature-mapping level. Inspired by Feature Aligned Feature
Pyramid Network [39], the Enhanced Feature Pyramid Network (E-FPN) is developed to
extract robust multi-scale features. To be specific, the Enhanced FPN consists of a Feature
Selection Module (FSM) and a Feature Alignment Module (FAM), as shown in Figure 2.
This study defines the output of the i-th stage of the bottom-up network as Ci, which has

a span of 2i pixels relative to the input image, that is, Ci ∈ R
H
2i ×

W
2i , where the size of the

input image is H ×W. We use Ĉi to represent the output of the FSM layer given Ci input.
The output feature after the fusion of the i-th feature from the top-down path is defined as
Pi, and the upsampled and aligned features to Ci−1 are Pup

i and P̂up
i , respectively.
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Figure 1. Workflow of the proposed scale-aware pyramid object detection network. There are three
components: The Enhance FPN block, SEPC block, and learning-to-match strategy. According to the
IoU criterion, anchors in A are categorized to multiple positive anchor bags Ai ⊆ A+ and a negative
anchor bag A− , and A = A+

⋃
A−. During detector training, minimizing the anchor matching loss

LM(θ) drives matching positive/negative anchors within the positive anchor bag in a “soft” manner.

Figure 2. Feature-aligned Pyramid Network Structure.

Feature Selection Module. Classical FPN simply adopts a 1× 1 convolution for channel
compression before feature fusion to maintain the number of channels for high and low
features to be unchanged. However, since the significance of the respective channel feature
is not judged, the simple 1× 1 convolution will eliminate vital features containing excessive
spatial details when channel reduction is being carried out. To solve the problem above, a
feature selection module (FSM) is proposed to explicitly model the importance of feature
maps, suppress redundant feature maps and recalibrate them accordingly.

Figure 3 illustrates the structure of the proposed FSM module. First, the global
information zi of the respective input feature map ci is extracted based on the global
average pool operation. Subsequently, the global information zi is sent to the feature
importance modeling layer fm(·) to learn the weight of the respective channel within the
input feature map. The mentioned weights represent the significance of the respective
feature map by the importance vector u. Next, we use the important vector to scale the
original input feature map, and then add the scaled feature map to the original feature map
to form a re-scaled feature map. Lastly, the feature selection layer fs(·) is introduced on the
rescaled feature map to selectively maintain vital feature maps and delete useless feature
maps to reduce channels. On the whole, the process of FSM is formulated as follows:

u = fm(z) (1)

Ĉi = fs(Ci + u× Ci) (2)

where the global information z = [z1, z2, · · · , zD] can be calculated by
zd = 1

Hi×Wi
∑Hi

h=1 ∑Wi
w=1 cd(h, w). u = [u1, u2, · · · , uD] is the feature importance vector, and

ud is the importance of the d-th input feature map. fm(·) is the feature importance modeling
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layer, which can be modeled by a 1× 1conv layer followed by a sigmoid activation function.
fs(·) is the feature selection layer, which is modeled by 1× 1 convolution.

Figure 3. Feature Selection Module Structure.

Feature Alignment Module. A predictable contextual misalignment is caused for
the upsampling high-level features Pup

i and the low-level features Ci−1 since the classic
FPN recursively draws upon downsampling operations. Accordingly, the feature fusion
method by exploiting element superposition or channel splicing will impact the prediction
of the target boundary and then cause misclassification during the prediction. Thus, the
feature fusion method by applying element superposition or channel splicing will impact
the prediction of the object boundary and subsequently cause misclassification during
the prediction. To address the problem above, a feature alignment module [39] learning
to align the upsampled feature map to a set of reference feature maps is proposed by
regulating the respective sampling position in the convolution kernel under the learning
offset. Figure 4 [39] illustrates the workflow of Feature Alignment Module. Before feature
aggregation, we align the upsampled feature map Pup

i with its reference feature Ći−1, i.e.,
the feature map Pup

i is regulated based on the spatial location information offered by Ći−1.

Figure 4. Schematic diagram of the structure of the feature alignment module. N denotes a convolu-
tional kernel of N sample locations. C denotes the number of channels of the feature. ∆ i to represent
the convolution kernel offset to be learned.

3.3. Scale-Equalizing Pyramid Network-SEPC

For the feature pyramid, feature maps of adjacent scales are required to be significantly
correlated with each other, whereas this correlation is not considered in the state-of-the-
art feature fusion method. Accordingly, Scale-Equalizing Pyramid Network-SEPC [38]
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is employed for addressing the mentioned problems. SEPC can capture the interaction
between scales through Pyramid Convolution (PConv).

The Pyramid Convolution (PConv) refers to a 3-D convolution that spans scales and
spatial dimensions. If the feature at the respective level is expressed as a point in Figure 5,
PConv can be denoted as N different 2-D convolution kernels. However, there is a problem
of size mismatch between different-level feature maps within the feature pyramid. As
the pyramid level rises, the size of the space will shrink. To adapt to the shape and size
mismatch, a range of strides for K various kernels are set under convolution at diverse
layers. For instance, for PConv with N = 3, the stride of the first kernel should be 2, and the
stride of the last kernel should be 0.5. Then, the output of PConv can be defined as follows:

yl = ω1 · xl−1 + ω2 · xl + ω3 · xl+1 (3)

where l denotes pyramid level, ω1,ω2,ω3 express 3 parameter-sharing convolution ker-
nels containing 2, 1 and 0.5 strides, respectively. The kernel with a step size of 0.5 is
further replaced by an ordinary convolution with a step size of 1 and a continuous bilinear
upsampling layer.

Figure 5. The Pyramid Convolution Structure.

The PConv, in addition to being able to extract scale-related features, also benefits from
its compatibility with head design of RetinaNet. According to Figure 6a, the RetinaNet
head is a PConv with a scale kernel of 1. Thus, the 4 convolution heads can be directly
replaced with our PConv module with a scale kernel of 3. Nevertheless, the respective
PConv still leads to additional calculations. To simplify the calculation and improve the
connection between the regression branch and the classification branch, as an alternative,
the classification and positioning branches are shared with 4 PConv modules to build a
combined header structure (Figure 6b). An additional ordinary convolution is introduced
after the shared 4 PConv modules to satisfy the differences in classification and position-
ing tasks. To solve the problem of feature mismatch during the upsampling process, a
deformable convolution is added after the upsampling step in SEPC, and the problem of
feature mismatch is alleviated to a certain extent through the learning method, which is the
same as the principle of the Feature Alignment Module.
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(a)

(b)

Figure 6. (a) Head design of the original RetinaNet; (b) Head design with PConv. In the final output
convolution, 4 denotes the number of anchor-based methods, K is the number of anchor boxes, and C
represents the class number in classification.

3.4. Label Assignment by Learning-to-Match Strategy

In addition to overcoming the large difference in SAR object scales, there is another
problem to be solved in SAR object detection, which is the diverse appearance of SAR
targets. SAR targets are objects that are generally slender or irregularly shaped due to
interference (e.g., cross sidelobe blurring). In terms of anchor-based detectors, spatial
alignment, i.e., the intersection (IoU) between the object and the anchor point, is exploited as
the standard for allocating anchor points. In terms of anchor-based detectors, the respective
assigned anchor independently supervises network learning to achieve object prediction,
which follows the assumption that anchors aligned with the object space constantly apply
to classification and positioning. For objects with non-central features (e.g., slender objects),
however, the most typical feature is that they are far from their geometric centers. Spatially
aligned anchor points are likely to correspond to poorly represented features, thereby
reducing classification and localization performance.

To solve the problems above, the learning-to-match (LTM) approach [13] is introduced
for label assignment in anchor-based detectors to detect SAR objects that exhibit different
appearances. According to the principle of the LTM method, when the object is occluded
or the feature is eccentric, the matching between features and objects becomes difficult
to measure due to the intersection ratio (IoU) between the prediction box and the true
value box. Accordingly, LTM transforms the matching problem between the target and the
feature into the maximum likelihood estimate while converting the maximum likelihood
probability into a loss function. The matching function is improved to maximize the
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possibility of detection customized likelihood and select the optimal anchor point in a “soft”
manner. The LTM strategy is elucidated below.

(1) Detector Training as Maximum Likelihood Estimation. For the original single-
stage detector, the ground-truth annotations are denoted as B ,where the ground-truth
box for the i-th object is denoted as bi ∈ B. On the convolutional feature maps of X, a set
of anchors A are defined as reference points at multiple scales and aspect ratios. After
the forward propagation of the network, the respective anchor aj ∈ A will be predicted
through classification and regression. By complying with the manual design rule of IoU
indicator, the respective anchor frame will fall into an object or a background. The matching
matrix Cij ∈ {0, 1} indicates whether the object bi is assigned to anchor box aj. The set of
positive anchor boxes A+ ⊆ A and the set of negative anchor boxes A− ⊆ A are written as{

aj|∑i Cij = 1
}

and
{

aj|∑i Cij = 0
}

, respectively. The loss function L(θ) of the detector is:

L(θ) = ∑
aj∈A+

∑
bi∈B

CijLcls
ij (θ) + β ∑

aj∈A+

∑
bi∈B

CijLloc
ij (θ) + ∑

aj∈A−

Lbg
j (θ) (4)

Among them, Lcls
ij (θ), Lloc

ij (θ), and Lbg
j (θ) represent the classification loss function of

the target, the target regression positioning loss function, and the classification loss of the
background class, respectively; β expresses a regularization factor; and θ expresses the
parameter learned in the network.

According to the maximum likelihood estimation, the original objective loss function
L(θ) can be transformed into likelihood probability:

P(θ) = e−L(θ)

= ∏
aj∈A+

(
∑

bi∈B
Cije

−Lcls
ij (θ)

)
∏

aj∈A+

(
∑

bi∈B
Cije

−βLloc
ij (θ)

)
∏

aj∈A−

e−L
bg
j (θ)

= ∏
aj∈A+

(
∑

bi∈B
CijP cls

ij (θ)

)
∏

aj∈A+

(
∑

bi∈B
CijP loc

ij (θ)

)
∏

aj∈A−

P bg
j (θ)

(5)

where P cls
ij (θ) and P bg

j (θ) represent the classification confidence, and P loc
ij (θ) is the posi-

tional confidence. In this way, the problem of minimizing the loss function Equation (4) in
target detection can be transformed into the problem of maximizing the likelihood prob-
ability function Equation (5). Although the above process strictly takes into account the
classification improvement as well as the anchor frame positioning, the anchor box-object
matching improvement is not taken into account.

(2) Detection Customized Likelihood. FreeAnchor [13] takes into account the matching
of bounding box and features under conventional object detection algorithms. First, select
several bounding boxes with larger IoU for the respective object bj in accordance with the
spatial relationship between the anchor box and the object to form a set of bounding boxes
Aj ∈ A. To improve the recall rate, for the respective target bi ∈ B, the predicted value (aloc

j

and acls
j ) of at least one candidate anchor aj ∈ Aj should be ensured to be close to the real

label. On that basis, the likelihood function indicating the recall rate is:

Precall(θ) = ∏
i

max
aj∈Ai

(
Pcls

ij (θ)P loc
ij (θ)

)
(6)

Maximizing the value of Precall(θ) means that the respective target should be ensured to
have its corresponding matching anchor frame and increase the recall rate of object detection.

To improve the detection accuracy, the detector should classify the poorly positioned
anchor as the background class, and its likelihood probability is written below:

Pprecision(θ) = ∏
j

(
1− P

{
aj ∈ A−

}(
1−P bg

j (θ)
))

(7)
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where P
{

aj ∈ A−
}
= 1−maxi P

{
ai → bj

}
is the probability that aj misses all objects and

P
{

aj → bi
}

denotes the probability that anchor aj predicts object bi correctly.
To comply with the NMS process, P

{
aj → bi

}
is implemented by a saturated linear

function, which is expressed as:

P
{

aj → bi
}
= Saturated linear

(
IoUloc

ij , t, maxj IoUloc
ij

)
(8)

Saturated linear(x, t1, t2) =


0, x 6 t1
x−t1
t2−t1

, t1 < x < t2

1, x > t2

(9)

In summary, the likelihood probability function of the detector can be redefined as
Ṕ(θ), which is shown in Equation (10). In the detector training process, the free matching
of the detection anchor frame and the target is realized by maximizing Precall(θ) and
Pprecision(θ):

P ′(θ) = Precall(θ)×Pprecision(θ)

= ∏
i

max
aj∈Ai

(
P cls

ij (θ)P loc
ij (θ)

)
×∏

j

(
1− P

{
aj ∈ A−

}(
1−P bg

j (θ)
))

(10)

(3) Anchor Matching Mechanism. To achieve the fusion of the self-defined likelihood
function and the target detection method based on CNN, the likelihood function Ṕ(θ)
defined by Equation (10) should be converted back to the required loss function Ĺ(θ):

L′(θ) = − logP ′(θ)

= −∑
i

log

(
max
aj∈Ai

(
P cls

ij (θ)P loc
ij (θ)

))
−∑

i
log
(

1− P
{

aj ∈ A−
}(

1−P bg
j (θ)

)) (11)

The max function in Equation (11) is employed to select the most matching anchor for
the respective target, whereas the confidence of all anchor is relatively low at the initial
training stage. Moreover, since the initialization method of the network parameters is
random initialization, the anchor frame with the highest confidence may not be the most
matching anchor at this time. Thus, FreeAnchor exploits the Mean−max function to select
the anchor box, as defined below:

Mean−max(X) =
∑xj∈X

xj
1−xj

∑xj∈X
1

1−xj

(12)

We substitute the max function of Equation (11) into Mean−max, add balance factor
w1 and w2, and apply focal loss [40] to the second term in Equation (11). On that basis, a
FreeAnchor detector’s customized loss function is summarized:

L′′(θ) = −w1 ∑
i

log(Mean−max(Xi)) + w2 ∑
j

FL
(

P
{

aj ∈ A−
}(

1−P bg
j (θ)

))
(13)

where the weights w1 and w2 are expressed as w1 =
α f
‖B‖ and w2 =

1−α f
ηa‖B‖ , respectively. ηa

is the number of anchor boxes in the candidate anchor box set, and ‖B‖ is the number
of objects. The parameters α and τ are from the focal loss, and FL(x) = −xγ log(1− x).
Xi =

{
P cls

ij (θ)P loc
ij (θ)|αj ∈ Ai

}
is a likelihood set conforming to the anchor bag Ai.
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4. Experiments

In the present section, the effectiveness of the proposed method is verified, extensive
experiments are performed on two SAR object detection data sets (SSDD and HRSID) to
compare the proposed method with other cutting-edge detectors (one-stage and two-stage).

4.1. Datasets and Evaluation Metrics

SSDD dataset [41]: SSDD is the first publicly available data set for SAR image ship tar-
get detection at home and abroad, which consists of 1160 SAR images with 500× 500 pixels
containing 2358 ships under wide resolutions (1–15 m). The SSDD data set target detection
in SAR images poses a great challenge because the SSDD data set not only contains multi-
scale ship targets but also contains two complex scenes of the ocean and inshore, as well as
a large number of densely distributed small boats. To train the proposed method with the
use of SSDD, the regulations of the SSDD data set are followed: The images with the last
numbers one and nine of the file number are determined as the test set, and the rest are
considered the training set. Figure 7 [41] illustrates the target distribution of the targets in
SSDD dataset. Specifically, Figure 7a shows the aspect ratio distribution of the target in the
SSDD dataset, which intuitively reflects the large difference in the aspect ratio of the target
in the SSDD dataset. Figure 7b reflects the area distribution of the target frame, and the
area is an important indicator reflecting the scale change. It can be seen from Figure 7b that
the scale of the targets in the SSDD dataset is also very different.

(a) (b)

Figure 7. Geometry characteristics of targets in SSDD. (a) Histogram of the area distribution of ship
targets; (b) Histogram of the aspect ratio of ship targets.

HRSID dataset [42]: HRSID refers to a large-scale SAR ship detection data set, which
covers SAR images under diverse properties (i.e., sea area, polarization, sea condition,
resolution and coastal port). Furthermore, it covers ships at multiple scales that are marked
with bounding boxes within diverse environments (e.g., mode of polarization, sensor type,
as well as scene). According to statistics, there are 5604 cropped SAR images and 16,951 an-
notated ships in HRSID. Figure 8 [42] visually shows the distribution characteristics of the
target scale and aspect ratio in the HRSID data set according to their original study.

Evaluation Metrics: We have taken AP, AP50, AP75, APS, APM and APL to character-
ize the performance of the detectors on the test set of this study. The definition of this evalu-
ation index is identical to the metric standard of MS COCO object detection challenge [43],
and it has been extensively employed to assess various object detection tasks.
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(a) (b)

Figure 8. The aspect ratio and area distribution map of the object in HRSID: (a) bar area of the
bounding box; (b) bar aspect ratio of the bounding box.

4.2. Implementation Details

SARFNet is implemented on the single-stage detector RetinaNet [40], with the use
of ResNet [44] to be the network of backbone. By replacing the FPN, head design and
loss function in RetinaNet with the modules introduced above, we update the RetinaNet
detector to the SARFNet detector. In terms of the classification subnet’s last convolutional
layer, the bias initialization is set to b = − log

(
(1−ρ)

ρ

)
with ρ = 0.02. To maintain the

fairness of the experiment, we chose the mmdetection [45] tool for code development.
Mmdetection is a flexible toolkit for reimplementing existing methods. It is convenient
for us to use State-of-the-Art Methods such as Faster RCNN to complete comparative
experiments. After that, to maintain the consistency between the hyperparameter settings
and HRSID [42], the SAR image was scaled to 1000× 1000 pixels during the training and
testing process. All detectors were trained using 1 GPU, and in the 12th Completed in
epoch; the momentum and weight decay are set to 0.9 and 0.0001, respectively. When
training and testing strictly filter the low-precision bounding box, the IoU threshold is set
to 0.7. We choose SGD with an initial learning rate of 0.0025 as the optimizer and set other
hyper-parameters to the default values in mmdetection. Experiments are performed under
the Pytorch framework on a server with NVIDIA Titan XP.

4.3. Ablation Studies

For verifying the contribution of the proposed components, this study carried out
Ablation tests according to the HRSID data set. Table 1 lists the experimentally achieved
results. To evaluate the contribution of the respective module, we present several compar-
isons in Table 1, where the Enhanced Feature Pyramid Network, Scale-Equalizing Pyramid
Convolution and learning-to-match strategy correspond to SARFNet. First, this study
assesses the contribution of several elements to our baseline recognizer as a reference. Ac-
cording to Table 1, all the techniques contribute to an accuracy gain, and the final baseline
acquires an AP score of 64.1%.

(1) Learning-to-Match Strategy. By formulating the detector training as a maximum
likelihood estimation (MLE) framework, LTM updates the hand-made anchor point
assignments to "free" object-anchor point correspondences. According to the experi-
ment, after adding the LTM strategy, the AP value increases by 1.6 % as compared
with the baseline.

(2) Enhanced Feature Pyramid Network. The E-FPN Network a feature alignment mod-
ule and a feature selection module to the feature pyramid network, which addresses
feature misalignment and improves the expression ability of multi-scale features.
According to the experiment, replacing FPN with E-FPN will significantly upregulate
the AP value by 1.7%.
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(3) Scale-Equalizing Pyramid Convlution. SEPC significantly improves the box AP from
63.3% to 64.1%. This validates that the representation of high-resolution features is
largely improved based on the proposed adaptive fusion strategy.

Table 1. Ablation study on the components of the scale-aware pyramid network.(LTM: Learning-to-
Match; SEPC: Scale-Equalizing Pyramid Convolution; E-FPN: Enhanced Feature Pyramid Network;
Y: Yes; N: No).

Baseline LTM E-FPN SEPC AP

Y N N N 60.0

Y Y N N 61.6

Y Y Y N 63.3

Y Y Y Y 64.1

4.4. Comparison with State-of-the-Art Methods

Results on SSDD. To verify the effectiveness of the proposed algorithm, our proposed
method is compared with 16 state-of-the-art methods on the SSDD data set. The backbone
applied by these comparison methods and the test results is listed in Table 2. To be
specific, HR-SDNet, ISASDNet, FBR-Net and CenterNet++ are methods from well-known
journals in wide remote-sensing fields. On the whole, the rest methods are state-of-the-art
methods in natural scene object detection. Notably, all the above methods use multi-scale
feature information to solve the problem of large-scale differences. FPN-Faster RCNN,
ISASDNet, FCOS, FSAF, Free-anchor, FoveaBox, ATSS, AutoAssign and RetainNet pertain
to classical feature pyramid network (FPN) methods. The methods of HR-SDNet, FBR-Net,
CenterNet++ and Lira RCNN have reduced the defects of the classic feature pyramid
network. For instance, FBR-Net and CenterNet++ add a full-scale feature fusion module
under FPN to address the problem of imbalanced scale features. AP indicators are capable
of reflecting the overall performance of target detection. The AP50 and AP75 indicators
indicate the detection rate of target detection at IoU = 0.5 and IoU = 0.75, respectively.
According to Table 2, the proposed method is also superior to the above method in terms of
AP50 and AP75 indicators. Indices APS, APM and APL represent the detection performance
of target detection on small, medium and large targets, respectively, and reflect the multi-
scale object detection performance of object detection. According to the results in Table 3,
whether it is the target detection method by employing the classic FPN structure or the
target detection method by exploiting the improved FPN structure, significant differences
exist in the performance of these three indicators, which reveals that the method above in
scale adaptive ability can be further improved. The proposed method is better than the
method above in the performance of these three indicators, and the values of these three
indicators are insignificantly different, which reveals that the proposed method exhibits a
strong scale adaptive ability.

Results on HRSID. To further verify the effectiveness of the proposed method, we
compare the performance of the proposed model with the classic detection model on
the HRSID data set. The results of the performance comparison are shown in Table 3.
According to Table 3, the proposed method achieves 64.1% AP on the HRSID data set.
The results are not only better than anchor-free detectors (e.g., 6.2%, 1.5%, 3.6%, 3.1% and
5.8% higher than FCOS, FASF, FoveaBox, ATSS and AutoAssign, respectively) but are also
better than anchor-based detectors (e.g., 0.6%, 0.4%, 4.1% and 2.5% higher than faster than
FPN-Faster R-CNN, Lira RCNN, RetinaNet and Free-anchor, respectively). As indicated by
the quantitative results, the proposed method exhibits superior performance, in particular
for objects at significantly different scales. Accordingly, the proposed scale-aware feature
golden character detection network is verified to have effectiveness. Furthermore, from
the three indicators (i.e., APS, APM as well as APL), the proposed method exhibits superior
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performance, which outperforms the methods above. Thus, the proposed scale-aware
feature golden character detection network is verified with effectiveness.

Table 2. Comparison of the performance of different detection models on SSDD.

Methods Backbone AP AP50 AP75 APS APM APL

Anchor-free methods

FBR-Net [3] ResNet50 − 94.1 59.1 − − −

CenterNet++[8] DAL-34 − 92.7 − − − −

SEPN [7] ResNet101 − 97.2 − − − −

FCOS [46]
ResNet50 64.4 93.6 75.2 65.8 62.0 17.4

ResNet101 63.6 94.3 73.7 65.0 60.1 44.4

FASF [33]
ResNet50 63.1 94.0 74.3 64.4 59.5 55.1

ResNet101 63.9 93.5 76.2 65.4 60.3 40.1

FoveaBox [47]
ResNet50 64.6 92.9 76.9 66.4 60.5 33.8

ResNet101 65.5 94.8 79.3 66.8 64.0 34.5

ATSS [48]
ResNet50 65.0 94.0 76.8 65.8 63.8 39.9

ResNet101 66.1 94.5 78.8 66.5 66.5 52.7

AutoAssign [49]
ResNet50 64.9 94.9 78.7 66.5 61.3 45.2

ResNet101 54.3 89.0 62.4 55.9 52.1 48.4

Anchor-based methods

HRSDNet [42]
HRFPN-W32 61.1 93.9 70.1 56.6 67.7 58.8

HRFPN-W40 60.9 94.4 69.7 56.2 67.8 58.9

ISASDNet [50]
ResNet50 61.0 95.4 67.7 62.4 60.5 55.2

ResNet101 62.7 96.8 68.5 63.6 60.3 52.5

FPN Faster RCNN [2]
ResNet50 59.1 93.8 68.6 55.2 66.0 47.3

ResNet101 58.4 94.0 65.9 54.5 64.7 51.9

Cascade R-CNN [51]
ResNet50 59.7 93.1 67.6 54.8 67.1 57.8

ResNet101 60.3 94.0 69.6 56.0 66.6 59.3

Mask R_CNN [52]
ResNet50 58.9 93.4 66.6 55.3 64.9 49.7

ResNet101 59.4 93.9 67.7 54.9 66.2 53.9

Libra RCNN [34]
ResNet50 66.5 95.2 81.2 68.8 63.9 22.6

ResNet101 66.7 95.9 83.7 69.5 66.6 20.3

RetinaNet [40]
ResNet50 55.5 90.2 62.3 51.2 62.6 45.4

ResNet101 55.2 90.8 60.2 50.9 62.2 49.7

Free_anchor [13]
ResNet50 64.0 94.1 76.8 65.1 61.2 63.8

ResNet101 64.6 95.0 77.1 65.7 61.8 49.6

Our
ResNet50 67.3 96.3 80.5 68.4 66.7 48.3

ResNet101 67.6 96.8 81.2 68.6 66.9 49.5
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Table 3. Comparison of the performance of different detection models on HRISD.

Methods Backbone AP AP50 AP75 APS APM APL

Anchor-free methods

FCOS [46]
ResNet50 57.9 84.4 64.9 60.2 55.5 16.1

ResNet101 61.1 86.5 68.5 62.3 61.7 14.8

FASF [33] ResNet50 62.6 88.3 71.6 64.1 59.4 16.4

ResNet101 63.0 88.7 72.2 64.3 61.9 12.7

FoveaBox [47] ResNet50 60.5 83.9 68.8 62.0 59.4 24.5

ResNet101 58.0 84.8 64.0 58.9 61.1 23.6

ATSS [48] ResNet50 61.0 84.6 69.0 62.3 63.2 13.6

ResNet101 58.9 82.5 65.9 59.9 63.6 8.80

AutoAssign [49] ResNet50 58.3 85.4 64.9 59.9 61.4 22.6

ResNet101 54.3 89.0 62.4 55.9 52.1 48.4

Anchor-based methods

HRSDNet [42]
HRFPN-W32 68.6 88.4 79.0 69.6 70.0 25.2

HRFPN-W40 69.4 89.3 79.8 70.3 71.1 28.9

FPN Faster RCNN [2] ResNet50 63.5 86.7 73.3 64.4 65.1 16.4

ResNet101 63.9 86.7 73.6 64.8 66.2 24.2

Cascade R-CNN [51] ResNet50 66.6 87.7 76.4 67.5 67.7 28.8

ResNet101 66.8 87.9 76.6 67.5 68.8 27.7

Mask R_CNN [52] ResNet50 65.0 88.0 75.2 66.1 66.1 17.3

ResNet101 65.4 88.1 75.7 66.3 68.0 23.2

Libra RCNN [34] ResNet50 63.8 86.2 73.6 65.0 65.4 17.5

ResNet101 64.2 86.6 73.3 65.0 67.2 23.8

RetinaNet [40] ResNet50 60.0 84.7 67.2 60.9 60.9 26.8

ResNet101 59.8 84.8 67.2 60.4 62.7 26.5

Free_anchor [13] ResNet50 61.6 86.4 72.6 61.9 62.6 25.4

ResNet101 62.7 87.3 73.7 62.6 63.1 27.6

Our ResNet50 64.1 88.2 73.8 62.3 632 27.5

ResNet101 64.2 88.3 74.1 62.5 63.5 30.4

Ship detection in offshore and inshore scenarios on HRSID dataset. In order to test
the performance of the detection algorithm in complex scenarios, we conduct experiments
according to the ocean and nearshore scenarios provided by HRSID. The detection results of
the two scenarios are shown in Table 4. It can be clearly seen that whether it is state-of-the-art
detectors or the method in this paper, the detection index of the ocean scene is higher than
that of the nearshore scene.As can be seen from Table 4, the method in this paper is better than
one-stage start-art-of methods such as RetinaNet, Free_anchor and ATSS and is close to the
performance of two-stage methods such as HRSDNet and Mask R_CNN.
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Table 4. Ship detection in the inshore and offshore scenes of HRSID.

Methods Backbone AP AP50 AP75 APS APM APL

Anchor-free methods

FCOS [46]
Inshore 38.5 67.2 38.9 39.3 47.1 16.6

Offshore 75.3 97.7 89.3 77.8 67.9 25.6

FASF [33]
Inshore 43.5 69.2 46.8 43.1 55.2 24.7

Offshore 79.2 98.6 93.3 80.8 72.9 45.9

FoveaBox [47]
Inshore 48.6 78.0 53.0 48.4 55.4 19.9

Offshore 79.6 97.7 92.7 81.0 74.0 65.6

ATSS [48]
Inshore 43.6 70.0 46.0 42.4 59.8 18.0

Offshore 81.2 97.9 93.7 82.8 78.4 42.3

AutoAssign [49]
Inshore 41.4 72.7 41.0 40.0 57.6 28.2

Offshore 77.9 97.9 91.6 80.1 77.3 55.9

Anchor-based methods

HRSDNet [42]
Inshore 58.9 81.3 68.3 57.7 72.3 30.1

Offshore 85.7 98.6 96.0 86.1 82.3 68.2

FPN Faster RCNN [2] Inshore 51.4 78.3 58.1 50.4 64.0 24.1

Offshore 80.7 98.0 94.5 82.0 78.2 31.3

Cascade R-CNN [51]
Inshore 55.9 79.6 63.6 54.5 69.6 32.7

Offshore 83.6 98.0 95.5 84.9 81.1 65.4

Mask R_CNN [52]
Inshore 53.1 79.0 60.7 52.5 63.6 20.0

Offshore 81.0 98.8 94.6 82.3 79.0 44.9

Libra RCNN [34]
Inshore 50.2 73.8 57.0 49.3 60.9 27.6

Offshore 81.5 97.9 94.6 82.8 79.3 57.3

RetinaNet [40]
Inshore 41.3 69.0 42.5 39.4 57.9 28.4

Offshore 79.6 98.6 93.2 81.2 75.1 57.4

Free_anchor [13]
Inshore 45.1 69.9 50.2 43.5 58.8 28.6

Offshore 79.3 98.6 94.4 80.8 73.5 58.5

Our
Inshore 51.2 76.3 54.4 45.6 60.6 24.8

Offshore 81.6 98.6 94.7 82.5 76.3 58.8

4.5. Discussion

To visually demonstrate the performance of the proposed method, we analyze it from
the qualitative perspective. In the qualitative analysis, we visualized the detection results in
the SSDD and HRSID data set, and the results are shown in Figures 9–14. Figures 9 and 10
show the visualization results of ours and other state-of-the-art methods. It can be seen
intuitively that our method is superior to other methods. The overall visual results of
our method are illustrated in Figures 11–14, where Figures 11–14 are the ship detection
results on SSDD and HRSID respectively. According to Figures 12 and 14, the proposed
method shows better performance under different scale targets and backgrounds. Notably,
SARFNet performs well in detecting multi-scale targets and further targets with various
appearance changes (e.g., interference from cross side lobes). In addition, SARFNet exhibits
better detection performance for densely arranged ship targets. As revealed by the above
phenomenon, the proposed method has the ability of scale adaptation and shape adaptation,
which benefit from the use of scale adaptive features here and the strategy of learning to
match anchor.
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However, the proposed method exploits a detection method based on a horizontal
rectangular frame. When facing a scene where ships and other targets are rotating and
densely packed, the detection method of the horizontal rectangular frame cannot eliminate
the interference between the background and neighboring targets, thereby causing missed
inspections for the ship and other objects. Accordingly, the subsequent research direction is
how to extract rotation invariance information and improve the ability of target detection.

(a)

(b)

Figure 9. Comparison of the detection results by different methods on SSDD. Red bounding box
denotes ground truth and Green bounding box denotes predicted results. (a) and (b) represent the
detection results of multi-scale objects and dense objects, respectively.

(a)

Figure 10. Cont.
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(b)

Figure 10. Comparison of the detection results by different methods on HRSID. Red bounding box
denotes ground truth and Green bounding box denotes predicted results. (a,b) represent the detection
results of multi-scale ships in complex inshore scenes.

(a) (b)

(c) (d)

Figure 11. The detection resultsof offshore scene on SSDD. The red box represents the ground-truth,
and the green box represents the detection result. (a,b) represent the detection results of ships in clean
ocean scenes. (c,d) represent the detection results of ships in a scenario with sea clutter interference.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. The detection results of inshore scene on SSDD. The red box represents the ground-truth,
and the green box represents the detection result. (a,b) represent the detection results of multi-scale
ships in complex inshore scene. (c,d) represent the detection results of dense ships in complex
inshore scene.

(a) (b)

(c) (d)

Figure 13. The detection results of offshore scene on HRSID. The red box represents the ground-truth,
and the green box represents the detection result. (a–d) represent the ship detection results of our
method in typical offshore scenes.

(a) (b)

Figure 14. Cont.
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(c) (d)

Figure 14. The detection results of inshore scene on HRSID. The red box represents the ground-truth,
and the green box represents the detection result. (a–d) represent the ship detection results of our
method in typical inshore scenes.

5. Conclusions

This study proposes a novel and effective learning approach for detecting objects
in SAR images, called the scale-aware pyramid network (SARFNet), which adaptively
selects useful and discriminative features for objects of various scales. Compared with
other state-of-the-art methods, the quantitative comparison results on two public data sets
for SAR object detection show that the proposed SARFNet approach achieves the highest
detection accuracy. In subsequent studies, we hope to introduce a rotation-invariant feature
extraction module to the network to adaptively mine rotation-direction features to locate
targets more accurately with multiple directions in SAR images.
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