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Abstract: Detecting off-nadir objects is a well-known challenge in remote sensing due to the distortion
and mutable representation. Existing methods mainly focus on a narrow range of view angles, and
they ignore broad-view pantoscopic remote sensing imagery. To address the off-nadir object detection
problem in remote sensing, a new nadir-like generative adversarial network (NaGAN) is proposed
in this paper by narrowing the representation differences between the off-nadir and nadir object.
NaGAN consists of a generator and a discriminator, in which the generator learns to transform the
off-nadir object to a nadir-like one so that they are difficult to discriminate by the discriminator, and
the discriminator competes with the generator to learn more nadir-like features. With the progressive
competition between the generator and discriminator, the performances of off-nadir object detection
are improved significantly. Extensive evaluations on the challenging SpaceNet benchmark for remote
sensing demonstrate the superiority of NaGAN to the well-established state-of-the-art in detecting
off-nadir objects.

Keywords: multi-view remote sensing imagery; object detection; generative adversarial network;
off-nadir; SpaceNet

1. Introduction

Generally, satellite imagery can be acquired by two broom methods, push-broom
and sweep-broom, in which object detection is one of the most important applications.
Off-nadir images by the sweep-broom satellite are very important for applications such as
time-sensitive disaster scenes, war situational observations, and humanitarian response
operations where the location of the event at the time of its first occurrence is often not
in the region of the overhead (i.e., nadir). For example, all Landsat 8 satellites are sweep-
broom-based sensors. However, detecting objects from off-nadir imagery is challenging.

For illustration, the two difficulties are elaborated below. At first, the foremost dif-
ficulty lies in viewpoint differences and imaging uncertainties. For the nadir imagery
acquired at different times, the same object has similar features with respect to shape, edge,
and texture. However, for the off-nadir imagery obtained by a sweep-broom satellite, the
viewpoints are different, and the illumination and reflection conditions of the same object
vary significantly. Moreover, the contents of the two-dimensional projection along different
sightlines are different, which makes the features obtained from the same object different
and the amount of information different. As shown in Figure 1, viewpoint differences
and imaging uncertainties enlarge the intra-class differences, and object detection from
off-nadir imagery is thus difficult.
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Figure 1. Difficulty illustration of object detection on off-nadir image. (a) The nadir object is different
from the off-nadir object with respect to appearance due to viewpoint differences and imaging
uncertainties, and features of nadir and off-nadir objects are exhibited differently by traditional
detectors, which impacts detection performances. (b) NaGAN aims to generate the nadir-like
representation for the off-nadir object, and a higher detection accuracy is gained on off-nadir images.

The second difficulty lies in the label accuracy. To save the labeling cost, only nadir
images are labeled, and labels of off-nadir images are usually copied from the nadir version.
In consequence, the labels of off-nadir views are biased. As shown in Figure 2, the satellite
flies from north to south, where the negative view corresponds to the northern view, and
the positive view corresponds to the southern one. The view covered by the yellow line
is called the nadir view where viewpoints range within 25◦, whereas the green is the
off-nadir view. During the flight, the viewpoints range from −32.5◦ to 54◦, and 27 images
with different viewpoints are obtained. The three images shown in the upper part of
Figure 2 are taken from −32.5◦, −7.8◦, and 54◦. The yellow box is the ground-truth for the
viewpoint of −7.8◦. As the other 26 images have no ground-truths, the ground-truth for
the viewpoint −7.8◦ is shared for the other 26 images. It can be observed from Figure 2
that the biases between the actual location of the off-nadir object and the ground-truth vary
with viewpoints, i.e., when the satellite is on the north side of the object, the object is on
the lower left side of the ground-truth, and when the satellite is on the south side of an
object, the object is on the upper right side of the ground-truth. Moreover, as the viewpoint
increases, the deviation between the object position within the image and the ground-truth
is larger. It is difficult for traditional object detection methods to automatically adjust the
ground-truth, and they have weak adaptability to the off-nadir imagery. At present, more
efforts are made toward object detection of nadir images, and studies on off-nadir satellite
images are usually ignored. In this context, it is emergent to develop effective detectors for
off-nadir images to meet the requirements from practical applications.

Regarding the above challenging difficulties, a promising method should be competent
at representing off-nadir objects. In other words, the deformed representation cannot be
used to improve the network performance until the intrinsic semantic correlation between
off-nadir objects and nadir objects is found. In recent years, generative adversarial network
(GAN) has dominated in data-generating domains, and utilizing GAN to generate training
samples under complex imaging conditions (e.g., occlusion [1], distortion [2]) for object
detection tasks is becoming popular. However, they are narrow-view approaches, and
wide-view approaches are more challenging. In this context, this paper attempts to use
GAN to generate a nadir-like representation for off-nadir objects.
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Figure 2. Label inaccuracy on off-nadir images. The upper three images are taken at −32.5◦, −7.8◦,
and 54◦. There is no ground truth of the off-nadir object, and the direct utilization of the ground truth
of the nadir view will impact the detection performance.

In short, a novel nadir-like generative adversarial network is proposed for off-nadir
object detection, which is named after NaGAN. Compared with traditional approaches, the
contributes lie in the following three aspects:

(1) A nadir-like representation is generated for the off-nadir object by the generator, and
the intra-class similarity between the nadir-like representation and nadir feature is
improved by the discriminator to “supervise” the generation process.

(2) The generator consists of the feature generation and the label alignment. The feature-
generation aims to generate the nadir-like representation for the off-nadir object. The
label alignment aims to assist the feature generation, which aligns the feature map of
the off-nadir object and aims to pertinently generate a nadir-like representation.

(3) The discriminator consists of the adversarial head and the detecting head. The former
aims to distinguish the nadir object and the off-nadir object, and the latter aims to
accomplish the object detection task. Specifically, the discriminator is the multi-task
collaborative learning between feature discrimination and object detection, rather
than the single discrimination between the real nadir object and the generated one.

To the best of the authors knowledge, the NaGAN proposed in this paper is the first
to apply the generative adversarial network to solve the challenge of multi-view object
detection in the remote sensing domain.
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2. Related Work

In the literature, image matching is widely used for viewpoint-invariant object de-
tection [3], and viewpoint-invariant object detection methods usually concentrate on the
following three aspects: feature description, feature matching, and feature learning.

2.1. Viewpoint-Invariant Object Detection by Image Matching
2.1.1. Feature Descriptor

A good feature descriptor is characterized by not only the invariance but also the
distinguishability. Among various feature descriptors, the most widely used descriptors
are SIFT (Scale-Invariant Feature Transform) [4], its variants, e.g., ASIFT [5], and SURF
(Sped-Up Robust Features) [6]. SIFT is a landmark work in the research field of feature
description and feature matching. SIFT and the more efficient SURF are powerful in terms
of scale and rotation; however, they are limited in view-angle variance. ASIFT is adapted
to viewpoint variation by simulating projections of different viewpoints.

2.1.2. Feature Matching

The shape features or geometrical structure of images are usually used for feature
matching. In [7], the proposal was made to denote the structural attributes of images by a
new feature descriptor, named the histogram of orientated phase congruency, and then the
normalized cross-correlation was utilized for the similarity metric for template matching.
In [8], a shape descriptor for image matching based on normalized cross-correlation and
dense local self-similarity was presented. In [9], the shape context feature and SIFT feature
were taken into account for remote sensing image matching. In [10], the position of the
robot can be estimated by triangulating and matching the local submap of the autonomous
robot using the method of maximizing the triangle similarity.

Deformable matching is an effective strategy for multi-view matching. For instance,
the best-buddies-similarity (BBS) measure was proposed in [11] to improve matching
performances impacted by occlusions, large deformation, and viewpoint variation. BBS
relies only on a subset of points in the template, and it is more robust than previous
methods. To reduce the drastic differences caused by viewpoint variation, [12] employed
digital elevation models to acquire features for fast visual database inquiry. To seek the
nearest neighbors for each query object, [13] developed an effective multiple nearest-
neighbors matching method based upon dominant sets. The study of [14] was inspired by
the classical thought of image registration to match images for different views. However, it
stopped at matching without further object detection.

2.1.3. Feature Learning

The deep learning method can be applied for image matching and patch matching.
In [15], a stacked auto-encoder was proposed to obtain unsupervised features for medical
image registration. In [16], a Siamese network was presented in order to match image
patches, which fetches patch-pair representations by coupled CNNs. In [17], the feature
similarity between two image patches was measured by two of the same CNNs or two
different CNNs. In [18], the traditional feature was substituted with the perspective-specific
structural feature. In [19], a data augmentation method was proposed for multi-view image
generation, making the detection model affine-invariant.

Unlike BBS, DDIS [20] employs the neural network and explicitly considers the defor-
mation. Owing to its parameter-free merit, DDIS outperforms previous methods including
BBS. OriCNN [21] enhances deep neural networks with the “commonsense” of orientation.
Given a ground-level spherical panoramic image as a query input and a big georefer-
enced satellite image database, OriCNN utilizes a Siamese network to explicitly encode the
orientation for each pixel.



Remote Sens. 2022, 14, 975 5 of 20

2.2. Data Augmentation and Generation

Data augmentation generalizes the learning procedure of deep neural networks, and
its goal is to improve the performance by augmenting the original dataset [22]. Currently,
the mainstream data augmentation approach is on network-antagonistic augmentation.
In [22], an approach named data augmentation optimized for GAN was proposed to enable
the use of augmented data in GAN training to improve the learning capacity of the original
distribution. The study of [23] was based on image conditional Generative Adversarial
Networks to generate within-class data.

There are other ways to augment data besides GAN. In [24], data augmentation was
applied for improving the federated learning approach. The proposed augmentation
technique consists of image processing techniques, neural network architectures, and
heuristic methods, and it improves the operation in federated learning by increasing the
role of the server. In [25], data were augmented through image reconstruction to provide a
better-quality image without any noise. The main idea was to find some important areas
on an image by the heuristic algorithm and training network until a certain level of entropy
within these areas was achieved.

3. The Proposed Approach
3.1. Overview of NaGAN

As shown in Figure 3, NaGAN comprises a generator and a discriminator. The
generator aims to generate the nadir-like representation for the off-nadir object, and the
discriminator aims to identify the quality of the generated features and detect objects
on the nadir-like representations. Considering the difficulties in reducing the intra-class
distance between off-nadir objects and nadir objects, the generator learns progressively
and is adversarially constrained by the discriminator. With the iterated game, the detection
accuracy for off-nadir objects is improved.

Figure 3. Overview of NaGAN. NaGAN consists of a generator and a discriminator. The generator
aims to generate a nadir-like representation for the off-nadir object, which consists of the feature
generation and the label alignment. The former is used to generate the nadir-like representation for
the off-nadir object, while the latter helps the former align the off-nadir object to the label of the nadir
object. The discriminator consists of two heads, the adversarial head and the detecting head. The
adversarial head aims to discriminate the generated nadir-like representation of the off-nadir object
from the real nadir object, and the detecting head aims to benefit the detection accuracy.
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3.2. Modeling and Loss Function
3.2.1. Generator Modeling

The learning goal of the original GAN [26] is equivalent to a min-max two-player
game, which is expressed as:

min
G

max
D

L(D, G) , Ex∼pdata(x) log D(x) +Ez∼pz(z)[log(1− D(G(z))] (1)

where a generator G is trained to project data z from the noise distribution pz(z) to the
distribution pdata(x) about data x, and a discriminator D estimates the probability of data
originating from the distribution pdata(x) other than G. G aims to maximize the probability
of D committing an error. E represents the mathematical expectation, and the objective
function of GAN is defined as L(D, G). In this paper, x and z are the representatives for
nadir objects Rn and off-nadir objects Ro correspondingly. The generator function G is
expected to convert the representations of the off-nadir object Ro to the nadir-like one
G(Ro), which is similar to the real one of the nadir object Rn.

min
G

max
D

L(D, G) , ERn∼pdata(Rn) log D(Rn) +ERo∼pRo (z)
[log(1− D(G(Ro))] (2)

For NaGAN, the generator consists of the feature generation and the label alignment.
The former is used to generate the nadir-like representation for the off-nadir object with a
convolutional network, and the latter aims to assist the former to generate more accurate
nadir-like features.

(1) Feature generation
The generator network GΨg is trained with parameters Ψg, i.e.,

Ψg = argmin
Ψg

Ldis

(
GΨg(Ro)

)
(3)

The loss function Ldis is the combination of the adversarial loss Ladv
dis and detection loss

Ldte
dis produced by the discriminator, where Ldis is defined by formula (5), which provides

feedback to the generator for further improving the feature generation performance.
(2) Label alignment
As the label used by the off-nadir object is the label of the nadir object, it is difficult

to directly learn the representation GΨg(Ro) for off-nadir objects to match the distribution
of nadir object feature Rn. For this reason, a new conditional-probability generator model
called label alignment is introduced, which is conditioned on the additional supplementary
semantic information, i.e., the view v and the high-level feature of the off-nadir object r, by
which the generator is trained to learn features of the off-nadir object aligned to the nadir
object via label alignment.

min
G

max
D

L(D, G) , ERn∼pdata(Rn) log D(Rn) +ERo∼pRo (z)
[log(1− D( G(Ro|v, r︸ ︷︷ ︸

aligned f eature

))] (4)

By this way, the generator training is effective in learning the nadir-like representations
for off-nadir objects. As a special case, if the input representation comes from the nadir
object Rn, the generator must only learn an equal mapping GΨg(Rn) = Rn.

The feature generation and label alignment have no loss functions. The training
performance of the generator is determined by the adversarial head and the detecting head
in the discriminator, then the losses of the two heads are used for gradient backpropagation.
When the loss of the adversarial and detecting head is high enough for stopping the training
procedure, it means that the generator does not generate a better nadir representation for
the off-nadir object.
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3.2.2. Modeling and Loss Function of Discriminator

As shown in Figure 4, to "supervise" the generator, the discriminator learns to not only
distinguish the nadir-like representation of the off-nadir object and the real one of nadir
object, but also to improve the detection performance by benefiting from the nadir-like
features. The final loss function Ldis of the discriminator is defined as

Ldis = Ladv
dis + Ldte

dis (5)

where Ladv
dis is the adversarial loss produced by the adversarial head, and Ldte

dis is the detecting
loss by the detecting head.

Figure 4. The network architecture of NaGAN. (a) The feature generation in the generator consists of
the ResNet-50 backbone network, FPN, and RPN. The label alignment takes features learned from the
FPN high-level layer conv4 as the input. Then, the features are sent to feature-dimension reduction
to decrease the feature dimension. After that, the new low-dimensional features are then fed to
alignment-parameter estimation to regress the label-alignment parameters. (b) The discriminator
takes the features of the nadir object and the nadir-like representation of the off-nadir object as inputs.
The adversarial head comprises two fully connected (FC) layers and sigmoid activation sequentially.
The detection head is constituted by two FC layers and subsequently two output layers, and the latter
are employed for bounding box regression and classification, respectively.
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(1) Adversarial head
The adversarial head aims to discriminate the nadir-like representation for the off-

nadir object GΨg(Ro) from the feature of the nadir object Rn. The adversarial head DΨadv
dis

of

the discriminator with the Ψadv
dis is obtained by the following optimization problem.

Ψadv
dis = argmin

Ψadv
dis

Ladv
dis (GΨadv

dis
(Ro), Rn) (6)

Taking the real representation Rn from each nadir object or the generated representa-
tion GΨg(Ro) from each off-nadir object as the input, Ladv

dis is defined as

Ladv
dis = − log DΨadv

dis
(Rn)− log(1− DΨadv

dis
(GΨg(Ro))) (7)

(2) Detection head
To enhance the detecting accuracy by taking advantage of the generated nadir-like

representation, the detecting head should be synchronously trained. The detecting head,
DΨdte

dis
, parameterized by Ψdte

dis is obtained by optimizing the detection loss function Ldte
dis , i.e.,

Ψdte
dis = argmin

Ψdte
dis

Ldte
dis(Rn, Ro) (8)

where Ldte
dis is the sum loss for bounding-box regression and classification.

Taking the nadir-like representation from each proposal as the input, the detecting
head produces the class-level confidences p and the bounding-box regression offsets tu

for each class, where the ground truth is the category u and the location v. Ldte
dis aims to

improve the detecting accuracy for each object proposal with the help of the generated
nadir-like representation:

Ldte
dis = Lcls(p, u) + 1[u ≥ 1]Lreg(tu, v) (9)

where Lcls(p, u) = − log pu is the log loss of ground truth class u for the classification, and
Lreg is the smooth L1 loss proposed in [27] for the bounding-box regression. The function
[u ≥ 1] is equal to 1 when u ≥ 1, and 0 otherwise.

3.3. Network Architecture and Loss Design

Generator architecture. The purpose of the generator is to generate nadir-like repre-
sentations for off-nadir objects. Thus, the generator augments the representations of nadir
objects to nadir-like ones by feature-generation, and introduces more aligned details absent
from the off-nadir object by label alignment. Before entering the generator, the ground
truth of the off-nadir object shown by the green dotted bounding box in Figure 4 shares
the same ground truth as the nadir object shown by the red dotted bounding box. After
feature generation and label alignment, the generator generates the label alignment and
nadir-like representation for the off-nadir object shown in the red dotted bounding box,
and it continues to feed the generated nadir-like feature of the nadir object shown in the
green dotted bounding box into the subsequent adversarial network.

The feature generation consists of the ResNet-50 [28] backbone network, FPN [29],
and RPN [30]. The outputs of FPN are conv0~4. It can be informed from Figure 4 that the
generator selects the conv4 feature as the input, which is extracted from the lower-level
features layer by layer and includes the lower-level information.

The resulting features are then sent to the feature-dimension reduction, which consists
of two FC layers Fd1, Fd2 to decrease the dimension of the high-dimensional conv4 features,
so the one-dimensional view information will not be submerged in the high-dimensional
conv4 features. The following alignment-parameter estimation contains two FC layers Fp1,
Fp2, aiming to regress two label-alignment parameters x, y along the horizontal and vertical
direction, respectively. The feature generated is aligned according to the two parameters
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so that the label of the nadir object covers the off-nadir object, which assists the feature
generation to pertinently generate a nadir-like representation for the off-nadir object. The
output unit number of the four FC layers Fd1, Fd2, Fp1, Fp2 are 512, 2, 3, and 2, respectively.

Discriminator architecture. The detection head follows the architecture of [28], which
is comprised of two FC layers Fdet1, Fdet2 and two sibling output layers Fdet3, Fdet4. The
output unit numbers of 6 FC layers are 512, 512, 2048, 2048, 1, and 4, which represents 512,
1, and 4 dimensions embedding for adversarial, classification, and bounding-box regression
tasks, respectively. To balance speed and performance, in the adversarial head, two fully
connected layers Fadv1, Fadv2 followed by sigmoid activation Asig are used to learn the
projection space from off-nadir object to nadir object.

4. Experiments
4.1. Experiments Setting

In the literature, there is little research on multi-view object detection of remote sensing
imagery, and only one public dataset is available, SpaceNet [31]. To better reflect the visual
heterogeneity of real-world imagery, the SpaceNet dataset includes various look directions
and angles. In [31], Faster R-CNN [30] was analyzed. This method is different from NaGAN
as it does not consider the discrimination between different perspectives.

The experiments were conducted on SpaceNet, which contains 27,486 overhead images
over Atlanta, Georgia, USA on 22 December 2009. These images cover a 665 km2 geographic
extent during 5 min. With 27 distinct looks from a wide range of viewing angles (−32.5◦

to 54.0◦), the dataset was made during a single pass of the WorldView-2 satellite. The
dataset covers different geographic locations, including industrial areas, suburbs, densely
treed rural areas, and intensive urban regions. The view angle difference causes variations
with respect to building appearance, size, and density [31]. Meanwhile, the dataset is
disturbed by other complicating factors, e.g., changes in land-use, cloud cover, sun angle,
or time-sensitive variables (such as seasonality), which enables careful assessment of the
impact of the view on detection performance. The whole dataset was tiled into 900 pixels
× 900 pixels tiles, and they were resampled to imitate a uniform resolution of 0.5 m/pixel.

The label of the most nadir imagery (−7.8◦) was shared across all views. For structures
occluded by trees, only the visible part was labeled. The average precision and average
recall at IoU thresholds 0.5 and the averaged ones from 0.5 to 0.95 in steps of 0.05, i.e.,
AP@0.5, AP@0.5:0.95 and AR@0.5, AR@0.5:0.95, were used for measuring performance.
AP@0.5 is also called the mean Average Precision (mAP).

The training, validation, and test set were split in 60/20/20 by randomly selecting
geographic positions, and each split contained all views of the same scene. Each view was
grouped into one of two classes: nadir (NADIR), |θ|≤ 25◦ ; off-nadir (OFF), |θ|≤ 25◦ . The
image numbers corresponding to the above two groups were 11198 and 16288, correspond-
ingly. This setting helped us evaluate a detector in different views. In all experiments,
baselines were trained using all views (ALL), or OFF, or NADIR. In Figure 1, 27 views
(-32.5◦ to 54.0◦) on the test set were assessed separately.

4.2. Implementation Details

The implementation was based on 6 NVIDIA GeForce RTX 2080 Ti GPUs with
12GB memory. For a fair comparison, all ablation experiments were conducted within the
MMDetection [32] toolbox built on the Pytorch platform with default parameters.

Hyperparameters. NaGAN was trained by stochastic gradient descent (abbreviated
as SGD) with a momentum of 0.9, learning rate of 0.0025, and weight decay of 0.0002.
When the discriminator was trained, each SGD batch contained 128 foreground candidate
proposals. The RPN presented in [30] was used to produce object proposals.

Initialization and pretraining. The pretrained ResNet-50 model in [28] was used
for initialization. For the generator and the discriminator, the parameters of additional
FC layers and convolutional layers were initialized with "Xavier" [33]. Following [28],
downsampling was performed straightly by convolutional layers with a stride of 2.
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Activation strategy of label alignment at the testing stage. At the training stage, to
align the object of the off-nadir imagery to the ground-truth bounding box of the nadir
object, the label alignment was activated. At the testing stage, for observing mAP, the
label alignment was still activated as the mAP measurement standard is also based on the
ground truth of the nadir bounding box. For this reason, the label alignment was activated
in Tables 1–5. In Figures 5–8, to visualize the regression ability of the off-nadir object with
NaGAN, the label alignment was inactivated.

Figure 5. Performance of AR@0.5:0.95 and AP@0.5 of different methods for various views. Many
prevailing models and NaGAN trained on ALL were assessed for the building detection task, and
the AR@0.5:0.95 and AP@0.5 results are shown for each evaluated view. Imagery facing south is
symbolized with a negative number, whereas views facing North are presented with a positive value.

Figure 6. Bounding boxes and feature maps of Faster R-CNN and NaGAN in nadir and off-
nadir images.
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Figure 7. Records of the label-alignment parameters for 5778 images (214× 27 views) from 214 scenes
in the test dataset. It can be observed that the trend of vertical offsets from nadir to off-nadir along
the flight direction of satellites is increasing, which demonstrates the effectiveness of label alignment.

4.3. Performance Analysis

Performances by different methods are listed in Table 1. For all methods, it can be
observed from other views that AP@0.5 decreases gradually with the view from nadir
−7.8◦ to other views. The reason is that the deformation of the off-nadir object increases
the detection difficulty. The AP@0.5 descends to the lowest value at −32.5◦ and 54◦ views.

It can be observed from Table 1 that the proposed NaGAN outperforms other state-of-
the-art methods on different views. Specifically, the presented approach NaGAN makes
an obvious improvement, i.e., 1.4% on ALL subset and 1.6% on OFF subset over the sub-
optimal performance, which demonstrates its superiority in detecting multi-view objects
and off-nadir views. However, each of the other approaches makes a specific improvement
on a particular bottleneck: Cascade increases the IOU threshold and improves the false
positive sample quality stage by stage for better regression proposal; Retinanet and Libra
focus on the sample, feature, or objective level imbalance to improve detection; Nas-fpn
uses the neural architecture search method to find the best possible detection method; Htc
improves detection performance by increasing the interaction between instance segmenta-
tion and detection. They treat the nadir and off-nadir objects equally as the same kind of
object, so the intra-class differences result in a weaker performance than NaGAN. Fovea
and Centripetal, respectively, improve over RetinaNet and CornerNet. However, they are
inferior to NaGAN.

Detailed comparisons of recall rate and precision rate curves in terms of AR@0.5:0.95
and AP@0.5 are shown in Figure 5, which illustrates the performances of different ap-
proaches for each view. Note that the performances of negative (south-facing) views are
poorer than those of positive (north-facing) angles. The underlying reason is the heterogene-
ity caused by the flight direction, lighting condition, and shadows. The proposed NaGAN
exceeds all the existing methods and reaches the highest recall rate, which validates its
superiority in detecting off-nadir objects. More importantly, performances of the off-nadir
object and nadir object detection are improved at the same time, which demonstrates that
NaGAN works for every view. In addition, as can be seen from Figure 5, the “Precision” per-
formance decrease from the nadir to off-nadir view of NaGAN is slowest, which illustrates
that NaGAN mitigates the negative impact of the off-nadir view on precision.
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Figure 8. Comparison of detection results and feature maps of Faster R-CNN and NaGAN. The
bounding box in red by Faster R-CNN is less accurate than NaGAN in green for views −32.5◦ and
52.5◦. In addition, compared to Faster R-CNN, feature maps of NaGAN for nadir views −32.5 ◦ and
−54.0 ◦ are more similar to the feature map for off-nadir view −7.8◦, which shows that NaGAN has
a better ability to learn nadir-like features for the off-nadir object than Faster R-CNN.
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Table 1. Performance comparison for each view on SpaceNet in terms of AP@0.5 in %.

Model\View −32.5◦ −29.1◦ −25.4◦ −21.3◦ −16.9◦ −13.9◦ −10.5◦ −7.8◦ 8.3◦ 10.6◦

Faster_r50 [30] 52.1 55.6 58.5 62.3 63.4 65.7 66.1 67.3 67.3 67.2
Faster_r101 [30] 41.4 49.6 54.8 59.3 61.1 63.8 65.2 66.6 66.5 66.3
Cascade_r50 [34] 24.5 33.9 41.7 46.7 47.8 52.9 54.2 59.7 60.7 59.7

Cascade_r101 [34] 26.0 35.6 46.8 52.6 56.0 59.1 59.8 61.7 60.0 63.0
Cascade_x101 [34] 40.2 47.9 54.2 57.6 60.5 61.8 63.2 64.3 64.4 63.3

CornerNet [35] 7.3 18.8 26.1 26.8 29.6 31.3 32.3 33.1 32.8 32.8
Fovea_r50 [36] 19.6 38.1 44.7 50.1 53.0 58.0 59.5 61.2 61.8 61.1

Fovea_r101 [36] 19.6 42.8 47.9 52.5 54.1 58.0 60.1 60.8 61.8 61.5
RetinaNet [37] 37.8 46.7 51.3 55.8 58.1 60.9 62.4 63.4 64.4 63.4

Htc [38] 32.6 44.9 51.1 56.3 59.4 63.2 64.5 65.8 65.9 65.6
Libra rcnn [39] 25.9 35.6 47.9 55.7 60.3 62.3 63.8 65.0 65.9 65.3
Nas_fpn [40] 13.3 29.5 47.9 53.1 57.2 58.8 60.3 61.3 61.7 61.2

Centripetal [41] 5.5 20.7 47.4 55.3 58.5 63.3 64.7 66.1 66.2 67.0
NaGAN 54.0 57.2 59.8 63.0 64.1 66.1 66.2 67.3 67.4 67.3

Model\View 14.8◦ 19.3◦ 23.5◦ 27.4◦ 31.0◦ 34.0◦ 37.0◦ 39.6◦ 42.0◦ 44.2◦

Faster_r50 66.9 65.5 64.4 62.0 59.0 57.7 56.0 51.8 49.1 39.8
Faster_r101 66.3 64.7 63.5 61.1 57.9 54.6 50.8 44.6 43.5 34.1
Cascade_r50 59.6 58.2 52.4 54.5 44.0 39.4 52.5 33.5 27.0 18.5
Cascade_r101 57.8 56.6 57.8 53.1 51.2 50.3 53.6 35.1 34.3 28.3
Cascade_x101 64.2 63.0 52.4 59.2 55.5 55.5 52.7 48.4 45.3 34.4

CornerNet 32.8 31.9 31.7 31.0 29.7 28.1 25.6 21.4 21.6 19.8
Fovea_r50 61.0 59.3 57.9 55.3 50.9 49.8 48.2 43.6 40.5 30.1

Fovea_r101 61.9 59.6 59.4 57.3 53.6 51.4 48.9 44.0 43.4 34.3
RetinaNet_r50 63.6 62.0 61.0 58.5 55.3 53.9 51.5 47.1 46.1 34.4

Htc 65.8 64.2 62.9 60.3 55.6 55.5 52.8 48.3 45.6 35.1
Libra rcnn 64.2 63.3 60.8 58.5 53.6 48.8 42.1 31.9 28.9 20.4
Nas_fpn 61.4 60.8 59.6 57.2 54.3 53.5 50.8 47.0 44.9 31.3

Centripetal 65.8 63.3 62.5 59.8 56.8 55.8 52.5 44.3 44.3 41.6
NaGAN 67.2 65.8 64.8 62.5 59.6 58.4 56.7 52.6 50.0 40.8

Model\View 46.1◦ 47.8◦ 49.3◦ 50.9◦ 52.2◦ 53.4◦ 54.0◦ ALL NADIR OFF

Faster_r50 36.9 40.9 37.2 26.9 26.7 11.4 7.5 52.7 64.7 43.7
Faster_r101 27.5 33.2 28.4 20.6 19.8 7.0 2.1 48.0 63.6 35.4
Cascade_r50 13.5 15.8 12.2 9.4 10.0 2.6 5.7 29.9 51.4 26.1
Cascade_r101 15.0 15.8 19.5 10.6 8.5 3.3 6.9 31.3 59.1 20.9
Cascade_x101 27.1 33.7 30.3 23.8 23.0 12.7 6.4 48.8 61.7 38.4

CornerNet 17.5 17.8 15.6 9.6 10.7 3.4 1.0 23.4 31.0 17.8
Fovea_r50 21.4 27.4 25.7 20.4 17.5 8.2 2.1 43.0 57.1 32.0

Fovea_r101 26.7 32.9 29.6 20.4 21.3 11.4 4.3 45.2 58.0 35.5
RetinaNet_r50 26.8 35.2 31.9 22.9 22.9 12.5 6.1 47.8 60.7 37.8

Htc 26.5 32.0 29.1 22.3 20.5 11.2 3.5 48.2 62.1 36.9
Libra rcnn 15.9 17.4 16.3 13.1 9.5 2.2 0.8 39.0 61.7 23.2
Nas_fpn 21.9 32.4 31.1 18.9 17.5 3.4 1.1 43.0 58.6 31.4

Centripetal 34.0 32.0 28.7 18.2 19.2 4.4 1.2 45.5 62.1 32.8
NaGAN 38.1 42.3 38.7 28.5 28.4 13.2 9.4 54.1 65.1 45.3

To better understand the novelty of the proposed approach, feature maps by Faster
R-CNN and NaGAN are shown in Figure 6. In Figure 6, the above and below rows are,
respectively, the bounding boxes and feature maps of Faster R-CNN and NaGAN in nadir
and off-nadir images. By comparing the second row with the first row of the third column,
it is easy to find that Faster R-CNN missed the off-nadir object on the left. As shown in the
second and fourth column of the first row in Figure 6, as the off-nadir view and the nadir
view on the left side of the house are quite different, only the right side of the house with the
stronger feature is detected by Faster R-CNN. However, as can be seen from either the nadir
or off-nadir view, the attention of NaGAN in the object area is significantly greater than
that of Faster R-CNN, indicating that NaGAN has learned more discriminative features for
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the object. In addition, by comparing the second row with the first row, two feature maps
from different views under NaGAN are more similar than that of Faster R-CNN. That is
because NaGAN tends to generate nadir-like features for off-nadir objects.

4.4. The Effectiveness of the Label Alignment

In order to observe the changing trend of the label-alignment parameters with the
satellite flight direction, the view from −32.5◦ to 54◦ is coded as 1~27. The view of 7◦ nadir
is encoded as “8”, and its label-alignment parameter is set to 0 in each direction, which
means the network does not adjust the feature map under this view. Figure 7 records label-
alignment parameters of 5778 images (214 × 27 views) in the test dataset. The vertical axis
is numbered for the view. The blue and red parts of the vertical axis are the label-alignment
parameters, which correspond to the horizontal and vertical offset of the feature map. The
offset ranges from −1.0 to 1.0, which means the offset is relative to the original feature
map. The positive values in horizontal and vertical directions mean that the feature map is
adjusted to the left and above, respectively, and vice versa. It can be inferred that the trend
of vertical offsets from nadir to off-nadir along the flight direction is increasing, which
demonstrates the effectiveness of label alignment.

“NaGAN for mAP” and “NaGAN” in two scenes are shown in Figure 8, where the
views are −32.5◦, −7.8◦, and 54.0◦. “NaGAN for mAP” and “NaGAN” denote the label
alignment being active and inactive at the testing stage, respectively. Compared to Faster
R-CNN, the bounding box in red by “NaGAN for mAP” is closer to “Ground Truth” in
yellow, so the mAP of “NaGAN for mAP” is higher. “NaGAN” and “NaGAN for mAP”
are the same training model, but the latter introduces inactive label alignment at the testing
stage for better visualization. From Figure 8, NaGAN is better in classifying and localizing
objects, which further justifies the proposed method. Feature maps of Faster R-CNN
and NaGAN are shown below in the last two lines of Figure 8 for further comparison.
Compared to Faster R-CNN, feature maps of NaGAN for nadir views −32.5 ◦ and −54.0◦

are more similar to the feature map for off-nadir view −7.8◦, which shows that NaGAN
has a better ability to learn nadir-like features for the off-nadir object than Faster R-CNN.

4.5. Comparison to Image Matching Method

In addition to the classical object detection methods in Section 4.3, some multi-view
matching methods were used for comparison: template matching method DDIS and SIFT
descriptor, and ASIFT descriptor. The template marked in green in Figure 9a is detected in
the target imagery (Figure 9b) of 52◦ off-nadir using DDIS. In the corresponding matching
likelihood maps (Figure 9c), the higher the peak position of the response, the more likely it
is identified as the template. The green bounding box in Figure 9b is the matching ground
truth, and the red is the matching result of DDIS. It can be seen that NaGAN in Figure 9
has a higher accuracy than DDIS. However, DDIS incorrectly located the object in the red
bounding box. In fact, due to the limited adaptability to the variation in view, scale, and
rotation, the template matching method is less reliable.

Moreover, due to the heterogeneity of multi-view remote sensing imagery, the variants
of SIFT designed for general images are not effective. It is indicated from the result of SIFT
and ASIFT [42] shown in Figure 10a and b that the 52◦ off-nadir imagery and −7.8◦ nadir
imagery match 0 points by SIFT. The SIFT matching result shows that the off-nadir imagery
cannot be matched with the referenced nadir imagery by the SIFT feature descriptor. ASIFT
performs better with 119 matching points compared with SIFT. However, there are no
matched points within the circular object, which is due to the large deformation within
the target area, revealing that SIFT and ASIFT become unreliable for multi-view object
detection. In conclusion, the matching methods in Section 2.1 are not good enough for
multi-view object detection.
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Figure 9. The result of the DDIS matching method. (a) The template marked in green. (b) The
detected target on 52◦ off-nadir image. (c) The corresponding matching likelihood map.

Figure 10. Matching performance comparison. (a) SIFT. (b) ASIFT.

4.6. Ablation Studies
4.6.1. The Variant of Label Alignment

To demonstrate the necessity of the label alignment, the performance of NaGAN
without label alignment is reported in Table 2. ”NaGAN w/o LAM” indicates the features
generation without label alignment. Two additional experiments were implemented on
the variant of label alignment. “NaGAN w/o IV” indicates the model of aligning the label
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for the off-nadir object without introducing the view. Another ablation experiment on
the variant of label alignment about the feature-dimension reduction was implemented.
“NaGAN w/o DD” means that the high-dimensional output features of FPN are directly
sent to the alignment-parameter estimation without reducing the dimension by the feature-
dimension reduction.

Table 2. Performance comparison about label alignment and its variant on SpaceNet. (R): AR@0.5,
(P): AP@0.5. (In %).

Model OFF-NADIR ALL

NaGAN w/o LAM(R) 52.9 59.4
NaGAN w/o LAM(P) 44.7 53.6

NaGAN w/o IV(R) 53.0 59.7
NaGAN w/o IV(P) 45.0 53.9

NaGAN w/o DD(R) 52.9 59.7
NaGAN w/o DD(P) 44.9 53.8

NaGAN(R) 53.2 59.8
NaGAN(P) 45.3 54.1

As can be seen from rows 1, 2 of Table 2, when using the label alignment, NaGAN
obtains definite improvements in accuracy and recall over “NaGAN w/o LAM.” The
recall and accuracy of NaGAN in off-nadir object detection are improved by 0.3% and
0.6%, respectively. In consequence, NaGAN enhances the generator by label alignment in
compensating for the effect of the off-nadir view without the ground-truth label.

Comparing rows 3, 4 and 7, 8 in Table 2 shows that the label alignment without
introducing the view, i.e., “NaGAN w/o IV,” can also regress the label-alignment parame-
ters based on implicit information such as the shadow, illumination, and displacement of
the building object, and make NaGAN perform better than other models. However, the
introduction of the view in label alignment leads to a further performance promotion for
NaGAN. Compared with not introducing the view, the recall and accuracy of NaGAN
in off-nadir object detection increase by 0.2% and 0.3%, respectively. The reason is that
the more the current view deviates from the nadir view, the greater the parameter of the
label alignment needs to align with the ground truth. In this way, NaGAN helps the label
alignment regress the label-alignment parameter.

From rows 5, 6 and 7, 8 in Table 2, the performance of “NaGAN w/o DD” is worse
than that of NaGAN. Compared with not introducing feature-dimension reduction to label
alignment, NaGAN improves the recall and accuracy of off-nadir object detection by 0.2%
and 0.3%, respectively. The reason is that one-dimensional view information is submerged
in the high-dimensional FPN features. Thus, NaGAN uses the feature-dimension reduction
to make the dimension of the output features and the view introduced comparable in
dimension, which is beneficial for the performance of NaGAN.

4.6.2. Different Layers of Feature Generation Utilized

The generator of NaGAN learns nadir-like representations of off-nadir objects from
FPN higher-level layers. Especially, NaGAN selects the “Conv4” FPN layer of feature
generation. In order to verify the optimization of this layer, three comparisons were
conducted, employing features from Conv3 to Conv1 for learning the generator individually.
It can be identified from Table 3 that the performance continuously declines by using
features from other, higher layers. Compared with introducing Conv3 to Conv1 layers of
FPN, the accuracy of off-nadir object detection is improved by 0.7%, 0.5%, and 0.2% with
Conv4, respectively. In consequence, using high-level features from Conv4 shows the best
performance.
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4.6.3. Different Parameters for Label Alignment

The conversion used in the label alignment is a kind of affine transformation. The affine
transformation needs to regress 6 parameters, and NaGAN needs to regress 2 parameters.
In [43], the affine transformation was used for the classification task only. In the ablation
experiment, the affine transform was applied to the object detection. It can be seen from
Table 4 that the proposed label alignment method is superior to the affine transform method
in which the accuracy and recall of off-nadir object detection are improved by 0.6% and
0.3%, respectively. “NaGAN_STN_6” and “NaGAN_LAM_2”, respectively, indicate in
Table 4 that the alignment-parameter estimation predicts 6 parameters of STN, while the
latter predicts two parameters.

Table 3. Performance comparisons on feature generation from different-level layers on SpaceNet.
(R): AR@0.5, (P): AP@0.5 (in %).

Model OFF-NADIR ALL

NaGAN_Conv1(R) 52.2 59.2
NaGAN_Conv1(P) 44.6 53.7
NaGAN_Conv2(R) 52.7 59.6
NaGAN_Conv2(P) 44.8 53.8
NaGAN_Conv3(R) 53.0 59.6
NaGAN_Conv3(P) 45.1 54.0

NaGAN(R) 53.2 59.8
NaGAN(P) 45.3 54.1

Table 4. Performance comparison on NaGAN with STN or with the label alignment. (R): AR@0.5,
(P): AP@0.5 (in %).

Model OFF-NADIR ALL

NaGAN_STN_6(R) 52.6 59.5
NaGAN_STN_6(P) 45.0 53.9
NaGAN_LAM_2(R) 53.2 59.8
NaGAN_LAM_2(P) 45.3 54.1

4.6.4. The Effectiveness of Adversarial Head

To verify the essentiality of the adversarial head, the performances of NaGAN with or
without the adversarial head during training are reported in Table 5. “NaGAN_w/o AH”
signifies NaGAN without the adversarial head optimization step. “NaGAN_AH” denotes
adversarially training the original nadir feature and the nadir-like off-nadir representation.
By comparing “NaGAN_with AH” with “NaGAN_w/o AH,” it can be observed that certain
improvements can be gained with the adversarial head. Compared with not introducing
the adversarial head, the recall and accuracy of off-nadir object detection in NaGAN are
improved by 0.7% and 0.6%, respectively, which demonstrates that the adversarial head
helps to enhance the performance of NaGAN.

Table 5. Performance comparison on adversarial head. (R): AR@0.5, (P): AP@0.5 (in %).

Model OFF-NADIR ALL

NaGAN_w/o AH(R) 52.5 59.2
NaGAN_w/o AH(P) 44.7 53.6
NaGAN_with AH(R) 53.2 59.8
NaGAN_with AH(P) 45.3 54.1

5. Conclusions

A novel generative adversarial network named NaGAN is proposed in this paper to
solve the challenging issue of multi-view object detection. To enhance detection perfor-
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mance, NaGAN generates nadir-like representations for off-nadir objects by training the
generator network and the discriminator network end-to-end. The generator aims to learn
discriminative features from the label-aligned feature and to boost the nadir-like repre-
sentations for off-nadir objects. Competition in the end-to-end optimization of both the
generator and the discriminator promotes NaGAN to generate nadir-like representations
for nadir objects for boosting detection performance. The experiments demonstrate the
advantage of the proposed NaGAN in detecting off-nadir objects.

Generally, GAN generates an image that meets the human eye’s need for habits such
as intelligibility and clarity. Compared to GAN, NaGAN aims to directly generate the
view-invariant feature, i.e., nadir-like representation for off-nadir object, rather than images
from different views. Thus, NaGAN is a specific model designed for off-nadir object
detection under the guidance of the GAN methodology. In the future, it will be interesting
to investigate whether GAN is capable of generating nadir view images from off-nadir
view images. It will be very helpful in data augmentation.
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