
����������
�������

Citation: Wang, S.; Gou, G.; Sui, H.;

Zhou, Y.; Zhang, H.; Li, J. CDSFusion:

Dense Semantic SLAM for Indoor

Environment Using CPU Computing.

Remote Sens. 2022, 14, 979. https://

doi.org/10.3390/rs14040979

Academic Editor: George Karras

Received: 16 January 2022

Accepted: 15 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

CDSFusion: Dense Semantic SLAM for Indoor Environment
Using CPU Computing
Sheng Wang, Guohua Gou , Haigang Sui *, Yufeng Zhou, Hao Zhang and Jiajie Li

State Key Laboratory Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,
Wuhan 430070, China; wsheng@whu.edu.cn (S.W.); guohua.gou@whu.edu.cn (G.G.);
2019286190087@whu.edu.cn (Y.Z.); zhanghao1003@cug.edu.cn (H.Z.); 2017301200143@whu.edu.cn (J.L.)
* Correspondence: 00201543@whu.edu.cn

Abstract: Unmanned Aerial Vehicles (UAVs) require the ability to robustly perceive surrounding
scenes for autonomous navigation. The semantic reconstruction of the scene is a truly functional
understanding of the environment. However, high-performance computing is generally not available
on most UAVs, so a lightweight real-time semantic reconstruction method is necessary. Existing
methods rely on GPU, and it is difficult to achieve real-time semantic reconstruction on CPU. To solve
the problem, an indoor dense semantic Simultaneous Localization and Mapping (SLAM) method
using CPU computing is proposed in this paper, named CDSFusion. The CDSFusion is the first
system integrating RGBD-based Visual-Inertial Odometry (VIO), semantic segmentation and 3D
reconstruction in real-time on a CPU. In our VIO method, the depth information is introduced to
improve the accuracy of pose estimation, and FAST features are used for faster tracking. In our
semantic reconstruction method, the PSPNet (Pyramid Scene Parsing Network) pre-trained model is
optimized to provide the semantic information in real-time on the CPU, and the semantic point clouds
are fused using Voxblox. The experimental results demonstrate that camera tracking is accelerated
without loss of accuracy in our VIO, and a 3D semantic map is reconstructed in real-time, which is
comparable to one generated by the GPU-dependent method.

Keywords: dense semantic SLAM; CPU computing; RGBD-based VIO; 3D semantic reconstruction;
indoor environment

1. Introduction

The purpose of dense semantic Simultaneous Localization and Mapping (SLAM) is
to locate the robots and reconstruct a dense 3D semantic map simultaneously. Geometric
information is important for robots to navigate safely in unknown, unstructured, real-world
environments, while semantic information provides the higher-level information of robotic
perception to understand and execute human instructions, such as “go to the computer”
or “find the wallet”. Although there are many methods in geometric reconstruction, such
as Structure from Motion (SfM) [1], Multi-View Stereo (MVS) [2] and SLAM [3], semantic
segmentation methods based on deep learning (DL), such as [4–6], have not intersected
with geometric reconstruction for a long time. In recent years, however, there has been a
growing interest towards research and applications towards the combination of geometric
reconstruction and DL-based semantic segmentation [3,7–10]. As far as we know, most
dense semantic SLAM methods such as [11,12] require GPU acceleration. Some other
methods such as Kimera [13] have achieved dense semantic SLAM without GPU, but
they execute semantic segmentation offline, and cannot be classified as dense semantic
SLAM strictly. In recent years, Unmanned Aerial Vehicles (UAVs) have been widely used,
but they are always with limited computing resources. Existing dense semantic SLAM
methods limit the use of the intelligent navigation on UAVs. However, an intelligent UAV
is essential in some scenes, such as exploring dangerous buildings. Therefore, achieving
dense semantic SLAM with limited computing resources is necessary.

Remote Sens. 2022, 14, 979. https://doi.org/10.3390/rs14040979 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14040979
https://doi.org/10.3390/rs14040979
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7198-4735
https://doi.org/10.3390/rs14040979
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14040979?type=check_update&version=2

Remote Sens. 2022, 14, 979 2 of 17

On the spur of the growing interest in dense semantic SLAM and the widespread use
of UAVs, a dense semantic SLAM system for indoor environment using CPU computing
named CDSFusion is presented in this paper. Compared to most efforts for only Visual-
Inertial Odometry (VIO) or 3D semantic reconstruction, CDSFusion combines the works
in two regions. The proposed method has the ability to localize the UAV and perform
dense semantic 3D reconstruction simultaneously on a CPU. We are also interested in
robustness, accuracy and efficiency of the system. The VIO of CDSFusion is based on the
state-of-the-art VINS-Mono [14], and the depth information given by a RGBD camera was
introduced to improve the robustness and accuracy of the system. The FAST [15] features
were adapted to improve the efficiency of pose estimation instead of the Shi-Tomasi [16]
features used in VINS-Mono. The semantic segmentation results were gained by the
PSPNet (Pyramid Scene Parsing Network) [5], and the OpenVINO was used to optimize
the pre-trained model for faster inference. A dense semantic model was constructed by
the lightweight 3D reconstruction method—Voxblox [17]. CDSFusion is designed with
modularity and has three key modules: an RGBD-based VIO module for pose estimation, an
optimized lightweight semantic segmentation module for real-time segmentation and a 3D
reconstruction module integrating semantic information for model generation. Therefore,
the proposed method is modular and allows replacing each module or executing them in
isolation. For instance, CDSFusion can easily fall back to a fast, robust, and accurate VIO, a
lightweight semantic segmentation solution, or a dense 3D reconstruction method.

Therefore, we can summarize the main contributions of our work as follows:

• A visual-inertial odometry for fast, highly accurate and globally consistent trajectory
estimate. Our VIO is based on VINS-Mono, introducing the depth information to
obtain a precise scale, and FAST features were used instead of Shi-Tomasi features to
obtain faster feature tracking;

• A lightweight dense semantic fusion method working on a CPU. The 3D point clouds
were fused using Voxblox, and semantically annotated the 3D point clouds using
2D pixel-wise semantic segmentation. The semantic information was given by the
optimized PSPNet pre-trained model;

• A complete lightweight dense semantic SLAM system working only on a CPU. Using
consistent pose and semantic information, the components are organically combined to
improve the operation efficiency of the system on a CPU while ensuring the localization
and reconstruction accuracy.

The remainder of this paper is organized as follows: Section 2 introduces the related
methods; Section 3 introduces an overview of the proposed method, and the details of the
building blocks are described in subsections; Section 4 presents the experimental results;
and conclusions are drawn in Section 5.

2. Related Work

Various dense semantic SLAM methods for indoor environments have been proposed,
but as of yet no universal global system working on a CPU is available. Existing methods
are local, unsystematic, and rely on GPU processing. There are two key technologies of
dense semantic SLAM: visual odometry for pose estimation and dense semantic fusion.

Visual odometry begins with some monocular SLAM [18–20] which uses an Extended
Kalman Filter (EKF), and Shi-Tomasi features. Recently, optimization-based methods are
becoming more popular than filter-based methods, since the sparsity of the Hessian matrix
in the optimization function is found. The former can usually provide more accurate
results. PTAM [21] is the first optimization-based method and splits camera tracking
and mapping into two parallel threads. Strasdat et al. [22] proposes a double-window
optimization and covisibility graph. Based on this, ORB-SLAM [23,24] is developed, which
uses ORB features [25] to provide short-term and mid-term data association, builds a
covisibility graph to limit the complexity of tracking and mapping, and performs loop-
closing and relocalization using the bag-of-words library DBoW2 [26] to obtain long-term
data association. In addition to the feature-based methods represented by ORB-SLAM,

Remote Sens. 2022, 14, 979 3 of 17

direct methods are also proposed. The methods of pose estimation based on the direct
method are independent of features, minimizing the photometric error relying on the pixel
intensities of images. LSD-SLAM [27] has the ability of building large scale semi-dense
point clouds using high-gradient pixels. There is a semi-direct system SVO [28,29] based on
FAST features, which is efficient but not accurate enough. Engel et al. proposes DSO [30],
which is able to compute accurate camera poses in weak texture scenes, and robustly
against blurred images. DSM [31] introduces map reusing in direct methods.

The combination of camera and inertial measurement unit (IMU) can provide ro-
bustness to motion blur and occlusions. A single camera always loses tracking when the
camera moves fast, whether stereo or RGBD camera. There are considerable visual-inertial
SLAM methods proposed to achieve robust pose estimation. Visual-inertial SLAM is usu-
ally divided into two types: loosely coupled methods [32,33], treating the two sensors as
individual pose estimation sources and fuses them by using EKF; tightly coupled meth-
ods [14,34–36], joining all the camera and IMU measurements together. There are two types
of the tightly coupled methods: EKF-based algorithms, such as MSCKF [34] which is the
first tightly coupled EKF-based visual-inertial system, and ROVIO [35]; optimization-based
algorithms, such as OKVIS [36] which is the first tightly coupled optimization-based visual-
inertial system, based on this, VINS-Mono is proposed. Most of the visual-inertial SLAM
methods only fuse the monocular camera and IMU. However, there is no precise scale
information in monocular SLAM. To resolve this problem, some researchers adapt stereo
or RGBD camera. Stereo-inertial coupled methods are available in VINS-Fusion [37] and
ORB-SLAM3 [38]. VINS-Fusion is based on VINS-Mono, and supports stereo and stereo-
inertial. ORB-SLAM2 [24] is extended to ORB-SLAM3 for supporting monocular-inertial
and stereo-inertial. As for RGBD-inertial SLAM, Brunetto et al. [39] proposes a loosely cou-
pled RGBD-inertial SLAM method, which fuses IMU and RGBD measurements for mobile
devices. Falquez et al. [40] introduces another loosely coupled method with application in
direct methods of frame-to-frame motion estimation. Laidlow et al. [41] proposes the first
tightly coupled optimization-based RGBD-inertial SLAM method, which mainly focuses on
real-time 3D reconstruction on a GPU. Ling et al. [42] simply combines depth images with
ORB features to achieve indoor 2D robot pose estimation. VINS-RGBD [43] is introduced
to support RGBD-inertial based on VINS-Mono.

Real-time dense mapping is typically required to enable motion planning and navi-
gation on robots. Compared to a stereo camera, an RGBD camera can directly obtain the
depth information. A lot of RGBD-based dense SLAM methods have been proposed in
recent years. KinectFusion [44] is the first RGBD-based real-time dense mapping system,
but it relies on GPU computing and lacks loop detection. Voxel Hashing [45] is introduced
to allow dynamically-growing maps. Elasticfusion [46] represents the map as a collection of
surfels firstly. BundleFusion [47] provides impressive reconstruction results and maintains
a globally consistent map based on TSDF, but requires more computational resources such
as two GPUs to achieve real-time performance. However, all of above methods need GPU
acceleration. To resolve the problem, some methods achieving real-time dense mapping on
the CPU are proposed. Octomap [48], a famous mapping approach for navigation, has been
widely adopted on robotic platforms. InfiniTAM [49] uses voxel hashing to achieve real-
time dense mapping on a CPU. FlashFusion [50] can obtain real-time globally consistent
dense 3D reconstruction using CPU computing. DenseSurfelMapping [51] is a surfel-based
real-time mapping system and can be used for UAVs. Voxblox builds the TSDF and ESDF
in real-time on a CPU for UAV navigation. Voxgraph [52] is based on Voxblox, and builds
globally consistent dense maps for UAV navigation on a CPU.

To provide higher-level entities for robots to achieve more difficult tasks, lots of dense
semantic SLAM methods have been proposed for robot intelligent navigation. Those
methods are triggered by pioneering works, such as SLAM++ [11] which uses KinectFusion
to generate a map. However, most of those methods rely on GPU processing, which limits
their application in robots, such as SemanticFusion [12], Co-fusion [53], MaskFusion [54],
and MID-Fusion [55]. Recent work investigates some CPU-based approaches, such as

Remote Sens. 2022, 14, 979 4 of 17

PanopticFusion [56], Voxblox++ [9], and Kimera. Those three methods construct a dense
semantic map based on Voxblox. However, the deep-learning methods of PanopticFusion
and Voxblox++ rely on GPUs. Although Kimera can run on a CPU, its semantic information
is obtained offline. The proposed CDSFusion tries to solve these problems and achieves
satisfactory results. All building blocks of the proposed method are described in detail
in Section 3.

3. Method
3.1. Overview

To achieve real-time reconstruction of globally consistent dense semantic maps on
the CPU, CDSFusion is proposed. Our VIO introduced the depth information to obtain a
precise scale, and FAST features were used to obtain fast feature tracking. We also provided
a lightweight dense semantic fusion method, which fused the semantic point clouds using
Voxblox. We optimized a PSPNet pre-trained model to provide the semantic information
on a CPU in real time. An overview of the method in block form is shown in Figure 1.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 18

Voxgraph [52] is based on Voxblox, and builds globally consistent dense maps for UAV
navigation on a CPU.

To provide higher-level entities for robots to achieve more difficult tasks, lots of
dense semantic SLAM methods have been proposed for robot intelligent navigation.
Those methods are triggered by pioneering works, such as SLAM++ [11] which uses Ki-
nectFusion to generate a map. However, most of those methods rely on GPU processing,
which limits their application in robots, such as SemanticFusion [12], Co-fusion [53],
MaskFusion [54], and MID-Fusion [55]. Recent work investigates some CPU-based ap-
proaches, such as PanopticFusion [56], Voxblox++ [9], and Kimera. Those three methods
construct a dense semantic map based on Voxblox. However, the deep-learning methods
of PanopticFusion and Voxblox++ rely on GPUs. Although Kimera can run on a CPU, its
semantic information is obtained offline. The proposed CDSFusion tries to solve these
problems and achieves satisfactory results. All building blocks of the proposed method
are described in detail in Section 3.

3. Method
3.1. Overview

To achieve real-time reconstruction of globally consistent dense semantic maps on
the CPU, CDSFusion is proposed. Our VIO introduced the depth information to obtain a
precise scale, and FAST features were used to obtain fast feature tracking. We also pro-
vided a lightweight dense semantic fusion method, which fused the semantic point
clouds using Voxblox. We optimized a PSPNet pre-trained model to provide the seman-
tic information on a CPU in real time. An overview of the method in block form is shown
in Figure 1.

RGB

Depth

IMU

Optimized PSPNet

Local Semantic Cloud

Visual-Inertial
Odometry Voxblox Global Semantic Map

Semantics

Poses

VIO Front-end

VIO Back-end

Loop Detection and Optimization

Figure 1. The architecture of CDSFusion. The green box is the input data, the blue box represents
three modules of CDSFusion and the yellow box is output of the modules.

The proposed CDSFusion takes RGB frames, depth frames, and high-rate IMU
measurements as input, and is composed of three modules, as shown in the Figure 1. The
input measurements are processed in an RGBD-based VIO module to estimate poses; a
highly accurate and globally consistent trajectory estimation is given in this part. Seman-
tic segmentation results of input RGB frames are gained in real-time using the light-
weight semantic segmentation module. In our 3D reconstruction module, the local se-

Figure 1. The architecture of CDSFusion. The green box is the input data, the blue box represents
three modules of CDSFusion and the yellow box is output of the modules.

The proposed CDSFusion takes RGB frames, depth frames, and high-rate IMU mea-
surements as input, and is composed of three modules, as shown in the Figure 1. The
input measurements are processed in an RGBD-based VIO module to estimate poses; a
highly accurate and globally consistent trajectory estimation is given in this part. Semantic
segmentation results of input RGB frames are gained in real-time using the lightweight
semantic segmentation module. In our 3D reconstruction module, the local semantic cloud
is generated using a semantic image and depth image, and also used to generate global
3D semantic map combined with the corresponding camera pose from VIO. The detailed
description of the three modules is given in the following sections.

3.2. Visual-Inertial Odometry

The proposed VIO module is based on VINS-Mono. In our implementation, FAST
features were adapted to speed up the VIO instead of Shi-Tomas corner features, and depth

Remote Sens. 2022, 14, 979 5 of 17

information was introduced to obtain a precise scale. The design choice for FAST features
is not only driven by functionalities, but also experimental results which show that the
FAST features are much faster than Shi-Tomas and ORB with the same or more robustness
and accuracy. A series of experiments was designed to investigate the good performance of
the proposed VIO. The proposed VIO module includes three parts: a visual-inertial front-
end which is in charge of processing the raw sensor data; a back-end used for fusing the
processed measurements to obtain pose estimation; and a loop detection and optimization
module used to re-localize and optimize poses according to the detected loops.

The front-end includes an IMU front-end and a vision front-end. The IMU front-
end pre-integrates raw IMU measurements between two consecutive frames. The vision
front-end detects FAST corners and tracks them between consecutive frames using the
KLT sparse optical flow algorithm [57]. For each new image, old features are tracked, and
new FAST corner features are detected to maintain numbers of features in each image.
Keyframes are also selected in the vision front-end. The depth information was led into the
initialization procedure of the proposed VIO to initialize the VIO with a precise scale using
PnP algorithms [58].

At each keyframe, pre-integrated IMU, visual, and loop measurements are added to a
sliding window which constitutes the VIO back-end. If there are no loops detected, the back-
end consists of a sliding window including pre-integrated IMU and visual measurements.
We perform nonlinear optimization for the sliding window and solve the problem using
the Ceres solver [59].

The loop detection and optimization module relies on the DBoW2 library, a state-
of-the-art bag-of-words place recognition approach. For each keyframe, FAST features
are detected and described by the BRIEF descriptor [60]. The descriptors are treated as
the visual word to obtain the visual database which needed by DBoW2. Then we can
acquire loop-closure results by using DBoW2. The loop-closure results are delivered to VIO
back-end to constitute a sliding window with other measurements. In addition, there are
re-localization and global pose graph optimization procedures after loop detection. The
re-localization and pose graph optimization procedures are similar to VINS-Mono, and the
proposed VIO leads into the depth information to obtain more precise results.

3.3. Semantic Segmentation

The semantic segmentation approach of our system is based on the PSPNet, which
proposes a pyramid pooling module to extract multi-scale information. Global context
information can be extracted using PSPNet, and more accurate and reliable results for
semantic segmentation or scene parsing can be obtained by using both local and global
information. The design enables PSPNet to take as much image information as possible
into account and gain better appearance.

The original implementation of PSPNet is with Pytorch. We optimized the pre-
trained model using Model Optimizer of Intel OpenVINO, and model prediction was
re-implemented with Inference Engine, which utilizes SIMD operations on CPUs. We
transformed the pre-trained model to Open Neural Network Exchange (ONNX) format,
because Pytorch is not yet supported by the Model Optimizer directly, and transformed the
ONNX model to the final model using the Model Optimizer.

The semantic segmentation module processes each RGB frame and returns some
probability vectors for each pixel of the RGB frame. The value of probability vectors
represents the probability that the pixel belongs to the corresponding class. We simply
classify the pixels as the class corresponding to the maximum value in each probability
vector and color them with a predefined category color. The final semantic image is
composed of the colored pixels and delivered to the 3D reconstruction module.

3.4. 3D Reconstruction

We reconstructed a 3D semantic map of the scene based on Voxblox, which mainly
includes two steps: building an accurate global 3D map and semantically annotating the

Remote Sens. 2022, 14, 979 6 of 17

map. For building an accurate global 3D map, a voxel-based (TSDF) model is used to
filter out noise and extract the global mesh. At each keyframe, the current depth image is
transformed to a 3D point cloud. Then Voxblox and the “fast” option discussed in [17] are
adapted, the local 3D point cloud is transformed to a local mesh, and then the local mesh
is integrated into the global mesh. The resolution of the global mesh can be assigned by
people. Most importantly, all of the procedures are processed in real-time on a CPU.

For semantic annotation, the 3D reconstruction module uses 2D semantically labeled
images corresponding to each keyframe to semantically annotate the global map. The 2D
semantic labels are from the semantic segmentation module. To this end, when generating
local 3D point cloud, we also propagate the semantic images. Using the 2D semantic images,
we can easily attach the semantic label to each 3D point produced by the depth image and
acquire local 3D semantic point cloud. Then, we can use Voxblox to obtain a local semantic
mesh. Combined with the pose of the current frame from the VIO module, local maps
can be fused into the global map and the global semantic mesh of the environment can
be obtained.

Combined with the above three modules, CDSFusion can achieve dense semantic
SLAM in real-time and generate a complete semantic map. Notably, the system runs only
on a CPU. A series of experimental results are designed in Section 4 to investigate the dense
semantic mapping ability of the proposed CDSFusion.

4. Experiments

In this section, the experimental results of the feature points’ comparison, the VIO
module, and the full dense semantic SLAM system are shown. In the experiments of
feature points’ comparison, we replace the Shi-Tomasi features used in VINS-Mono with
ORB and FAST features, and compare the three different features in accuracy and speed.
To confirm the speed, we evaluate the time of VIO front-end per frame for VINS-Mono,
ORB-VINS-Mono, and FAST-VINS-Mono, mainly including feature extraction and optical
flow tracking. ORB-VINS-Mono indicates that the Shi-Tomasi features in VINS-Mono are
replaced with ORB features, and FAST-VINS-Mono means that the Shi-Tomasi features are
replaced with FAST features. For accuracy, we evaluate the trajectories of the three methods
using the method proposed by Zhang et al. [61]. In the experiments, only the translation
Root Mean Square Error (RMSE) is used for the accuracy evaluation, because the ground
truth of the quaternion in the test datasets is wrong. The translation RMSE is defined as

RMSEtrans =

(
1
N

N−1

∑
i=0
‖∆pi‖

2

) 1
2

(1)

∆pi is the error between the aligned position estimation p′i and the position groundtruth pi.
In the experiments of VIO, we compare the proposed VIO algorithms with VINS-

RGBD and VINS-Mono in accuracy and speed. For accuracy, we evaluate the trajectories of
VINS-Mono, VINS-RGBD, and CDSFusion using the method proposed in [61]. The RMSE is
used for accuracy evaluation. To confirm the speed, we evaluate the time of VIO front-end
per frame for the proposed VIO and VINS-RGBD, mainly including feature extraction and
optical flow tracking.

We further validate the effectiveness of the full system on two scenes. In the experi-
ments of the full system, the semantic map of groundtruth, textured map of groundtruth,
generated map using Kimera, and a generated map using the compared method on a
GPU are shown for comparison. In the experiments, our system runs only on a CPU.
Completeness of the semantic map is used for evaluation. All experiments are done on
a Huawei matebook13 equipped with i7-8565U CPU @ 1.80 GHz, 8 GB memory, and a
NVIDIA GeForce MX250. To increase the credibility of the experiments, any acceleration to
the proposed method is not added, the input experimental data are consistent, the mapping
resolution is 0.02 m, and all other parameters are kept constant using system default values
unless stated otherwise.

Remote Sens. 2022, 14, 979 7 of 17

4.1. Feature Points Comparison

The experiments of this section are all presented with the public handheld and wheeled
robot datasets provided by VINS-RGBD. The datasets are taken with the original Intel
RealSense D435i camera, and the ground truth poses in the datasets are provided by
OptiTrack [62] tracking system. The results of RMSE are shown in the Table 1. The RMSE
results of VINS-Mono have been shown in VINS-RGBD, and the results are quoted directly.

Table 1. RMSE comparisons between three different VIO methods in meters.

Datasets VINS-Mono ORB-VINS-Mono FAST-VINS-Mono

Handheld Simple 0.24 0.732 0.225
Handheld Normal 0.20 0.192 0.207

Handheld With more Rotation 0.23 0.211 0.195
Wheeled Slow 0.27 0.530 0.303

Wheeled Normal 0.09 0.178 0.100
Wheeled Fast 0.31 0.324 0.167

The results show that VINS-Mono and FAST-VINS-Mono achieve higher accuracies
than ORB-VINS-Mono. Especially for the Handheld Simple, the Wheeled Slow, and the
Wheeled Normal datasets, the accuracy of ORB-VINS-Mono is much lower than VINS-
Mono. In the Handheld Simple and the Wheeled Normal datasets, the reason is that
ORB-VINS-Mono often calculates a wrong scale far from the true scale. In the Wheeled
Slow datasets, the lower accuracy is because of tracking drift. However, in the Handheld
Normal, the Handheld With more Rotation and the Wheeled Fast datasets, ORB-VINS-
Mono obtains comparative accuracy with VINS-Mono, because of more accurate scale and
no tracking drift. Compared with VINS-Mono, FAST-VINS-Mono achieves the similar
accuracy on the whole. In the Handheld Simple, the Handheld Normal, and the Wheeled
Normal datasets, the two methods obtain similar accuracy. For the Wheeled Slow dataset,
however, VINS-Mono obtains a more accurate result because Shi-Tomasi features are more
stable and accurate for tracking than FAST features when camera moves slowly. For the
Wheeled Fast and the Handheld With more Rotation datasets, FAST-VINS-Mono achieves
better performance. Especially for the Wheeled Fast dataset, FAST-VINS-Mono obtains
nearly two times greater accuracy than the original VINS-Mono. The reason is that FAST-
VINS-Mono adapts FAST features for tracking. Benefiting from that, the VIO is faster, can
track more frames, and gain richer geometric structure information, which makes the VIO
more accurate for fast motion or more rotation. We are also interested in the robustness
and the success rate is used for evaluation. For each dataset, the three methods are run ten
times, and success times are counted to calculate the success rate. The results of success
rate are shown in Table 2.

Table 2. Success rate of three different methods.

Datasets VINS-Mono ORB-VINS-Mono FAST-VINS-Mono

Handheld Simple 100% 100% 100%
Handheld Normal 100% 100% 100%

Handheld With more Rotation 100% 100% 100%
Wheeled Slow 90% 40% 90%

Wheeled Normal 100% 90% 100%
Wheeled Fast 90% 90% 90%

The results show that FAST-VINS-Mono obtains the same success rate with the original
VINS-Mono, and ORB-VINS-Mono fails to track most times. Especially for the Wheeled
Slow dataset, ORB-VINS-Mono only succeeds four times out of ten; however, FAST-VINS-
Mono and VINS-Mono both success nine times out of ten, showing their robustness. The
reason might be that ORB features are suitable for feature matching but unsuitable for

Remote Sens. 2022, 14, 979 8 of 17

optical flow tracking. We also compare the efficiency of the three methods. The mean time
consumption of front-end per frame is counted in our experiments. The results are shown
in Table 3.

Table 3. Time of VIO front-end per frame comparisons between three different methods in milliseconds.

Datasets VINS-Mono ORB-VINS-Mono FAST-VINS-Mono

Handheld Simple 18.475 15.523 6.142
Handheld Normal 17.180 14.440 5.802

Handheld With more Rotation 17.989 15.535 6.045
Wheeled Slow 18.218 14.256 6.564

Wheeled Normal 18.516 14.660 6.292
Wheeled Fast 19.210 14.450 6.843

The results show that the time of the whole VIO front-end per frame in FAST-VINS-
Mono is nearly three times faster than the original VINS-Mono. The front-end of VINS-
Mono extracts Shi-Tomasi corner features and performs optical flow tracking. However,
FAST-VINS-Mono extracts FAST features and can be used for faster pose estimation. The
results also show that compared with the original VINS-Mono, ORB-VINS-Mono only
speeds up a little. According to the above experiment results, we can draw the conclusion
that FAST-VINS-Mono is faster than the original VINS-Mono with similar accuracy and
robustness, and the two methods achieve better performance than ORB-VINS-Mono.

4.2. Visual-Inertial Odometry

The experiments of this section are also presented with the public handheld and
wheeled robot datasets provided by VINS-RGBD. The results of RMSE are showed in the
Table 4. VINS-RGBD has been compared with VINS-Mono in their paper, and we quoted
the comparison results directly.

Table 4. RMSE comparisons between three different VIO methods in meters.

Datasets VINS-Mono VINS-RGBD Ours

Handheld Simple 0.24 0.07 0.068
Handheld Normal 0.20 0.13 0.143

Handheld With more Rotation 0.23 0.20 0.175
Wheeled Slow 0.27 0.16 0.269

Wheeled Normal 0.09 0.09 0.087
Wheeled Fast 0.31 0.20 0.125

The results show that the accuracy of our VIO module and VINS-RGBD are better than
VINS-Mono. CDSFusion obtains the highest accuracy in four datasets, and VINS-RGBD
gets the highest accuracy for two datasets. Compared with VINS-RGBD and VINS-Mono,
our VIO module can achieve similar and even higher accuracy. Compared with VINS-
Mono, ours is more accurate for all test datasets, which is mainly because our method leads
into precise scale from depth information. Especially for the Handheld Simple dataset,
our method achieves maximum accuracy improvement which is nearly four times greater.
Compared with VINS-RGBD, ours achieves similar accuracy on the whole, because both
methods lead into precise scale. For the Wheeled Slow dataset however, VINS-RGBD
obtains a more accurate result, because Shi-Tomasi features are more stable and accurate
for tracking than FAST features when camera moves slow. For the Wheeled Fast and the
Handheld With more Rotation datasets, our method achieves better performance. This
is because our method adapts FAST features for tracking. Benefiting from that, our VIO
front-end is faster, so our method can track more frames and gain richer geometric structure
information, which makes the VIO more accurate for fast motion or more rotation. To
intuitively demonstrate the accuracy comparison of the different methods in Table 1, the
trajectories of those datasets are shown in Figure 2. VINS-RGBD has proved their method

Remote Sens. 2022, 14, 979 9 of 17

can achieve higher accuracy than VINS-Mono, so we simply compared our method and
VINS-RGBD in the figure.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 18

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. Handheld and Wheeled Robot datasets trajectory estimation. (a–c,g–i) are top view of
trajectories; (d–f,j–l) are side view of trajectories. (a,d) represent the trajectory of the Handheld
Simple dataset; (b,e) represent the trajectory of the Handheld Normal dataset; (c,f) represent the
trajectory of the Handheld With more Rotation dataset; (g,j) represent the trajectory of the Wheeled
Slow dataset; (h,k) represent the trajectory of the Wheeled Normal dataset; (i,l) represent the tra-
jectory of the Wheeled Fast dataset.

We further compared the efficiency between different methods. The mean time
consumption of front-end per frame was counted in our experiments. The time con-
sumption is shown in Table 5. Only our method and VINS-RGBD were compared, be-
cause the two methods can achieve similar accuracy, which is higher than VINS-Mono.

Figure 2. Handheld and Wheeled Robot datasets trajectory estimation. (a–c,g–i) are top view of
trajectories; (d–f,j–l) are side view of trajectories. (a,d) represent the trajectory of the Handheld Simple
dataset; (b,e) represent the trajectory of the Handheld Normal dataset; (c,f) represent the trajectory of
the Handheld With more Rotation dataset; (g,j) represent the trajectory of the Wheeled Slow dataset;
(h,k) represent the trajectory of the Wheeled Normal dataset; (i,l) represent the trajectory of the
Wheeled Fast dataset.

Remote Sens. 2022, 14, 979 10 of 17

The results show that our method achieves the expected results. Figure 2 shows
that our method achieved a similar accuracy to the VINS-RGBD in all test datasets. The
trajectories of our method and VINS-RGBD are close to the ground truth with a maximum
drift error of no more than 0.50 m. The maximum drift error of our method is 0.49 m in
the Wheeled Slow dataset because of long-term cumulative error before loop closure. The
maximum drift error of VINS-RGBD is 0.50 m with the Handheld With more Rotation
dataset, while our method reduces the error to 0.41 m by tracking more frames and gaining
more information. The minimum drift error is nearly 0.01 m with the Handheld Simple and
the Wheeled Fast datasets. For the Handheld Simple dataset, the reason is that the dataset
is without large rotation and high speed. For the Wheeled Fast dataset, our method can
track lots of frames and gain rich information, so it can achieve the minimum drift error for
fast motion.

We further compared the efficiency between different methods. The mean time con-
sumption of front-end per frame was counted in our experiments. The time consumption
is shown in Table 5. Only our method and VINS-RGBD were compared, because the two
methods can achieve similar accuracy, which is higher than VINS-Mono.

Table 5. Time of VIO front-end per frame comparisons between two different methods in milliseconds.

Datasets VINS-RGBD Ours

Handheld Simple 15.1866 6.0474
Handheld Normal 15.1558 5.8981

Handheld With more Rotation 15.3102 5.7829
Wheeled Slow 16.3647 6.5250

Wheeled Normal 17.6998 6.5370
Wheeled Fast 17.4734 7.0485

The results show that the time of the whole VIO front-end per frame in our method
is more than two times faster than VINS-RGBD. The front-end of VINS-RGBD is simi-
lar to VINS-Mono which extracts Shi-Tomasi corner features and performs optical flow
tracking. Compared with them, our method includes a lightweight VIO and can be used
for faster pose estimation. According to the above experiment results, we can draw a
conclusion that our method is faster than VINS-RGBD and VINS-Mono with the same or
even higher accuracy.

4.3. Dense Semantic SLAM

We evaluated our method in two scenes: a modified room dataset provided by the
open source project semantic_slam [63], whose original dataset is without the ground truth
of the semantic map, and this includes depth images, RGB images, and camera poses; and
an office dataset recorded by us using an UAV equipped with an Intel RealSense D435i
camera and a NVIDIA TX2 onboard computer, which includes depth images, RGB images,
and IMU measurements. The groundtruth 3D maps of the two datasets, including semantic
maps and textured maps, were given by BundleFusion and the semantic segmentation
results were obtained using a PSPNet pre-trained model trained with SUNRGBD [64].
We demonstrate the results of 3D semantic reconstruction using our method and others.
After extensive experiments we found that it is difficult for other methods to reconstruct
a complete 3D semantic map of the environment on a hardware platform with limited
computational resources, and this is also true for indoor areas that are not very large. For
comparison, we show the 3D semantic maps of the complete scene generated by a method
using GPU acceleration and the semantic maps generated by Kimera. The method used
for comparison adapts the same PSPNet pre-trained model but without optimization of
model pruning and the remaining parts of the method are the same as CDSFusion. For
convenience, we call the method as GDSSLAM (GPU-Based Dense Semantic SLAM) in
the following experiments. The name CDSSLAM (CPU-Based Dense Semantic SLAM) is
also introduced to represent GDSSLAM without GPU acceleration. The legend of semantic

Remote Sens. 2022, 14, 979 11 of 17

information is shown in Figure 3, which shows the correspondence between color and
category in semantic maps. The reconstruction results of the room dataset are shown
in Figure 4.

1

Figure 3. The legend of semantic information.

The results show that the semantic reconstructed result of CDSFusion achieves the
same completeness with the ground truth, as shown in Figure 4a,e. Although there are
some missing details compared with the ground truth, our method can correctly color
according to semantic classes, such as chairs, floor, and sofa, and ours is close to ground
truth, as shown in Figure 4b,e. In addition, we reconstructed a 3D semantic map with the
same completeness as the semantic reconstructed result of GDSSLAM which used GPU
acceleration, which is certainly exciting for a dense semantic SLAM system running on a
CPU only, as shown in Figure 4c,e. Compared to the result of Kimera, the result of CDSFu-
sion is closer to the ground truth in some details, such as the chair in the lower left, but
Kimera achieves better performance on the whole because it runs semantic segmentation
offline, as shown in Figure 4d,e. We also showed the reconstruction results of the office
dataset, which was obtained using a UAV while flying in an office, shown in Figure 5.

The results show that our method can robustly and accurately track camera poses even
under fast UAV motion, resulting in a globally consistent 3D map without significant area
overlap, as shown in Figure 5e. Although the results of our method have less smoothness,
and some details are missed compared with the ground truth, our method achieved the
same completeness with ground truth, as shown in Figure 5a,e. Compared with the textured
map of ground truth, our method can correctly color according to semantic classes, as
shown in Figure 5b,e. Compared with the GDSSLAM needing GPU acceleration, although
some details are missed, such as the top right-hand corner and bottom right-hand corner, a
correct semantic map is given by our method in real-time on a CPU, as shown in Figure 5c,e.
Compared to the result of Kimera, our method achieves better performance in some details,
such as the floor, and obtains the same completeness, even though Kimera runs semantic
segmentation offline, as shown in Figure 5d,e. Because of the influence of the sundries
in the dataset, some noise appears on the right side of the map. We are also interested
in the efficiency of the system, also including the CDSSLAM that cannot reconstruct a
complete map on a CPU. Therefore, we designed experiments to investigate the time
consumption per frame in generating semantic maps between different methods. The mean
time consumption per frame was counted in our experiments for the three methods when
processing two datasets, as shown in Table 6.

Remote Sens. 2022, 14, 979 12 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 18

(a) (b)

(c) (d)

(e)

Figure 4. Reconstructed results of the room dataset. (a) Semantic map of groundtruth, (b) textured
map of groundtruth, (c) semantic reconstructed result of GDSSLAM, (d) semantic reconstructed
result of Kimera and (e) semantic reconstructed result of our method CDSFusion.

The results show that the semantic reconstructed result of CDSFusion achieves the
same completeness with the ground truth, as shown in Figure 4a,e. Although there are
some missing details compared with the ground truth, our method can correctly color
according to semantic classes, such as chairs, floor, and sofa, and ours is close to ground
truth, as shown in Figure 4b,e. In addition, we reconstructed a 3D semantic map with the
same completeness as the semantic reconstructed result of GDSSLAM which used GPU
acceleration, which is certainly exciting for a dense semantic SLAM system running on a
CPU only, as shown in Figure 4c,e. Compared to the result of Kimera, the result of
CDSFusion is closer to the ground truth in some details, such as the chair in the lower
left, but Kimera achieves better performance on the whole because it runs semantic

Figure 4. Reconstructed results of the room dataset. (a) Semantic map of groundtruth, (b) textured
map of groundtruth, (c) semantic reconstructed result of GDSSLAM, (d) semantic reconstructed result
of Kimera and (e) semantic reconstructed result of our method CDSFusion.

Table 6. Time of semantic map generation per frame comparisons between three different methods
in seconds.

Datasets CDSSLAM GDSSLAM CDSFusion

room 3.118 0.317 0.832
office 3.818 0.703 1.068

Remote Sens. 2022, 14, 979 13 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 18

segmentation offline, as shown in Figure 4d,e. We also showed the reconstruction results
of the office dataset, which was obtained using a UAV while flying in an office, shown in
Figure 5.

(a) (b)

(c) (d)

(e)

Figure 5. Reconstructed results of the office dataset. (a) Semantic map of groundtruth, (b) textured
map of groundtruth, (c) semantic reconstructed result of GDSSLAM, (d) semantic reconstructed result
of Kimera and (e) semantic reconstructed result of our method CDSFusion.

Remote Sens. 2022, 14, 979 14 of 17

Table 6 demonstrates that the CDSSLAM consumes a lot of time in generating 3D
semantic maps. This causes the 3D reconstruction thread to be squeezed, which limits the
generation of complete 3D semantic maps. However, the GDSSLAM greatly improves the
image processing efficiency with the acceleration of a dedicated graphics processor, thus
enabling real-time semantic segmentation and 3D map reconstruction. When computing
resources are limited, dedicated graphics processors are often not available. In contrast to
CDSSLAM, the proposed CDSFusion increased the processing speed per frame in the test
datasets by more than three times only relying on a CPU, and the speed even close to that
of the GDSSLAM in the office dataset. Since the office dataset we recorded is without the
pose information, the pose estimation of frames makes the time consumption per frame
of the office dataset slightly higher than that of the public room dataset which provides
the poses. In order to verify the effectiveness of our model optimization, we also designed
experiments to investigate the time consumption per frame in semantic segmentation
between different methods. The mean time consumption per frame was counted in our
experiments for the three methods when processing the two datasets, as shown in Table 7.

Table 7. Time of semantic segmentation per frame comparisons between three different methods
in seconds.

Datasets CDSSLAM GDSSLAM CDSFusion

room 2.133 0.258 0.652
office 3.091 0.514 0.811

The results show that the CDSSLAM consumes a lot of time in semantic segmentation,
which is the main reason for the slow semantic map generation. The GDSSLAM greatly
improves the segmentation speed with the acceleration of a dedicated graphics processor,
thus enabling real-time semantic segmentation and map generation. In contrast to CDSS-
LAM, the proposed CDSFusion increased the segmentation speed per frame in the test
datasets by more than three times, only relying on a CPU, and the speed is even close to
that of the GDSSLAM in the office dataset.

5. Conclusions

In this paper, a dense semantic SLAM system for indoor environments using CPU
computing was proposed, named CDSFusion. The operation efficiency of the proposed
method on a CPU was improved while ensuring localization and reconstruction accuracy.
CDSFusion is the first system which can process visual-inertial SLAM, semantic segmen-
tation, and dense 3D reconstruction simultaneously in real time on a CPU. The system
includes three key components: a fast and accurate VIO module, a lightweight real-time
semantic segmentation module, and a lightweight 3D mesh reconstruction module. CDS-
Fusion is modular and allows replacing each module or executing each module in isolation,
so the system can be improved by making a module perform better. We hope CDSFusion
can provide a solid basis for future research on robot perception, especially for lightweight
dense semantic SLAM.

Although CDSFusion achieves dense semantic SLAM on a CPU, we still see some
directions for future research. Our VIO module is sensitive to fast camera motion, and we
are interested in improving the robustness and accuracy of the VIO in fast camera motion.
Another research direction concerns the accuracy of the dense semantic map. Our research
only considers the completeness, but the accuracy is also important. Higher accuracy
requires more accurate and lightweight semantic segmentation network and real-time
reconstruction. We will try to optimize some other network such as MobileNetV3 [65] and
speed up the mesh reconstruction. Additionally, we will try to improve CDSFusion and
adapt the system on-board an UAV in the future. The system has been tested on NVIDIA
TX2 and obtains good results with a room dataset at present.

Remote Sens. 2022, 14, 979 15 of 17

Author Contributions: Conceptualization, S.W. and H.S.; methodology, S.W.; software, S.W.; vali-
dation, S.W., Y.Z. and H.Z.; formal analysis, S.W.; investigation, S.W. and J.L.; resources, H.S.; data
curation, H.S.; writing—original draft preparation, S.W.; writing—review and editing, G.G., H.S. and
S.W.; visualization, G.G.; supervision, G.G.; project administration, H.S.; funding acquisition, H.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
41771457 and Aeronautical Science Foundation of China, grant number 2019460S5001.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Enqvist, O.; Kahl, F.; Olsson, C. Non-sequential structure from motion. In Proceedings of the 2011 IEEE International Conference

on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 264–271.
2. Schöps, T.; Schönberger, J.L.; Galliani, S.; Sattler, T.; Schindler, K.; Pollefeys, M.; Geiger, A. A Multi-view Stereo Benchmark with

High-Resolution Images and Multi-camera Videos. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2538–2547.

3. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of
Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

4. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

5. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239.

6. Hu, R.; Dollár, P.; He, K.; Darrell, T.; Girshick, R. Learning to Segment Every Thing. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4233–4241.

7. Bao, S.Y.Z.; Savarese, S. Semantic Structure from Motion. In Proceedings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Colorado Springs, CO, USA, 21–23 June 2011.

8. Bowman, S.L.; Atanasov, N.; Daniilidis, K.; Pappas, G.J. Probabilistic data association for semantic SLAM. In Proceedings of the
2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1722–1729.

9. Grinvald, M.; Furrer, F.; Novkovic, T.; Chung, J.J.; Cadena, C.; Siegwart, R.; Nieto, J. Volumetric Instance-Aware Semantic
Mapping and 3D Object Discovery. IEEE Robot. Autom. Lett. 2019, 4, 3037–3044. [CrossRef]

10. Zheng, L.; Zhu, C.; Zhang, J.; Zhao, H.; Huang, H.; Niessner, M.; Xu, K. Active Scene Understanding via Online Semantic
Reconstruction. Comput. Graph. Forum. 2019, 38, 103–114. [CrossRef]

11. Salas-Moreno, R.F.; Newcombe, R.A.; Strasdat, H.; Kelly, P.H.J.; Davison, A.J. SLAM++: Simultaneous Localisation and Mapping
at the Level of Objects. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR,
USA, 23–28 June 2013; pp. 1352–1359.

12. McCormac, J.; Handa, A.; Davison, A.; Leutenegger, S. SemanticFusion: Dense 3D semantic mapping with convolutional neural
networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3
June 2017; pp. 4628–4635.

13. Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization
and Mapping. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31
May–31 August 2020; pp. 1689–1696.

14. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34,
1004–1020. [CrossRef]

15. Rosten, E.; Porter, R.; Drummond, T. Faster and Better: A Machine Learning Approach to Corner Detection. IEEE Trans. Pattern
Anal. Mach. Intell. 2010, 32, 105–119. [CrossRef]

16. Jianbo, S.; Tomasi. Good features to track. In Proceedings of the 1994 Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600.

17. Oleynikova, H.; Taylor, Z.; Fehr, M.; Siegwart, R.; Nieto, J. Voxblox: Incremental 3D Euclidean Signed Distance Fields for
on-board MAV planning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1366–1373.

18. Davison. Real-time simultaneous localisation and mapping with a single camera. In Proceedings of the Proceedings Ninth IEEE
International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 1402, pp. 1403–1410.

19. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach.
Intell. 2007, 29, 1052–1067. [CrossRef]

20. Civera, J.; Davison, A.J.; Montiel, J.M.M. Inverse Depth Parametrization for Monocular SLAM. IEEE Trans. Robot. 2008, 24,
932–945. [CrossRef]

http://doi.org/10.1109/TRO.2016.2624754
http://doi.org/10.1109/TPAMI.2016.2644615
http://doi.org/10.1109/LRA.2019.2923960
http://doi.org/10.1111/cgf.13820
http://doi.org/10.1109/TRO.2018.2853729
http://doi.org/10.1109/TPAMI.2008.275
http://doi.org/10.1109/TPAMI.2007.1049
http://doi.org/10.1109/TRO.2008.2003276

Remote Sens. 2022, 14, 979 16 of 17

21. Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234.

22. Strasdat, H.; Davison, A.J.; Montiel, J.M.M.; Konolige, K. Double window optimisation for constant time visual SLAM. In
Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2352–2359.

23. Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot.
2015, 31, 1147–1163. [CrossRef]

24. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

25. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.

26. Galvez-López, D.; Tardos, J.D. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Trans. Robot. 2012, 28,
1188–1197. [CrossRef]

27. Engel, J.; Schoeps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Proceedings of the Computer Vision—
ECCV 2014, PT II, Zurich, Switzerland, 6–12 September 2014; pp. 834–849.

28. Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 15–22.

29. Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. SVO: Semidirect Visual Odometry for Monocular and
Multicamera Systems. IEEE Trans. Robot. 2017, 33, 249–265. [CrossRef]

30. Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 611–625. [CrossRef]
[PubMed]

31. Zubizarreta, J.; Aguinaga, I.; Montiel, J.M.M. Direct Sparse Mapping. IEEE Trans. Robot. 2020, 36, 1363–1370. [CrossRef]
32. Weiss, S.; Achtelik, M.W.; Lynen, S.; Chli, M.; Siegwart, R. Real-time onboard visual-inertial state estimation and self-calibration

of MAVs in unknown environments. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14–18 May 2012; pp. 957–964.

33. Lynen, S.; Achtelik, M.W.; Weiss, S.; Chli, M.; Siegwart, R. A robust and modular multi-sensor fusion approach applied to MAV
navigation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7
November 2013; pp. 3923–3929.

34. Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In Proceedings of
the Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 3565–3572.

35. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In Proceedings
of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2
October 2015; pp. 298–304.

36. Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual-inertial odometry using nonlinear
optimization. Int. J. Robot. Res. 2015, 34, 314–334. [CrossRef]

37. Qin, T.; Cao, S.; Pan, J.; Li, P.; Shen, S. VINS-Fusion: An Optimization-Based Multi-Sensor State Estimator. Available online:
https://github.com/HKUST-Aerial-Robotics/VINS-Fusion (accessed on 12 January 2019).

38. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

39. Brunetto, N.; Salti, S.; Fioraio, N.; Cavallari, T.; Stefano, L.D. Fusion of Inertial and Visual Measurements for RGB-D SLAM
on Mobile Devices. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW),
Santiago, Chile, 7–13 December 2015; pp. 148–156.

40. Falquez, J.M.; Kasper, M.; Sibley, G. Inertial aided dense & semi-dense methods for robust direct visual odometry. In Proceedings
of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016;
pp. 3601–3607.

41. Laidlow, T.; Bloesch, M.; Li, W.; Leutenegger, S. Dense RGB-D-inertial SLAM with map deformations. In Proceedings of the 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 6741–6748.

42. Ling, Y.; Liu, H.; Zhu, X.; Jiang, J.; Liang, B. RGB-D Inertial Odometry for Indoor Robot via Keyframe-based Nonlinear Optimiza-
tion. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China,
5–8 August 2018; pp. 973–979.

43. Shan, Z.; Li, R.; Schwertfeger, S. RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots. Sensors 2019, 19, 2251.
[CrossRef] [PubMed]

44. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al.
KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568.

45. Niessner, M.; Zollhoefer, M.; Izadi, S.; Stamminger, M. Real-time 3D Reconstruction at Scale using Voxel Hashing. ACM Trans.
Graph. 2013, 32. [CrossRef]

46. Whelan, T.; Leutenegger, S.; Salas-Moreno, R.E.; Ben, G.; Davison, A.J. ElasticFusion: Dense SLAM Without A Pose Graph. In
Proceedings of the Robotics: Science and Systems XI, Rome, Italy, 13–17 July 2015.

http://doi.org/10.1109/TRO.2015.2463671
http://doi.org/10.1109/TRO.2017.2705103
http://doi.org/10.1109/TRO.2012.2197158
http://doi.org/10.1109/TRO.2016.2623335
http://doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651
http://doi.org/10.1109/TRO.2020.2991614
http://doi.org/10.1177/0278364914554813
https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
http://doi.org/10.1109/TRO.2021.3075644
http://doi.org/10.3390/s19102251
http://www.ncbi.nlm.nih.gov/pubmed/31096683
http://doi.org/10.1145/2508363.2508374

Remote Sens. 2022, 14, 979 17 of 17

47. Dai, A.; Niessner, M.; Zollhofer, M.; Izadi, S.; Theobalt, C. BundleFusion: Real-Time Globally Consistent 3D Reconstruction Using
On-the-Fly Surface Reintegration. ACM Trans. Graph. 2017, 36, 1–18. [CrossRef]

48. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

49. Kaehler, O.; Prisacariu, V.A.; Ren, C.Y.; Sun, X.; Torr, P.; Murray, D. Very High Frame Rate Volumetric Integration of Depth Images
on Mobile Devices. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1241–1250. [CrossRef] [PubMed]

50. Han, L.; Fang, L. FlashFusion: Real-time Globally Consistent Dense 3D Reconstruction using CPU Computing. In Proceedings of
the Robotics: Science and Systems XIV, Pittsburgh, PA, USA, 26–30 June 2018.

51. Wang, K.; Gao, F.; Shen, S. Real-time Scalable Dense Surfel Mapping. In Proceedings of the 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6919–6925.

52. Reijgwart, V.; Millane, A.; Oleynikova, H.; Siegwart, R.; Cadena, C.; Nieto, J. Voxgraph: Globally Consistent, Volumetric Mapping
Using Signed Distance Function Submaps. IEEE Robot. Autom. Lett. 2020, 5, 227–234. [CrossRef]

53. Rünz, M.; Agapito, L. Co-fusion: Real-time segmentation, tracking and fusion of multiple objects. In Proceedings of the 2017
IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4471–4478.

54. Runz, M.; Buffier, M.; Agapito, L. MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects.
In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany, 16–20
October 2018; pp. 10–20.

55. Xu, B.; Li, W.; Tzoumanikas, D.; Bloesch, M.; Davison, A.; Leutenegger, S. MID-Fusion: Octree-based Object-Level Multi-Instance
Dynamic SLAM. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada,
20–24 May 2019; pp. 5231–5237.

56. Narita, G.; Seno, T.; Ishikawa, T.; Kaji, Y. PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 4205–4212.

57. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the
International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679.

58. Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166.
[CrossRef]

59. Agarwal, S.; Mierle, K. Ceres Solver. Available online: http://ceres-solver.org (accessed on 14 May 2020).
60. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features. In Proceedings of the

Computer Vision-ECCV 2010, PT IV, Crete, Greece, 5–11 September 2010; pp. 778–792.
61. Zhang, Z.; Scaramuzza, D.; Kosecka, J. A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 7244–7251.

62. OptiTrack. Available online: https://optitrack.com/ (accessed on 25 November 2021).
63. Xuan, Z.; David, F. Real-Time Voxel Based 3D Semantic Mapping with a Hand Held RGB-D Camera. Available online: https:

//github.com/floatlazer/semantic_slam (accessed on 25 July 2021).
64. Song, S.; Lichtenberg, S.P.; Xiao, J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 567–576.
65. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for

MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019), Seoul, Korea, 27
October–2 November 2019; pp. 1314–1324.

http://doi.org/10.1145/3072959.3054739
http://doi.org/10.1007/s10514-012-9321-0
http://doi.org/10.1109/TVCG.2015.2459891
http://www.ncbi.nlm.nih.gov/pubmed/26439825
http://doi.org/10.1109/LRA.2019.2953859
http://doi.org/10.1007/s11263-008-0152-6
http://ceres-solver.org
https://optitrack.com/
https://github.com/floatlazer/semantic_slam
https://github.com/floatlazer/semantic_slam

	Introduction
	Related Work
	Method
	Overview
	Visual-Inertial Odometry
	Semantic Segmentation
	3D Reconstruction

	Experiments
	Feature Points Comparison
	Visual-Inertial Odometry
	Dense Semantic SLAM

	Conclusions
	References

