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Abstract: As urbanized areas continue to expand rapidly across all continents, the United Nations
adopted in 2015 the Sustainable Development Goal (SDG) 11, aimed at shaping a sustainable future
for city dwellers. Earth Observation (EO) satellite data can provide at a fine scale, essential urban land
use information for computing SDG 11 indicators in order to complement or even replace inaccurate
or invalid existing spatial datasets. This study proposes an EO-based approach for extracting large
scale information regarding urban open spaces (UOS) and land allocated to streets (LAS) at the city
level, for calculating SDG indicator 11.7.1. The research workflow was developed over the Athens
metropolitan area in Greece using deep learning classification models for processing PlanetScope
and Sentinel-1 imagery, employing freely-available cloud environments offered by Google. The
LAS model exhibited satisfactory results while the best experiment performance for mapping UOS,
considering both PlanetScope and Sentinel-1 data, yielded high commission errors, however, the
cross-validation analysis with the UOS area of OpenStreetMap exhibited a total overlap of 67.38%,
suggesting that our workflow is suitable for creating a “potential” UOS layer. The methodology
developed herein can serve as a roadmap for the calculation of indicator 11.7.1 through national
statistical offices when spatial data are absent or unreliable.

Keywords: google earth engine; land use; land cover; very-heigh resolution; planetscope; synthetic
aperture radar; sentinel-1; urban open spaces; road network; OpenStreetMap

1. Introduction

Urban areas cover 7.6% of the global land mass, approximately half the size of the
European Union [1], and already hold the majority of the world’s population [2], which is
expected to increase by 10% until 2030, from a current 7.7 billion to 8.5 billion [3].

As urbanized areas continue to expand rapidly across all continents, sustainable
and successful management of urban growth is essential at the local, national, and even
international level. In 2015, United Nations (UN) Member States, adopted Sustainable
Development Goal 11 (SDG 11), as part of the 2030 UN Sustainable Development Agenda,
to “make cities and human settlements inclusive, safe, resilient and sustainable”, indicating
that there is currently a universal realization and necessity for actions and measures that
could improve the quality of urban environments.

Urban open spaces can provide multiple material and non-material benefits to city
inhabitants through their environmental and social functions. They can improve the
environmental quality of the city and also bring positive contributions to people’s quality
of life [4]. Urban open spaces can provide multiple benefits to society, enhance the social
life and mental/physical heath of city dwellers, increase the attractiveness of cities through
their aesthetic appeal, recreational and historical values, mitigate urban heat effects and
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associated thermal discomfort, remove atmospheric pollutants, host biodiversity and
regulate stormwater flow [5–9].

Considering the importance of urban open spaces for shaping future sustainability of
cities, a relevant SDG indicator (11.7.1) was formulated to monitor progress, inform policy
and ensure accountability of all stakeholders against the SDG 11 Target 11.7, regarding
open public spaces and its accessibility to all. In 2018, UN-HABITAT provided a technical
document describing the steps and potential data sources for the computation of indicator
11.7.1 as well as the conceptual background of the estimation process [10].

The diverse list of data sources for identifying land characterized as a potential public
space, according to indicator 11.7.1, includes city open space and street databases (identi-
fied as the most accurate source), local knowledge, editable and open-source geographic
databases, existing digital globes, and finally products and analytical databases providing
geographic and quantitative dimensions of urban expansion, resulting from remote sensing,
Geographic Information Systems (GIS) and statistical analysis as well as EO satellites.

Yet, indicator 11.7.1 remains classified as Tier II, indicating a lack of operationalization
for the provision of regular, standardized, open and comparable data produced by countries.
As existing computation workflows allow for simple format reporting efficiently at regular
intervals, bottlenecks can be identified when considering the use of existing spatial and EO
products. Challenges relate to spatial and thematic coverage across regions, data integration
collected from different domains and sources, consistent class terminology, variations in
spatial data quality and completeness, information gaps over specific attributes and scale
of the data [11–14].

EO satellite data is considered a cost-effective, consistent and systematic data source
to support policies and actions aimed at improving urban environmental sustainability
especially over data-scarce areas [12,15,16]. In line with this prospect, the UN-Habitat
suggests the use of freely available EO satellite data from Landsat and Sentinel missions for
delineating potential public urban open spaces. Yet, while medium–low resolution open
and free earth observations (15–30 m), can offer valuable insights useful for policy makers
and city managers [14], constraints related to the relatively coarse scale of the data, can
lead to relatively low accuracy in capturing human activity within complex urban areas, as
for example, roads and buildings [17,18].

The Landsat alike data often results in underestimation of smaller open spaces [11]
while even at the block level, building detection remains challenging with 30-m resolution
imagery and is feasible only with the finer 10-m pixels from Sentinel-2 observations [19].
Moreover, with average street widths in cities measuring around 10 m [20], the use of data
with a spatial resolution greater than 10 m is crucial, for correctly representing the land
allocated to streets according to the UN instructions.

With the rapid development of commercial, very-high spatial resolution (VHR, ≤4 m)
satellite data following the launch of the IKONOS satellite in 1999, it is now possible to
identify textural, contextual and geometrical information of objects [19], opening new
opportunities to extract urban land use information at an extremely detailed level [21,22].
Miniaturized satellites, initially introduced as low-cost space research and engineering
projects, paved the way to constellations providing cost-effective high temporal and spatial
resolution global coverage data [23]. PlanetScope [24], operated by Planet, represents a
constellation of approximately 130 satellites, capable of imaging the entire land surface of
Earth daily with approximately 3 m spatial resolution in the visible–near-infrared portion
of the electromagnetic spectrum.

Yet, extraction of urban land use is not a straightforward process, since, contrary to
land cover relating only to information regarding physical characteristics of the urban
environment, land-use also reflects functional attributes of urban areas [25]. Often, due to
the high complexity of the urban environment, different land use types may be composed of
identical low-level ground objects, bearing extremely similar spectral and textural responses
(e.g., parking lots and roads), or on the other hand, the same land use types (e.g., buildings)
may be composed of features that vary widely spectrally and spatially [26]. The EO
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classification task faces further challenges when considering the extraction of semantically
abstracted functional areas, as in the case of open spaces, that may be decomposed to
park, garden, playground, public beach, riverbank and waterfront land use types [27],
each formed by spatially aggregated, diverse geographic objects. For example, a median
strip is a public open space (according to the UN typology), however, green vegetation in
the form of street trees is not. Additionally, streets covered by asphalt are a public open
space according to the UN, yet parking lots (also covered by asphalt) are not. Therefore,
it is important to develop robust and reliable urban land use classification workflows by
effectively exploiting the spatial information inherent in very-high spatial resolution EO
data [18].

Traditional classification workflows operating at the pixel level and considering low-
level features, such as spectral, textural, geometrical, and contextual features, may lead to
lower classification accuracies when extracting complex land use classes [28,29]. A more
efficient approach relies on the adoption of the object-based paradigm for land-use clas-
sification over urban area images, facilitating the use of both within-object low-level fea-
tures (e.g., spectral, texture, shape) and between-object higher level semantic features
(e.g., connectivity, contiguity) [18], but still employing again limited use of the semantic
features available in EO images [30].

In recent years, the emergence of advanced deep learning classification methods, has
facilitated urban land use classification, allowing extraction of slightly abstract level classes
at a deeper level, without human-designed features or rules [18,31]. Through the use of
multi-layer neural networks, the most representative and discriminative features are learnt
end-to-end in succession, hierarchically [32]. Thus far, few studies have used EO satellite
data in conjunction with deep learning for extracting individual types of urban open public
spaces, either focusing on areas with vegetation cover, or areas allocated to streets, both
needed for the computation of the 11.7.1 indicator.

Xu et al. [33] used the HRNet deep learning architecture along with 1 m satellite
imagery to classify open spaces with vegetation cover using spectral and phenological
features. Chen et al. [28] proposed a new deep learning architecture, for mapping parks and
other “green spaces,” including plant life, water and other kinds of natural environments,
using Sentinel-2 10 m bands. In a study focused on road extraction [34], a U-NET based
deep learning architecture was employed for extracting roads in RGB satellite images of
1.2 m spatial resolution, achieving extremely high precision and recall rates. Although
accomplishing excellent accuracy, urban land cover mapping using deep learning requires
high computational power, owing not only to the finer spatial resolution of the processed
data, but also to the large scale of urban agglomerations [11]. In recent years, the emergence
of cloud computing platforms has provided the solution to this problem by delivering
flexible processing power, memory, disk size and applications as on-demand payable
services [35]. A study by Huerta et al. [36] used a deep learning architecture based on
U-NET, which was run on the free Google Colab cloud platform, for mapping UGS in
Worldview 0.5 m resolution imagery. The authors used RBG and NIR bands, spectral
indices and UGS samples from OpenStreetMap and National data, for the city of Beijing.

In this study, the challenge of extracting essential land use information for calculating
indicator 11.7.1 based on classification of EO satellite data is addressed. The core portion of
the analysis relies on the use of deep learning for classification of VHR PlanetScope imagery
in the freely-available cloud environments of Google Colaboratory and Google Earth Engine
(GEE), using open GIS data from the OpenStreetMap (OSM) dataset and the Copernicus
High Resolution Layer (HRL) “Imperviousness”. The methodology developed herein can
serve as a roadmap for the calculation of the indicator by national statistical offices.

2. Materials and Methods
2.1. Study Area

For successfully reporting on SDG indicators nationwide, UN-Habitat released a tech-
nical document to provide guidance for each country to create a statistical representation
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of its own cities, called the National Sample of Cities [37]. The method is based on a
stratified sampling of cities, which are grouped based on criteria such as population, city
area, geographical location, city functionality and economical and political importance.

However, in this study it was decided to choose the Athens Metropolitan Area (AMA),
as a representative city for Greece. Located in the region of Attica, the AMA is one of
the most important administrative regions in Greece. Apart from including the country’s
capital, Athens, it is also the country’s largest metropolitan area, covering approximately
400 km2, and hosts around 36% of the country’s population [38,39]. In addition, the broader
area of Athens is covered by areas with highly diverse landscapes, from areas exhibiting ho-
mogenous compact urban morphology, to dispersed settlements intermixed with factories
and farms [40]. This made the AMA an ideal area for developing a methodology that can
be transferred, in the future, to multiple urban environments found in various Greek cities.

Since the physical boundaries of the AMA are unknown and will be defined in the
process developed, the study area was defined by the bounding box surrounding the
mainland of the Attica region (Figure 1), including the broader area of the AMA.

Figure 1. The study area defined, along with the Copernicus “Imperviousness” layer for the broader
Athens Metropolitan area. Basemap: Esri.

2.2. Overall Workflow

The methodology developed in this study, is in general, a three-step process, as
suggested by the UN consisting of (a) delimiting the built-up area of the city (urban extent),
(b) mapping urban open spaces (UOS), and (c) estimating the total area of land allocated to
streets (LAS) [41].

The indicator is calculated using the following formula, combining the individual
information extracted at each step:

Indicator (%) =
UOSs + LASs

BUILTS
(1)
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where UOSs is the total surface of urban open spaces, LASs represent the total surface of
land allocated to streets and BUILTS refers to the total surface of the built-up area, in the
total urban extent.

Each step is treated as a separate problem and in the end all results are combined for
the final computation of indicator 11.7.1. The first step was based on the UN instructions
and the Copernicus impervious cover product. The second step involved spatial analysis to
map UOS of the urban extent, using very-high resolution PlanetScope imagery, Sentienel-1
imagery, and deep learning. The last step involved the spatial analysis to map the land of
the urban extent that is allocated to streets, again making use of the PlanetScope imagery
and deep learning.

To facilitate the time and computationally demanding training of the deep learning net-
works developed in this study, freely available computing resources by Google were used.
More specifically, resources accessible through the Google Colaboratory (“Colab”) service
were used and include memory and multiple CPUs and GPUs, which vary, depending on
usage by users [41]. Colab is a hosted Jupyter notebook service, that requires no setup and
is customized for machine learning and data analysis. In addition, Colab provides direct
connection to the Google Earth Engine (GEE) [42], a cloud platform for geospatial analysis
that is also freely provided for research applications and was employed supplementally in
this study for processing satellite data. The code developed on Colab runs on Python 3 and
the DL networks were trained and applied using the TensorFlow library (v.2.6.0) [43] and
Keras [44], a high-level API to build and train models in TensorFlow.

2.3. Satellite Data

The datasets used in this study were mainly satellite imagery (PlanetScope and
Sentinel-1) for mapping the LAS and UOS.

PlanetScope sensors acquire 12-bit multispectral images in the red, green, blue and
NIR portion of the electromagnetic spectrum, with 3.7–4.1 m spatial resolution, in low-earth
sun-synchronous orbits [45]. For this study, the Planet Surface Reflectance Product [24],
was employed based on images processed to bottom-of-atmosphere (BOA) reflectance
using the 6S radiative transfer code [46]. A color balanced average mosaic was created,
from images acquired during summer 2020 (from 27 October 2020 to 2 September 2020),
covering the urban extent of the AMA, as calculated in the first step of the process.

The Sentinel-1 (S1) satellites are C-band microwave Synthetic Aperture Radars,
conFogiured with dual polarization (VV, VH) interferometric wave modes and an effective
revisit of 6 days. The Ground Range-Detected (GRD) products, which are available in
GEE in Analysis Ready Data (ARD) format, are radiometrically calibrated and ortho-
corrected, using SRTM-30 or ASTER digital elevation models, and are offered in geo-coded
backscattering coefficients (σ0) [47].

2.4. Ancillary Data and Preprocessing

Apart from satellite imagery, freely-available geographic databases were accessed for
obtaining ancillary information regarding land use and land cover. The Copernicus High
Resolution Layer (HRL) “Imperviousness” of 2018 was used for delineating the urban
extent of AMA, and OpenStreetMap (OSM) data were selected for creating UOS and LAS
reference samples.

The HRL Imperviousness is a raster product available to Europe, that depicts areas
sealed with artificial cover, including the level of soil sealing per pixel for particular
reference years. For the 2018 product, the pixel size was 10 m, generated by using a semi-
automated classification of maximum Normalized Difference Vegetation Index (NDVI)
mosaics of satellite images and is freely available online [48].

OpenStreetMap (OSM) [49] is a crowdsourced spatial database that can provide a
detailed representation of land use and land cover (LULC). Although its completeness and
correctness may vary across regions, it has been used in studies for collecting reference data
for land cover mapping [50,51]. Furthermore, the fine scale offered by OSM, representing
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objects up to mid-sized buildings in cities, has allowed for studies to use OSM information
as reference data for mapping road networks [52], as well as urban open spaces [11,12,53,54].
OSM was selected in this study for the automated generation of samples. Data queries were
created using the Overpass API [55], to obtain the appropriate OSM layers representing
UOS and LAS (Table 1), according to the UN, for the AMA. Layers that were not possible
to distinguish in the PlanetScope imagery (i.e., galleries, passages and sidewalks), were not
considered for the analysis.

Table 1. UN UOS and LAS reference classes and corresponding OSM keys/tags queried.

UOS LAS

UN Reference
Class OSM Query UN Reference

Class OSM Query

OSM Key OSM Tag OSM Key OSM Tag

Parks leisure park
Streets/Avenues/

Boulevards

highway road
Recreational areas landuse recreation_ground highway living_street

Playgrounds leisure playground highway residential

Riverfronts
natural sand Pavements highway pedestrian
natural shingle Bicycle paths cycleway track

Waterfronts
natural sand cycleway lane

man_made breakwater Traffic island traffic_calming island
man_made pier Roundabouts junction roundabout

Beaches (public) natural beach

OSM tags added
by authors

highway service

Civic parks

boundary national_park highway tertiary_link
boundary protected_area highway secondary_link
landuse forest highway primary_link
natural wood highway unclassified
leisure nature_reserve highway tertiary

Gardens (public) leisure garden highway secondary
Squares and Plazas place square highway primary

OSM tags added
by authors

landuse cemetery
amenity grave_yard
leisure stadium
leisure dog_park

landuse village_green
landuse orchard

2.5. Processing
2.5.1. Built-Up Area and Urban Extent

The first step of the methodology involved the delineation of the urban cluster. Accord-
ing to the instructions developed by the UN, the boundary of the urban cluster is defined
morphologically, based on the density of impervious cover and a walking window filter
for classifying the urbanness of each pixel. For a study area defined, and by using a 1-km2
circle around individual pixels, each pixel was classified as urban or not. If more than 25%
of pixels in the circle are covered by impervious surfaces, then that pixel is classified as
part of the urban cluster. By using this method, the urban cluster is delineated coarsely
and small changes in impervious cover will not affect its extent. Therefore, instead of
classifying the latest Landsat imagery to obtain impervious cover as suggested by the UN,
the Imperviousness HRL of 2018 was employed as a substitute in this study, since it is a
validated product, with a higher spatial resolution (10 m) than Landsat imagery and depicts
the proportion of sealed soil per pixel. The Imperviousness layer is dated only 2 years
before the date of this analysis and was used based on the assumption that built-up areas
rarely convert back to natural surfaces and change very slowly in developed metropolitan
areas, such as the AMA. The walking window filter was applied in the bounding box of the
mainland Athens region, and the largest resulting blob was defined as the urban extent of
the AMA.
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2.5.2. Urban Open Space

Detection and delineation of open spaces within cities is a considerably complex task
given the diversity of UOS in size, cover and shape. Indicatively, the size of UOS acquired
from OSM for the AMA, ranged between approximately 50 m2 and 1.1 km2, with a median
value of 2500 m2, excluding fringe open spaces (forest and shrubland at the fringe of the
urban extent) which are not incorporated into the UN definition. Hence, the use of VHR
PlanetScope imagery combined with a DL network was considered essential in this step.

U-NET [56] is an algorithm for image semantic segmentation which requires fewer
training samples than other architectures, as it internally performs data augmentation, and
is relatively fast to train. It is comprised of 23 convolutional layers in an encoder–decoder
composition (Figure 2), combining high-level semantic details with low-level information.

Figure 2. The U-NET architecture [33].

Due to the scarcity of reference data, U-NET and U-NET-based DL architectures were
recently used by other studies for mapping open green spaces in cities [33,36]. Additionally,
samples for UOS, when approached as a binary problem, exhibit imbalances in terms of
pixels covered by UOS and background pixels. This problem has also been addressed
previously by using the appropriate loss function. More specifically, Huerta et al. [36]
used the dynamic U-NET architecture, the Dice coefficient as a loss function, to solve the
sample imbalance problem, and 24,665 patches of 256 × 256 pixels (in 0.5 m resolution),
which were split into 85% for training and 14% for validation. Likewise, Xu et al. [33]
compared different networks, including U-NET and employed the Focal Tversky loss
function (an improved version of the Dice loss) to solve the sample imbalance problem.
They utilized the Adam optimizer, 1248 training and 312 validation patches and trained for
100 epochs. Chen et al. [28] used Senintel-2 imagery, a custom architecture, SGD optimizer
with a learning rate decay, 4550 training and 975 validation image patches, with a size of
512 × 512 pixels (in 10 m resolution).

Consequently, bearing in mind the similarities with the problem of the present study,
it was decided to use U-NET as a DL architecture in the UOS-extraction step. In addition,
apart from the PlanetScope mosaic, other complementary data were used for UOS mapping.
The Normalized Difference Vegetation Index (NDVI) was calculated from the PlanetScope
bands to enhance greenness of UOS. Furthermore, S1 GRD SAR data, available from the
GEE platform in geo-coded backscattering coefficients (σ0), were used. Data were filtered
for the same period of the PlanetScope images and derived images were further mosaicked
using a median composite technique. Likewise, the building height index was utilized
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to aid the distinction between buildings and gray UOS. The building height index was
calculated using the equations [57]:

ln H = a ∗VVHb + c (2)

VVH = VV ∗ γVH (3)

where a = −23.61, b = −0.06, c = 26.10 and γ = 5, are parameters calculated by a sensitivity
analysis in [57]. The NDVI and building height were added as bands to the PlanetScope
image in order to be used as features in the DL network.

Training and validation samples were created by generating a 512 × 512 pixel-size
(2.36 km2) grid on the PlanetScope image, covering the urban extent area [36]. From
the patches intersecting the AMA extent, 150 were randomly selected for generating
the training and validation patches within them. The patches were randomly split by a
70/30 percentage ratio and 105 patches were selected for training and 45 for validation
(Figure 3). In each patch, manual editing was performed through photointerpretation of
Google Earth imagery to improve the OSM UOS vector file where necessary. The corrected
UOS file was finally rasterized to 3 m. Within the 105 training patches, 2500 patches of
589,824 m2 each (256 × 256 pixels in the resampled rasterized image) were randomly
created and 1071 were randomly created within the 45 validation patches, respectively.

Figure 3. The PlanetScope image mosaic in the background and training and validation samples for
(a) urban open spaces (UOS) and (b) land allocated to streets (LAS). Basemap: Esri.

Two experiments were conducted for mapping the UOS. In the first (experiment 1),
only the four PlanetScope bands along with the NDVI image were used as features for
training the network, after they were all normalized first to a [0, 1] range, since data
normalization is crucial for accelerating the training of neural networks and for obtaining
accurate results [58]. The second experiment (experiment 2) included the PlanetScope
bands, the derived NDVI image and the S1-derived building height index, as a method of
assessing the added value the SAR data had to offer. Regarding the network parameter
settings, they were kept the same in both experiments. More specifically, the stochastic
gradient descent (SGD) optimizer was used, with a 0.0001 learning rate, and the Dice
coefficient was utilized as a loss function to account for the sample imbalance problem [36].
The Dice coefficient [59] is used in semantic segmentation problems and indicates the
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amount of overlap between the predicted and reference values. Values close to 0 suggest
no overlap whereas values close to 1 suggest a complete overlap. The Dice coefficient is
calculated according to Equation (4):

Dice Coefficient =
2 |P ∩ R|
|P| + |R| (4)

where P represents the predicted pixels and R refers to reference pixels. As a loss function,
the negative value of the Dice coefficient was used. The network was trained for 500 epochs,
with a batch size of 16 samples and the model produced at the epoch which exhibited the
lowest validation loss was selected for the UOS prediction at a 3-m spatial resolution.

2.5.3. Land Allocated to Streets

Street widths in Athens vary across regions from 4.5 m to 25.5 m [60]. The necessity to
account for this variance and in order to correctly represent the full range of LAS, led to the
use of VHR PlanetScope imagery combined with a DL algorithm to map LAS in the AMA,
also in this case.

In recent studies, U-NET was considered ideal for road extraction form VHR imagery.
Abderrahim et al. [61] used U-NET trained for 50 epochs, with 1108 training patches of
512 × 512 pixel size and RGB images of 1.2 m spatial resolution. Zhang et al. [34] used a
deep residual U-NET, cross-entropy loss function, SGD optimizer with a learning rate of
0.001 reduced by 0.1 every 20 epochs and trained for 50 epochs. They used 30,000 RGB
training patches of 224 × 224 pixels.

Since training samples were limited in this study, the LAS problem was approached
with a similar rationale as the UOS problem, by making use again of the U-NET DL
architecture. Training and validation samples were created by generating 200 points, inside
the calculated urban extent, of which 200 patches covering approximately 160,000 m2

(133 × 133 pixels in the PlanetScope image) were generated (Figure 3). Subsequently, the
patches were randomly split by a 70/30 percentage ratio and 143 patches were selected
for training and 57 for validation. In each patch, manual editing was performed through
photointerpretation of Google Earth imagery to improve the OSM LAS vector file where
needed. The corrected LAS file was finally rasterized to 3 m and used in the training and
validation process of the network. A total of 2143 random sample patches of 65,536 m2

(85 × 85 pixels in the resampled rasterized image) were created within the 200 160,000-m2

patches and were used for training or validation, accordingly. Specifically, 1500 samples
were chosen for training and 643 for validation purposes.

All four bands of the PlanetScope mosaic were selected as features for the training after
being normalized to a [0,1] range. Regarding the network parameter settings, an Adam
optimizer and the Dice loss function were used. The network was trained for 50 epochs,
with a batch size of 32 samples. The model produced at the epoch which exhibited the
lowest validation loss was ultimately selected for predicting the LAS at 3 m resolution.

2.5.4. Accuracy Assessment and Indicator Calculation

Two metrics were employed for evaluating the accuracy of the three networks: (a) the
Keras binary accuracy and (b) the Intersection over Union (IoU). The binary accuracy reflects
the frequency in which the predicted values match the reference values, with a threshold
of 0.5, in a binary classification problem. The IoU [36] is calculated using Equation (5) and
in analogy to the Dice coefficient, expresses the amount of overlap between the predicted
and reference values, by penalizing errors more than the Dice coefficient.

IoU =
|P ∩ R|
|P ∪ R| (5)

Lastly, the cross-tabulation matrix between the pixels of the resulting UOS and LAS
and the respective OSM layers were produced for measuring their agreement.
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The final indicator value was calculated by computing the area of each component
(UOS and LAS), their sum, and by further dividing the sum with the total area of the
urban extent.

3. Results

Figure 4 depicts the urban extent of the AMA, delimited in the first step, as well
as the UOS (in both experiments) and the LAS, as mapped in the second and third
step, respectively. The resulting urban extent covers a total area of 470.439 km2. Within
these boundaries, the share of built-up areas occupied by UOS was estimated at 2.72%
(12.797 km2), when using only the PlanetScope information (experiment 1), while the re-
spective result was 9.5% (44.670 km2) when utilizing the PlanetScope bands and NDVI
synergistically with the S1 building height index.

Figure 4. Urban extent of the AMA according to the UN methodology, land allocated to streets
(LAS) and urban open spaces (UOS) based only on PlanetScope ((a)—experiment 1) and PlanetScope–
Sentinel-1 data ((b)—experiment 2). Basemap: Esri.

The percentage of land occupied by streets was calculated to 13.11% (61.696 km2). The
final share of the built-up area of the city representing open space in public use, for the
AMA, was computed by using the union of the UOS and LAS areas and was estimated
at 15.75% (74.090 km2), when using the UOS result from in experiment 1, and 21.74%
(102.264 km2), with the UOS result from experiment 2.

3.1. Accuracy Metrics

The U-NET network trained for predicting the UOS in experiment 1 reached the
minimum validation loss at epoch 498 with a value of −0.3274 and for the training loss,
−0.7771. Figure 5 depicts the training and validation loss values for the 500 epochs for
both experiments while in Table 2 the accuracy measures for the models are represented.
The strong variations in the loss curve can be explained by the high variance of the UOS
samples in terms of size, shape, and spectral response etc. The training and validation
binary accuracy achieved at epoch 498 were 0.9817 and 0.9427, respectively, while the
training and validation IoU values were 0.4744 and 0.4675, respectively. The training of the
network lasted almost 32 h to run in Colab and the prediction for the whole AMA required
approximately 4 h. Overall, the time required for the entire procedure, including data
transfer from GEE to Colab and vice versa, was around 40 h, depending on the availability
of cloud resources at the time of processing.
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Figure 5. The training and validation Dice loss of the network for predicting the urban open spaces
(UOS) in experiment 1 (only PlanetScope data) and experiment 2 (PlanetScope and Sentinel-1 data).

Table 2. Accuracy metrics for the 3 U-NET models trained for extracting land allocated to streets (LAS)
and urban open spaces (UOS) based only on PlanetScope (experiment 1) and PlanetScope–Sentinel-1
data (experiment 2).

Metric UOS
(Experiment 1)

UOS
(Experiment 2) LAS

Train. Dice loss −0.7771 −0.6082 −0.7703
Val. Dice loss −0.3274 −0.1917 −0.5840

Train. Binary accuracy 0.9817 0.9633 0.9442
Val. Binary accuracy 0.9427 0.9270 0.9085

Train. IoU 0.4744 0.4753 0.5835
Val. IoU 0.4675 0.4723 0.5141

On the other hand, the U-NET network trained for predicting the UOS in experiment 2
exhibited lower accuracy in general, with a minimum validation loss at epoch 496 of
−0.1917 and a training loss of −0.6082. The training (0.9633) and validation (0.927) binary
accuracies were high, while the training and validation IoU values were 0.4753 and 0.4723,
respectively. The time required for the procedure took, again, roughly 40 h in total.

In regard to the network trained for mapping the LAS, it reached its minimum valida-
tion loss at epoch 25 out of 50, therefore the values of the network at this point were used
for the prediction. The validation dice loss at epoch 25 reached −0.584 with a training dice
loss of −0.770 (Figure 6). The training and validation binary accuracies were slightly lower
compared to the UOS case (0.944 and 0.910). On the other hand, training and validation
IoU values were 0.584 and 0.514, respectively. The training of the network required around
1.5 h to run in Colab and the prediction for the whole AMA approximately 2 h. Overall,
the time required for the whole procedure, including data transfer from GEE to Colab and
vice versa, was almost 20 h, depending on the availability of cloud resources at the time
of processing.

The cross-tabulation matrix between the unedited OSM-derived UOS layer for the
AMA and the resulting UOS, for experiment 1, revealed an intersection of only 5.555 km2

(32.67%) with the OSM-derived UOS layer, with commission errors of 7.242 km2 and
omission errors at a size of 11.447 km2, while on the other hand, the respective result
for experiment 2, exhibited an agreement of 11.456 km2 (67.38%) followed by higher
commission errors (33.214 km2) and lower omission errors (5.547 km2) (Table 3). The
reference LAS layer and resulting LAS cross-tabulation showed an agreement of 38.786 km2

(55.95%), with 22.910 km2 of commission and 30.537 km2 of omission errors (Table 4).
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Figure 6. The training and validation Dice loss of the network for predicting the land allocated to
streets (LAS).

Table 3. Cross-tabulation matrix between the OSM UOS and the resulting UOS considering only
PlanetScope (experiment 1) and PlanetScope–Sentinel-1 data (experiment 2).

UOS Experiment 1 UOS Experiment 2

UOS (km2) Non-UOS (km2) UOS (km2) Non-UOS (km2)

OSM
UOS (km2) 5.555 11.447 11.456 5.547

non-UOS (km2) 7.242 446.073 33.214 420.101

Table 4. Cross-tabulation matrix between the OSM LAS and the resulting LAS.

Result

LAS (km2) Non-LAS (km2)

OSM
LAS (km2) 38.786 30.537

non-LAS (km2) 22.910 378.015

3.2. Visual Assessment of Results

The main resulting products of this study (UOS and LAS) underwent an additional
visual assessment to identify errors that were not evident in the accuracy measures.

Regarding the UOS products, in general, the model of experiment 1 tended to under-
estimate the UOS, while the model of experiment 2 overestimated them. The resulting
product of experiment 1, proved to be weaker in representing UOS, since omission errors
were observed throughout the entire AMA, not only in small open areas (metropolitan and
pocket parks) (Figure 7a), but also in greener suburbs of the city (Figure 7b). Conversely,
in experiment 2, commission errors were found predominantly at the greener northern
and eastern suburbs of the AMA (Figure 7d), where various non-public green spaces were
mistakenly classified as UOS. In addition, commission errors of UOS were found around
facilities which, although public, are not open and accessible to everyone (i.e., military
camps, hospitals).

Contrary to the UOS, the LAS product exhibited highly satisfactory results in most
areas of the urban cluster, with errors only in industrial units of the city (Figure 8a) and
in the region of the old town of Athens (Plaka) (Figure 8b), both cases in which the road
network does not follow a uniform style, thus resulting in a fragmented network of streets
with many omission errors. Errors were also found in densely vegetated streets in the
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north-east suburbs of Athens city. The large omission errors visible in the cross-tabulation
matrix can be explained by errors existing in the filtered OSM LAS layer, even though green
areas were removed. In particular, in Figure 8b, it can be seen that streets inside parks are
included in the general (unedited) OSM LAS area, although they were removed from any
sample patches that included them.

Figure 7. Urban open spaces (UOS) mapped in experiment 1 (a,b) and in experiment 2 (c,d), in
densely built-up areas (a,c) and in green suburbs of the city (b,d).
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Figure 8. Omission errors in the LAS product in (a) the industrial region of Athens, (b) in the old
city (Plaka).

4. Discussion

In this study, essential land use information for calculating SDG indicator 11.7.1 was
quantified and spatially explicitly mapped, employing a three-step approach, using VHR
PlanetScope satellite imagery and readily available EO products. Our integrated approach
is, to our knowledge, the first to extract all essential land use information needed (i.e., both
green and gray UOS, LAS), using EO data, for calculating indicator 11.7.1. On the other
hand, previous research efforts involving EO data analysis for the SDG indicator 11.7.1
calculation, usually addressed information requirements related to green UOS [28,33,36,53],
or LAS [34,61] extraction. The use of DL algorithms within a free cloud computing resource
further unlocks the potential of EO for providing operational and accurate information for
decision making and sustainability monitoring, over urban agglomerations, compared to
previous classification approaches relying on shallow learning [11].

Although the model for mapping LAS in this study proved to bear high accuracy
results, with a validation dice loss of −0.584, the UOS mapping appeared to present a
much more challenging problem and yielded a validation dice loss of −0.3274 in the
best trained model (experiment 1). However, despite the fact that experiment 1 yielded
better results in U-NET model accuracy metrics, the cross-tabulation and visual assessment
proved otherwise. The results of experiment 2, with a validation dice loss of −0.1917
exhibited higher intersecting areas of UOS with the OSM reference UOS, with the higher
commission errors explained by non-public or accessible open spaces being classified as
UOS (e.g., private gardens, military and hospital areas etc.), leading to the conclusion that
the only limiting factor of the model was the public aspect of open spaces. Although it can
be difficult to explain the mechanisms inside deep neural networks, visual comparison
of the UOS results in the two experiments, can lead to the conclusion that the model in
experiment 1 assigned higher weights to high-level features (contextual and geometrical
information of objects), preserving the shape of UOS at their boundaries, while the model
in experiment 2 exhibited higher weights in lower-level features from the building height
index information, thus detecting larger UOS areas (Figure 9). This however led to a “leak”
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at the UOS boundaries (Figure 7), which could be explained by the lower resolution of the
S1 data (i.e., 10 m instead of 3 m for PlanetScope data). Experiment 2 for obtaining UOS,
proved that in addition to VHR multispectral data, SAR data, even in a relatively coarse
spatial resolution (i.e., Sentinel-1 at 10 m), through the vertical information offered in its
polarized wave bands, is crucial in mapping open areas in the spectrally complex urban
space. Although SAR data were used in studies focused on urban morphology [62,63], its
use in urban open area extraction has not been previously tested.

Figure 9. PlanetScope image (a), S1 building height index (b) and results of UOS in experiment 1 (c)
and experiment 2 (d).

Notwithstanding the fact that higher accuracy metrics are observed in other studies,
it is important to note that these results mostly refer to urban green spaces as opposed to
UOS which were studied herein. The complexity and variance of open spaces in cities,
along with the “noise” private open spaces cause, comprises a major challenge which
cannot be solved using EO alone. The public aspect of UOS, which refers to land use rather
than land cover, revealed the requirement of additional data apart from OSM to be defined,
an issue also observed in other studies [11,54].

In relation to the LAS detection and mapping, our approach attained less satisfactory
accuracy compared to earlier studies focusing on road extraction. This can be explained
by the smaller number of samples available here and the lower spatial resolution of the
PlanetScope imagery, as opposed to the 1-m resolution aerial images commonly employed
in earlier studies [34,52,61,64]. However, the visual assessment of the LAS mapping result,
strongly suggests this information layer can be used for reporting the indicator at the
metropolitan or even municipal level.

While the results can quantify the prevailing tendency of UOS coverage in a city,
ancillary local data and post-processing is needed in order to correctly represent UOS [65].
Nevertheless, the UOS map produced using the methodology in experiment 2 can serve
as a “potential” UOS layer for further facilitating the computation of indicator 11.7.1 by
statistical organizations, especially in cases where open GIS data, such as OSM, is absent or
exhibits many errors.

The spatial distribution of UOS within the AMA further revealed the unequal dis-
persion of them, as additionally stated in [66]. Although the city has high accessibility to
UOS due to its large and well-connected road network, UOS are not equally available to all
citizens. Large areas of UOS are mostly located at the north-eastern and southern sections
of the city, areas most inhabited by a prosperous middle- and upper-class population.
Instead, the western aspect of the AMA suffers from a lack of UOS, while the regions
close to the city center hold mostly smaller UOS. Therefore, it should be highlighted that
indicator 11.7.1, being a ratio represented at the city level, is unable to capture differences
of this nature, which express social inequalities [67]. Thus, calculations of the indicator
representing detailed spatial information, such as in this study, will allow better intra-urban
disaggregation to support policy making.
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Regarding the final share of open spaces for the AMA, it was estimated at 21.74%,
considering the most accurate case of UOS in terms of accuracy (experiment 2). Most
countries worldwide have not yet officially reported the final values of indicator 11.7.1,
to our knowledge, except for Germany, which in 2018 reported a value of 31.78% [68].
Furthermore, the calculated share of all open spaces for the AMA (UOS + LAS), in both
experiments, is in line with the report by the European Joint Research Center for accessibility
of urban green areas [69], which reported a share of 14% by employing the European
Settlement Map. The percentage of UOS and LAS estimated for Athens in this study
(9.5% and 13.11%, respectively), nevertheless remains in the low-end of national standards,
considering UN-Habitat suggests a proportion of 15–20% for UOS and 30–35% for LAS for
a well-functioning city [27].

Google’s free Colab cloud environment, for the implementation of workflow for
this study, offered a great advantage in terms of computational time, as well as direct
communication with GEE’s free resources and tools. Moreover, the scripts developed can
be easily shared and run by other users, with minor changes in their settings, since they
are not system-dependent. Consequently, the developed methodology, with the aid of
massive resources of cloud environments, can be easily scaled to other Greek cities and at a
national level.

The proposed workflow for mapping indicator 11.7.1 with PlanetScope and Sentinel
imagery can be further improved by the integration of ancillary data for the distinction
of private/public and accessible/inaccessible UOS, at a post-processing stage. Such data
may include local land use maps or the use of cellphone and social network data [70],
if consent to use the data is given. Future work to extend this study will integrate the
transferability of the method to other Greek cities included in the National Sample of Cities
and the aggregation to a municipal scale within cities, to highlight intra-urban differences
and inequalities. Finally, the accessibility aspect of indicator 11.7.1 to UOS can be studied,
by using network and GIS analysis of the LAS and UOS layers [12,71,72].

5. Conclusions

The aim of this study was to model the essential land use components required for
calculating SDG indicator 11.7.1, for the AMA, based on the UN instructions and employing
satellite imagery, satellite-derived products, along with open GIS information for retrieving
reference data. The main processing was performed using DL, in the freely-available cloud
environments of Google Colab and GEE.

The best performing model developed for mapping UOS, although exhibiting high
commission errors, managed to produce a result bearing an overlap of 67.38% with the
respective open areas from OSM. The developed process can thereby serve as method
for creating a “potential” UOS layer for further facilitating the computation of indicator
11.7.1 by statistical organizations, especially in cases where open GIS data, such as OSM,
are absent or error-ridden. Furthermore, the model for mapping LAS proved to exhibit
satisfactory accuracy results, with a validation dice loss of −0.584 and an overlap of 55.95%
with the respective LAS from OSM, indicating its reliability in mapping LAS, in place of
the sampling technique proposed by the UN methodology for indicator 11.7.1.

This study is, to our knowledge, the first to map all land use components of indicator
11.7.1. The methodology developed herein can serve as a roadmap for the development of
an end-to-end, automated workflow, for national statistical offices to calculate indicator
11.7.1 in Greece.
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