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Abstract: Large-scale optical sensing and precise, rapid assessment of seismic building damage in
urban communities are increasingly demanded in disaster prevention and reduction. The common
method is to train a convolutional neural network (CNN) in a pixel-level semantic segmentation
approach and does not fully consider the characteristics of the assessment objectives. This study
developed a machine-learning-derived two-stage method for post-earthquake building location and
damage assessment considering the data characteristics of satellite remote sensing (SRS) optical
images with dense distribution, small size, and imbalanced numbers. It included a modified You
Only Look Once (YOLOv4) object detection module and a support vector machine (SVM) based
classification module. In the primary step, the multiscale features were successfully extracted and
fused from SRS images of densely distributed buildings by optimizing the YOLOv4 model toward the
network structures, training hyperparameters, and anchor boxes. The fusion improved multi-channel
features, optimization of network structure and hyperparameters have significantly enhanced the
average location accuracy of post-earthquake buildings. Thereafter, three statistics (i.e., the angular
second moment, dissimilarity, and inverse difference moment) were further discovered to effectively
extract the characteristic value for earthquake damage from located buildings in SRS optical images
based on the gray level co-occurrence matrix. They were used as the texture features to distinguish
damage intensities of buildings, using the SVM model. The investigated dataset included 386 pre-
and post-earthquake SRS optical images of the 2017 Mexico City earthquake, with a resolution of
1024 × 1024 pixels. Results show that the average location accuracy of post-earthquake buildings
exceeds 95.7% and that the binary classification accuracy for damage assessment reaches 97.1%. The
proposed two-stage method was validated by its extremely high precision in respect of densely
distributed small buildings, indicating the promising potential of computer vision in large-scale
disaster prevention and reduction using SRS datasets.

Keywords: earthquake damage assessment; satellite images; computer vision; machine learning;
small and dense object detection; imbalanced data classification

1. Introduction

As one of the most hazardous natural disasters, earthquakes have typical character-
istics significantly different from other natural disasters, such as an instantaneous burst,
unpredictability, destructiveness, complex mechanism, difficult defense, broad social im-
pact, and quasi-periodic frequency. With the significant expansion of city population and
rapid urbanization, earthquakes have undeniably become the main threat to buildings and
other infrastructure in earthquake-prone areas [1]. According to the statistics of official de-
partments, most of the casualties and economic losses after an earthquake are closely related
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to the destruction of buildings. Therefore, damage assessment of buildings plays a critical
role in seismic damage surveys and emergency management of urban areas after an earth-
quake disaster. Scientists have conducted many investigations on earthquake occurrence
mechanisms and disaster impacts for accurate disaster prevention and reduction.

Generally, the damage assessment of urban buildings after an earthquake needs two
steps: object location and damage identification. Among those evaluation methods, the
dynamic-response-based structural health monitoring method cannot conduct a comprehen-
sive evaluation using signals collected by a limited number of sensors (e.g., an acceleration
sensor), and the on-site ground survey, depending on the seismic experts or structural
engineers, is mainly used to evaluate damage status [2]. Such a method needs to check the
buildings one by one, making it challenging to overcome the limitations of accessible space
and ineffective use of time. The assessment results greatly rely on the subjective judgment
of surveyors, leading to the inevitable difficulty of guaranteeing detection stability due to
the limited available information from manual visual observation (e.g., upper views and
features of the buildings). Blind zones are also challenging to approach after an earthquake,
given the possibity of secondary disasters. Therefore, highly accurate and rapid seismic
damage assessment of urban buildings is increasingly demanded for the emergent response,
effective searching, and quick rescue after an earthquake.

Comparatively, remote sensing, as a nearly emergent technology, has unique advan-
tages, including a lack of contact, low cost, large-scale coverage, and fast response. Research
communities have reported their attempts to use remote sensing data (e.g., optical or syn-
thetic aperture radar (SAR) data)) for automatic seismic damage assessment and other
fields [3–6]. The remote sensing method prioritizes earthquake damage assessment of
buildings, and provides a much faster, more economical, and more compressive assessment
than manual assessment. SAR data have become an all-weather information source for
disaster assessment because of their strong penetration ability to disturbances, such as
heavy clouds and rain [7–10]. Generally, most disaster assessments using SAR data are
based on multi-source or multi-temporal data, which requires complex image registration
and other necessary processes. To overcome these challenges, some researchers prefer
satellite optical images [11]. Compared to SAR data, optical images are much easier to
access and to process for extraction of the characteristic information of seismic damage. At
present, building earthquake damage assessment based on satellite remote sensing (SRS)
optical images mainly includes visual interpretation and change detection. These processes
primarily rely on the graphical comparison pre- and post-earthquake, which shows unex-
pected limitations (e.g., it is challenging to obtain pre-images in less developed areas, and
the assessment accuracy depends on technical expertise) and low efficiency [3,12].

Artificial intelligence (AI) has made explosive breakthroughs in recent years [13].
Essential methods of AI collection, machine learning (ML) and computer vision (CV) are
mainly promoted by end-to-end learning through the use of artificial neural network (ANN)
and CNN approaches. This supplies a new option that utilizes computers to process data
and enables computers to analyze and interpret it. In recent years, many efficient algorithms
have been created to promote the application of ML and CV methods in structural health
monitoring [14–23]. These methods effectively reduce or eliminate the dependence on
professional measuring equipment, expensive sensors, and the subjective experience of
inspectors. AI/CV techniques can overcome the above shortcomings with high efficiency,
stability, and robustness. Additionally, these techniques, merging with unmanned aerial
vehicles and robotics, can assist humans to access the hard-to-inspect places and ensure
safety. Therefore, AI/CV techniques are more suitable for rapid damage assessment of
wide-area post-earthquake buildings [24,25]. Benefiting from the consistent improvements
of remote sensing and AI technology, CV methods have been gradually developed for
structural damage assessment, which mainly includes image classification, object detection,
and semantic segmentation.

Fundamentally, single-stage object detectors, such as YOLO [26–29], and single-shot
multibox detectors (SSDs) [30] omit the process for obtaining the proposal region and
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transforming the object detection task for location and classification into a regression prob-
lem. However, they present unsatisfactory adaptability for SRS data (e.g., low accuracy,
either false or missing detection) because of apparently different characteristics rather than
natural images, such as limited vertical view information, small and dense objects, com-
plex environmental background, and illumination variation. However, their advantages,
including high precision, small volume, and fast operation speed, are advisable for the
rapid disaster assessment of urban buildings after an earthquake based on SRS optical
images. Moreover, as seismic damage classification of urban buildings greatly depends
on footprint information, the accuracy of building positioning directly affects the result of
earthquake damage assessment. In most earthquake on-sites, it is challenging to realize
‘one-step’ damage assessment by the data-driven deep learning methods owing to the
lack of high-quality annotation datasets [31]. Under the actual scenarios of investigated
urban areas, most of the buildings in the SAR images are in normal condition, while only a
few are damaged (which are actually concerned by post-earthquake disaster assessment).
Therefore, it causes an imbalanced problem for damage severity classification, which is
also a common problem in the field of structural health monitoring for civil engineering.
It makes machine learning difficult because the model would be misguided by the over-
whelming majority of normal samples and have limited recognition ability of damaged
samples. Therefore, it is significant to investigate the problem caused by imbalanced data.

To solve the above-mentioned issues of currently reported methods, this study pro-
posed a modified You Only Look Once (YOLOv4) object detection module and a support
vector machine (SVM) derived classification module for building location and damage
assessment. Specifically, the objectives of the paper are as follows:

(1) This paper aims to develop a novel method for rapid and accurate wide-area post-
earthquake building location and damage assessment using SRS optical images.

(2) To detect tiny-sized and densely distributed buildings, the YOLOv4 model is im-
proved to achieve a much higher precision.

(3) To classify the damage severity of imbalanced buildings, images features of gray
level co-occurrence matrix (GLCM) that can effectively distinguish different damage
severities are extracted and utilized in SVM classification.

The remainder of this article is organized as follows. Section 2 focuses on the related
work of damage assessment of post-earthquake buildings in SRS optical images using CV
methods. Section 3 exhibits the dataset and experiment details. Section 4 introduces the
overall framework of the proposed method. Section 5 describes the first module of building
location and discusses the results. Section 6 explains the second module of post-earthquake
damage classification and illustrates the results. Section 7 concludes the article.

2. Related Work

Research communities have introduced CV into building location and damage classi-
fication based on SRS optical images. Ci et al. [32] proposed a new CNN combined with
ordinal regression, making full use of historical accumulated data. The results showed
77.39% accuracy of four classifications and 93.95% accuracy of two classifications for the
2014 Ludian earthquake. Duarte et al. [33] adopted SRS images with different resolutions
from satellites and airborne platforms to achieve better accuracy in the damage classifica-
tion of buildings by integrating multiscale information. Maggiori et al. [34] addressed the
issue of imperfect training data through a two-step training approach and developed an
end-to-end CNN framework for building pixel classification of large-scale SRS images. The
approach was initialized on a large amount of possibly inaccurate reference data (from the
online map platform) and then refined on a small amount of manual, accurately labeled
data. Adriano et al. [35] realized the four-pixel-level classification of building damage with
more accuracy than 90% after combining SRS optical data and SAR data. Liu et al. [36]
demonstrated a layered framework for building detection based on a deep learning model.
By learning building features at multiscale and different spatial resolutions, the mean
average precision (mAP) of this model for building detection in SRS images was 0.57. To



Remote Sens. 2022, 14, 1012 4 of 30

solve the gap between the axial detection box of conventional objects and the actual az-
imuth variation, Chen et al. [37] introduced directional anchors and additional dimensions,
which achieved a mAP of 0.93 for object detection of buildings. Etten et al. [38] addressed
a suitable model named You Only Look Twice for processing large-scale SRS images by
modifying the You Look Only Once v2 (YOLOv2) structure with finer-grained features and
a denser final grid, which achieved an F1-score of 0.61 for building detection. Ma et al. [39]
replaced the Darknet53 in YOLOv3 with the Shufflenetv2 and adopted GIoU as the loss
function. The results on SRS images with a resolution of 0.5 m for the Yushu and Wenchuan
earthquakes showed that the modified model could detect collapsed buildings with a mAP
of 90.89%.

There is a need for accurate and efficient machine learning models that assess building
damage from SRS optical images. The xBD database [40] is a public, large-scale dataset
of satellite imagery for post-disaster change detection and building damage assessment.
It covers a diverse set of disasters and geographical locations with over 800,000 building
annotations across over 45,000 km2 of imagery. Furthermore, Gupta et al. [39] created
a baseline model. The localization baseline model achieved an IoU of 0.97 and 0.66 for
“background” and “building,” respectively. The classification baseline model achieved an
F1-score of 0.663, 0.143, 0.009, and 0.466 for no damage, minor damage, major damage, and
destroyed building classes, respectively.

Many researchers [40–43] began to use the xBD dataset as benchmark dataset for
automated building damage assessment studies. Shao et al. [41] reported a new end-
to-end remote sensing pixel-classification CNN to classify each pixel of a post-disaster
image as an undamaged building, damaged building, or background. During the training,
both pre- and post-disaster images were used as inputs to increase semantic information,
while the dice loss and focal loss functions were combined to optimize the model for
solving the imbalance problem. The model achieved an F1-score (a comprehensive index)
of 0.83 in the xBD database with multiple types of disasters. Bai et al. [42] developed a new
benchmark model called pyramid pooling module semi-Siamese network (PPM-SSNet), by
adding residual blocks with dilated convolution and squeeze-and-excitation blocks into the
network and compressing incentive to improve the detection accuracy. Results achieved a
F1 score of 0.90, 0.41, 0.65, and 0.70 for four damage types, respectively.

It can be found that the common idea underlying these methods is to train a CNN in a
pixel-level semantic segmentation approach [32–43]. For adjacent buildings or buildings
with occlusion views, these methods cannot distinguish the geometric range of each in-
dependent building after the earthquake. Moreover, due to the influence of imbalanced
data on model training, they generally exhibit lower accuracies for damaged samples.
Therefore, it is significant to fully consider these characteristics of unbalanced, tiny-sized,
and densely distributed buildings and develop an appropriate building recognition and
damage assessment method.

3. Preparation of Urban Earthquake Dataset

The 2017 Mexico City earthquake data from the xBD database [40] was adopted in
this study. To conduct the large-scale post-earthquake damage assessment, 386 pre- and
post-earthquake SRS images with a resolution of 1024× 1024 pixels and a ground sampling
distance of 0.8 m were selected. According to the joint damage rating established by
the European macroseismic scale (EMS-98), the building damage was divided into four
categories. Representative images are shown in Figure 1a, and the corresponding labels for
the polygon location and damage categories of urban buildings are shown in Figure 1b.
Green, blue, red, and purple represent no damage, minor damage, major damage, and
destroyed, respectively. Table 1 shows the detailed descriptions of the damage categories
and numbers of buildings in 193 post-earthquake SRS images. As illustrated in Figure 1
and Table 1, the selected dataset presented quite different characteristics than the natural
images. For detection objects, buildings in satellite images showed a tiny observable size,
dense distribution, and imbalanced damage types.



Remote Sens. 2022, 14, 1012 5 of 30

Figure 1. Representative images and annotations for the 2017 Mexico City earthquake image dataset:
(a) Original post-earthquake SRS image; (b) Polygon location and labels for damage categories.

Table 1. Descriptions and numbers of buildings for four damage categories in the original dataset.

Damage Category Status Description of Damages Number of Buildings

No damage Undisturbed, no sign of structural damage 51,084
Minor damage Roof missing, visible cracks 221
Major damage Partial wall or roof collapses 54

Destroyed Completely collapsed 3

Furthermore, the number of buildings corresponding to the four damage categories
was highly imbalanced; buildings with no damage far outnumbered those in the other
three categories. Internal and facade information of buildings were also unable to assess
post-earthquake damage other than directly viewed roofs comprehensively. In addition,
the available SRS images mainly presented a unified resolution and single hue. Thus, the
optimization of detector and classifier should be taken to make up for the shortage caused
by the above-summarized data imperfection.

3.1. Data Preparation for Tiny Dense Object Detection of Post-Earthquake Buildings

A total of 386 pre- and post-earthquake images from the 2017 Mexico City earthquake
dataset were collected for object detection of the post-earthquake buildings. The pre-
earthquake images were regarded as data augmentation to increase the diversity of training
sample space, while the corresponding damage was labeled as no damage. Moreover,
reported studies have shown that the usage of both pre- and post-disaster images facilitates
build location and damage classification after the earthquake [31,41]. Figure 2 shows the
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ground-truth bounding boxes of tiny, dense buildings in an SRS image using original
polygon annotations of buildings. The minimal rectangular box surrounding each building
was determined by the minimum and maximum coordinates of the polygon.

Figure 2. Representative examples of ground-truth rectangular bounding boxes for buildings in a
1024 × 1024 original image.

Considering the memory limit of the Graphics Processing Unit (GPU), the input size of
the sub-images was adjusted as 608× 608 pixels. A sliding window of 608× 608 pixels with
an overlap of 96 in width and height was used to generate patches from the original image
of 1024 × 1024 pixels. Edge pixels were padded with pixel intensities of zero, and the 15%
overlap area ensured that all regions would be analyzed. This strategy was also conducive
to data augmentation by introducing translation to the edge images. Consequently, a total of
13,896 patches were obtained, among which 80% of the data was used for training, and the
remaining 20% was used for testing. Statistical analysis showed that the modified dataset
contained 1,317,237 buildings, while 95 buildings were included per patch on average.

As shown in Figure 3, the distribution histogram of building size (the square root of
width × height) in the dataset showed that the number of object sizes ranged from pixels
of 0–16, 16–32, 32–48, 48–64, 64–80, 80–96, and 96–608 are 13.24, 40.94, 25.97, 11.17, 4.60,
1.91, and 2.17%, respectively. According to the MS COCO dataset [44], the object scales
could be divided into three typical types: the small object (<32 pixels), the medium object
(32–96 pixels), and the large object (>96 pixels). The statistical results showed that more
than half of building objects (54.18%) in this selected dataset were of the small-object type.
Moreover, extremely tiny objects (<16 pixels) took up a proportion of 13%, making them
more challenging to detect than normal small parts.

3.2. Data Preparation for Classification of Highly Imbalanced Damage

In general, SRS images can cover a vast area in a vertical view but little spatial
information. For instance, when the ground floor of the building completely collapses
with the superstructure remaining intact, it is difficult to identify such a damage status
using satellite images. Therefore, most reported studies have only divided the buildings
into two categories: not collapsed and collapsed [32,39,45]. In this study, buildings were
first cropped to rectangular regions separately from the original image. They were then
divided into two damage levels containing four different damage levels: no damage or
minor damage (Class 1), and major damage or destroyed (Class 2). Class 1 defines reusable
buildings after an earthquake, while Class 2 implies that the building is too severely
damaged to reuse. All of the 57 major damage and destroyed buildings in Table 1 were
classified as Class 2. Then, a dataset of no-damage and minor-damage buildings, with the
same numbers of 57 as Class 1, was randomly selected. These 114 candidates constructed
the dataset to train the SVM classifier for building damage classification. The training
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and testing sets included 70% and 30%, i.e., 40 and 17 samples for the two categories,
respectively. Figure 4 visually depicts the examples for post-earthquake building damage
classification. It shows that Class 1 (no damage and minor damage) had clear and intact
geometric configurations. In contrast, the major damage and destroyed buildings in Class
2 had poor geometric integrity, vague edges, and scattered rubbles around them. Thus,
different damage statuses could be distinguished from the irregular and disordered texture
features using these images.

Figure 3. Distribution histogram of building size in the dataset.

Figure 4. Binary classification examples for post-earthquake building damage assessment: (a) Class
1: no damage or minor damage; (b) Class 2: major damage or destroyed.



Remote Sens. 2022, 14, 1012 8 of 30

4. Framework

Considering the unique characteristics (tiny size, dense distribution, imbalanced infor-
mation, and multiscale features) of SRS optical images for urban regions after earthquake
disasters, we proposed a machine-learning-derived two-stage method enabling exact build-
ing location and rapid seismic damage assessment. In detail, the model was designed to
collaboratively realize the detection and classification depending on two hybrid functional
modules as a modified YOLOv4 and a support vector machine (SVM). The two-stage
detection of YOLOv4 enables the precise detection and location of tiny dense buildings in
SRS images, while the supervised-learning-based SVM offers a way for rapid classification
using texture features of seismic damages. The schematic illustration and workflow of
the proposed framework are shown in Figure 5. The proposed method consists of three
modules, including data preparation, detection for buildings after an earthquake, and
classification for buildings of post-earthquake damage:

(1) Data preparation

Figure 5. Schematic illustration and workflow of proposed framework for post-earthquake building
assessment using SRS images.

The 2017 Mexico City earthquake dataset from the xBD database was selected, includ-
ing SRS images for pre- and post-earthquake buildings and classification labels of damage
intensities for building instances. A more detailed description is offered in Section 3.

(2) Precise detection for tiny-sized and densely distributed buildings after an earthquake

To adapt the precise detection of tiny-sized and densely distributed buildings after
urban earthquake utilizing SRS optical images, the YOLOv4 model was relevantly opti-
mized by constructing a more efficient network, optimizing the hyperparameters, and
selecting the more appropriate anchor boxes. After that, a well-trained YOLOv4 model was
obtained for the precise location of buildings. The details of implementation can be found
in Section 5.

(3) Rapid classification for urban buildings with highly imbalanced information on post-
earthquake damage

Six texture features with a single building in each detected bounding box were ex-
tracted by a gray level co-occurrence matrix (GLCM). Among them, three (i.e., the angular
second moment, dissimilarity, and inverse difference moment) were validated as effective
characteristics to support the following SVM that derived the binary classification of dam-
age intensity (i.e., destroyed/major damage and minor damage/no damage). The detailed
discussion is set out in Section 6.

The workflow is shown in the right part of Figure 5. After the SRS optical images
of post-earthquake buildings in urban areas are input to the modified YOLOv4 model,
rectangular bounding boxes are generated for the buildings. Consequently, each image
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patch inside the generated bounding box is used to obtain the GLCM features and then
utilized as the input of the well-trained SVM classification model. Finally, the damage level
is classified for each building inside the SRS image.

5. Small, Dense Object Detection of Post-Earthquake Buildings
5.1. Introduction of the Original YOLOv4 Model

Deep-learning-based object detection methods have been extensively proposed since
2014 [46], among which YOLO is a widely used single-stage end-to-end model that has
evolved four generations. YOLOv4 has achieved state-of-the-art performance in the object
detection field, and it has achieved a detection accuracy of 43.5% and a speed of 65 FPS in
the MS COCO dataset [44]. Therefore, YOLOv4 holds promising potential for detecting
post-earthquake buildings owing to its high precision and rapid speed. Figure 6a clearly de-
scribes the structure of the YOLOv4 object detector; it comprises three parts: the backbone,
neck, and head:

1. The backbone part comprises CSPDarknet53; it conducts downsampling in CSP1,
CSP2, CSP8, CSP8, and CSP4 modules by 2, 4, 8, 16, and 32 times, respectively.
The feature layer with 32 times downsampling has rich feature dimensions and a
large receptive field, but the feature scale is compressed seriously, which is more
suitable for object detection with large size. In contrast, the eight times downsampling
is appropriate for small objects, obtaining a larger feature scale, a smaller feature
dimension, and a receptive field. Comparatively, the 16 times downsampling located
in the middle of the two layers prefers to detect the medium objects.

2. The neck part is composed of PANet [47] and SPP additional modules [48]. PANet
fuses features from different backbone scales for different detector scales. The SPP
module is used to increase the receptive field of the backbone and separate the
significant context features;

3. The head part is a multi-head structure in three scales, in which a total of 9 anchor
boxes are utilized to complete detection at multiscale. Eventually, the prediction
bounding box with the highest confidence is retained by non-maximum suppression [49].

The YOLOv4 model uses a synthetical loss function, as follows:

Loss = λlocLossloc + λcon f Losscon f + λclsLosscls, (1)

Lossloc =
S2

∑
i=0

B

∑
j=0

1obj
ij LCIoU , (2)

Losscon f =
S2

∑
i=0

B

∑
j=0

1obj
ij

(
Cj

i − Ĉj
i

)2
+

S2

∑
i=0

B

∑
j=0

1noobj
ij

(
Cj

i − Ĉj
i

)2
, (3)

Losscls = −
S2

∑
i=0

B2

∑
j=0

1obj
ij ∑

c∈classes

[
p̂j

i log
(

pj
i

)
+
(

1− p̂j
i

)
log
(

1− pj
i

)]
, (4)

where Lossloc, Lossconf, and Losscls denote the location, confidence, and classification losses,
respectively. λloc, λcon f , and λcls are the corresponding penalty coefficients of the location

loss, confidence loss, and classification loss, respectively. 1obj
ij and 1noobj

ij are binary indicator
functions, representing whether the jth anchor box of the ith grid has an object (= 1) or not
(= 0). S and B denote the numbers of grids and anchor boxes, respectively. 1obj

ij and 1noobj
ij

are binary indicator functions, representing whether the jth anchor box of the ith grid has
an object (= 1) or not (= 0), respectively. Cj

i and Ĉj
i are the confidence of the actual category

and the predicted category of the jth anchor box of the ith grid, respectively. pj
i and p̂j

i are
the classification accuracy of the real and the predicted category of the jth anchor box of
the ith grid, respectively.
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Figure 6. YOLOv4 model for tiny dense object detection of post-earthquake buildings: (a) Basic
network; (b) Our optimized version.

The CIoU [49] is used by considering the overlap area (IoU), distance from the center
points (ρ2), and aspect ratios (w/h) of the predicted and ground-truth boxes, as follows:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αυ, (5)

IoU =
B ∪ Bgt

B ∩ Bgt , υ =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

, α =
υ

(1− IoU) + υ
, (6)
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where ρ2(b, bgt) represents the center distance between the predicted and ground-truth
boxes. B and Bgt are the predicted and ground-truth boxes. b, w, h, bgt, wgt, and hgt

denote the center coordinates, width, and height of the bounding (anchor) box, respectively.
c denotes the diagonal length of the smallest enclosing box covering B and Bgt.

5.2. Design of Modified YOLOv4 Model

To satisfy the specific characteristics of our SRS dataset rather than natural images, the
YOLOv4 model was designed based on the profound modification of the original YOLO
model. Figure 6b clearly describes the network structure of the modified YOLOv4 model.

1. The backbone part remains the CSPDarkNet53 backbone feature extraction network.
Thus, its 32 times downsampling layer retains high-level semantic information for
later PANet modules to fuse multiscale information. In addition, the pre-trained
weights of the backbone feature extraction network enable us to obtain the basic
information of the image that can be used to transfer learning and fine-tuning.

2. In the neck part, the PANet was optimized by removing the SPP module because
it was verified to be useless in improving accuracy. However, many characteristic
features will be lost for objects at small scales (<32 pixels) after 32 times downsampling.
The 32 times downsampling layer in the PANet module was removed accordingly.
Considering the usage of fixed-size images in the training phase, CBL*3 + SPP + CBL*3
was updated as CBL*5.

3. In the head part, we retained and further optimized functions enabling both small
and medium object detection at multiscale. The number of anchor boxes for the
YOLO head correspondingly increased to the optimal number, which is conducive to
matching more positive samples for medium and small objects to participate in loss
calculation during training. Such improvements make the network more focused on
specifically designed detection purposes.

5.3. Results and Discussion

Fundamentally, the performance of deep CNNs is highly dependent on the hyperpa-
rameter selection and network structure. For object detection, the choice of anchor box
further affects the detection accuracy. Therefore, the effects of hyperparameters, network
structures, and anchor boxes were systematically investigated and discussed. In reference
to previously reported research, the pre-trained weights obtained from the large dataset
should be capable of extracting the low-level and intermediate features of images [50].
Therefore, this study adopted the pre-trained weights on the MS COCO datasets and then
conducted the necessary fine-tuning to make them suitable for our datasets.

Besides the evaluation index of IoU, widely used evaluation metrics, including precision,
recall, F1-score, and mAP, were also utilized and defined as Equations (7)–(11):

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1− score =
2× Precision× Recall

Precision + Recall
, (9)

AP =
1

11 ∑
r∈[0,0.1,...0.9,1]

max
r̃:̃r≥r

(P(r̃)), (10)

mAP =

N
∑

i=1
APi

N
, (11)
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where TP, FP, and FN are true positives, false positives, and false negatives, respectively.
P(r̃) represents the measured precision at recall r̃ in the precision/recall curve. N is the
number of categories, which equaled 1 in this study.

In the seismic damage assessment of buildings, accurate object identification and
location is the basis of damage assessment. In general, the better training results should
have a larger number of correct detections (TP) and fewer missed detections (FN). In
addition, IoU measures the overlap rate between the predicted and ground-truth bounding
boxes, which ranges from 0 to 1. A specific threshold needs to determine whether the
predicted box localizes the correct object. As referred to in previously reported literature,
the 0.5 IoU-based mAP has become the measuring standard for object detection problems
for years [46], so it was also selected in this study.

5.3.1. Hyperparameter Investigations

The default hyperparameter configuration of YOLOv4 [29] has achieved excellent
performance on the MS COCO dataset and is chosen as the basis for hyperparameter
optimization. For instance, the stochastic gradient descent algorithm, with momentum
m = 0.949, was used to update the network optimizer, and the initial learning rate was
0.001, with warm-up steps of 1000 iterations (as shown in Equation (12)).

initial learning rate = 0.001× (
iterations

1000
)

4
, iterations ≤ 1000, (12)

The mosaic method was applied to enhance the data to enrich the characteristic
information in eigenspace. In detail, four training images were selected to form one image
by random cutting, stitching, and arrangement. The background of detecting objects and
the number of small objects could significantly increase. As a result, the demand for mini-
batch was reduced, which could effectively improve the recognition effect of tiny objects.
The relevant parameters for data enhancement are saturation = 1.5, exposure = 1.5, and
hue = 0.1 at the input terminal, denoted by adjusting saturation, exposure, and hue to
generate more training samples. In addition, the penalty coefficients of λloc, λcon f , and λcls
losses in Equations (2)–(4) were 0.07, 1.0, and 1.0, respectively.

Next, considering the training efficiency, hyperparameters with a good model perfor-
mance were retained for subsequent optimization during the ablation experiment. Some
critical hyperparameters were investigated, including the size of the input image, batch
parameters (batch size and subdivisions), number of iterations, learning rate strategy (steps
and scales), and weight decay. Tables 2 and 3 show the specific hyperparameter settings
and the corresponding model performance, respectively.

Cases 1, 2, and 3 in Table 3 indicate that the size of input images had a significant effect
on the model performance. Multiple downsampling processing occurrences through the
backbone feature extraction network generated a feature map reduced by 32 times, making
it difficult for the network to capture the feature information of tiny objects. This indicates
that the robustness of the detection model for small objects can be improved by inputting
the larger size images for training.

Cases 3, 4, and 5 in Table 3 reveal that the increase in batch size can greatly improve
performance within a specific range, and similar results have also been proposed by
Goyal [51] and Keskar [52]. However, the longer training time slightly improves beyond a
certain threshold. For instance, compared with case 4, case 5 gained only a 1% performance
improvement but took nearly twice the training time. The subdivisions represent the mini-
batch number of inputs owing to the memory limitation of GPU. Considering the training
efficiency comprehensively, the size of the input image, batch size, and subdivisions were
set as 608 × 608, 512, and 128, respectively.
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Table 2. Hyperparameter settings for different cases.

Case Network
Structure

Size of Input
Image

Batch Size,
Subdivisions

Number of
Iterations Steps Scales Weight

Decay

1 YOLOv4
baseline 256 64, 16 4000 3200, 3600 0.1, 0.1 0.0005

2 YOLOv4
baseline 512 64, 16 4000 3200, 3600 0.1, 0.1 0.0005

3 YOLOv4
baseline 608 64, 16 4000 3200, 3600 0.1, 0.1 0.0005

4 YOLOv4
baseline 608 512, 128 4000 3200, 3600 0.1, 0.1 0.0005

5 YOLOv4
baseline 608 1024, 256 4000 3200, 3600 0.1, 0.1 0.0005

6 YOLOv4
baseline 608 512, 128 4000 3200, 3600 0.1, 0.1 0.1

7 YOLOv4
baseline 608 512, 128 4000 3200 0.1 0.1

8 YOLOv4
baseline 608 512, 128 8000 6400 0.1 0.1

9 Proposed 608 512, 128 8000 6400 0.1 0.1
10 Proposed 608 512, 128 10,000 8000 0.1 0.1

Table 3. Model performances under different hyperparameter settings.

Case mAP Precision Recall F1-Score TP FP FN Average IoU Training Time (h)

1 41.5% 0.40 0.51 0.45 42,609 63,299 40,150 28.1% 1.2
2 72.5% 0.64 0.73 0.68 102,524 57,623 37,670 47.7% 4.4
3 79.6% 0.73 0.78 0.76 210,579 75,964 59,815 56.4% 6.7
4 89.3% 0.84 0.87 0.86 236,273 43,703 34,121 68.3% 57.2
5 90.3% 0.85 0.88 0.87 239,203 41,245 31,191 69.6% 111.2
6 92.3% 0.90 0.90 0.90 244,309 28,514 26,085 74.6% 57.5
7 93.2% 0.91 0.91 0.91 246,994 25,461 23,400 76.1% 57.4
8 95.2% 0.94 0.94 0.94 253,870 16,996 16,524 80.8% 116.5
9 95.7% 0.95 0.95 0.95 255,823 14,631 14,571 82.6% 120.5

10 95.8% 0.95 0.95 0.95 256,652 14,751 13,742 82.2% 154.6

In general, the regularization process can improve the generalization ability of the
model and suppress overfitting. Adding the regular term 1

2 λ‖ω‖2 (‖ω‖ denotes the 2-norm
of network parameters) to the original loss function can affect the network during the
error backpropagation process, and weight decay λ is the coefficient of the regularization
term. Cases 4 and 6 in Table 3 demonstrate the significant improvement of the model
performance by increasing the weight decay within a specific range.

As another essential parameter, the learning rate determines the updating speed of
the model. Typically, a too-large learning rate may cause the network to exceed the optimal
value or even fail to converge. Otherwise, it has a slow convergence speed and can easily to
fall into the local optimal value. The most used learning rate attenuation strategy selects a
slightly larger learning rate at the beginning of the iteration, which gradually reduces with
the increase of iterations. In this study, we chose a staged decay learning rate strategy with
an initial value of 0.001. In Table 2, steps and scales equal the specified number of iterations
and the multiplication factor of the current learning rate. The default learning rate in
YOLOv4 was decayed in the form of a “two-phase type,” which decreased by 0.1 at 0.8 and
0.9 times of the total number of iterations, respectively. For example, Case 6 attenuated the
learning rate to 0.0001 and 0.00001 at 3200 and 3600 iterations, respectively. Cases 6 and
7 in Table 3 show that the performance of the “one-phase type” was better than that of the
“two-phase type”.



Remote Sens. 2022, 14, 1012 14 of 30

As a result, cases 7 and 8 in Table 3 show that increasing the total number of iterations
significantly enhanced mAP. This was also validated by cases 9 and 10. However, when
the total number of iterations increased from 8000 to 10,000 using the proposed network
structure, it required nearly 30% of the extra training time for only 0.1% improvement in
mAP. Therefore, the number of iterations, steps, and scales were set as 8000, 6400, and
0.1, respectively.

5.3.2. Optimization of Network Structure

Four different networks were designed to further optimize the performance of YOLOv4
on tiny dense object detection by multiscale networks, as shown in Figure 7. Briefly,
structure-1 removed 32-times downsampling layers in the backbone and corresponding
layers in the neck, and built a two-scale detector with 4 anchor boxes in the head (Figure 7a).
Structure-2 changed the 8-times downsampling layers to four times, and further connected
with 16 times in the neck. In addition, structure-2 selected a three-scale detector with three
anchor boxes at the corresponding scale in the head (Figure 7b). Structure-3 detached both
32 and 16 times of downsampling layers in the neck and designed a one-scale detector with
nine anchor boxes in the head (Figure 7c). In comparison, structure-4 removed 32 times of
downsampling layers in the neck and added a two-scale detector with four anchor boxes in
the head (Figure 7d). Table 4 demonstrates the differences among the proposed networks,
which included the downsampling sampling layers at different scales in the backbone and
neck, and the numbers of YOLO heads. The related hyperparameter settings are listed
in Table 5. Moreover, the size of the input image was 608 × 608, the weight decay was
0.1, the learning rate was in the form of “one-phase type,” and the total number of iterations
was 4000.

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Four different network structures of modified YOLOv4: (a) Structure-1; (b) Structure-2;
(c) Structure-3; (d) Structure-4.

Table 4. Specific details for four different network structures.

Network Structure Scales of the Downsampling
Sampling Layers in the Backbone

Scales of the Downsampling
Sampling Layers in the Neck Number of the YOLO Head

Structure-1 2, 4, 8, 16 8, 16 2
Structure-2 2, 4, 8, 16, 32 4, 16, 32 3
Structure-3 2, 4, 8, 16, 32 8 1
Structure-4 2, 4, 8, 16, 32 8, 16 2

Table 5. Hyperparameter settings for four different network structures of modified YOLOv4.

Case Network
Structure Batch Size Subdivisions Number of

the Head
Number of Anchor

Boxes per Head
Number of

Clustering Centers

11 YOLOv4
baseline 512 128 3 3 9

12 structure-1 512 128 2 4 8
13 structure-2 512 256 3 3 9
14 structure-3 512 128 1 9 9
15 structure-4 512 128 2 4 8
16 proposed 512 128 2 4 8

Table 6 systematically illustrates the various performances of different network struc-
tures. Among these modified YOLOv4 networks, the mAP of structure-1 was even lower
than that of the primary network. This reveals that the high-level semantic information
in the 32 times downsampling layers of backbone feature extraction network plays a
significant role in tiny, dense object detection. Comparatively, finer-grained features ex-
tracted by the four times downsampling layers in the neck of structure-2 contributed to
the performance improvement, but the increased network size made it only suitable for
batch parameters of 512 and 256 using the same GPU. This indicates that the mediocre
performance still needs a relatively long time consumption. After that, we investigated
the multiscale detectors in the head on the tiny dense object detection without changing
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the backbone. Cases 14 and 15 in Table 6 maintained small-scale (and medium-scale)
detectors in the head, which was more suitable for the characteristics of our dataset. The
results showed the same mAP performance of structure-3 and structure-4, but structure-4
presented a 0.9% increase in TP and a 7.9% reduction in FN. This validated that a two-scale
detector covering medium and tiny scales in structure-4 is more likely to extract character-
istic features from our SRS dataset. Moreover, compared with the original YOLOv4 model,
the proposed structure (structure-4 without SPPNet) archived optimal performance with
the training time, and the well-trained model size dropped by 11% and 28% under the
same hyperparameters, respectively. This indicates that the inference efficiency for SRS
images is effectively improved using the lightweight model.

Table 6. Model performances of four different network structures of modified YOLOv4.

Case mAP Precision Recall F1-Score TP FP FN Average
IoU

Training
Time (h)

Model
Size (M)

11 92.5% 0.89 0.91 0.90 245,597 29,260 25,797 74.4% 63.5 256.0
12 92.1% 0.91 0.90 0.90 242,066 23,082 28,328 75.9% 56.8 69.6
13 92.7% 0.91 0.89 0.90 241,604 23,815 28,790 75.8% 162.4 256.0
14 93.0% 0.93 0.90 0.91 242,879 17,956 27,515 77.9% 80.7 171.3
15 93.0% 0.91 0.91 0.91 245,063 22,841 25,331 76.8% 61.0 188.2
16 93.3% 0.92 0.91 0.92 246,268 19,975 24,126 77.9% 56.5 184.0

5.3.3. Investigation of Prior Anchor Box

Since it was first proposed by Ren et al. in Faster R-CNN [53], the anchor box has
been widely applied in object detection models. Appropriate setting of prior anchor boxes
enhances model performance and reduces inference efficiency. Theoretically, the size of
the anchor boxes can be obtained by the K-means clustering algorithm. By using standard
K-means with Euclidean distance, larger boxes usually generate more errors than smaller
boxes [27]. Therefore, the average intersection-over-union (average IoU) was selected as the
metric to eliminate this effect. The distance metric can be expressed as

d(anchor box , cluster centroid) = 1− IoU(anchor box, cluster centroid), (13)

where d(anchor box, cluster centroid) and IoU(anchor box, cluster centroid) are the distance and
the IoU of the anchor box and the cluster centroid, respectively.

Figure 8 shows the clustering analysis result of the dataset. The average IoU sharply
increased for the clustering center number with k less than 7, and the elevating tendency
grew slower. The clustering results also reflected similar situations of the anchor boxes.
Usually, anchor box selection needs to consider the complexity and accuracy of training
comprehensively. Tables 7 and 8 list the settings of prior anchor boxes in different cases
and the corresponding training results. Network structures with a two-scale detector in
the head, including structure-4 and the proposed structure, were investigated. Except for
the different iteration numbers, the other hyperparameters that needed to be considered
were the size of the input image and batch size. Subdivisions were set as 608 × 608, 512,
and 128, respectively. The weight decay was 0.1. The learning rate was in the form of a
“one-phase type” .
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Figure 8. Clustering analysis result of the dataset.

Table 7. Different settings of prior anchor boxes (numbers of clustering centers).

Case Network
Structure

Number of
Iterations

Number of the
Head

Number of Anchor
Boxes per Yolo Head

Number of Clustering
Centers

17 structure-4 4000 2 3 6
15 structure-4 4000 2 4 8
18 structure-4 4000 2 4 9
19 structure-4 4000 2 5 10
9 proposed 8000 2 4 8

20 proposed 8000 2 4 9

Table 8. Model performances under different settings of prior anchor boxes.

Case mAP Precision Recall F1-Score TP FP FN Average
IoU

Training
Time (h)

17 92.8% 0.91 0.91 0.91 244,779 23,167 25,615 76.6% 50.8
15 93.0% 0.91 0.91 0.91 245,063 22,841 25,331 76.8% 61.0
18 93.4% 0.92 0.91 0.92 246,268 21,595 24,126 77.2% 60.6
19 93.3% 0.92 0.91 0.91 246,184 22,380 24,210 76.8% 63.7
9 95.7% 0.95 0.95 0.95 255,823 14,631 14,571 82.6% 120.5

20 95.7% 0.94 0.95 0.95 256,287 15,673 14,107 81.7% 119.2

According to cases 17, 15, and 19 in Table 8, increasing the number of anchor boxes in
each head detector could promote model accuracy but take more training time. For case 18,
we selected the first eight anchor boxes of 9 clustering centers in Figure 7 and used them
on the 2 YOLO heads, and set (34, 6), (16, 16), (9, 43), (28, 28) and (52, 34), (39, 52), (70, 65),
(108, 112) as the first and second YOLO heads, respectively. The prior anchor box setting
was more consistent with the size distribution of buildings in SRS images to realize the
high detection performance. Compared with case 15, the results presented a 0.5% increase
in TP, a 5.5% reduction of FP, and a 4.8% reduction in FN, respectively. Both mAP and
average IoU realized a slight increase of 0.4%. The comparison between cases 9 and 20 also
followed a similar phenomenon: case 20 had a larger TP value and a smaller FN value, as
well as a slight increase of mAP. Therefore, the selection of anchor boxes following the size
distribution of the buildings was validated for its effectiveness in minimizing the missed
detection numbers and improving model accuracy.

5.3.4. Test Results

Considering the optimal performance on both model accuracy (mAP and average IoU)
and training time efficiency, case 9 was selected for testing. Figure 9a shows the loss
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descending curve in the training process. In general, the loss decreased rapidly at the start
of the training and converged slowly with the increase of iterations. Figure 9b exhibits
the changes of several representative evaluation metrics (mAP, average IoU, and F1 score)
in the validation dataset. After rapid elevation at the primary stage, mAP, average IoU,
and F1-score tended to approach approximately stable values of 95.7%, 82.6%, and 0.95 at
8000 iterations, respectively.

Figure 9. The testing performance of the modified YOLOv4 model: (a) Descending curve of the
average loss with the number of iterations; (b) Charts of mAP, average IoU, and F1-score with the
number of iterations.

Figure 10 and Table 9 show the test results of four randomly selected post-earthquake
images with different damage types of buildings with an IoU threshold of 0.25. It can
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be seen from Figure 10 that post-earthquake buildings with different damage types can
be identified well, and the predicted bounding box matches the ground-truth box well
for almost all building targets. The proposed YOLOv4 model presented good detection
capacity under complex conditions, such as buildings on the image boundary, dense
buildings, and tree-occluded buildings. Statistics show an accurate identification rate of
buildings after the earthquake above 95%. The model had an extremely high detection
accuracy, with average and median confidence higher than 90.5% and 94.4%, respectively.
Such performance verified the effectiveness of the modified YOLOv4 model for tiny dense
buildings detection after an earthquake.

Figure 10. Representative test results of small dense post-earthquake buildings (green: ground truth,
pink: predicted bounding box): (a) Example 1; (b) Example 2; (c) Example 3; (d) Example 4.
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Table 9. Statistics for four representative test results of small dense building detection.

Image Number Identification Rate of Buildings Average Confidence Median Confidence

Figure 10a 122/123 91.9% 98.0%
Figure 10b 39/41 98.5% 99.8%
Figure 10c 226/228 90.5% 94.4%
Figure 10d 227/230 92.3% 95.8%

In addition, the detection speed for 608 × 608 input images was 56 FPS on RTX 2080Ti,
with 11 GB of memory. For an entire SRS image of 1024 × 1024 (~0.67 km2), the input
patches of 608 × 608 with an overlap of 96 pixels were prepared and input into the well-
trained model for rapid prediction with ~4 s. This indicates a quasi-real-time response
speed of the proposed method, which provides immediate support for the post-earthquake
emergency and quick rescue.

6. SVM-Derived Damage Classification
6.1. SVM Algorithm

As a classic machine learning algorithm [54], SVM can achieve the best tradeoff
between model complexity and learning performance to obtain the best generalization
ability based on limited data information. This algorithm is suitable to process classification
problems of high dimensionality, nonlinearity, and small sample size. It has advantages
that are different from other methods, such as a complete mathematical theory, simple
structure, and time savings. Theoretically, the SVM enables data classification into two
categories by searching an optimal linear classification hyperplane [54,55].

Equation (14) defines the original optimization problem:

min
w,b,ξ

1
2 wTw + C

l
∑

i=1
ξi,

subject to yi
(
wTφ(xi) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l,

(14)

where xi ∈ Rn, i = 1, . . . , l represents the input vectors; yi ∈ {1,−1} is the label; w is the
weight vector of the classification surface; and C is the penalty coefficient, which is used
to control the balance of error ξi (slack variable). SVM is to find an optimal classification
hyperplane wTφ(xi) + b = 0, where φ(xi) can map xi to a higher-dimensional space, and b
is the bias.

Then, the final decision function can be obtained by using the Lagrange optimization
method and duality principle:

f (x) = sgn

(
l

∑
i=1

yiαiK(xi, x) + b

)
, (15)

where αi is a Lagrangian multiplier for each sample, K(xi, x) is a kernel function that can
transform the nonlinearity into linear divisibility in high-dimensionality feature space, and
then construct the optimal separating hyperplane in the high dimensional space to achieve
the data separation. The radius basis function (RBF) kernel is most widely used for multi-
classification tasks because it can realize nonlinear mapping and has fewer parameters and
numerical difficulties. The RBF kernel is defined as K(xi, x) = exp(−γ‖xi − x‖2).

6.2. GLCM Texture Feature Extraction

Previous reports have demonstrated that the texture features of post-earthquake
images play a vital role in damage recognition. Compared with the undamaged images,
the damaged region presents uneven textures and particular patterns. These unique
characteristics can be utilized for feature extraction to classify the damage status [56–61].
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The gray level co-occurrence matrix (GLCM) describes gray-scale image texture features by
investigating spatial correlation characteristics, the most widely used and effective statistical
analysis method for image textures [62]. The method first uses the spatial correlation of
gray level texture to calculate the GLCM according to the direction and distance of the
image pixel. The meaningful statistics from the calculated GLCM are then extracted to use
as the texture features of an image. The GLCM-based texture features are extracted by the
following steps.

In this study, the original RGB image was primarily converted to a 256-level gray-scale
image and then evenly quantized to a 16-level gray-scale image.

The matrix order of GLCM was then determined by the gray level of the image, with
the value of each element being calculated by the following equation:

G(i, j|δ, θ) =
Gc(i, j|δ, θ)

∑
i

∑
j

Gc(i, j|δ, θ)
, (16)

where Gc(i, j|δ, θ) denotes the occurrence times of a pair of pixel gray values of i and j,
with a pixel distance of δ and a direction of θ in the image, where i, j = 0, 1, 2, . . . , L − 1,
and L is the gray level. δ is set to 1, and θ is set to 4 directions, including 0, 45◦, 90◦, 135◦ in
this study.

After that, six statistical indices based on the GLCM were calculated in different δ
and θ, including the angular second moment, contrast, correlation, entropy, dissimilarity,
and inverse different moment (abbreviated to asm, con, cor, ent, dis, and idm, respectively),
which were calculated by Equations. (17)–(22) [62], respectively.

1. Angular second moment (asm) reflects the uniformity of the image gray distribution
and texture thickness.

asm =
L−1

∑
i=0

L−1

∑
j=0

G2(i, j), (17)

2. Contrast (con) describes the clarity of the texture and the depth of the groove.

con =
L−1

∑
i=0

L−1

∑
j=0

(i− j)2G(i, j), (18)

3. Correlation (cor) is used to determine the main orientation of the texture.

cor =

L−1
∑

i=0

L−1
∑

j=0
(ij)G(i,j)−µxµy

σxσy
,

µx =
L−1
∑

i=0

L−1
∑

j=0
G(i, j), µy =

L−1
∑

j=0

L−1
∑

i=0
G(i, j), σx

2 =
L−1
∑

i=0
(i− µx)

2L−1
∑

j=0
G(i, j), σy

2 =
L−1
∑

j=0

(
j− µy

)2L−1
∑

i=0
G(i, j),

(19)

4. Entropy (ent) represents the complexity of the texture.

ent = −
L−1

∑
i=0

L−1

∑
j=0

G(i, j)logG(i, j), (20)

5. Dissimilarity (dis) is similar to contrast (con), but with a linear increase.

dis =
L−1

∑
i=0

L−1

∑
j=0
|i− j|G(i, j), (21)

6. Inverse different moment (idm) defines the regularity of the texture.
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idm =
L−1

∑
i=0

L−1

∑
j=0

G(i, j)

1 + (i− j)2 , (22)

For each calculated statistic of GLCM with δ = 1 and different directions (θ = 0, 45◦,
90◦, 135◦), the mean value and standard deviation were taken as the features of the GLCM
of the image.

6.3. Classification Experiment

To investigate the effectiveness of each eigenvalue in classification, the performance of
a single statistic and different statistical combinations were studied. For the eigenvalue of
the input SVM model, it was linearly normalized to [−1, 1] by its minimum and maximum
values. The RBF kernel with γ equaling the number of eigenvalues was selected. The public
parameter penalty coefficient C was set to 1 in the SVM model. Table 10 shows the detailed
experimental settings for SVM-based classification. There were a total of 6 categories,
and 1–6 statistical features were extracted from the six statistics, respectively, and labeled
as C61-C66.

Table 10. Experimental settings for SVM-based classification.

Category Number of Experiment Settings Number of Eigenvalues c γ

C61 6 2 1 1/2
C62 15 4 1 1/4
C63 20 6 1 1/6
C64 15 8 1 1/8
C65 6 10 1 1/10
C66 1 12 1 1/12

The classification accuracy is used as the evaluation metric for SVM-based damage
assessment, as shown in Equation (23):

Accuracy =
N(correct predicted)

N(total)
× 100%, (23)

where N(correct predicted) and N(total) represent the numbers of correct predicted and
total samples.

Then, 114 samples were used in the classification study, with the percentage of the test
set being 30%. Our different experiments were all tested on the testing set with 34 samples
(both Class 1 and Class 2 have 17 samples). Figure 11 and Table 11 give the test results
under different experimental settings. In category C61, the single statistic feature of idm,
asm, and dis (C61-4, C61-1, and C61-5) used as the input eigenvalues of SVM could achieve
better classification accuracy for damage condition assessment, which was 91.2, 73.5, and
73.5%, respectively. When selecting two statistical features (category C62), idm combined
with asm and dis (C62-3, C62-13) could obtain better performance (94.1%).

In comparison, when the three statistical features of asm, dis, and idm were selected
(C63-13), an overall optimal classification accuracy of 97.1% was achieved, among which
the correct classification in the test set was 33/34. It is worth mentioning that, under the
same category of C64, C65, or C66, the experimental settings with the optimal performance
(C64-9, C64-12, C65-1, and C66-1) all contained these three statistics, but additional statis-
tical information might produce redundancy and lead to performance degradation. This
indicates that it is necessary to comprehensively consider texture features and select the
most effective eigenvalues for information fusion. The three statistical indexes (asm, dis,
and idm) can competently reflect the critical texture features in SRS images after the earth-
quake disaster, including the degree of regularity, geometric shape, and clarity of buildings.
Therefore, the combined method of modified YOLOv4 and SVM offers a practical approach
for the seismic damage assessment of urban buildings.



Remote Sens. 2022, 14, 1012 24 of 30

Figure 11. Accuracy rate under different experimental settings.

Table 11. Accuracy rate under different experiment settings.

Category Experiment
Settings asm con ent idm dis cor Accuracy

Rate (%) Category Experiment
Settings asm con ent idm dis cor Accuracy

Rate (%)

C61

C61-1
√

73.5

C63

C63-12
√ √ √

88.2
C61-2

√
70.6 C63-13

√ √ √
97.1

C61-3
√

70.6 C63-14
√ √ √

88.2
C61-4

√
91.2 C63-15

√ √ √
88.2

C61-5
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6.4. Test Results

Figure 12 and Table 12 show some representative damage classification results of post-
earthquake buildings identified by the modified YOLOv4 model. The present locations in
the subfigures are randomly selected from the images including different damage levels.
The left and right columns in Figure 12 visualize the actual and predicted locations of the
post-earthquake buildings with two damage levels in SRS images. Results demonstrate
that target buildings with dense distribution, small size, and at the edge of the image can be
correctly classified. All post-earthquake buildings of Class 2 were correctly classified (exam-
ples 2, 3, 4), and only one target among the four post-earthquake images was misclassified
(example 1), reaching a correct accuracy of 87.5%. Limited by the quality and resolution
of the SRS images and the slight deviations in the positioning of the post-earthquake
building, a few buildings of Class 1 were identified as Class 2. Actually, in the earthquake
damage assessment task using SRS images, the priority is given to identifying buildings
with high levels of damage. The subsequent refined evaluation is normally conducted
through near-field acquisition platforms such as unmanned aerial vehicles.

The proposed method includes two hybrid modules, fully considering the characteris-
tics of damaged buildings in SRS optical images. The modified YOLOv4 object detection
module is employed to detect the tiny-sized and densely distributed post-earthquake build-
ings, and the SVM-based classification module is devoted to classifying urban buildings
with highly imbalanced damage severity. The proposed method decomposes the accu-
rate and rapid post-earthquake assessment task into the above two modules and applies
suitable DL and ML models (modified YOLOv4 object detection and SVM classification,
respectively) to the subtasks with high precision.

The above discussions further verify the effectiveness of the proposed two-stage
method for post-earthquake damage assessment. The seismic damage assessment capacity
enables rapid judgment and emergency decision-making for post-disaster evaluation in
wide-area urban regions.

Figure 12. Cont.
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Figure 12. Representative test results of SVM-derived damage classification (blue: Class1, red: Class
2): (a) Example 1; (b) Example 2; (c) Example 3; (d) Example 4 (from left to right: ground truth
and prediction).
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Table 12. Statistics for four representative test results of SVM-derived damage classification.

Image Number Correct Accuracy of Class 1 Correct Accuracy of Class 2

Figure 12a 87/115 (75.7%) 7/8 (87.5%)
Figure 12b 26/39 (66.7%) 2/2 (100%)
Figure 12c 194/227 (85.5%) 1/1 (100%)
Figure 12d 188/229 (82.1%) 1/1 (100%)

7. Conclusions

This study highlighted a machine-learning-based two-stage method combining YOLOv4
and SVM, which was created to realize precise identification and rapid classification of
tiny dense objects and highly imbalanced data for post-earthquake building localization
and damage assessment of SRS images. The investigated dataset originated from 386 pre-
earthquake/post-earthquake remote sensing images of the 2017 Mexico City earthquake,
with a resolution of 1024 × 1024. The main conclusions follow.

Through systematic optimizations of the YOLOv4 model on network structure (back-
bone, neck, and head), the training hyperparameters (i.e., the size of the input image, batch
parameters, number of iterations, learning rate strategy, and weight decay), and anchor
boxes, the features of SRS images at multiscale were effectively extracted and fused for
precise building localization.

Subsequently, three statistical indexes of the angular second moment, dissimilarity,
and inverse difference moment of the gray level co-occurrence matrix were validated for
their effectiveness in characterizing texture features of SRS images for damage classification
(e.g., no damage or minor damage, and major damage or destroyed) by the SVM model.

The results indicate that the assessment accuracies for object detection and damage
classification of post-earthquake buildings can reach as high as 95.7 and 97.1%, respectively.
Moreover, the test results show that good detection capacity can be achieved under more
complex conditions, including buildings on the image boundary, dense buildings, and
tree-occluded buildings.

The main implications of this study are two-fold: (1) For the research aspect, the modi-
fied YOLOv4 model can be further applied for other tiny-sized and densely distributed
object detection tasks in addition to building detection in SRS images. The proposed SVM
model based on GLCM features can also be applied in other imbalanced classification prob-
lems. (2) For the application aspect, the proposed method combining modified YOLOv4
object detection and SVM classification models holds promising potential for rapid and ac-
curate wide-area post-earthquake building location and damage assessment. The proposed
method has been verified on the Mexico City earthquake in 2017 using SRS optical images
from the xBD database.

In this study, satellite remote sensing optical images were utilized for rapid and
accurate wide-area post-earthquake building damage assessment, which could only provide
the roof information of buildings. Therefore, we did not pay much attention to the different
types of buildings. However, one of our ongoing studies is conducting a fine-grained
assessment of individual buildings using near-field images from unmanned aerial vehicles
with more detailed information on damage, components, and building types concerned.
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SRS satellite remote sensing
YOLO You Only Look Once
SVM support vector machine
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ANN artificial neural network
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GPU Graphics Processing Unit
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