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Abstract: Synthetic aperture radar (SAR) satellites can provide microwave remote sensing images 

without weather and light constraints, so they are widely applied in the maritime monitoring field. 

Current SAR ship detection methods based on deep learning (DL) are difficult to deploy on satel-

lites, because these methods usually have complex models and huge calculations. To solve this prob-

lem, based on the You Only Look Once version 5 (YOLOv5) algorithm, we propose a lightweight 

on-board SAR ship detector called Lite-YOLOv5, which (1) reduces the model volume; (2) decreases 

the floating-point operations (FLOPs); and (3) realizes the on-board ship detection without sacrific-

ing accuracy. First, in order to obtain a lightweight network, we design a lightweight cross stage 

partial (L-CSP) module to reduce the amount of calculation and we apply network pruning for a 

more compact detector. Then, in order to ensure the excellent detection performance, we integrate 

a histogram-based pure backgrounds classification (HPBC) module, a shape distance clustering 

(SDC) module, a channel and spatial attention (CSA) module, and a hybrid spatial pyramid pooling 

(H-SPP) module to improve detection performance. To evaluate the on-board SAR ship detection 

ability of Lite-YOLOv5, we also transplant it to the embedded platform NVIDIA Jetson TX2. Exper-

imental results on the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) show that Lite-

YOLOv5 can realize lightweight architecture with a 2.38 M model volume (14.18% of model size of 

YOLOv5), on-board ship detection with a low computation cost (26.59% of FLOPs of YOLOv5), and 

superior detection accuracy (1.51% F1 improvement compared with YOLOv5). 

Keywords: synthetic aperture radar (SAR); on-board; ship detection; YOLOv5; lightweight detector 

 

1. Introduction 

In recent years, an increasing number of high-quality microwave remote sensing im-

ages have been provided by synthetic aperture radar (SAR) satellites. Due to the all-day 

and all-weather ability of SAR, SAR remote sensing images have been widely applied in 

the field of ship detection. Currently, increasing number of scholars are paying attention 

to ship detection in SAR images due to its potential application in environmental moni-

toring, shipwreck rescue, oil leakage detection, marine shipping control [1–4], etc. Thus, 

it is of great significance to obtain the real-time and accurate ship detection results. 

Recently, there have been great breakthroughs of deep learning (DL) in several fields, 

including computer vision (CV), natural language processing (NLP), communications, 

and networking [5,6]. An increasing amount of attention has been focused on SAR-based 

processing based on convolutional neural networks (CNNs) [7,8], especially for ship de-

tection in SAR images. For example, Kang et al. [9] utilized contextual region-based CNN 

based on multilayer fusion in the field of SAR ship detection. Jiao et al. [10] proposed a 

densely connected end-to-end neural network to solve the problem of multi-scale and 

multi-scene SAR ship detection. Cui et al. [11] used a dense attention pyramid network 
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(DAPN) for multi-scene SAR ship detection, where a pyramid structure and convolutional 

block attention module were adopted. Liu et al. [12] used multi-scale proposal generation 

for SAR ship detection, with a framework that mainly contained hierarchical grouping 

and proposal scoring. Wang et al. [13] proposed a rotatable bounding box ship detection 

method fused with an attention module and angle regression. An et al. [14] proposed an 

improved rotatable bounding box SAR ship detection framework, where a feature pyra-

mid network (FPN), a modified encoding scheme, and a focal loss (FL) combined with 

hard negative mining (HNM) technique were adopted. Chen et al. [15] proposed a ship 

detection network combined with an attention module which can accurately locate ships 

in complex scenes. Dai et al. [16] proposed a novel CNN for multi-scale SAR ship detection, 

which is composed of a fusion feature extraction network (FFEN), a region proposal net-

work (RPN), and a refined detection network (RDN). Wei et al. [17] offered a precise and 

robust ship detector based on a high-resolution ship detection network (HR-SDNet). The 

above methods have achieved fairish performance in the SAR ship detection field. How-

ever, they all have complex models and huge calculations, which can be a significant ob-

stacle to deploy on satellites with limited memory and computation resources for on-

board detection. The issue of obtaining high model detection performance with a low 

model volume remains to be tackled. 

Many researches are dedicated to proposing lightweight SAR ship detectors. Chang 

et al. [18] designed a brand-new SAR ship detector with fewer parameters based on 

YOLOv2. They have achieved a competitive detection speed, but lack a theoretical expla-

nation. Zhang et al. [19] established a depth-wise separable convolution neural network 

(DS-CNN) by integrating a multi-scale detection mechanism, concatenation mechanism, 

and anchor box mechanism to achieve high-speed SAR ship detection. However, their 

model still contains a partial heavy traditional convolution layer, decreasing detection 

speed. Mao et al. [20] proposed an effective and low-cost SAR ship detector, where a sim-

plified U-Net and an anchor-free detection frame are integrated. However, while lighten-

ing the network architecture, it also sacrifices the detection accuracy. In addition, Zhang 

et al. [21] offered a lightweight feature optimization network (LFO-Net) based on SSD, 

but their model tends to ignore some offshore ships during the detection stage. Wang et 

al. [22] explored the application of RetinaNet in ship detection from multi-resolution 

Gaofen-3 imagery, but the detection accuracy of ships near harbors is still unsatisfactory. 

Later, to maximize the greatest advantage of deep learning, Wang et al. [23] also con-

structed a large volume of labeled SAR ship detection datasets named SAR-Ship-Dataset 

that consists of 43,819 ship chips of 256 pixels in both range and azimuth, collected from 

102 Chinese Gaofen-3 and 108 Sentinel-1 SAR images. In this work, they also proposed a 

modified SSD-300 and a modified SSD-512 to reduce detection time as a research baseline. 

However, their dataset does not accord with the characteristics of large scenes of SAR 

images [24]. Moreover, their modified SSD models also lack sufficient theoretical supports 

in their reports. The above methods have made a reasonable contribution to lightening 

models in the SAR ship detection field. Unfortunately, there are few studies successfully 

designing a detector for on-board SAR ship detection. Table 1 shows the details of the 

above related works. 

Table 1. The details of the related works. 

Category Related Works Main Distinctive Characteristics 

DL-based SAR ship 

detectors 
[9–17] 

Fairish detection performance ✓ 

Competitive detection speed ✘ 

Designed for on-board platform ✘ 

DL-based lightweight 

SAR ship detectors 
[18–24] 

Fairish detection performance ✓ 

Competitive detection speed ✓ 

designed for on-board platform ✘ 
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Most of above methods are all designed for use high-power GPUs on ground stations 

to detect ships. However, the traditional mode of collecting data via satellite and pro-

cessing data in ground stations could be time-consuming, and the longer the time from 

when the satellite generates the SAR images to when SAR ship information is extracted 

on the ground, the less useful that SAR images will be [25]. In order to fully shorten the 

time delay of ship information extraction, it is necessary to migrate the ship detection al-

gorithm from the ground to the on-board computing platform (i.e., NVIDIA Jetson TX2) 

[25]. In addition, under the limited memory (i.e., memory size of 8 G) and computation 

resources (i.e., memory bandwidth of 59.7 GB/S) of the satellite processing platform, it is 

a challenge for the on-board ship detection of a lightweight SAR satellite to realize the 

accurate and fast detection performance. 

Therefore, in this paper, we propose an end-to-end and elegant on-board SAR ship 

detector called Lite-YOLOv5. First, to obtain a lightweight network, inspired by Han et al. 

[26], a lightweight cross stage partial (L-CSP) module is inserted into the backbone net-

work of the You Only Look Once version 5 (YOLOv5) algorithm [27] for reducing the 

amount of calculation; motivated by the network slimming algorithm proposed by Liu et 

al. [28], we apply network pruning for a more compact model. Then, in order to compen-

sate the detection accuracy, we (1) propose a histogram-based pure backgrounds classifi-

cation (HPBC) module to effectively exclude pure background samples and suppress false 

alarms; (2) propose a shape distance clustering (SDC) model to generate superior priori 

anchors; (3) apply a channel and spatial attention (CSA) model to enhance the SAR ships 

semantic feature extraction ability, inspired by Woo et al. [29]; and (4) propose a hybrid 

spatial pyramid pooling (H-SPP) model to increase the context information of the recep-

tive field, inspired by He et al. [30]. Finally, to evaluate the on-board SAR ship detection 

ability of Lite-YOLOv5, the detector is transplanted to NVIDIA Jetson TX2 and imple-

ments the on-board ship detection without sacrificing accuracy. 

Our main contributions are as follows: 

1. In order to obtain a lightweight network, we (1) design a lightweight cross stage par-

tial (L-CSP) module for reducing the amount of calculation and (2) apply network 

pruning for a more compact detector. 

2. In order to ensure the detection performance, we (1) propose a histogram-based pure 

backgrounds classification (HPBC) module for excluding pure background samples 

to effectively suppress false alarms; (2) propose a shape distance clustering (SDC) 

model for generating superior priori anchors to match ship shape better; (3) apply a 

channel and spatial attention (CSA) model for paying more attention to regions of 

interest to enhance ships feature extraction capacity; and (4) propose a hybrid spatial 

pyramid pooling (H-SPP) model for increasing the context information of the recep-

tive field to attach importance to key small ships. 

3. We conduct extensive ablation studies to confirm the effectiveness of each above con-

tribution. The experimental results on the Large-Scale SAR Ship Detection Dataset-

v1.0 (LS-SSDD-v1.0) reveal the state-of-the-art on-board SAR ship detection perfor-

mance of Lite-YOLOv5 compared with eight other competitive methods. In addition, 

we also transplant Lite-YOLOv5 on the embedded platform NVIDIA Jetson TX2 to 

evaluate its on-board SAR ship detection ability. 

The remaining materials are arranged as follows. Section 2 introduces the methodol-

ogy. Section 3 describes the experiments. Section 4 shows the quantitative and qualitative 

results, respectively. Section 5 describes the abundant ablation studies that were con-

ducted. Section 6 discusses the whole scheme. Finally, Section 7 summarizes the entire 

article. In addition, Table A1 in Appendix A offers all the abbreviations and correspond-

ing full names involved for the convenience of reading. 

Notation: Boldfaced uppercase letters are used for matrices, X. The operation g(·) de-

notes the L1 regularization value of the argument. The operations GAP(X) and GMP(X) 
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denote the global average-pooling and global max-pooling values of a matrix X. The op-

eration Conv1×1(X) denotes the new matrix obtained by the 1 × 1 convolution operation on 

X. The operations MaxPool (X) and AvgPool (X) denote the average-pooling and max-pool-

ing values of a matrix X. 

2. Methodology 

This section details the main idea of Lite-YOLOv5. Section 2.1 introduces the network 

architecture of YOLOv5. Section 2.2 introduces the whole network architecture of Lite-

YOLOv5. Sections 2.3 and 2.4, respectively, introduce the lightweight network design part 

and detection accuracy compensation part. 

2.1. Network Structure of YOLOv5 

The key to the on-board ship detection is to find a suitable lightweight detector which 

can balance detection accuracy and model complexity under the constraints of satellite 

processing platforms with limited memory and computation resources. YOLOv5 is a 

state-of-the-art object detection algorithm with fast inference speed and exact accuracy, 

which scores 72% AP@0.5 on the COCO val2017 dataset [31]. The main network structure 

of YOLOv5 is divided into four types, separately named as YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x. The YOLOv5s model in particular has the advantages of a small 

size and fast speed, which is fit for embedded devices [32]. Thus, YOLOv5s is adopted in 

our implementation. 

The architecture of YOLOv5 is manly composed of five parts: input, backbone, neck, 

prediction, and output. Figure 1 shows the architecture of YOLOv5. The CBL module is 

the basic module in YOLOv5, which is composed of a convolution (Conv) layer, batch 

normalization (BN) [33] layer, and a Leaky_ReLu (L-ReLu) activation [34] layer. 

As shown in Figure 1, in the backbone part, by performing a Focus module, spatial 

information of the input image can be transferred into the channel dimension without 

losing details. The raw backbone part of YOLOv5 is CSPDarknet53, and it is used for fea-

ture extraction through a cross stage partial (CSP) module [35], which consists of a bottle-

neck structure and three convolutions. There are two kinds of CSP modules. The CSP in 

the backbone, respectively, consists of one residual unit (i.e., CSP1_1) or three residual 

units (i.e., CSP1_3), while the CSP in the neck (i.e., CSP2_1) replaces the residual units 

with the CBL modules. Moreover, the spatial pyramid pooling (SPP) [30] module offers 

different receptive fields to enrich the expression ability of features. 

In the neck part, the structure of a feature pyramid network (FPN) [36] and path ag-

gregation network (PAN) [37] are adopted. The FPN module is top-down, and the high-

level feature maps are fused with the low-level feature maps through up-sampling to 

achieve enhanced semantic features. Meanwhile, the PAN module is bottom-up; on the 

basis of FPN, PAN transmits the positioning information from the shallow layers to the 

deep layers to obtain the enhanced spatial features. The above modules jointly strengthen 

both the semantic information and spatial information of ships. The prediction part is 

composed of the three prediction layers with different scales. The small-scale detection 

head is suitable for detecting large ships, and the large-scale detection head is suitable for 

detecting small ships. The final result is obtained by means of non-maximum suppression 

processing during the post processing of ship detection. 
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Figure 1. The architecture of YOLOv5. The network consists of five main parts: input, backbone, 

neck, prediction, and output. 

2.2. Network Structure of Lite-YOLOv5 

YOLOv5 is designed for optical images detection, which is not fully applicable to the 

field of on-board SAR ship detection. For on-board ship detection in large-scene Sentinel-

1 SAR images, Lite-YOLOv5 is proposed. As shown in Figure 2, based on YOLOv5, Lite-

YOLOv5 specifically injects (1) an LCB module to lighten the network without sacrificing 

much accuracy; (2) network pruning to obtain a much more compact network; (3) a HPBC 

module to effectively exclude pure background samples and suppress false alarms; (4) a 

SDC module to generate superior priori anchors; (5) a CSA module to enhance the SAR 

ships semantic feature extraction ability; and (6) a H-SPP model to increase the context 

information of the receptive field. Note that we use the raw SAR gray images as the input 

features. Following the paradigm of optical image object detection, we simply copy the 

single-channel SAR image to generate the three-channel SAR image. Therefore, in Figure 

2, our SAR image input size is 800 × 800 × 3. 

 

Figure 2. The ship detection framework of Lite-YOLOv5.  means the lightweight network design 

part.  means the detection accuracy compensation part. For obtaining a lightweight network, L-

CSP and network pruning are inserted. For better feature extraction, HPBC, SDC, CSA, and H-SPP 

are embedded. L-CSP denotes the lightweight cross stage partial. Network pruning denotes the net-

work pruning procedure. HPBC denotes the histogram-based pure backgrounds classification. SDC 

denotes the shape distance clustering. CSA denotes the channel and spatial attention. H-SPP denotes 

the hybrid spatial pyramid pooling. 

For the lightweight network design, we first inject the L-CSP module into the back-

bone network. It is used to lighten the network with a slight accuracy sacrifice, which will 

be introduced in detail in Section 2.3.1. Then, for a more compact network structure, net-

work pruning is adopted among the backbone, neck, and prediction parts. The details will 

be introduced in Section 2.3.2. 
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For better feature extraction, we first preprocess the input Sentinel-1 SAR images by 

the proposed HPBC module to effectively exclude pure background samples. The details 

will be introduced in Section 2.4.1. It should be noted that the prior anchors of the existing 

algorithms are generated based on optical images object distribution, which is not appli-

cable to SAR images with characteristics of small ship size and large ship aspect ratio. We 

use the SDC module to generate superior priori anchors, which will be described in detail 

in Section 2.4.2. In the backbone, the proposed CSA module and H-SPP module are em-

bedded. The former is used to enhance the SAR ships semantic feature extraction ability, 

which will be introduced in detail in Section 2.4.3. The latter is used to increase the context 

information of the receptive field, which will be introduced in detail in Section 2.4.4. 

Next, we will introduce the L-CSP module, network pruning, HPBC module, SDC 

module, CSA module, and H-SPP module in detail in the following subsections. 

2.3. Lightweight Network Design 

2.3.1. L-CSP Module 

The lightweight cross stage partial (L-CSP) module mainly consists of a bottleneck 

structure and three convolutions. To obtain a lightweight backbone, L-CSP module adopts 

LBL units (i.e., a lightweight convolution layer (L-Conv), a BN layer, and an L-Relu acti-

vation layer) instead of the original CBL units (i.e., a Conv layer, a BN layer, and an L-

ReLu activation layer). 

Figure 3 shows the detailed structures of an L-CSP module. When the feature map 

Fin inputs, its transmission path is divided into two parallel branches as shown in Figure 

3, where the channel of Fin is reduced by half to generate two new feature maps. Then, 

two feature maps of parallel branches are concatenated as a whole feature map (i.e., out-

put feature map Fout). 

 

Figure 3. The detailed structure of an L-CSP module. 

Figure 4 shows the detailed structures of Conv and L-Conv, respectively. Figure 4a 

shows the architecture of the raw Conv. In practice, the input X ∈ RW × H × C, where W, H, 

and C represent the height, width, and channel of the input feature map, respectively. The 

convolution calculation formula is defined by 

𝒀 = 𝑿 ∗ 𝒇 + 𝑏 (1) 

where ∗ is the convolution operation; f ∈ RC × K × K × H are the convolution filters, where K × 

K × N denotes the kernel size and channel of the convolution filters; and b denotes the bias 

of the convolution filters. 

Figure 4b shows the architecture of the L-Conv. As we can see, only part of the input 

channels is utilized to generate intermediate feature maps, and the output feature maps 
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are calculated from the obtained intermediate feature maps with low-cost linear opera-

tions (i.e., 3 × 3 convolution kernels). In this way, SAR ship features extraction becomes 

more efficient due to fewer floating-point operations. 

Specifically, given the input X ∈ RW × H × C, M intermediate feature maps Y’ ∈ RW × H × C 

are obtained by using a convolution operation, i.e., 

 
 

(a) (b) 

Figure 4. The detailed structures of Conv and L-Conv: (a) description of Conv; (b) description of L-

Conv. 

𝒀′ = 𝑿 ∗ 𝒇′ (2) 

where f’ ∈ RC × K × K × H are the convolution filters and M < N means there are fewer 

convolution filters than the original convolution block. To further obtain the N output 

feature maps, a series of low-cost linear operations are utilized to obtain the rest of feature 

maps. The calculation formula is defined by 

𝒚 𝑗 = 𝛷 ,𝑗(𝒚 
′), ∀𝑖 = 1, … ,𝑚; 𝑗 = 1, … , 𝑠 (3) 

where yi’ is the i-th intermediate feature maps of Y’ and Фi,j is the j-th (j < s) linear operation 

to calculate the j-th final output feature maps yi,j from the i-th intermediate feature maps 

of Y’. The last Фi,s is an identity mapping operation as shown in Figure 4b. Since there are 

m intermediate feature maps and s linear operations, we can obtain n = m × s final output 

feature maps, where the number of output feature maps is equal to the original convolu-

tion operations. 

Since the computational complexity of linear operations is much less than that of or-

dinary convolution operations, L-Conv is a more lightweight convolution layer than 

Conv. Finally, by injecting the L-CSP module including L-Conv into the backbone, we can 

obtain a lightweight network architecture of low computational cost. 

2.3.2. Network Pruning 

The key of on-board ship detection is to find a lightweight on-board SAR ship detec-

tor that balances detection accuracy and model complexity under the constraints of satel-

lites with limited memory and computation resources. Thus, it is of great significance to 

find a model compression method without much accuracy sacrifice. Network pruning is 

a mainstream model compression method. By pruning unimportant neurons, filters, or 

channels, it can effectively compress the parameters and computation of the model. There-

fore, to further obtain a more compact detector, we follow the scheme illustrated in Figure 

5 to prune the Conv and BN layers of the network. 

  

Conv

Input Output

Conv

Input

𝛷 

Identity

Output

𝛷 
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Figure 5. Flow-chart of iterative network pruning procedure. 

From Figure 5, firstly, through sparse regularization training of the model, some pa-

rameters of the initial network tend to zero or equal to zero during training, and the neural 

network model with sparse weights is obtained. Then, the model is pruned to remove 

sparse channels. Next, the model is fine-tuned to restore the accuracy of the model. Fi-

nally, by iterating the above network pruning procedures, we can obtain the ultimate 

compact network. 

The scaling factors, the sparsity training, the channel pruning, and fine-tuning will 

be illustrated below. 

(1) Scale factors in BN layers: The Conv layer and BN layer are widely used in CNNs. 

In the Conv layer, reducing the number of filters can effectively reduce the amount of 

network parameters and computation, and accelerate the reasoning speed of the model. 

In the BN layer, the characteristic scaling coefficient of each BN layer corresponds to each 

channel, representing the activation degree of its corresponding channel. The operation 

formula of BN layer is formulated by 

𝑍   = 𝛼
𝑍  − 𝜇𝑐

√𝜎𝑐 + 𝜀
+ 𝛽 (4) 

where Zin denotes input, Zout denotes output, μc and σc denote the mean and variance of 

input activation values, respectively, and α and β denote the scaling factor and offset fac-

tor corresponding to the activation channel, respectively. 

In practice, the BN layers in our network are all followed after the Conv layers. There-

fore, to prune a BN layer, it is necessary to prune the convolution kernel corresponding to 

the upper layer and subtract the channels of the convolution kernel corresponding to the 

next layer. 

(2) Training with the L1 sparsity constraint: The sparse effect of L1 regularization on 

CNNs has been proved and widely used [38,39]. In this paper, a penalty factor is added 

to the loss function to constrain the weight of the Conv layer and the scaling coefficient of 

the BN layer, and the model will be sparse. The larger the regularization coefficient 𝜆 is, 

the greater the constraint is. Specifically, the sparsity constraint loss function is defined by 

𝐿 = 𝐿𝑟𝑎𝑤 + 𝜆∑𝑔(𝛶)

𝛶∈𝛤

 (5) 

where Lossraw denotes the loss function of the raw detector, g(γ) = |γ| denotes L1 regular-

ization, and λ denotes the regularization coefficient, adjusted according to the dataset. 

During the sparsity training procedure of network pruning, we visualize the scale 

factors of BN layers. In general, the smaller the scale factor is, the sparser the channel 

parameters of the network are. We visualize the scale factors with three typical regulari-

zation factors (i.e., λ = 0, λ = 10−4, λ = 10−3), respectively, following [39]. Obviously, λ = 0 

means there is no sparsity training (i.e., normal training). From Figure 6, when λ = 0, the 

scale factors distribution of the BN layer obeys an approximately normal distribution. 

When λ = 10−4, some scale factors are pressed towards 0, but not enough to guarantee the 

sparsity of scale factors. When λ = 10−3, most of the scale factors are pressed towards 0, 

which is enough to guarantee channel-wise pruning is being followed. Therefore, in our 

implementation, Lite-YOLOv5 is sparsity trained with λ = 10−3 to guarantee the channel-

wise sparsity. 

Prune iteratively

Compact

network

Initial

network

Sparsity

Training
Channel

pruning
Fine-tuning
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(3) Channel pruning and fine-tuning: After sparse regularization training, the model 

with more sparse weights is obtained and many weights are close to zero. Then, we prune 

the channels of the near-zero scaling factor by deleting all incoming and outcoming con-

nections and corresponding weights. We prune the channels across all BN layers accord-

ing to the prune ratio Pr, which is defined as a certain percentile of all the scaling factor 

values. This ratio Pr will be determined experimentally in Section 5.2.2. Then, we adopt 

fine-tuning for the pruned model to restore the accuracy. Note that fine-tuning is a simple 

training the same as normal training. However, in this way, we can obtain a lightweight 

detector without sacrificing too much accuracy. In addition, an iterative network pruning 

procedure can lead to a more compact network [28] as can be seen in Figure 5. 

  

(a) (b) 

 

 

(c)  

Figure 6. Distribution of scaling factors in a trained Lite-YOLOv5 under various degrees of sparsity 

regularization: (a) regularization factors equal to 0; (b) regularization factors equal to 10−4; (c) regu-

larization factors equal to 10−3. The larger the λ, the sparser the scaling factors. 

2.4. Detection Accuracy Compensation 

2.4.1. HPBC Module 

In an on-board SAR ship detection mission, quantities of pure backgrounds images 

will bring additional detection burden to the detector (pure background images mean that 

there are no ships in images) [24]. Based on the common sense that the ocean area is much 

larger than the land area, most of the pure background images are pure background ocean 

images. On the one hand, false alarms may occur even encountering pure background 

images, as seen in Figure 7; on the other hand, pure background images may only increase 

the detection time of the detector without any benefit. 

From Figure 7, there are some false alarm examples of the DL detector. A DL detector 

without prior knowledge can be fooled when encountering ghost shadows, radio fre-

quency interference, etc. In fact, many statistical models have been developed to describe 
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SAR image data in the constant false alarm rate (CFAR)-based algorithms [40]. The anal-

ysis of a large number of measured data shows that Gamma distribution can be well ap-

plied to sea clutter modeling [41–43]. 

    
(a) 

    
(b) 

Figure 7. Some false alarms in the ocean: (a) the original images; (b) some false alarm detections. 

The false alarms are marked by orange ellipses. 

Thus, it is necessary to integrate the traditional mature methods with rich expert ex-

perience into the preprocessing of a DL detector, otherwise on-board SAR ship detection 

will be time-consuming and labor intensive. 

For the first time, we bring traditional sea clutter modeling method into the prepro-

cessing of a DL detector. Inspired by the sea clutter modeling method, we propose a sim-

ple but effective histogram-based pre-classification to process the SAR images. For brevity, 

it is noted as the histogram-based pure backgrounds classification (HPBC) module. 

For a SAR image I, its histogram is to count the frequency of all pixels in I according 

to the size of the gray value, which reflects the statistical characteristics of I. The histogram 

can be described by 

𝐻(𝑖) = ∑
 𝑖

 

 
 =0 , 𝑘 = 0,… ,255  (6) 

where ni denotes the occurrence numbers of pixels with the gray value i and n denotes the 

total numbers of pixels. 

Note that the sea clutter sample is the ocean images. Moreover, sea clutter samples 

can be simply divided into pure background images and ships involved images. Figure 

8a shows a typical pure background ocean image of sea clutter. Figure 8b shows its histo-

gram and corresponding Gamma distribution curve. Figure 8c shows a typical ship image 

of sea clutter. Figure 8d shows its histogram and corresponding Gamma distribution 

curve. From Figure 8, one can conclude that sea clutter meets Gamma distribution. 

On the one hand, a typical pure background ocean image means that the maximum 

of abscissa of its corresponding Gamma distribution curve is much less than 255 (i.e., A 

pure background sample means there is no strong scattering point, where the maximum 

pixels value of its histogram is much less than 255). On the other hand, a typical ship 

image means that the maximum of the abscissa of its corresponding Gamma distribution 
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curve can be up to 255 (i.e., A ship target usually means a strong scattering point, where 

the maximum pixels value of its histogram can be up to 255). 

  

(a) (b) 

  

(c) (d) 

Figure 8. (a) A typical pure background ocean image of sea clutter; (b) its histogram and corre-

sponding Gamma distribution curve; (c) A typical ship image of sea clutter; (d) its histogram and 

corresponding Gamma distribution curve. Amplitude PDF means probability density function of 

sea clutter amplitude. The range of pixels value is [0, 255]. 

The flow of the HPBC module is as follows. 

Step 1: We simply divide the original large-scale images into 800 × 800 sub-images 

without overlap, which is kept the same as in Zhang et al. [24]. 

Step 2: We calculate the sub-images’ histograms one by one. Once the histogram of 

an image is the Gamma distribution and the maximal abscissa of its corresponding 

Gamma distribution curve is less than the threshold εa, we simply judge it as a pure back 

ground sample. This threshold εa will be determined experimentally in Section 5.3. 

Step 3: A pure background ocean image will not be input to the detector. As a conse-

quence, the HPBC module can suppress the number of false alarms (i.e., there may be 

some false alarms in pure background ocean images as seen in Figure 7). In addition, it is 

helpful to reduce the detection time of the detector. The above conclusions will be con-

firmed in Section 5.3. 

Note that when the threshold εa is set higher, more images will be excluded. How-

ever, since we focus on not excluding the ship images by mistake, the threshold being 

equal to εa is fine (i.e., HPBC is only a rough preprocessing, and we would rather recog-

nize fewer pure backgrounds than recognize the positive sample images as pure back-

grounds). 
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2.4.2. SDC Module 

The main idea of SDC is using the SAR ship shape distance to generate the superior 

prior anchors to match ship shape better. SDC is composed of the following steps. 

First, k ground-truth anchors are randomly chosen as the k initialization prior an-

chors. Subsequently, for each ground-truth anchor, the cluster labels of the sample are 

calculated, which can be described by 

𝑙𝑎𝑏𝑒𝑙 = argmin
 ≤𝑗≤ 

((𝐿 − 𝐿𝑗)
 
+ (𝑊 −𝑊𝑗)

 
+ (𝐴𝑅 − 𝐴𝑅𝑗)

 
)

 
 
 (7) 

where Li denotes the length of the i-th ground-truth anchor, Lj denotes the length of the j-

th prior anchor, Wi denotes the width of the i-th ground-truth anchor, Wj denotes the 

width of the j-th prior anchor, ARi denotes the aspect ratio of the i-th ground-truth anchor, 

ARj denotes the aspect ratio of the j-th prior anchor, and labeli denotes the label of the i-th 

ground-truth anchor. 

Then, the length, width, and aspect ratio of the j-th prior anchor are updated by the 

following formulas: 

𝐿𝑗 =
 

 𝑗
∑ 𝐿 
 𝑗
 = 

, 𝐿 ∈ 𝐶𝑗  (8) 

𝑊𝑗 =
 

 𝑗
∑ 𝑊 

 𝑗
 = 

,𝑊 ∈ 𝐶𝑗  (9) 

𝐴𝑅𝑗 =
 

 𝑗
∑ 𝐴𝑅 
 𝑗
 = 

, 𝐴𝑅 ∈ 𝐶𝑗  (10) 

where nj denotes the number of ground-truth anchors belonging to the j-th prior anchors 

and Cj denotes the j-th cluster space. 

Finally, iterate Formulas (7)–(10) until the following Formula (11) reaches the local 

optimal solution: 

𝐸 = ∑ ∑ ((𝐿 − 𝐿𝑗)
 
+ (𝑊 −𝑊𝑗)

 
+ (𝐴𝑅 − 𝐴𝑅𝑗)

 
)

1

2 𝑗
 = 

 
𝑗=   (11) 

The K-means clustering algorithm is widely used in clustering problems owing to its 

simplicity and efficiency [44]. Therefore, in our paper, the prior anchors obtained by K-

means and the SDC module are shown in Table 2. Figure 9a shows the cluster analysis of 

LS-SSDD-v1.0 by K-means. Figure 9b shows the cluster analysis of LS-SSDD-v1.0 by the 

SDC module. 

Table 2. The prior anchors obtained by K-means and SDC module. 

Method Receptive Field Prior Boxes (Width, Height) 

K-means 

Big 

Medium 

Small 

(5, 5), (7, 8), (11, 12) 

(15, 15), (17, 22), (26, 19) 

(23, 30), (35, 31), (49, 49) 

SDC Module 

Big 

Medium 

Small 

(5, 5), (7, 8), (9, 11) 

(13, 14), (14, 19), (22, 19) 

(21, 31), (32, 22), (36, 38) 

From Figure 9, one can conclude that the proposed SDC module possesses a superior 

clustering performance (i.e., ~3.90 mean distance < ~4.96 mean distance compared with K-

means). Subjectively, in Figure 9, the prior anchors clustered by the SDC module are 

smaller and roughly symmetrically distributed by the central axis, which conforms to the 

distribution law of LS-SSDD-v1.0 (i.e., there are numerous of small ships and the aspect 

ratio of ships is symmetrically distributed). The above fully confirms the effectiveness of 

the SDC module. 
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(a) (b) 

Figure 9. (a) Cluster analysis of LS-SSDD-v1.0 by K-means; (b) cluster analysis of LS-SSDD-v1.0 by 

SDC module. We set 9 prior anchors just as [27] did. Different colors mean different clusters. Nine 

cluster centroids are marked by a large circle with different colors. Mean distance means the average 

Euclidean distance between each ground-truth anchor and its cluster center; smaller is better. 

2.4.3. CSA Module 

The essence of the attention mechanism is to extract more valuable information for 

task objectives in the target area and to suppress or ignore some irrelevant details. Chan-

nel attention focuses on the “what” problem, (i.e., it focuses on what plays an important 

role in the whole image). However, in general, a ship in the image is sparsely distributed 

and its pixel proportion is quite small. Thus, only part of the pixel space in a ship detection 

task is valuable. Spatial attention focuses on the “where” problem, (i.e., where the ship is 

in the whole image). Spatial attention is the supplement of channel attention; each spatial 

feature is selectively aggregated through the weighting of spatial features. Therefore, dif-

ferent from SENet [45], which only focuses on channel attention, we bring channel and 

spatial attention simultaneously, named as the CSA Module. 

To achieve this, we sequentially apply channel and spatial attention. From Figure 10, 

given the input feature map F ∈ RW × H × C, channel attention can generate channel weight 

WC ∈ RC × 1 × 1 and spatial attention can generate spatial weight WS ∈ RH × W × 1. The different 

depths of color in Figure 10 represent different values of weights. 

 

Figure 10. The detailed structure of CSA module, which is composed of channel attention and spa-

tial attention. 

Specifically, for channel attention, given the input feature map F ∈ RW × H × C, first, 

global average pooling (GAP) [46] is carried out to generate the average spatial response 

and global max pooling (GMP) [46] to generate the maximum spatial response; then, they 

are transmitted, respectively, to the multi-layer perceptron (MLP) to encode the channel 

information, which is helpful to infer finer channel attention; next, element-wise addition 

is conducted between the two feature maps; then, the synthetic channel information is 

activated through the sigmoid function to obtain the channel weight feature map, i.e., a 

W x H x CW x H x C

W x H x 1

Channel Attention

Spatial Attention

F  ′
 ′′

  

1 x 1 x C
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channel weight matrix WC; finally, element-wise multiplication is conducted between the 

original feature map F ∈ RW × H × C and obtained channel weight matrix WC. 

In short, the above can be defined by 

𝑭′ = 𝑭⨀ 𝑐 (12) 

where F’ denotes the weighted feature map, F denotes the input feature map, ⨀ denotes 

element-wise multiplication, and WC denotes the obtained channel weight matrix, i.e., 

 𝑐 = 𝜎{𝑓𝑐−𝑒 𝑐 𝑑𝑒(𝐺𝐴𝑃(𝑭))⨁𝑓𝑐−𝑒 𝑐 𝑑𝑒(𝐺𝑀𝑃(𝑭))} (13) 

where GAP denotes the global average-pooling operation, GMP denotes the global max-

pooling operation, ⨁ denotes element-wise summation, fc-encode denotes the channel coder, 

and σ denotes the sigmod activation function. 

As for spatial attention, given the input feature map F’ ∈ RC × W × H, first, global average 

pooling (GAP) [46] is carried out to generate the average spatial response and global max 

pooling (GAP) [46] is carried it to generate the maximum spatial response; then, the two 

generated results are concatenated as a whole feature map; next, a space encoder of our 

design is used to encode the space information, which is helpful to infer finer spatial at-

tention; then, it is activated through the sigmoid function to obtain the spatial weight fea-

ture map, i.e., a spatial weight matrix WS; finally, element-wise multiplication is con-

ducted between the original feature map F’ ∈ RC × W × H and the obtained spatial weight 

matrix WS. 

In short, the above can be defined by 

𝑭′′ = 𝑭′⨀ 𝑆 (14) 

where F’’ denotes the weighted feature map, F’ denotes the input feature map, ⨀ denotes 

element-wise multiplication, and WS denotes the obtained spatial weight matrix, i.e., 

 𝑆 = 𝜎{𝑓𝑠−𝑒 𝑐 𝑑𝑒(𝐺𝐴𝑃(𝑭)©𝐺𝑀𝑃(𝑭))} (15) 

where GAP denotes the global average-pooling operation, GMP denotes the global max-

pooling operation, © denotes concatenation operation, fs-encode denotes the space coder, and 

σ denotes the sigmod activation function. 

Finally, we can obtain a finer channel and space information. With the CAS module 

inserted into the network, each level can extract both rich spatial and rich semantic infor-

mation, which is helpful to improve the detection performance of small ships. 

2.4.4. H-SPP Module 

In the CV community, by capturing rich context information, the network can better 

understand the relationship between pixels and enhance the performance of detection. 

For aggregating context information, a pyramid pooling module with max-pooling has 

been commonly adopted so far [47–49]. The previous works believe that since the object 

of interest may produce the largest pixel value, adopting max-pooling is enough. We ar-

gue that average-pooling gathers another important clue about global information extrac-

tion capacity. This idea is inspired by the works of [29], which is recommended for read-

ers. Thus, we adopt a hybrid spatial pyramid pooling (H-SPP) module to further enhance 

the global context information extraction capacity of the network. It can be aware of both 

local and global contents of feature maps, and attach importance to key small ship fea-

tures. 

Different from previous works [47–49], the H-SPP module mainly aggregates the fea-

ture map generated by both average-pooling and max-pooling operations with different 

pooling sizes. Figure 11 shows the detailed structures of the H-SPP module. Then, we will 

further introduce the principle of the H-SPP module. 

The H-SPP module aggregates the feature map generated by both the max-pooling 

layer and average-pooling layer of different kernel sizes (i.e., 5 × 5, 9 × 9 and 13 × 13), as 
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shown in Figure 11. Specifically, given the input feature map Fin ∈ RW × H × C generated by 

the backbone, it is first transmitted to a CBL module to generate a feature map F’ ∈ RW × H 

× 0.5C with refined channel information. Then, (1) max-pooling of different kernel sizes (i.e., 

5 × 5, 9 × 9 and 13 × 13) is simultaneously carried out to generate three local receptive field 

feature maps and (2) average-pooling of different kernel sizes (i.e., 5 × 5, 9 × 9 and 13 × 13) 

is carried out to generate three global receptive field feature maps. Next, six generated 

results and original ones (i.e., F1‒F7 from Figure 11) are concatenated as a synthetic feature 

map. Finally, the feature map level fusion of local features and global features is realized, 

which enriches the expression ability of the final feature map Fout ∈ RW × H × 3.5C. 

 

Figure 11. The detailed structure of H-SPP module. MaxPool means the max pooling layer, AvgPool 

means the average pooling layer, and ©  means the concatenation operation. 

In short, the above can be defined by 

𝑭   = 𝐶𝑜𝑛𝑣1×1(𝑭  )©𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑣1×1(𝑭  ))©𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑣1×1(𝑭  )) (16) 

where Conv1 × 1 denotes the 1 × 1 convolution operation, MaxPool denotes the max-pooling 

operations (with kernel sizes of 5 × 5, 9 × 9 and 13 × 13, respectively), AvgPool denotes the 

average-pooling operations (with kernel sizes of 5 × 5, 9 × 9, and 13 × 13, respectively), and 

© denotes the concatenation operation. 

By aggregating the feature maps of abundant receptive fields, the H-SPP module ob-

tains different degrees of context information, and enhances the network’s ability to cap-

ture both local and global information. Thus, the H-SPP module can improve the accuracy 

of the final prediction result of the algorithm. In this paper, the H-SPP module will be 

used to further improve the detection performance of Lite-YOLOv5. 

  

    (w×h×3.5c)

  

5x5 9x9 13x13 13x13 9x9 5x5

CBL(1 1 c/2)

MaxPool AvgPool

   (w×h×c)

𝑭 (w h c/2) 𝑭 (w h c/2) 𝑭 (w h c/2) 𝑭 (w h c/2) 𝑭 (w h c/2) 𝑭 (w h c/2) 𝑭 (w h c/2)
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3. Experiments 

Different from the traditional integrated training and testing platform, we first used 

a workstation with the powerful NVIDIA RTX3090 as the training experiment platform to 

generate the well-trained detector Lite-YOLOv5, then we used a NVIDIA Jetson TX2 as 

the training experiment platform to evaluate the on-board SAR ship detection ability of 

Lite-YOLOv5. 

3.1. Experimental Platform 

3.1.1. Training Experimental Platform 

Considering the limited computing resources and computing power of NVIDIA Jet-

son TX2, we used the workstation with the GPU model of NVIDIA RTX3090, CPU model 

of i7-10700, and memory size of 32 G to carry out the training part of the experiment. 

PyTorch 1.7.0 [50] based on the Python 3.8 language was adopted as the framework of our 

algorithm. We also used CUDA11.1 in our experiments to call the GPU for training accel-

eration. Subsequently, we transplanted the trained model into the NVIDIA Jetson TX2. 

3.1.2. Testing Experimental Platform 

We used the NVIDIA Jetson TX2 as the development board in order to realize on-

board ship detection during the testing part of experiment. The NVIDIA Jetson TX2 is an 

embedded vision computer system with the 256-core NVIDIA Maxwell GPU model, dual-

core Denver2 CPU model, and an 8 G memory size. Meanwhile, the characteristics of low 

power consumption, high performance, large memory bandwidth, etc. make it very suit-

able for on-board satellite data processing. 

3.2. Dataset 

The LS-SSDD-v1.0 dataset is widely used for SAR image intelligent interpretation 

[51–54]. The characteristic of small ships with large-scale backgrounds in LS-SSDD is close 

to actual satellite images; thus, we adopted the LS-SSDD-v1.0 dataset to verify the effec-

tiveness of Lite-YOLOv5. Table 3 shows the details of the LS-SSDD dataset. 

Table 3. Details of the LS-SSDD-v1.0 dataset. 

Key Value 

Sensors Tokyo, Adriatic Sea, etc. 

Polarization VV, VH 

Sensor mode IW 

Scene land, sea 

Resolution (m) 5 × 20 

Number of images 15 

Image size 24,000 × 16,000 

Cover width (km) ~250 

From Table 3, there are 15 large-scale images (cover width ~250 km) numbered by 

00.jpg to 15.jpg from different places (Tokyo, Adriatic Sea, etc.), polarizations (VV, VH), 

and scenes (land, sea). Considering the computing power of the GPU, we simply divided 

the original large-scale images into 800 × 800 sub-images without embellishment, keeping 

to the method of Zhang et al. [24]. Since there were fifteen 24,000 pixels × 16,000 pixels 

large-scale images, the total sub-image number was 9000. Finally, according to Zhang et 

al. [24], the LS-SSDD-v1.0 dataset was divided into a training set for training learning and 

a test set for result performance evaluation via the ratio of 2:1. 

  



Remote Sens. 2022, 14, 1018 17 of 28 
 

 

3.3. Experimental Details 

We employed the stochastic gradient descent (SGD) [55] algorithm to train our net-

work. The network input size was 800 pixels × 800 pixels and the batch size of 16 was 

adopted. During normal and sparsity training, we trained the network for 100 total 

epochs. We also set the learning rate as 0.001, the weight decay as 0.0005, and the momen-

tum as 0.937. Other hyper-parameters not mentioned were kept the same as those in 

YOLOv5. 

3.4. Evaluation Indices 

Precision (P) is calculated by 

𝑃 =
#𝑇𝑃

#𝑇𝑃 + # 𝑃
× 100% (17) 

where # denotes the number, TP denotes the situation where the prediction and label are 

both ships, and FP denotes the situation where the prediction is a ship but the label is the 

background. 

Recall (R) is calculated by 

𝑅 =
#𝑇𝑃

#𝑇𝑃 + # 𝑁
× 100% (18) 

where FN denotes the situation where the prediction is the background but the label is a 

ship. 

The average precision (AP) is calculated by 

𝐴𝑃 = ∫ 𝑃(𝑅)
1

0

⋅ 𝑑𝑅 (19) 

where P denotes the precision, and R denotes the recall. 

F1 can take account of both precision and recall and is calculated by 

 1 = 2 ×
𝑅 × 𝑃

𝑅 + 𝑃
 (20) 

Finally, t denotes the inference consuming time of a sub-image detection. As a result, 

the running time T of a large-scale image is equal to 600 t. Moreover, in order to evaluate 

the portability performance of Lite-YOLOv5 on on-board SAR ship detection, we also cal-

culated the parameter size, FLOPs, and model volume. 

4. Results 

4.1. Quantitative Results 

Table 4 shows the quantitative results of Lite-YOLOv5 on the LS-SSDD-v1.0 dataset. 

In Table 4, we can see the detection performance comparison with the raw YOLOv5. The 

ablation studies about the influence of each proposed module will be introduced in detail 

in Section 5 by the means of each installation and removal. 

From Table 4, one can conclude that: 

1. Compared with YOLOv5, our Lite-YOLOv5 can guarantee the model is lightweight 

and realize the slight improvement of detection performance at the same time. 

2. On the one hand, as for accuracy indices, Lite-YOLOv5 can make a 5.97% precision 

improvement (i.e., from 77.04% to 83.01%), 1.12% AP improvement (i.e., from 72.03% 

to 73.15%), and 1.51% F1 improvement (i.e., from 72.01% to 73.52%). This fully reveals 

the effectiveness of the proposed HPCB, SDC, CSA, and H-SPP modules. 

3. On the other hand, as for other evaluation indices, Lite-YOLOv5 can realize on-board 

ship detection with 37.51 s per large-scale image (73.29% of the processing time of 

YOLOv5), a lighter architecture with 4.44 G FLOPs (26.59% of the FLOPs of 
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YOLOv5), and 2.38 M model volume (14.18% of the model size of YOLOv5). This 

fully reveals the effectiveness of the proposed L-CSP module and network pruning. 

Table 4. The performance comparison with the raw YOLOv5. P: Precision, the higher the better; R: 

recall, the higher the better; AP: average precision, the higher the better; F1: F1-score, a main evalu-

ation index, the higher the better; FLOPs: floating point operations, refer to model complexity; 

model volume: refers to size of model weight; T: the running time of a large-scale image, refers to 

detection speed (tested on the Jetson TX2). 

Method P (%) R (%) AP (%) F1 (%) T (s) FLOPs (G) Model Volume (M) 

YOLOv5 77.04 67.60 72.03 72.01 51.18 16.70 13.70 

Lite-YOLOv5(ours) 83.01 65.97 73.15 73.52 37.51 4.44 2.38 

Table 5 shows the performance comparisons of Lite-YOLOv5 with eight other state-

of-the-art detectors. In Table 5, we mainly select the Libra R-CNN [56], Faster R-CNN [57], 

EfficientDet [58], free anchor [59], FoveaBox [60], RetinaNet [61], SSD-512 [62], and 

YOLOv5 [27] for comparison. They were all trained on the LS-SSDD-v1.0 dataset with 

loading ImageNet pre-training weights. Their implementations were also kept basically 

the same as in the original report. In addition, it should be emphasized that there is no 

end-to-end on-board SAR ship detector. Thus, we selected the mainstream two-stage de-

tector (i.e., Libra R-CNN, Faster R-CNN) and single-stage detectors (i.e., EfficientDet, free 

anchor, FoveaBox, RetinaNet, SSD-512, and YOLOv5) in the CV community for compari-

son. 

From Table 5, the following conclusions can be drawn: 

1. What stands out in this table is the competitive accuracy performance with the 

greatly reduced model volume of Lite-YOLOv5. 

2. The AP and F1 of Lite-YOLOv5 cannot reach the best performance at the same time; 

nevertheless, the excellent performance of the other evaluation indicators can make 

up for it. More prominently, with the tiny model size of ~2 M and competitive accu-

racy indicators, Lite-YOLOv5 can ensure a superior on-board detection performance. 

3. Compared with the experimental baseline YOLOv5, Lite-YOLOv5 offers ~1.1% AP 

improvement (i.e., from 72.03% to 73.15%) and ~1.5% F1 improvement (i.e., from 

72.01% to 73.52%). This fully reveals the effectiveness of the proposed HPBC, SDC, 

CSA, and H-SPP modules. 

4. Compared with the experimental baseline YOLOv5, Lite-YOLOv5 offers the most 

lightweight network architecture with 4.44 G FLOPs (~26.6% of the FLOPs of 

YOLOv5), 1.04 M parameter size (~14.7% of the parameter size of YOLOv5), and ~ 2 

M model volume (~14.2% of the model size of YOLOv5). This fully reveals the effec-

tiveness of the proposed L-CSP module and network pruning. 

5. Libra R-CNN offers the highest F1 (i.e., 75.93%), but its AP is rather poor to satisfy 

the basic detection application, i.e., its 62.90% AP << Lite-YOLOv5′s 73.15%. Further-

more, its detection time, FLOPs, parameter size, and model volume are all one or two 

orders of magnitude than those of Lite-YOLOv5, which is a huge obstacle for on-

board detection. 

Table 5. The performance comparisons of Lite-YOLOv5 with eight other state-of-the-art detectors. 

The best model is marked in bold. Parameter Size refers to the model complexity. (tested on the 

RTX3090). 

Method AP (%) F1 (%) T (s) FLOPs (G) Parameter Size (M) Model Volume (M) 

Libra R-CNN [56] 62.90 75.93 62.28 162.18 41.62 532 

Faster R-CNN [57] 63.00 69.48 124.45 134.38 33.04 320 

EfficientDet [58] 61.35 64.70 131.33 107.52 39.40 302 

Free anchor [59] 71.04 64.60 52.32 127.82 36.33 277 

FoveaBox [60] 52.30 68.26 52.32 126.59 36.24 277 

RetinaNet [61] 54.31 70.53 52.06 127.82 36.33 277 

SSD-512 [62] 40.60 57.65 23.09 87.72 24.39 186 
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YOLOv5 [27] 72.03 72.01 1.92 16.70 7.06 14 

Lite-YOLOv5 (ours) 73.15 73.52 1.41 4.44 1.04 2 

4.2. Qualitative Results 

Figure 12 shows the visualization results on the LS-SSDD-v1.0 as an example. As we 

can see, Lite-YOLOv5 can carry out accurate SAR ship detection even in difficult condi-

tions (i.e., larger scene image, multi-scale ships, and different aspect ratios of ships). 

Figure 13 shows the detection results of different methods under complicated scenar-

ios (i.e., offshore scenes of strong speckle noise and inshore scenes). Note that we only 

chose some lightweight models for fair comparison. 

From Figure 13, one can conclude the following: 

1. In the offshore scenes, Lite-YOLOv5 can offer high-quality detection results even un-

der the environment of strong speckle noise. Most other methods always produce the 

missed alarms caused by speckle noise. Taking the second line of images as an exam-

ple, there were four missed detections of RetinaNet and three missed detections of 

YOLOv5, which are both more than that of Lite-YOLOv5 (only one missed ship). 

2. In the inshore scenes, Lite-YOLOv5 can offer high-quality detection results even un-

der the environment of ship-shaped reefs and buildings near shore. Most other meth-

ods always produce the missed alarms caused by them. Taking the fourth line of 

images as an example, there were two missed detections of RetinaNet and two 

missed detections of YOLOv5, which are both more than that of Lite-YOLOv5 (only 

one missed ship). 

3. Lite-YOLOv5 can offer an advanced on-board ship detection performance compared 

with other state-of-the-art methods. 

 

 

 

 

Figure 12. The qualitative SAR ship detection results of Lite-YOLOv5. A score threshold of 0.25 is 

used for display. Best viewed in zoom in. 
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Figure 13. The qualitative SAR ship detection results of different methods: (a) ground truth; (b) 

RetinaNet; (c) YOLOv5; (d) Lite-YOLOv5. The ground truths are marked by green boxes. Prediction 

results are marked by yellow boxes with confidence scores. The false alarms are marked by orange 

ellipses. The missed detections are marked by red ellipses. GT means the number of ground truths. 

FN means the number of missed detections. FP means the number of false alarms. 

5. Ablation Study 

In this section, we will introduce the ablation studies to show the influence of each 

proposed module by the means of each installation and removal. 

5.1. Ablation Study on the L-CSP Module 

Table 6 shows the ablation study of Lite-YOLOv5 with and without the L-CSP mod-

ule. In Table 6, “” means Lite-YOLOv5 without the L-CSP module (while keeping the 

other five modules), while “✓” means Lite-YOLOv5 with the L-CSP module (i.e., our pro-

posed detector). From Table 6, one can find that the L-CSP module can guarantee a lighter 

architecture with 4.44 G FLOPs and a 2.38 M model volume (~45.6% decrease of FLOPs 

and ~7.0% decline of model volume when compared with Lite-YOLOv5 without the L-

CSP module), which confirms that the L-CSP module can offers a model with greatly re-

duced computation. In addition, there is only a slight decrease to the overall detection 

performance. Thus, the L-CSP module can realize a model of sharply reduced computa-

tion with only a slight accuracy loss, which confirms its superior cost-effectiveness in 

lightweight network design. 

Table 6. The ablation study of Lite-YOLOv5 with and without L-CSP module. 

L-CSP P (%) R (%) AP (%) F1 (%) FLOPs (G) Model Volume (M) 

 82.23 67.16 73.17 73.93 8.16 2.56 

✓ 83.01 65.97 73.15 73.52 4.44 2.38 

5.2. Ablation Study on Network Pruning 

We conducted two ablation experiments on network pruning. Experiment 1 in Sec-

tion 5.2.1 shows the effectiveness of network pruning in Lite-YOLOv5. Experiment 2 in 

Section 5.2.2 shows the effectiveness of channel-wise pruning in network pruning. 

5.2.1. Experiment 1: Effectiveness of Network Pruning 

Table 7 shows the ablation study of Lite-YOLOv5 with and without network pruning. 

In Table 7, “” means Lite-YOLOv5 without network pruning (while keeping the other 

five modules), while “✓” means Lite-YOLOv5 with network pruning (i.e., our proposed 

detector). From Table 7, one can find that network pruning can realize a lighter architec-

ture with 4.44 G FLOPs and a 2.38 M model volume (~68.6% decrease of FLOPs and ~81.5% 

decline of model volume when compared with Lite-YOLOv5 without network pruning). 

Thus, network pruning can achieve a huge compression of the model with a slight accu-

racy loss, which confirms its superior performance in lightweight network design. In ad-

dition, we also conducted another experiment to explore the effect of channel-wise prun-

ing. 

Table 7. The ablation study of Lite-YOLOv5 with and without network pruning. 

Network Pruning P (%) R (%) AP (%) F1 (%) FLOPs (G) Model Volume (M) 

 80.93 67.75 73.84 73.76 14.16 12.90 

✓ 83.01 65.97 73.15 73.52 4.44 2.38 
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5.2.2. Experiment 2: Effect of Channel-Wise Pruning 

During the channel pruning procedure of network pruning, we conducted several 

experiments under different pruning ratios Pr. In general, the larger the pruning ratio is, 

the smaller the model volume of the network is while the poorer the model performance 

is. Thus, it is of great importance to trade off the pruning ratio and the model performance. 

From Figure 14, we can see the effect of choosing different pruning ratios from Lite-

YOLOv5 trained on LS-SSDD-v1.0 with λ = 10−3. When Pr goes beyond 0.7, the F1 of the 

model seriously deteriorates. Thus, in our implementation, Lite-YOLOv5 is channel-wise 

pruned with a Pr equal to 0.7 to trade off the model performance and model complexity. 

  

(a) (b) 

Figure 14. The effect of choosing different pruning ratios from Lite-YOLOv5 trained on LS-SSDD-

v1.0 with λ = 10−3: (a) model volume vs. F1; (b) FLOPs vs. F1. 

5.3. Ablation Study on the HPBC Module 

Table 8 shows the ablation study of Lite-YOLOv5 with and without the HPBC mod-

ule. In Table 8, “” means Lite-YOLOv5 without the HPBC module (while keeping the 

other five modules), while “✓” means Lite-YOLOv5 with the HPBC module (i.e., our pro-

posed detector). From Table 8, one can find that the HBC module can make a ~0.2% im-

provement with AP and F1. Note that the ~0.7% improvement in precision (i.e., the de-

crease of false alarms) reveals the reason of the improvement of overall detection perfor-

mance (i.e., the HPBC module can effectively exclude pure background ocean images, so 

some false alarms in them are avoided). Furthermore, the HBC module can obtain the 

real-time detection performance with only a 37.51 s running time for one large-scale image 

(~10.4 s decrease of running time compared with Lite-YOLOv5 without the HPBC mod-

ule). 

All of the above reveal that the HPBC module can effectively classify pure back-

ground ocean images; thus, it can (1) suppress some false alarms, and therefore the overall 

accuracy indices are increased and (2) decrease the detection burden of the detector, and 

therefore real-time detection performance is guaranteed. Significantly, one may find more 

powerful techniques to further classify the pure background samples, but HPBC might be 

one of the most direct approaches without complicated steps and obscure theories. 

Table 8. The ablation study of Lite-YOLOv5 with and without HPBC module. 

HPBC P (%) R (%) AP (%) F1 (%) T (s) 

 82.45 65.97 72.96 73.30 47.88 

✓ 83.01 65.97 73.15 73.52 37.51 

We performed another experiment to study the impact of the abscissa filter threshold 

εa. The experimental results are shown in Table 9. It can be concluded that when εa is set 
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higher, more pure background ocean images will be excluded (i.e., fewer images remain) 

and detection performance will be improved. However, in the actual scene, we focus on 

not excluding the ship images by mistake. Thus, it is of great importance to optimize εa on 

the basis of guaranteeing the original number of ship images. In Table 9, εa being set to 

128 is the optimal choice for the balance of the number of ship images and detection accu-

racy. Thus, the final εa is set to 128 in Lite-YOLOv5. 

Table 9. The ablation study of Lite-YOLOv5 with different abscissa filter thresholds. #Images: num-

ber of test set images; #Ships: number of ships in test set images. 

εa #Images #Ships P (%) R (%) AP (%) F1 (%) 

0 3000 2378 82.45 65.97 72.96 73.30 

96 2566 2378 82.49 65.97 73.00 73.31 

112 2450 2378 82.62 65.97 73.07 73.36 

128 2350 2378 83.01 65.97 73.15 73.52 

144 2271 2372 82.02 66.94 73.28 73.72 

5.4. Ablation Study on the SDC Module 

Table 10 shows the ablation study of Lite-YOLOv5 with and without the SDC mod-

ule. In Table 10, “” means Lite-YOLOv5 without the SDC module (while keeping the 

other five modules), while “✓” means Lite-YOLOv5 with the SDC module (i.e., our pro-

posed detector). From Table 10, one can find that the SDC module can make an overall 

detection performance improvement with a ~ 0.9% F1 improvement, which confirms its 

effectiveness. This is because the SDC module can utilize the SAR ship shape distance (i.e., 

the distribution of length, width, and aspect ratio) to generate a more appropriate prior 

anchor. Finally, Lite-YOLOv5 can extract SAR ship information more effectively. In addi-

tion, the SDC module brings hardly any model complexity increase, which confirms its 

superior cost-effectiveness in detection accuracy compensation. 

Table 10. The ablation study of Lite-YOLOv5 with and without SDC module. 

SDC P (%) R (%) AP (%) F1 (%) FLOPs (G) Model Volume (M) 

 82.37 64.89 72.53 72.59 4.33 2.33 

✓ 83.01 65.97 73.15 73.52 4.44 2.38 

5.5. Ablation Study on the CSA Module 

Table 11 shows the ablation study of Lite-YOLOv5 with and without the CSA mod-

ule. In Table 11, “” means Lite-YOLOv5 without the CSA module (while keeping the 

other five modules), while “✓” means Lite-YOLOv5 with the CSA module (i.e., our pro-

posed detector). From Table 11, one can find that the CSA module can make an overall 

detection performance improvement with a ~2.6% AP and ~1.9% F1 improvement, which 

confirms its effectiveness. This is because the CSA module can extract both rich spatial 

and rich semantic information. Finally, Lite-YOLOv5 can improve the ship detection per-

formance. In addition, the CSA module only brings a slight model complexity increase, 

which confirms its superior cost-effectiveness in detection accuracy compensation. 

Table 11. The ablation study of Lite-YOLOv5 with and without CSA module. 

CSA P (%) R (%) AP (%) F1 (%) FLOPs (G) Model Volume (M) 

 80.38 64.59 70.56 71.63 4.05 2.31 

✓ 83.01 65.97 73.15 73.52 4.44 2.38 

  



Remote Sens. 2022, 14, 1018 24 of 28 
 

 

5.6. Ablation Study on the H-SPP Module 

Table 12 shows the ablation study of Lite-YOLOv5 with and without the H-SPP mod-

ule. In Table 12, “” means Lite-YOLOv5 without the H-SPP module (while keeping the 

other five modules), while “✓” means Lite-YOLOv5 with the H-SPP module (i.e., our pro-

posed detector). From Table 12, one can find that the H-SPP module can make an overall 

detection performance improvement with a ~0.8% F1 improvement, which confirms its 

effectiveness. This is because the H-SPP module can aggregate the feature maps of abun-

dant receptive fields and obtain different degrees of context information. Finally, Lite-

YOLOv5 can effectively improve the network’s capacity to capture both local and global 

information of SAR images. In addition, the H-SPP module only brings a slight model 

complexity increase, which confirms its superior cost-effectiveness in detection accuracy 

compensation. 

Table 12. The ablation study of Lite-YOLOv5 with and without H-SPP module. 

H-SPP P (%) R (%) AP (%) F1 (%) FLOPs (G) Model Volume (M) 

 82.34 65.14 72.61 72.74 5.19 2.35 

✓ 83.01 65.97 73.15 73.52 4.44 2.38 

6. Discussion 

The above experiments and ablation studies verify the effectiveness of Lite-YOLOv5. 

We can transplant it to the embedded platform NVIDIA Jetson TX2 on the SAR satellite 

for on-board SAR ship detection. The combination of six optimization characters (i.e., L-

CSP, network pruning, HPBC, SDC, CSA, and H-SPP) guarantee the advanced on-board 

ship detection performance. As for the on-board processing, firstly, we cut the large-scale 

SAR imagery into 800 pixels × 800 pixels image patches without embellishment. Then, we 

conduct ship detection using Lite-YOLOv5. Finally, the obtained detection results on 

patches are coordinate mapped to obtain the final large-scale SAR ship results. In this way, 

only the ship sub-images and corresponding coordinates will be transmitted to the ground 

station, which is of great significance to utilize real-time and accurate ship information, 

especially in emergencies. 

In addition, the all of the above show that Lite-YOLOv5 possesses an advanced on-

board SAR ship detection performance. In order to obtain better and faster ship detection 

results, the follow-up work will need to explore the reasonable hardware acceleration 

strategy of the platform. Aiming at giving full play to the computing power of the NVIDIA 

Jetson TX2 hardware, we will allocate each module to the appropriate hardware to max-

imize the computing efficiency and obtain more efficient detection results. In addition, 

there are many other feasible schemes in lightweight model design (such as knowledge 

distillation). Therefore, our future work will explore distillation techniques. 

7. Conclusions 

This paper proposes a lightweight on-board SAR ship detector called Lite-YOLOv5, 

which (1) reduces the model volume; (2) decreases the floating-point operations (FLOPs), 

and (3) guarantees the on-board ship detection without sacrificing accuracy. First, two 

characteristics are used to obtain a lightweight network, i.e., (1) a LCB module is inserted 

into the backbone network of YOLOv5 and (2) network pruning is applied to obtain a 

more compact model. Then, four characteristics are used to guarantee the detection accu-

racy, i.e., (1) an HPCB module to effectively exclude pure background samples and sup-

press the false alarms; (2) a SDC method to generate superior priori anchor; (3) a CSA 

model to enhance the SAR ships semantic feature extraction ability; an (4) an H-SPP model 

to increase the context information of the receptive field. To evaluate the on-board SAR 

ship detection ability of Lite-YOLOv5, we also transplanted it to the embedded platform 

NVIDIA Jetson TX2. Experimental results on the Large-Scale SAR Ship Detection Dataset-

v1.0 (LS-SSDD-v1.0) show that Lite-YOLOv5 can realize a lighter architecture with a 2.38 
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M model volume (14.18% of the model size of YOLOv5), on-board ship detection with a 

low computation cost (26.59% of FLOPs of YOLOv5), and superior detection accuracy 

(1.51% F1 improvement compared with YOLOv5). We also conducted a large quantity of 

ablation experiments to verify the effectiveness of the proposed modules. Thus, Lite-

YOLOv5 can provide high-performance on-board SAR ship detection, which is of great 

significance. 

In the future, our works will be as follows: 

1. We will decrease the detection time further. 

2. We will lighten the detector further without sacrificing the accuracy. 

3. We will explore a reasonable hardware acceleration scheme for on-board SAR ship 

detection. 

4. We will explore other viable approaches such as distillation techniques in the follow-

ing lightweight detector design. 
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Appendix A 

For the reader’s convenience, in Table A1 we list all of the abbreviations and corre-

sponding full name involved in this paper. The abbreviations are arranged in alphabetical 

order. 

Table A1. The abbreviations and corresponding full names. 

Abbreviation Full Name 

AP average precision 

BN batch normalization 

Conv convolution 

CFAR constant false alarm rate 

CNN convolutional neural network 

CSA channel and spatial attention 

CSP cross stage partial 

CV computer vision 

DAPN dense attention pyramid network 

DL deep learning 

DS-CNN depth-wise separable convolution neural network 

FFEN fusion feature extraction network 

FL focal loss 

FLOPs floating point operations 
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FPN feature pyramid network 

GAP global average pooling 

GMP global max pooling 

HR-SDNet high-resolution ship detection network 

HNM hard negative mining 

HPBC histogram-based pure backgrounds classification 

H-SPP hybrid spatial pyramid pooling 

L-Conv lightweight convolution 

L-CSP lightweight cross stage partial 

LFO-Net lightweight feature optimization network 

L-Relu Leaky_ReLu 

LS-SSDD-v1.0 Large-Scale SAR Ship Detection Dataset-v1.0 

MLP multi-layer perceptron 

NLP natural language processing 

PAN path aggregation network 

RDN refined detection network 

RPN region proposal network 

SAR synthetic aperture radar 

SDC shape distance clustering 

SGD stochastic gradient descent 

SPP spatial pyramid pooling 

YOLOv5 You Only Look Once version 5 
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