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Abstract: The estimation of tropical cyclone (TC) intensity using Ku-band scatterometer data is
challenging due to rain perturbation and signal saturation in the radar backscatter measurements. In
this paper, an alternative approach to directly taking the maximum scatterometer-derived wind speed
is proposed to assess the TC intensity. First, the TC center location is identified based on the unique
characteristics of wind stress divergence/curl near the TC core. Then the radial extent of 17-m/s
winds (i.e., R17) is calculated using the wind field data from the Haiyang-2B (HY-2B) scatterometer
(HSCAT). The feasibility of HSCAT wind radii in determining TC intensity is evaluated using the
maximum sustained wind speed (MSW) in the China Meteorological Administration best-track
database. It shows that the HSCAT R17 value generally better correlates with the best-track MSW
than the HSCAT maximum wind speed, therefore indicating the potential of using the HSCAT data
to improve the TC nowcasting capabilities.

Keywords: scatterometer; tropical cyclone; wind radii; intensity; HY-2 satellite

1. Introduction

Tropical cyclones (TCs) may cause severe damages, notably in coastal areas, through
strong winds, heavy rain, and potential storm surges. The TC influence mainly depends on
its location and intensity, as well as on the vulnerability of the affected areas. Hence the
primary concern in operational TC monitoring and forecasting is to obtain an accurate TC
location and intensity information. A variety of observational systems and techniques, in-
cluding in-situ buoys [1], airborne radiometers [2], and satellite remote sensors [3–6], have
been developed to monitor tropical cyclones, among which the Global Navigation Satellite
System Reflectometry (GNSS-R) techniques, as well as spaceborne radiometers and scat-
terometers are particularly useful. For instance, the L-band GNSS-R instruments onboard
low-orbit satellites, such as the Cyclone Global Navigation Satellite System (CYGNSS), are
able to measure sea surface wind speed under all precipitating conditions [3]. With a con-
stellation of eight micro-satellites, CYGNSS provides relatively large spatial coverage and
high temporal resolution. However, due to the low sensitivity of the reflected GNSS signal
to high winds, the high winds from GNSS-R measurements are usually of large retrieval
errors [7]. The low frequency radiometers, especially the L-band instruments onboard the
Soil Moisture and Ocean Salinity (SMOS) and the Soil Moisture Active Passive (SMAP)
missions, are sensitive to high and extreme sea surface wind speeds, while little sensitive to
rain. This gives SMOS and SMAP distinct advantages over satellite scatterometers carrying
co-polarized beams, in terms of retrieving extreme TC winds (>35 m/s). Moreover, recent
works show that the C- and X-band radiometer channels, although more sensitive to rain
than L-band radiometers, are also useful in determining the maximum TC wind speed
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with relatively low bias and root-mean-square errors [8,9]. Nonetheless, the shortcoming of
radiometers in TC monitoring is that they have relatively poor spatial resolution to resolve
the steep gradient structure in the vicinity of hurricane eyewalls, notably for those high
category storms with relatively small eyewall radii [5].

Satellite scatterometers generally provide high-quality vector winds over the global
ocean surface, such that they have been widely used in the study of TC structure and loca-
tion [10–13]. Notably the Ku-band pencil-beam scatterometers, such as SeaWinds onboard
QuikSCAT [14], OSCAT onboard the Indian Oceansat-2 [15] and SCATSat-1 satellites [16],
and HSCAT on the Chinese HY-2 satellite series [17], are with wide observation swaths of
~1800 km, making them more likely to acquire the entire TC structure in a single overpass
than the C-band fixed fan-beam scatterometers, e.g., Advanced Scatterometers (ASCAT) on-
board the MetOp satellite series [18]. However, due to signal saturation in the (co-polarized)
radar backscatter measurements, both C- and Ku-band scatterometer extreme wind speeds
show large errors. Moreover, the rain contamination on the Ku-band backscatter leads to an
underestimation of the TC intensity estimates [7,19]. As such, it is difficult to characterize
the TC intensity directly using the maximum wind speed from scatterometer-derived wind
fields. Particularly, it is difficult to distinguish true high winds from the rain-contaminated
Ku-band retrievals [20], making the estimation of TC intensity with the Ku-band scatterom-
eter wind speed unreliable. In addition, scatterometers are generally calibrated against in
situ buoy measurements [7], leading to a large underestimation of high and extreme winds
when using dropsonde wind data as a reference (i.e., the gold standard for the extreme
winds community). A recent study by Polverari et al. [6] shows, though, that the ASCAT
high and extreme winds can be made consistent with the extreme winds from the airborne
Stepped-Frequency Microwave Radiometer (SFMR), which is calibrated with dropsonde
data, by applying an appropriate high-wind rescaling, which may be useful in estimating
the TC intensity following the tropical cyclone community standards.

Regarding the rapid increase of satellite scatterometer missions in China [21,22], it
becomes more realistic to monitor the TC evolution (notably the TC center locations) based
on the joint wind observations from the virtual scatterometer constellation. In particular,
the recent HY-2C and -2D satellites are operated in inclined orbits [22], which can provide
nearly six-hourly regional wind observations together with the sun-synchronous HY-2B
satellite. Since all the HSCATs are operated in a Ku-band microwave frequency with
conically scanning pencil beams, this paper intends to estimate the TC intensity using an
alternative parameter to the maximum HSCAT-derived wind speed. Chan and Chan [23]
constructed a comprehensive statistical climatology of the TC size (e.g., the azimuthally
averaged radius of 17-m/s winds, R17) and strength (i.e., the average wind speed in the
cyclonic circulation), and found that the correlation between TC size and strength is strong.
Guo and Tan [24] proposed a new concept, namely TC fullness, to quantitatively measure
the storm wind structure and to evaluate the TC intensity. Though both studies indicated
that the direct correlation between R17 and the maximum sustained wind speed (MSW) of
the best-track data is relatively low (~0.3), the wind radii information (R17) can be used to
derive new parameters (e.g., TC fullness) that are more correlated with MSW, hence R17 is
essential in the estimation of TC intensity. As such, this paper aims at improving estimates
of the TC center location and R17 using scatterometer data, using best-track information on
storm intensity and evolution as the reference.

Section 2 describes the datasets used in this study. Section 3 presents the methods of
data preparation and derivation of essential parameters, e.g., the TC center location and
the TC wind radii (R17). The relation between wind radii and TC intensity is examined in
Section 4. Finally, the main conclusions are summarized and discussed in Section 5.

2. Data

The HSCATs level 2B (L2B) data from the National Satellite Ocean Application Service
(NSOAS) are used in this study. These data are produced by NSOAS with the adapted
pencil-beam scatterometer wind processor (PenWP) developed by the Royal Netherlands
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Meteorological Institute (KNMI) scatterometer team for the EUMETSAT Numerical Weather
Prediction Satellite Application Facility (NWP-SAF), and disseminated through the NSOAS
website https://osdds.nsoas.org.cn (last accessed on 30 January 2022). The wind quality of
the different HSCATs has been assessed by Wang et al. [22,25], and found to be within the
mission requirements. Moreover, the wind retrievals are found to be consistent among the
different HSCATs. This paper mainly uses the HSCAT (HY-2B) observations of western
Pacific TCs in 2019. Since the main objective of this study is to explore the feasibility of
wind radii in estimating TC intensity, rather than to develop an automated TC identification
algorithm, we only use the HSCAT observations that capture the entire TC structure. As
such, nine TCs with 32 HSCAT acquisitions are collected, as shown in Figure 1.
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Figure 1. The observation data used in this study. The legend indicates the observing sensors, the TC
names, and the TC durations in year 2019. The markers indicate the TC center location identified
with the method in Section 3.

Both the L2B wind products of HSCAT and ASCAT have already included the Euro-
pean Center for Medium Range Weather Forecasts (ECMWF) background winds, which
are acquired by interpolating three ECMWF 3 hourly forecast winds, both spatially and
temporally, to the scatterometer data acquisition. In order to verify the general applicability
of the developed methods, the collocated European Center for Medium Range Weather
Forecasts (ECMWF) winds, as well as the ASCAT and the HSCAT-C data, are used to assess
the validity of TC center identification and wind radii estimation algorithms. The above
HY-2 data are in 25-km grid resolution and the ASCAT data are in 12.5-km grid resolution.
The collocated ECMWF winds are already provided in the scatterometer L2B data. With
the ASCAT swath being 40% smaller than that of HSCAT, only three TCs (Lingling, Faxai,
Bualoi) with 9 ASCAT entire acquisitions were collected in 2019, as shown in Figure 1 too.

The 6-hourly best-track data, including TC center position, MSW and minimum
sea level pressure (MSLP) of TCs with at least tropical storm intensity (MSW > 25 m/s),
are extracted and evaluated from the China Meteorological Administration (CMA) TC
database [26,27]. Both MSW and MSLP are common indicators of the TC intensity, e.g., TC
intensification refers to an increase in MSW or a decrease in MSLP [28]. Note that the
used MSW represents the maximum two-minute sustained wind speed at 10-m sea surface

https://osdds.nsoas.org.cn
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height. Moreover, both MSW and MSLP are interpolated spatially and temporally to the
scatterometer acquisitions for comparison purposes.

3. Method
3.1. TC Center Location

Liu et al. [29] noted that the divergence and/or the curl of scatterometer wind stress
near the TC core show distinct signatures which are useful for identifying TC center location.
That is, two (positive) local maxima and two (negative) local minima appear symmetrically
near the TC core, as shown in Figure 2. Consequently, one can take the intersection of the
two lines constructed separately by the local maxima (blue line) and the local minima (red
line) as the TC center. In practice, the TC center locations derived from both divergence and
curl are of similar accuracy compared to the collocated best-track data [29]. As such, the
wind stress curl of HSCAT wind data is hereafter used to identify the TC center location.
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Figure 2. Illustration of the divergence (a) and the curl (b) of HSCAT wind stress (TC Faxai) acquired
on 7 September 2019 at UTC 16:34.

Although the conditions for the presence of such distinct signatures in Figure 2 have
not been examined thoroughly, we found that these signatures are rather prominent after
checking the divergence and curl patterns for dozens of TC acquisitions. Consequently, the
above technique is applied to the 32 HSCAT and 9 ASCAT acquisitions of TCs in Figure 1,
as well as the collocated ECMWF forecast winds. The mean and standard deviation (SD)
values of the difference between the identified HSCAT TC center and the interpolated
best-track positions are about 28.8 km (approximately one pixel of the HSCAT grid data)
and 16.1 km, respectively, which are generally smaller than those described by Hu et al. [13].
The latter shows a mean difference between the HSCAT TC center and the best-track
position larger than three HSCAT 25-km pixels (~75 km). On the other hand, the mean and
SD values of the difference between the best-track position and the TC center depicted by
ECMWF winds are about 34.9 km and 19.2 km, respectively, demonstrating that HSCAT
winds result in closer TC center location to the best-track than ECMWF forecast winds.
For the 9 ASCAT acquisitions, the mean difference between the best-track position and
the ASCAT-derived (ECMWF-derived) TC center is about 24.9 km (37.9 km), which is
consistent with the above results.

3.2. TC Wind Radii

Taking the identified HSCAT TC center as the origin of Polar coordinates, one may
estimate the TC wind radius as follows [29]. The wind speed profiles along a set of equally
spaced azimuth angles (e.g., ∆φ = 15◦, 24 intervals in total) are calculated using spatial
bilinear interpolation. Practically, the radial profile is calculated at a set of discrete grid
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points (∆d ≈ 5 km) starting from TC center. At the ith azimuth angle, the radial extent of
17-m/s wind is recorded as di. As such, the azimuthally averaged radius (R17) is given by,

R17 =
1

24

24

∑
i=1

di (1)

The azimuthal average removes most of the asymmetry associated with TC mo-
tion [30], and makes the analysis in Section 4 rather straightforward. However, due to rain
contamination and radar measurement noise, the wind speed profile may have spurious
oscillations, leading to multiple peaks, and, therefore, multiple 17-m/s intersections. For
example, in Figure 3a,b, one may get an inaccurate result if the 17 m/s intersection closest
to the TC center (the origin of the used coordinate) is used to estimate R17. In this case,
the 17-m/s intersection whose distance (the blue marker in Figure 3b) to the TC center
is closer to the 17-m/s radial extent at neighboring azimuth angles is selected, as shown
in Figure 3c. Although such adjustment only happens about 2.7% of the times within the
32 × 24 HSCAT wind profiles, it proves to be generally efficient.
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intersection in a wind profile; (b) isogram of 17-m/s wind speed constructed from the radial extent
of 17 m/s winds closest to TC center; (c) corrected isogram of 17-m/s wind speed.

Note that the rainfall associated with TCs has remarkable impact on the Ku-band
pencil beam scatterometer winds, generally resulting in overestimated low winds and
underestimated high winds when heavy rain is present [19]. The operational quality control
(flag) of PenWP shows difficulty in discriminating true high winds (w > 17 m/s) from
the rain contaminated retrievals using [20], and generally removes too many high winds
around the TC core. Consequently, the QC flag is ignored in the calculation of wind radii.

4. Results

The best-track MSW is used to represent TC intensity in this section. As such, the goal
of this study is to find the scatterometer-derived parameter that is the highest correlated
with MSW in order to characterize the TC intensity. Both the maximum wind speed and
the wind radii of HSCAT wind retrievals are examined.

4.1. HSCAT Maximum Wind Speed versus Best-Track MSW

Figure 4 shows the best-track MSW versus the maximum wind speed of HSCAT
retrievals (a) and ECMWF forecasts (b). Since the best track, scatterometer and ECMWF
winds are with different spatial scales, they show a different high wind scaling, similar to the
results in [6]. Note that the objective of this paper is to seek for a parameter well representing
TC intensity, rather than to quantify the high wind scaling factor. Consequently, a linear
regression model (i.e., y = b + ax) is simply used to assess the correspondence between
the MSW and HSCAT/ECMWF maximum wind speed. The bias factor b and the scaling
coefficient a are estimated using the linear least square method. Moreover, the Pearson’s
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correlation coefficients between the MSW and HSCAT/ECMWF maximum wind speed are
calculated and shown in the lower-right corner of each panel. With the linear regression
model, the SD error of TC intensity predicted by the HSCAT and ECMWF maximum wind
speed are also calculated, respectively. As expected, the relationship between the HSCAT
maximum wind speed and best-track MSW is weak: the Pearson’s correlation is 0.32 and
the SD error is 11.6 m/s, so it may be useless in quantifying the TC intensity. In contrast,
the maximum wind speed forecasted by ECMWF shows a remarkable correlation with the
best-track MSW (r = 0.6), and the SD error (SD = 8.88 m/s) is better than HSCAT.
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4.2. HSCAT Wind Radii versus Best-Track MSW

Similar to Figure 4, the correlation between the best-track MSW and the estimated
HSCAT/ECMWF wind radii is shown in Figure 5. Compared to the maximum wind speed,
the HSCAT wind radii show a significantly better correlation with best-track MSW (r = 0.54),
of which the value is also larger than that found by Chan and Chan [23], Guo, and Tan [24].
The main reason could be that the area, as well as the temporal duration, of this study
is much smaller than that of the above mentioned literatures. Despite that the number
of different cases was evaluated in those papers, the proposed algorithm of wind radii
estimation is more efficient in identifying TC intensity than the maximum wind speed of
HSCAT retrievals. However, the R17 value estimated from the ECMWF wind field is less
effective than the ECMWF maximum wind speed in terms of representing TC intensity.
Probably, that is because ECMWF has a much coarser spatial resolution than scatterometers,
and in turn, it cannot resolve well the short-scale wind variance and the true TC wind
structure, notably under TC conditions [6]. Nevertheless, with the linear regression model
in Figure 5, the SD error of TC intensity predicted by the HSCAT and ECMWF wind radii
is about 9.59 m/s and 9.72 m/s, respectively.
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Actually, previous studies [28,31] already noted that the TC size varies with season
and geographic location, so a large R17 value does not always imply an intense TC, or vice
versa. Consequently, it is not realistic to develop a universal TC intensity prediction model
only based on the wind-radii information. On the other hand, one may be interested in the
relative changes of R17 with respect to MSW for a TC event or set of events within a short
period and small region, e.g., for a few satellite overpasses of a particular TC event.

Figure 6 illustrates the case by case correspondence between the HSCAT R17 and best-
track MSW/MSLP. Note that the HSCAT acquisitions for each TC event are within 48–72 h
(see Figure 1). It is obvious that the HSCAT wind radii generally correlate (anticorrelate)
well with the best-track MSW (MSLP), except for the TC Halong, whose intensity rapidly
increased by 23 m/s in 24 h, while the R17 value remained roughly the same, around 90 km.
The correlation coefficient is calculated for the TC events with more than three HSCAT
overpasses, and the results are summarized in Table 1. The correlation between the HSCAT
R17 and best-track MSW/MSLP is generally larger than 0.8, better than the maximum wind
speed of both HSCAT and ECMWF forecasts.
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Table 1. Correlation between different HSCAT parameters and best-track MSW/MSLP.

TC Name

Correlation Coefficient

R17 vs.
MSW

HSCAT
Wmax vs.

MSW

ECMWF
Wmax vs.

MSW

R17 vs.
MSLP

HSCAT
Wmax vs.

MSLP

ECMWF
Wmax vs.

MSLP

Wutip 0.53 −0.36 0.33 −0.54 0.36 −0.34
Wutip (<72 h) 0.97 0.04 0.89 −0.97 −0.02 −0.88

Lingling 0.83 0.63 0.56 −0.84 −0.61 −0.54
Hagibis 0.79 0.76 0.91 −0.81 −0.78 −0.92
Bualoi 0.86 0.16 −0.08 −0.87 −0.17 0.09

4.3. ASCAT Wind Radii versus Best-Track MSW

The proposed technique in Section 3 is applied to the nine ASCAT TC acquisitions in
Figure 1, and the correspondence between the ASCAT R17 and best-track MSW/MSLP is
shown in Figure 7. Note also, that the ASCAT acquisitions for each TC event are within 36
h. Similarly, it is not feasible to create a common TC intensity prediction model only based
on the ASCAT R17 value, as the same R17 value of ~120 km corresponds to a very different
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best-track MSW for TC Lingling (33.2 m/s), Faxai (44.6 m/s), and Bualoi (50.0 m/s),
respectively. Nevertheless, the ASCAT R17 shows a very promising correlation with the
best-track MSW and MSLP for each individual TC event, with a correlation coefficient
(>0.9) similar to that between the ASCAT maximum wind speed and best-track MSW (not
shown). In short, the wind radii information derived from the C-band ASCAT is as useful
as its maximum wind speed for the analysis of TC intensity in terms of a nowcasting or
short-range forecasting purpose.
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5. Discussion and Conclusions

Satellite scatterometers are able to obtain accurate stream line features [32] in the
presence of TCs, such that they have been widely used in TC monitoring, notably for the
monitoring of the TC center location. However, the scatterometer-derived extreme winds
usually present larger uncertainties due to signal saturation and rain contamination effects
(the latter is mostly for Ku-band systems), limiting the application of its data in determining
the TC intensity. Following the unique pattern of wind stress divergence and curl near the
TC core, a new method is developed to determine the TC center location, and to estimate
the azimuthally averaged radius of 17 m/s scatterometer winds. Although this article
ignored the QC flag when calculating the R17, Xu and Stoffelen [33] mentioned a new
indicator for the Ku-band QC which can improve the QC of rain in the Ku-band wind
scatterometer, and we may apply multiple QC indicators to improve the R17 calculation in
the near future.

The best-track database was used as another metric to verify the TC center location
and R17. The correlation between the estimated wind radii and the best-track MSW/MSLP
is analyzed, and it proves that the estimated R17 value is a better proxy for TC intensity
than the maximum wind speed of the Ku-band HSCAT. However, the correlation between
R17 and MSW is still rather low (r = 0.54) to develop a universal TC intensity prediction
model. Through a case by case study, we find that the R17 value is highly correlated
with the best-track MSW for each single TC event and their correlation coefficient is up to
0.86. This finding implies that the scatterometer wind radii are useful for estimating TC
intensity when limiting the spatial and temporal context in which the analysis is performed.
Moreover, this method can be also applied to the other scatterometers onboard the HY-2
satellite series (e.g., HSCAT-C and -D), hence it is useful to improve the monitor of TC
intensity using the HY-2 satellites observations.

Note that the illustrated TCs are generally at the growing phases. The correspondence
between R17 and MSW becomes more complicated when a TC is at the weakening stage.
That is, the 17-m/s wind radius may keep growing before it approaches a saturated
value, even though the TC intensity has gradually decreased. Nonetheless, for nowcasting
or short-range forecasting purposes, the scatterometer R17 value is still quite useful in
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assessing the evolution of TC intensity, particularly with the joint observations from the
HSCAT constellation.
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