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Abstract: Classification and segmentation of point clouds have attracted increasing attention in
recent years. On the one hand, it is difficult to extract local features with geometric information.
On the other hand, how to select more important features correctly also brings challenges to the
research. Therefore, the main challenge in classifying and segmenting the point clouds is how to
locate the attentional region. To tackle this challenge, we propose a graph-based neural network with
an attention pooling strategy (AGNet). In particular, local feature information can be extracted by
constructing a topological structure. Compared to existing methods, AGNet can better extract the
spatial information with different distances, and the attentional pooling strategy is capable of selecting
the most important features of the topological structure. Therefore, our model can aggregate more
information to better represent different point cloud features. We conducted extensive experiments on
challenging benchmark datasets including ModelNet40 for object classification, as well as ShapeNet
Part and S3DIS for segmentation. Both the quantitative and qualitative experiments demonstrated a
consistent advantage for the tasks of point set classification and segmentation.

Keywords: geometric features; 3D point clouds; shape analysis; neural network; graph attention
mechanism

1. Introduction

Point clouds are the most commonly used representations of 3D data due to the rapid
iterative upgrading of sensing equipment and are concerned and applied by more and more
researchers for their own unique advantage, which can be acquired by remote sensors [1]
or other non-contact methods, such as light, acoustics, and LiDAR [2,3]. For example, the
unique spatial information of point clouds can make up for the shortcomings of traditional
optical remote sensing images [4], and it is useful for remote sensing tasks, such as road
segmentation [5,6], 3D city modeling [7], and forestry monitoring [8]. In addition, point
clouds are also widely used in many other fields, such as autonomous driving, augmented
reality, and robotics.

Point clouds have attracted much interest for their wide application scenarios and
huge potential [9–11]. Meanwhile, there are many challenging tasks based on them being
proposed, and object classification and segmentation are the two most important tasks [12].
Object classification is the basis of object detection, automatic driving, and 3D reconstruc-
tion [13]. It plays a key role in many fields, for example face recognition is usually based on
an efficient real-time classification algorithm [14]. Point cloud classification, however, is still
facing challenges, and more work is urgently needed to solve the current difficulties, which
is mainly reflected in the robustness and efficiency that cannot meet the fast-growing needs
of industry [15]. Moreover, the particularity of the point cloud data structure also brings
huge challenges to the object classification and semantic segmentation task [16]. Usually,
the collected point clouds can be divided into three types: object point cloud, indoor scene
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point cloud, and outdoor scene point cloud. For semantic segmentation tasks, indoor and
outdoor scene datasets are usually used to evaluate the performance of networks. The
dataset of the outdoor scene puts forward higher requirements for the model due to the
larger amount of data, such as Semantic3D [17], Campus3D [18] and SensatUrban [19]. The
spatial size and points are usually ten-times or more than that of indoor scene point clouds.
All the point clouds have sparseness and replacement invariance [20].

The irregular structure makes it impossible to directly apply traditional image pro-
cessing methods to point cloud data. The rapid development of deep learning promotes a
variety of methods for point cloud processing tasks. These point cloud processing meth-
ods based on deep learning have proven their effectiveness with excellent classification
results. Some process point clouds by voxeling the space [21]. This leads to much addi-
tional memory consumption and computational overhead. Another family of methods
processes the point clouds directly. Different from multi-view methods [16] or volumetric
methods, PointNet [22] takes the lead in processing the point clouds directly. It applies
the shared multi-layer perceptron (MLP) on each point to extract features and aggregate
the global features by symmetric functions consistently regardless of the internal order.
PointNet, however, cannot effectively extract local features because it handles each point
independently. There is no information exchange between different points, but only the
transformation of their own features, which leads to the imbalance between global and local
features. This problem is improved by the sampling and grouping operations proposed by
PointNet++ [23], as shown in Figure 1a.

Figure 1. The illustration of three different representative methods: (a) PointNet ++; (b) DGCNN;
(c) our proposed AGM. In the last row, points of different colors have different attention scores, and
we used attention pooling in the last step, which is different from the two max-poolings above.

Benefiting from the successful expansion of graphs and other nonlinear structures in
the field of deep learning, graph convolutional networks (GCNs) have received increasing
attention in recent years [2]. Inspired by this, the dynamic graph CNN (DGCNN) [24]
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introduces a new edge convolution to calculate the graph structure dynamically at each
network layer and aggregates the features of the central node in the local graph and its
corresponding edge features. As shown in Figure 1b, the DGCNN also uses the max-
pooling strategy to aggregate the features, which is the same as PointNet++. Even if the
DGCNN has extracted local geometric information by connecting edge features and center
point features, it still lacks enough local topology. In addition, we can observe that all the
methods implement the symmetric function normally by the max-pooling strategy, which
is used to aggregate the global feature from the local region. However, the max-pooling
strategy can only aggregate the most important features while discarding a large amount of
the features that are rich in geometric information. This results in the local information of
the point cloud not being completely extracted and used, and more information is simply
abandoned directly during the aggregation.

In order to solve the above problems, we used attention pooling to aggregate the
features from local neighbors and designed a graph attention module (AGM), as shown in
Figure 1c. Based on this module, we propose our graph attention-based network (AGNet)
for a variety of 3D analysis tasks including object classification and segmentation. AGNet
constructs a local topology by designing a graph-like structure in a local region determined
by the k-NN method and applying a novel attention mechanism to aggregate the important
local features on point clouds. We used this method to increase the receptive field of each
point and enriched the local information of the point cloud by constructing better local
geometric features to ensure that each topological structure can better represent the local
area it represents. We conducted both quantitative and qualitative experiments including
object classification, segmentation, and a series of ablation experiments and achieved a
93.4% accuracy on ModelNet40 [25], 85.4% mIoU on ShapeNet Part [26], and 59.6% mIoU
on S3DIS [27]. The key contributions of our work are summarized as follows:

• We propose a novel feature extraction module based on an attention pooling strategy
called AGM, which constructs a topology structure in the local region and aggregates
the important features by the novel and effective attention pooling operation;

• We constructed a high-performing network called AGNet based on our attention
graph module. The network can be used for point cloud analysis tasks including
object classification and segmentation;

• We conducted extensive experiments and analyses on the benchmark datasets and
compared with the current best algorithm, which proved that we achieved results
close to the state-of-the-art.

2. Related Work

Traditional algorithms for 3D data usually incorporate geometry estimation and model
reconstruction. In recent years, deep-learning-based methods have proven their powerful
capabilities in high-dimensional and accurate feature expression on 3D object classification
and semantic segmentation [28]. Assisted by deep learning, researchers have focused on
data-driven approaches via convolutional neural networks (CNNs) [29]. Point clouds can be
defined as a series of unrelated points with three-dimensional coordinates [30]. The sparse
and irregular structure of the 3D point clouds is quite different from the 2D image. Therefore,
it is difficult to directly transfer the typical 2D image processing method to the 3D point cloud.

To a certain extent, the quality of extracting features determines the accuracy of
the result of the point cloud classification task. Therefore, the task of point cloud data
classification is to design a module that can better extract point cloud features. Based on
this, many methods have emerged in the field of deep learning to extract local and global
features of point clouds.

2.1. Projection-Based Methods

Considering the processing methods of 2D images, a straightforward view is to try
to migrate the CNN to the processing of 3D point clouds, that is to use the structured
operation of convolution to process unstructured point cloud data. An inspiring method
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is the MVCNN [16], which can project the 3D point cloud in multiple perspectives once
to obtain multiple views from different angles and then process these views through the
CNN and apply some existing 2D image processing methods to classify the point clouds.
Although MVCNN has achieved crucial performance, projecting the point cloud will result
in the loss of the spatial geometric information of the point clouds because even multi-
angle projection cannot completely cover the geometric information of all angles of the
point cloud. For the above reasons, SnapNet-R [31] uses a combination of multiple sets of
RGB images and depth images. This method uses multi-view input. The performance is
improved compared to the MVCNN, but the generated 3D image still faces the problem of
inaccurate boundary classification. In addition, different projection angles will generate
different images, which will also have a huge impact on the results of the experiment.

2.2. Voxel-Based Methods

Similar to the view of multi-view processing, another way to apply convolution on
the point clouds is to represent the point clouds in voxels instead of using multi-angle
projection. In this way, the geometric information in the point cloud space can be retained
as much as possible, and the loss of three-dimensional geometric features can be avoided.
VoxNet [21] uses voxelization to process point clouds, which significantly improves the
accuracy. Due to the unevenness of the point clouds, some locations are very sparse,
resulting in a large number of invalid grids during the voxelization process, which is
very inefficient. Computing operations will take up much memory and spend much time
training. For specific sparse problems, there are some follow-up improvements, such as
designing a dedicated sparse convolutional network or sampling first and then calculating.
Aiming at the problem of large memory consumption and storage difficulties, researchers
use k-d trees, octrees, and other methods for storage. SEGCloud [32] adopts the method
of dividing and then processing, which first divides the large-scale point cloud into small
sub-point clouds and then uses trilinear interpolation and the conditional random field
to process.

2.3. PointNets

The emergence of the PointNet [22] structure has enabled a new processing method
for point clouds in the field of deep learning. PointNet directly operates on the original
point cloud without formatting preprocessing. Its ability to handle point clouds so easily
mainly relies on the symmetric function structure designed by it. Through the insensitivity
of the symmetric function to the input data, it avoids the problems caused by the disorder
of the point cloud. The PointNet method, however, also has some shortcomings. When
extracting features, the max-pooling operation will extract the largest feature value and
discard other relatively unimportant features, which will be further magnified, especially in
scene segmentation, as an independent object will often be cut into two parts. By gradually
expanding the receptive field of the feature map, PointNet++ [23] makes each pixel contain
more and more information. Through this method, PointNet++ and a series of subsequent
methods can better capture the local information.

2.4. Graph Convolution and Attention Mechanism

The graph convolution neural network and attention mechanism are suitable for
dealing with unstructured data. Contrary to the PointNet family, the graph convolution
neural network constructs a directed graph structure for each point or sub-point cloud and
uses the graph structure for subsequent processing, which is usually determined by the
k-NN method. AdaptConv [33] proposes a novel convolution operation with an adaptive
kernel, which gives more choices in convolution. Compared with fixed weights, AdaptConv
is much more flexible. The 3D-GCN [34] also designs a learnable kernel to capture local
information in the convolution operation and shows its strong feature expression ability,
which also uses the graph as the input data of the network. The DGCNN [24] applies
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EdgeConv at all layers to dynamically calculate the graph structures obtained by the k-NN
method, which is the same as the above two approaches.

With the great achievements of the attention mechanism in the field of natural lan-
guage processing [35,36], more and more people have begun to pay attention to it, especially
in computer vision [37,38]. The attention mechanism is extremely suitable for point cloud
data processing, because it can extract more important features from multiple complex
features [2,39]. Based on this, researchers found that the attention mechanism has also
achieved gratifying results in the field of point clouds, and even further extended it to
Transfromer. GAPNet [39] designs a self-attention model to capture the attention feature
with local information. DGANet [2] uses the dilated k-nearest neighbor search algorithm to
capture the local information, which can be learned by the attention features. However,
we just used the normal k-NN to extract local features directly. The extracted features also
include distance information. OE-CNN [40] designs an orientation-encoding module to
search in eight directions to realize the effective feature. GACNet [41] proposes an end-to-
end network to process structural features and uses a convolution operation dedicated to
processing graph structures. LAE-Conv [42] proposes a local attention convolution to ag-
gregate long-range information and captures the global features by the pointwise attention
module. Point Transformer [43] proposes a novel method to process point clouds, which
is improved by the attention mechanism. These methods prove that the attention mecha-
nism has the same excellent performance in point cloud processing and natural language
processing, but most of them still use max-pooling to aggregate neighboring features.

3. Methods

In this work, we introduce a novel network named the attention-based graph network
(AGNet), which can better capture the features by constructing a k-NN graph structure and
aggregating by the attention mechanism. We introduce this section with the following two
parts: the attention graph module and attention pooling.

3.1. Network Architectures

We constructed our classification network with four AGMs, as shown in Figure 2 (top
branch). Gradually, four MLP layers are used with the convolution kernels of 64, 64, 128,
and 256, respectively. Every new layer uses a new graph, which is based on the features
extracted by the AGMs. Dropout layers are used in the last two MLP layers, and we set
the dropout rate to 0.5. We set the number k of the k-NN method to 20 for all AGMs in the
classification task, which was selected by the ablation experiment. The multi-scale features
were extracted and aggregated by shortcut connections and MLP layers with Leaky ReLU
and batch normalization, respectively. Finally, the global feature can be aggregated by a
global pooling strategy, and 2 MLP layers with kernels of 512 and 256 were used to obtain
the class scores.

We extended our network to segmentation tasks. Both part segmentation and semantic
segmentation process each point as a single category. As shown in Figure 2 (bottom
branch), three MLP layers were used to aggregate the local information. An MLP layer
with a kernel of 1024 and global pooling were used respectively to capture the global
feature with 1024 dimensions. Then, the global feature repeats N times to connect with the
previous features and the object labels. At the end, two MLP layers were used to output
the segmentation results.

Different from [44], we still used points as the input instead of 3D voxel grids. The
point clouds need to be divided into several 1 m × 1 m blocks first because of their large
amount. Besides, each block was sampled to 4096 input points. The later data processing
method was completely consistent with the dataset of indoor scenes.
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Figure 2. AGNet architecture for classification (top) and segmentation (bottom). The point features
were processed into high-level geometric feature learning in cascaded AGMs. Next, we used the
max-pooling results, as well as fully connected layers to obtain the class scores.

3.2. Attention Graph Module

With the structure shown in Figure 3, the designed AGM takes a set of points with din
dimensions as the input data and processes the points into dout dimensions. Specifically, the
AGM constructs a local graph by the k-NN method and applies attention pooling on the
aggregated features. The attention pooling module receives the local graph and calculates
the attention scores to give different weights to features of different importance.

Figure 3. The illustration of the proposed attention graph module (AGM). A set of points with
features of D dimension are processed into the output with features of the D

′
dimension by the

attention pooling mechanism, which weights the important neighboring features.
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3.2.1. Attention Graph Convolution

A point cloud with N points can be denoted as a set: P = {p1, . . . , pn}, and we set
the point cloud to have D dimensions: P ⊆ RD. Therefore, each point has D-dimensional
features, which may also contain additional information including the intensity, color,
normal vector, and so on, in addition to the most basic three-dimensional coordinate
information pi = (xi, yi, zi). The dimension of features usually changes while passing
through the layers of the network, and we generally use D to represent the dimension of
the feature given by the previous network layer and use D

′
to represent the dimension of

the feature to be output to the next network layer.
Consider a set of points, which can be denoted as a directed graph G = (V, E), where

the vertices V = {Vi | i = 1, . . . , n} and edges E ⊆ V2. Obviously, a center point pi
naturally has the edge to itself. Specifically, a set of points P ⊆ RD can be represented by
a k-NN graph G, which aggregates the local information. Each edge can be denoted by
its neighbors:

kij = Φ(pi, pj) (1)

where i ∈ (1, n), j ∈ (1, k), and Φ is a set of learnable parameters.
At the end, a feature transformed by an attention graph module is defined as:

p
′
i = Γ

i∈(1,n)
(Φ(pi, pj)), j ∈ (1, k) (2)

where Φ is the attention pooling to aggregate the local features.
Actually, a point cloud with D dimensions can be processed into D

′
dimensions by

the attention graph module. The point cloud P
′
= {p

′
1, . . . , p

′
n} aggregates more important

local information.
In this paper, we adopted an asymmetric function to represent the local features.

Φ(pi, pj) = Φ
′
(pi,

∥∥pi, pj
∥∥

2, pj − pi) (3)

where
∥∥pi, pj

∥∥
2 is the distance between pi and pj.

The features that need to be sent to the attention pooling layer aggregate the global
information, respectively, which is represented by the coordinates of pi, and the local
information, which can be represented as

∥∥pi, pj
∥∥

2 and pj − pi. It can be defined as:

k
′
ijm = ReLU(αm · pi + βm ·

∥∥pi, pj
∥∥

2 + γm · (pj − pi)) (4)

p
′
im = Γ

i∈(1,n)
k
′
ijm (5)

where α1, . . . , αm, β1, . . . , βm, γ1, . . . , γm are all the learnable parameters.

3.2.2. Attention Pooling

Attention pooling was used to aggregate the set of neighboring point features k
′
ij. The

illustration of attention pooling is shown in Figure 4. Existing methods generally use max-
pooling to aggregate the neighboring features, and a large amount of the information thus
is lost. The attention mechanism can solve this problem well, and we used the attention
mechanism to automatically learn the most important features. In fact, the attention pooling
mechanism can be defined as follows. Firstly, we computed the attention scores. Given
the set of local features k

′
ij = {k

′
ij1, . . . , k

′
ijm, . . . , k

′
ijM}, we designed a shared function λ()

to learn a unique attention score for each feature. Basically, the function λ() consists of a
shared MLP followed by so f tmax. It is formally defined as follows:

sm
i = λ(k

′
ijm, ψ) (6)
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where ψ is a set of learnable parameters.
The important features can be selected by the scores, which use different weights to

represent the features of different importance. As a result, it can be defined as:

k̂ij =
T

∑
t=1

(k
′
ijm · st

i) (7)

In a word, our AGM can better aggregate the local information of the k neighbors by
the k-NN method while processing a point cloud P and give the output informative feature
k̂ij, which determines the dimension of the next layer.

Figure 4. Attention pooling illustrated on 2D points.

4. Results
4.1. Object Classification
4.1.1. Data

ModelNet40 [25] is a dataset for object classification tasks, which is widely used for
point cloud analysis due to its clean shapes and well-constructed data. We evaluated our
network on this classical model dataset, consisting of predicting a specific shape never seen
before. This dataset also has some defects, such as the uneven division of the training data
for the categories. The dataset contains 12,311 meshed CAD models from 40 categories.
We preprocessed points in full accordance with PointNet [22]. We used 9843 models for
training, and 2468 models were used for testing. Each model was sampled to fit into the
unit sphere. We only used the three-dimensional coordinates of the points as the input of
the network, which had 1024 points sampled from the mesh, and discarded the original
meshes. We randomly rotated, scaled, and jittered the point locations to augment the input
points during the procedure of training our network.

4.1.2. Implementation

We implemented our proposed network on the framework of Pytorch and used a
single NVIDIA Tesla V100 GPU to train it. We set the k number to 20, which was determined
by the results of the ablation experiments later. During the stage of training, we used the
SGD algorithm to optimize the model and set the momentum to 0.9 for batch normalization
and the minimum learning rate to 0.015 with the learning rate decay scheme of cosine
annealing. The batch size was 32, and we used the model with the best result for the overall
accuracy from 250 epochs to evaluate the performance of our classification network.

4.1.3. Analysis

Table 1 shows the results of our network for the classification task. Our results are
marked in blod. Our network achieved a higher overall accuracy of 93.4%. It was 0.5%
better than the DGCNN and made a 4.2% and 2.7% improvement, respectively, compared
to PointNet and PointNet++. We kept all the experiments with 1024 point clouds except
the last row to ensure consistency with other methods. We further evaluated our network
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with 2048 points to verify its better performance, and we naturally set k at 40 to make
sure it could keep consistency as before. Notably, we actually did not use normal features
as inputs, which can significantly improve the performance of our network further, and
PointConv and DensePoint use additional features such as normalizing and voting on the
points during experiments.

We can also observe from Table 1 that most of the voxel-based methods performed
worse than the subsequent graph-based methods. This was due to the limitation of less
local information. To tackle this challenge, we designed a graph-based network with an
attention mechanism. Our network could better extract local features by constructing a
topological structure. What is more, our network consumed less computing resources
and occupied less memory than the other methods. Therefore, our network could better
capture the local information and achieved a high accuracy in the object classification task
compared to the other methods.

Table 1. Classification results on ModelNet40.

Method Input Type Points mA (%) OA (%)

3DShapeNets [25] (x, y, z) 1k 77.3 84.7
VoxNet [21] (x, y, z) 1k 83.0 85.9

Subvolume [45] (x, y, z) - 86.0 89.2
VRN (single view) [46] (x, y, z) - 88.98 -

ECC [47] (x, y, z) 1k 83.2 87.4
PointNet [22] (x, y, z) 1k 86.0 89.2

PointNet++ [23] (x, y, z) 1k - 90.7
KD-net [48] (x, y, z) 1k - 90.6

PointCNN [49] (x, y, z) 1k 88.1 92.2
PCNN [50] (x, y, z) 1k - 92.3

DGCNN [24] (x, y, z) 1k 90.2 92.9
KPConv [51] (x, y, z) 1k - 92.9

PointASNL [52] (x, y, z) 1k - 92.9
PointMLP [53] (x, y, z) 1k - 94.5

Ours (x, y, z) 1k 90.7 93.4
Ours (x, y, z) 2k 90.9 93.6

PointNet++ [23] (x, y, z), normal 5k - 91.9
PointConv [54] (x, y, z), normal 1k - 92.5
DensePoint [55] (x, y, z), voting 1k - 93.2

4.2. Shape Part Segmentation
4.2.1. Data

We evaluated our network for 3D object part segmentation on ShapeNet Part [26],
which is annotated richly with 2–5 parts for each model and contains 16,880 models that
are from 16 shape categories and 50 different parts in total. To ensure a fair comparison
with other people’s work, we used the sampled points produced by PointNet [22], which is
used widely by most papers. We also split the points with others to be consistent. We used
14,006 models for training and 2874 for testing.

4.2.2. Implementation

We implemented our proposed network on the framework of Pytorch and further
extended it to a distributed training scheme to meet the same batch size on two NVIDIA
Tesla V100 GPUs. During the stage of training, we also used the SGD algorithm to optimize
the model and set the momentum to 0.9 for batch normalization and the minimum learning
rate to 0.015 with the learning rate decay scheme of cosine annealing. We still kept the
batch size at 32, and we used the epoch with the best result of the accuracy from 200 epochs
to test the result of our part segmentation network.



Remote Sens. 2022, 14, 1036 10 of 18

4.2.3. Analysis

We evaluated our network with the category mean intersection-over-union (mIoU)
and the instance mIoU and compared the performance with other methods. We evaluated
our network with the same scheme as PointNet: We averaged the IoUs of each part of a
shape. The IoUs of a category can be computed through the mean value of the IoUs, all
of which belong to this category, which can be obtained one by one through the approach
above. Finally, we averaged the IoUs of all shapes that were used for testing to obtain
the mean IoU. We compared the performance of our network with PointNet, PointNet++,
the DGCNN, SO-Net, the PCNN, and some others. The results of the segmentation are in
Figure 5. We also visualized the results of our comparison with PointNet and the DGCNN.

Table 2 shows the results of our network for part segmentation. The best results are
marked in blod. Our competition results demonstrated that our network can capture the
local information, especially compared to those methods with insufficient local information.
KPConv also achieved a topperformance due to the fact that it has a novel and effective
local feature extraction module.

We compared the results of different methods including PointNet and the DGCNN
with our AGNet, and we show the visualization results in Figure 6. In the first row, it is
obvious that it was hard to clearly identify the chair legs in the first two columns, which
were the results of PointNet and the DGCNN, respectively. Both of them identified the
chair legs and the lower half of the chair as a whole. On the contrary, our method could
distinguish the chair legs well. In addition, PointNet could not clearly distinguish the back
and the surface of the chair due to its lack of local information. From the next two rows, we
can observe that our results were more similar to the ground truth, which extracted the
complete blade and the appropriately sized lampshade. Both PointNet and the DGCNN
could not correctly divide the joint between the blade and the handle into the correct
part, nor clearly identify the transition part between the lamp shade and lamp body. The
segmentation results of the skateboard in the last row demonstrate the effectiveness of our
attention pooling module. We can observe that there were wrong points in the wheel on the
right side of the DGCNN, which was mainly caused by its max-pooling strategy. Different
from the DGCNN, we used attention pooling to capture the most important feature from
the local k-NN graph, and the correct segmentation results were obtained. As a result,
a sufficient comparison of the visualization results demonstrated that our network was
capable of extracting local features.

Table 2. Part segmentation results on ShapeNet Part.

Method mIoU Air
Plane Bag Cap Car Chair Ear

Phone Guitar Knife Lamp Laptop Motor
Bike Mug Pistol Rocket Skate

Board Table

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet [22] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [23] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
KD-Net [48] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
LocalFeatureNet [56] 84.3 86.1 73.0 54.9 77.4 88.8 55.0 90.6 86.5 75.2 96.1 57.3 91.7 83.1 53.9 72.5 83.8
PCNN [50] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
A-SCN [57] 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
SpiderCNN [58] 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
SO-Net [59] 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6
DGCNN [24] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
RGCNN [60] 84.3 80.2 82.8 92.6 75.3 89.2 73.7 91.3 88.4 83.3 96.0 63.9 95.7 60.9 44.6 72.9 80.4
PCT [61] 86.4 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7
KPConv [51] 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6
FG-Net [62] 86.6 - - - - - - - - - - - - - - - -

Ours 85.4 84.1 83.2 86.0 78.8 90.6 76.9 91.9 88.4 82.3 96.0 65.5 93.7 84.2 64.2 76.8 80.6
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Figure 5. Visualization of the part segmentation results for the tables, chairs, airplanes, and lamps.

Figure 6. Visualization of the comparison results by different methods on the ShapeNet Part dataset.
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4.3. Semantic Segmentation
4.3.1. Data

In order to further verify the effect of our model, we evaluated our proposed network
for a more challenging semantic scene segmentation task on the Stanford Large-Scale
3D Indoor Space Dataset (S3DIS) [27], which includes six indoor areas. It contains two-
hundred seventy-nine million points that are scanned from two-hundred seventy-one
rooms in three different buildings. All points are labeled by semantic level as 13 categories
in total, including board, chair, and some other common things. We were consistent with
the data processing in [22], where the rooms were divided into blocks with a size of 1 m
× 1 m. We used the nine-dimensional vector (XYZ, RGB, and normalized coordinates) to
represent a point cloud.

4.3.2. Implementation

We followed our setting of the part segmentation task and randomly sampled 4096
points from each block along with the model being trained. In addition, points used for
testing were not sampled. Six-fold cross-validation over the six areas was used, and we
evaluated our model with the average results. We followed the same augmentations of
random scaling, rotating, and jittering the points.

4.3.3. Analysis

The best results are marked in blod. The results on S3DIS are reported in Table 3, and
we compared our results with PointNet and the DGCNN. It is worth noting that KPConv
processes point clouds as voxel grids instead of sampling them from blocks. This led to a
surge in the number of point clouds used, which was almost ten-times more than ours in
their actual implementations. This resulted in additional memory usage and computational
overhead, although it could better extract the characteristics of the point cloud and obtain a
higher mIoU.

Table 3. The 3D semantic segmentation results on S3DIS.

Method mIoU (%) OA (%)

PointNet (baseline) [22] 20.1 53.2
PointNet [22] 47.6 78.5
G + RCU [63] 49.7 81.1
MS + CU (2) [63] 47.8 79.2
SegCloud [32] 48.9 -
ShapeContextNet [57] 52.7 81.6
DGCNN [24] 56.1 84.1
KPConv [51] 69.6 -

Ours 59.6 85.9

The semantic segmentation results on the S3DIS dataset are shown as Figure 7.
Through the visualization results, we can intuitively find that our model could segment
some close objects better than PointNet and the DGCNN. Through the first row and third
row, we can observe that PointNet and the DGCNN often misclassified objects such as
chairs and trash cans with surrounding things, resulting in classification errors, and our
model could better distinguish them and classify them correctly. In addition, through the
remaining rows, we can find that our model also had better performance in the point clouds
with a regular overall shape, such as walls, which is reflected in that it could extract neater
and clearer boundaries.
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Figure 7. Visualization of different methods on S3DIS. For each set, from left to right: PointNet, the
DGCNN, ours, ground truth, and real color.

5. Discussion

We also conducted additional ablation experiments on the ModelNet40 [25] dataset,
in addition to the above three target classification and segmentation tasks, to explore
the specific impact of the different use of some important hyper-parameters during the
experiment on our model, such as the number of nearest neighbors used in the graph
structure. In addition, we verified the robustness of our model and analyzed the verification
results. Finally, by comparing our model with other competitive methods, we proved that
our network achieved the best balance between accuracy and complexity.

Different number of k: The results on ModelNet40 are shown as Table 4. We selected
some specific representative numbers of nearest neighbors from small to large. We did
not test all possible k because after these numbers of nearest neighbors were tested, we
could easily find that there was an obvious positive correlation between the accuracy of the
model and the number of nearest neighbors when k was small; however, with the increase
of k, that is after more than 20, the mean accuracy and overall accuracy of our model would
not continue to increase. In fact, with the increase of k, the accuracy of the model would
further decline. Our network achieved the highest mean accuracy of 90.7% and 93.4% on
the overall accuracy when k = 20 and we marked the results in blod.

We can observe from the results that the number of nearest neighbors had an upper
bound. Before reaching this upper bound, the value of k should be increased as much
as possible to ensure that the features of surrounding points can be obtained as much
as possible. In addition, through the comparison results, we can also easily see that the
number of nearest neighbors was not a natter of bigger is better, but related to the density
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of the input points. By combining the experiment of 2048 input points with the object
classification experiment, we can naturally come to the conclusion that the best value of k
should be positively correlated with the density of the input points, so as to prevent the
results from becoming worse by adding the characteristics of many unnecessary points to
the graph-like structure when the input density is small.

Table 4. Comparisons of different numbers of k on ModelNet40.

Number of Nearest Neighbors (k) mA (%) OA (%)

1 84.6 90.2
2 85.2 90.5
5 89.1 92.4
10 89.8 93.0
20 90.7 93.4
40 90.4 93.1

In conclusion, we found that the accuracy of the model increased with the increase of
the k number, and there was an upper bound. Therefore, we tried our best to select the k
corresponding to the maximum accuracy before it dropped.

Robustness test: In addition, we verified the robustness of our model by using the
classification network with k = 20. We gradually reduced the number of input points step
by step from 1024 to 512, 256, and at last only 128 points input into the model, which was
trained in the same way as the object classification part. Figure 8 shows the overall accuracy
and mean class accuracy results of the experiment with different numbers of input points.
It is obvious that our model achieved a considerable overall performance with 1024 points,
and even if the data were reduced to half of the original, which was only 512 points, the
model still performed well, which proved the robustness of our model. It is worth noting
that if we continued to reduce the input points by the same proportion, the accuracy of our
model would decline sharply and could not maintain good robustness. This is because the
k value set by our model was 20, that is, for each input point to be predicted, we would
find its nearest 20 neighbor points. While there were too few input points, the model could
not extract the corresponding graph-like features through the k-nearest neighbor algorithm,
which led to the model being unable to find a good topology to characterize the main
features of the shape. Accordingly, if the extracted graph structure had a low effect, even if
the attention pooling strategy was used, the more important feature could not be extracted
from a large number of invalid features.

Figure 8. Results on different numbers of points.
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Complexity analysis: Finally, we compared the complexity of our model to other
methods by the number of parameters on the ModelNet40 [25] dataset, and Table 5 shows
the results. We can observe that KPConv had a large number of parameters because of its
huge calculation, and PointNet had the lowest accuracy.

Table 5. Comparisons of model complexity on ModelNet40.

Method Input #Params Processing Time OA (%)

PointNet [22] 1 k 3.5 M 13.2 ms 89.2
PointNet++ [23] 1 k 1.48 M 34.8 ms 90.7

KPConv [51] 1 k 15.2 M 33.5 ms 92.9
InterpCNN [64] 1 k 12.5 M 28.2 ms 93.0

DGCNN [24] 1 k 1.81 M 86.2 ms 92.9
MVTN [65] - 3.5 M 50.2 ms 93.8

Ours 1 k 2.03 M 92.4 ms 93.4

Compared to PointNet, KPConv, and InterpCNN, the number of parameters of our
method was obviously fewer because we used fewer convolution operations and smaller
feature dimensions. However, we achieved a higher accuracy of 93.4%. Besides, PointNet++
and DGCNN have fewer parameters than ours, but their accuracy was lower than ours.
In addition, MVTN is more than half as large as our model, although its accuracy was
0.4% higher than ours. Therefore, our model achieved the best balance between spatial
complexity and accuracy.

Moreover, we compared the processing time of the different algorithms. For a fair
experimental comparison, we evaluated these methods on a single RTX 2080 GPU. The
results are shown as Table 5. PointNet and PointNet++ had less processing time because
both of them only use MLP to extract features. Compared to them, the DGCNN and
our model had similar k-NN search operations. Therefore, DGCNN and ours had a
similar processing time. However, because the attention pooling strategy took more time,
our processing time was somewhat longer than the DGCNN, but it achieved a higher
accuracy. Actually, MVTN achieved the best balance between processing time and accuracy.
Compared to MVTN, our method cost more time, but the accuracy was lower because of
the limitation of the k-NN algorithm, and when the k number increased, the time consumed
by the algorithm further increased.

6. Conclusions

In this work, we introduced a novel network on 3D point cloud tasks, called AGNet,
which is effective for learning on unstructured data point clouds. The attention mechanism
and graph structure are perhaps more suitable for point cloud processing than when they
are used for natural language processing or image analysis due to their strong capabilities
of extracting local geometric features. By using attention pooling, AGNet can better
aggregate the best features from a set of points that is chosen by the k nearest neighbors. We
showed the performance on both object classification and segmentation tasks by conducting
experiments and evaluating our network on challenging benchmarks such as ModelNet40
with a 93.4% overall accuracy, ShapeNet Part with an 85.2% mIoU, and S3DIS with a 59.6%
mIoU. Moreover, we provided ablation studies that demonstrated the feature extraction
capabilities of the AGM.

To this end, we would like to try to combine hyperspectral remote sensing images and
point clouds. AGNet can better utilize the rich spectral information of two-dimensional
hyperspectral remote sensing images while retaining the three-dimensional coordinate
information, which is very advantageous when performing semantic segmentation. In
addition, AGNet has already achieved considerable capabilities on benchmarks, compara-
ble with the images; however, the point cloud datasets that can be easily obtained are still
extremely limited. In the future, we would like to extend our work to larger datasets and
merge the different types of data.
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