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Abstract: The German Ruhr area is a highly condensed urban area that experienced a tremendous
structural change over recent decades with the replacement of the coal and steel industries by other
sectors. Consequently, a lot of major land cover changes happened. To retrospectively quantify such
land cover changes, this study analysed synthetic aperture radar images of the Sentinel-1 satellites
by applying the Google Earth Engine. Three satellite images are analysed by the multitemporal
difference-adjusted dispersion threshold approach to capture land cover changes such as demolished
buildings and new buildings by applying a threshold. This approach uses synthetic aperture radar
data that are rarely considered in previously existing land cover change services. Urbanization or
urban sprawl leads to changes in the urban form globally. These can be caused, for example, by
migration or regionally by structural change, etc., such as in the study area presented here. The
results are validated with reference data sets, which are publicly available nationally (e.g., house
contour lines, normalized digital terrain model, digital orthophotos) or which are publicly available
globally like the Global Urban Footprint and the World Settlement Footprint. Based on this, land
cover changes could be identified for 21 locations within the study area of the city of Bochum.

Keywords: multitemporal assessment; SAR; Sentinel-1; LULCC; Ruhr area; Bochum; Google Earth Engine

1. Introduction

The German Ruhr area is characterized as a highly condensed urban area. During
recent decades, this region has experienced a tremendous structural change with the
replacement of the coal and steel industries by service-oriented sectors. This conversion
induced a lot of major land cover changes that accordingly caused changes to the urban form.

On the one hand, urban form is defined by its spatial location [1–4], and on the other
hand, it is defined by its characteristics and functions. For example, an urban settlement
could be a city with market rights, suburbs or a central business district [5]. These different
functions determine the daily life—satisfaction of the needs of the local residents, like
mobility [6], health promotion [7] as well as interaction and communication [8,9].

To be able to spatio-temporally analyse urban form comparably on a global scale,
Wentz et al., 2018 developed a concept based on three main categories/components (mate-
rials, configuration and time/dynamics) and six secondary aspects (Figure 1). The main
component materials consider the aspects of human constructions, soil–plant continuum
and surface water. The second main component, configuration, considers the aspects of
dimensionality and spatial pattern. The third main component, time/dynamics, considers
only one associated aspect called “time” [10].

In this article, the urban form is analysed especially under four selected aspects
(Figure 1). From the materials category, human constructs are analysed, especially building
demolitions and new buildings. Under the category of configuration, urban form is described
in two dimensions and the spatial pattern in terms of the spatial extent of buildings. In the
category time/dynamics, these previously described aspects are investigated multitemporaly
between three points in time. For this purpose, Earth observation data are used.
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Figure 1. Fundamental components and aspects of urban form. (Figure adapted from [10]). 
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Due to the small heterogeneous structure but also due to the fast processes like urban 
sprawl in urban areas, Earth observation data are especially suitable as the data basis [11]. 
However, they also have some advantages and disadvantages due to their respective res-
olution and characteristics. A bridge to the analysis of urban areas with earth observation 
data is built by Netzband & Jürgens 2010 [12]. Land cover change analysis can be done 
with optical data, e.g., in Jürgens 2000 [13], but also as in this study with active synthetic 
aperture radar (SAR) data. 

To detect land cover changes from multitemporal SAR data, various mathematical, 
statistical, and rule-based classification methods exist. These can be based on pixels, ob-
jects or features [14]. 

A simple mathematical approach is to determine the log ratio between two records 
of the respective backscatter. Above a certain threshold, a land cover change is then de-
tected [15]. It assumes that if the land cover remains constant, the backscatter does not 
change over time. Land cover changes alter the backscatter so that a change can be deter-
mined [16,17]. Also, multitemporal SAR data can be supplemented with multispectral 
data e.g., from Sentinel-2, QuickBird, Worldview, etc. Thus, land cover changes can be 
detected by indices or calculations [18–20], this also represents a first pixel-based data 
fusion of active and passive data on sensor data [21]. 

Several approaches are based on the respective statistical distributions of backscatter, 
which use different statistical parameters to determine thresholds for when a backscatter 
represents a land cover change and when it does not. This can be done by determining the 
ratio or difference, etc., from multiple images [22]. In addition, multidimensional proba-
bility distributions such as by the Kullback-Leibler divergence can capture land cover 
changes [23,24]. 

It is also possible to determine automatically generated threshold values via the mul-
tivariate distribution between two quadratic and geometric mean values. This reduces the 
false alarm rate and simplifies the decision whether a change is really present [25]. 

Furthermore, a variety of likelihood ratio tests can also be used. These tests then de-
cide whether there is a change between the recording times. This method has been used 
previously for different sensors using a polarimetric Wishart distribution [17,26–29]. 
Bayesian networks are also used. These create directed acyclic graphs to capture land 

Figure 1. Fundamental components and aspects of urban form. (Figure adapted from [10]).

Due to the small heterogeneous structure but also due to the fast processes like
urban sprawl in urban areas, Earth observation data are especially suitable as the data
basis [11]. However, they also have some advantages and disadvantages due to their
respective resolution and characteristics. A bridge to the analysis of urban areas with earth
observation data is built by Netzband & Jürgens 2010 [12]. Land cover change analysis can
be done with optical data, e.g., in Jürgens 2000 [13], but also as in this study with active
synthetic aperture radar (SAR) data.

To detect land cover changes from multitemporal SAR data, various mathematical,
statistical, and rule-based classification methods exist. These can be based on pixels, objects
or features [14].

A simple mathematical approach is to determine the log ratio between two records
of the respective backscatter. Above a certain threshold, a land cover change is then
detected [15]. It assumes that if the land cover remains constant, the backscatter does
not change over time. Land cover changes alter the backscatter so that a change can be
determined [16,17]. Also, multitemporal SAR data can be supplemented with multispectral
data e.g., from Sentinel-2, QuickBird, Worldview, etc. Thus, land cover changes can be
detected by indices or calculations [18–20], this also represents a first pixel-based data
fusion of active and passive data on sensor data [21].

Several approaches are based on the respective statistical distributions of backscatter,
which use different statistical parameters to determine thresholds for when a backscatter
represents a land cover change and when it does not. This can be done by determining
the ratio or difference, etc., from multiple images [22]. In addition, multidimensional
probability distributions such as by the Kullback-Leibler divergence can capture land cover
changes [23,24].

It is also possible to determine automatically generated threshold values via the
multivariate distribution between two quadratic and geometric mean values. This reduces
the false alarm rate and simplifies the decision whether a change is really present [25].

Furthermore, a variety of likelihood ratio tests can also be used. These tests then decide
whether there is a change between the recording times. This method has been used previ-
ously for different sensors using a polarimetric Wishart distribution [17,26–29]. Bayesian
networks are also used. These create directed acyclic graphs to capture land cover changes
that represent random variables and dependencies based on probabilities [17,24,30–32].

Increasingly, methodological approaches from image classification are used. First,
object-based approaches for geometric feature detection and semantic cluster detection
with segmentation [33,34]. Often, AI networks are used for feature-based approaches using
statistical methods such as fuzzy logic. Less commonly, decision rule-based approaches
are used. These represent a complete data fusion by producing coherent data sets. Here,
optical data, e.g., from Landsat and SAR data, e.g., from ALOS PALSAR, are processed
completely independently [24,34–38].
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In this study, the multitemporal difference-adjusted dispersion threshold (MDADT)
method is used. It is similar to the Rapid and Easy Change detection on Time series
using the coefficient of Variation (REACTIV) approach of Koeniguer & Nicolas 2020 [17].
Land cover changes are represented in the hue saturation value (HSV) colour space. In
this colour space, the respective brightness and chromaticity are considered. This colour
space is determined by the Hue colour value colour angles in the colour wheel (from
purple-blue-green yellow, red). In this way, the respective intensity of the colour can be
represented [39]. Land cover changes are determined using the theoretical mean value
of the Rayleigh Nakagam distribution. This approach is suitable for representing land
cover changes [17]. Small-scale changes (approximately < 1500 m2) are not captured by the
REACTIV method [40].

Similar to the REACTIV method described above, this article uses land cover change
thresholds by the difference between the images via multiplying the standard deviation by
a factor of 1.5 and adding the mean. This MDADT method allows for a straightforward and
simple robust detection of land cover change-outliers in the distribution to be identified.
This approach also allows changes to be represented using additive colour mixing in the
red green blue (RGB) colour space. Here, the colours red, green and blue are additively
combined in the colour space. [39]. In the case of a land cover change, this is then repre-
sented in the respective assigned colour of the time of the change. If there is no land cover
change, it is displayed in white or grey shades.

In Earth observation analyses, this method has been used for a wide range of applica-
tions [41–43].

Small-scale changes are underrepresented in the REACTIV method. Therefore, it
is necessary to investigate whether it is possible, by means of a weighted threshold, to
capture multitemporal changes in urban form using further high-resolution public, partly
freely available vector and raster geospatial data. For this purpose, logarithmically scaled
Sentinel-1 data are processed and analysed in Google Earth Engine [44,45].

To validate this analysis, an area is selected that is well documented by third-party
geospatial data and known to have had land cover changes.

The goal of the study is to use the MDADT method to record land cover changes in
the form of building demolitions and new construction. These changes will be validated
with third party geospatial data. Another goal is to be able to transfer this methodology to
less well-documented areas.

2. Materials and Methods
2.1. Study Area

The selected study area (4312.67 ha) is located in eastern Bochum, North Rhine-
Westphalia, Germany (Figure 2). Thus, it is centrally located in the Ruhr area, one of the
largest agglomerations in Europe with more than 5 million inhabitants.

The Ruhr region is a highly dense urban area. It has experienced significant structural
change in recent decades, with heavy industry (coal & steel) increasingly being replaced by
other industries. As a result, there have been serious changes in land cover.

The study area in the east of Bochum is representative for the Ruhr area. It contains ur-
ban areas of varying density, as well as agricultural, forested and water areas. Furthermore,
it is characterized by significant land cover changes in recent years [46]. It has been strongly
influenced by the economic globalization-based plant closure of the Opel factory (General
Motors). With the guiding principle of a knowledge-based economy, the focus is now much
more on a more diversified industry structure. Particular focus is placed on the service
sector, e.g., logistics, and on research and development by numerous universities [47].
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Figure 2. Right: overview map with indicated study area in Bochum, North Rhine-Westphalia,
Germany [48]. Left: study area in the eastern part of Bochum [49].

2.2. Spatial Data

Open-source Sentinel-1 data were available for the study (Table 1).

Table 1. Characteristics of the Sentinel-1 Data [50–52].

Specifications Sentinel-1

Dates and time
(YYYY-MM-DD)

A 7 January 2015, 4:41:45 a.m.
B 7 January 2017, 4:49:26 a.m.
A 5 January 2020, 4:42:06 a.m.

Ground Resolution in m 10
Azimuth Resolution in m 20

moderate geometric resolution 5 m by 20 m
Polarization Dual (VV–VH)
Frequency C-Band

Sensor mode IW
Mode Interferometric wide (SLC)

Incidence Angle 18.3◦–46.8◦

Coverage in km >250 km × 100 km

Processing level: thermal noise corrected, Radiometric calibration, Terrain correction
(SRTM) and converted to decibels via log scaling (10 ∗ log10(x)).

Orbit direction descending

The three datasets from 1 July 2015, 1 July 2017, and 1 May 2020 are from the first
days of January and were used to exclude land cover changes that occured due to changing
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agricultural land use. These could occur in recordings from the summer months, as land cover
changes occur in arable crop production due to crop-specific planting and harvest dates.

Precipitation values from the nearby Ludger Mintrop weather station indicate that no
significant rainfall events greater than 10 mm occurred prior to the image acquisition, and
thus the capture of changes in urban form is not affected by surface water.

The following third party geospatial data are used to validate the recorded land cover
changes (Table 2). On the one hand, house perimeters; they are a follow-up product of the
ALKIS (Authoritative Real Estate Cadastre Information System) data [53]. On the other
hand, the normalized NDSM, which is the product of the orthogeometry of the aerial
photographs and the DTM from the LiDAR survey [54].

As a further data set, the Global Urban Footprint (GUF) was used, which is based
on radar images from TerraSAR-X/TanDEM-X. DLR globally provides data on sealing in
about 5 × 10 m resolution upon request [55–58].

In addition, the World Settlement Footprint (WSF) dataset was used to represent more
recent land cover changes. It is based on different datasets [57,59].

In addition, the German base map 1:5000 from 2016 was used, as it shows the entire
Opel plant I including house perimeters [60].

2.3. Methodology

In the following, the methodology of the MDADT method is described in detail,
it extracts land cover changes from multitemporal Sentinel-1 images. These represent
building demolitions and new construction. Then, the changes are validated with third-
party geospatial data to verify the captured changes.

Figure 3 shows the individual intermediate steps of the MDADT method described
below. In Google Earth Engine, the selected Sentinel-1 (Table 1) were used with the mode
IW from the descending path in ten meters resolution and in VV, VH polarization. Then the
images were filtered with the speckle filter focal mean in a 50 m radius (Figure 3, data input).

For the multitemporal visualisation, the individual VH images were chronologically
assigned to the three primary colours red, green and blue in one image using additive
colour mixing (Figure 3, processing).

Objects that are detected only at one point in time in the radar image are displayed in the
primary colour assigned to that image. If land cover changes occur between the three points
in time, they are displayed in the respective mixed colour of the primary colours involved.

In yellow land cover changes between the first (2015) and second (2017) image are
shown, in cyan blue land cover changes between the second (2017) and third (2020) and in
magenta land cover changes between the first (2015) and third (2020) image are shown.

If buildings are constructed or demolished, these land cover changes are shown in the
respective colour of the time period, allowing a very accurate record of the respective time of
land cover change. Areas where no land cover changes occur are shown in white or grey tones.

Land cover changes can also be temporary, such as parked vehicles or containers in a
parking/storage area. Land cover changes also occur periodically, such as vegetation, but
this is nearly ruled out by the January imagery. Furthermore, chaotic backscatter can occur
due to meteorological effects or metallic objects in radar images.

In order to determine differences between the three images, the respective difference
between the acquisition times of the VH polarizations was calculated in Google Earth
Engine. From this difference, land cover changes can be extracted by threshholding. For
this purpose, the threshold value was statistically determined by multiplying the standard
deviation of the difference of the images by a factor of 1.5 and adding the mean value of
the difference of the images (Figure 3, processing).

For further quantification, the respective grid cells greater than or equal to 10 for
buildings were extracted from the differences between the three images. Thus, land cover
changes in the form of new building construction can be identified (Figure 3, processing).
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Table 2. Characteristics of third party geospatial data sets (Source authors).

Specifications\Data
Building

Footprints
(BF)

Normalized Digital Surface
Model (nDSM) Digital Orthophotos (DOP)

Global
Urban

Footprint
(GUF)

World Settlement Footprint
(WSF)

Coverage NRW NRW NRW Global
(60–75◦ N)

Global
(74◦ N–56◦ S)

Spatial resolution 1:1 50 cm 10 cm 12 m (0.4′′) 10 m
Temporal reference 2020 2018–2019 2018 2011–2012 2015–2019

Output data ALKIS-objects
Dense-Image-Matching based on

digital aerial photos and lidar
data

Orthorectified digital aerial
photos

180,000 intensity images 3m
ground resolution (spotlight
mode) from TerraSAR-X SAR

2018: Sentinel-1 & -2

217,000 Landsat-8 and 107,000
Sentinel-1 images, High

Resolution Settlement Layer
(HRSL) Digital Globe VHR

satellite imagery and publicly
released at 30 m, 2019 Sentinel-1
1,2 Mio. and Sentinel-2 1,8 Mio.

Position projection—Reference
System
EPSG

4647 25,832 25,832 4326 4326

Height projection—
Reference System

EPSG
/ 7837 7837 / /

Data format SHP TIF TIF TIF TIF

Typology/Class/Attribute Official community ID, object ID,
building function, update date

Height of Objects
Above surface R, G, B, IR Urban,

open area Urban, open area

Version / / / 2 2
Geometric resolution

Scale / ±5 dm in position and height ±2–3 dm / /

Thematic accuracy / / / 85% 100–75%
Production time 2020 2018 2018 2016–2018 2015/2019

Accessibility Open data Open data Open data Free Request for non-commercial
used

Free Request for non-commercial
used

License Datenlizenz
Deutschland–Zero–Version 2.0

Datenlizenz
Deutschland–Zero–Version 2.0

Datenlizenz
Deutschland–Zero–Version 2.0 Research: free of charge Research: free of charge

Source-Responsible organisation GEOBASIS NRW GEOBASIS NRW GEOBASIS NRW DLR DLR
Reference [53] [54] [49] [61] [57,59]
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This threshold was determined empirically in the individual images. After extracting
the building pixels, the raster dataset is converted to a polygon dataset, as this simplifies
validation with third party geospatial data and provides a better representation of results
(Figure 3, processing).

Subsequently, the area of land cover changes was calculated and the respective time
period (2015–2017, 2017–2020, and 2015–2020) between which the land cover changes that
occurred were inserted into the attribute table (Figure 3, processing).
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To identify the actual land cover changes that occurred due to buildings, a clip was
made between the land cover changes and the extracted buildings for the respective time
periods. The results were merged with attributes of the respective time period to uniquely
identify these areas with land cover changes (Figure 3, processing).

Subsequently, these results were validated with third party geospatial data (Figure 3,
validation). Land cover changes of less than 0.1 ha were not considered—they were found
to be erroneously recorded land cover changes. First, the results were blended with the
house perimeters and afterwards, residual areas were calculated to identify areas that could
not be explained by the house perimeters (Figure 3, validation).

From these ratios between the remaining area and the initial area, areas can be identi-
fied where the ratio is not equal to one. From these remaining areas, the average height of
the polygons was determined, whereby only building heights higher than five meters were
examined. The connecting polygons were validated via digital orthophotos or with images
from Planet Earth Explorer and Google Earth in this period (Figure 3, validation).

The results of the validation were then categorized in terms of their way of changing
the urban form in the attribute table. In the investigated category materials, a distinction
is made between the type of change of human constructs: building demolitions and new
buildings. The land cover changes recorded above were manually classified into the
following categories:

- New buildings (constructed), e.g., university buildings or dormitories;
- Building demolition (deconstructed), e.g., former Opel factory buildings;
- Building demolition and subsequent new construction on the same area (deconstructed–

constructed), e.g., on the southern area of Opel plant I by DHL distribution centre;
- SAR interaction with metallic objects on the ground surface (metal), e.g., different

number and location of containers.

In relation to spatial patterns of urban form, the spatial extension–size of buildings is
divided. They are divided into three groups according to their size:

- large areas (large) (>1 ha),
- medium-sized areas (middle) (0.1–1 ha),
- small areas (small) (<0.1 ha).

These two divisions by type of change and size were evaluated for the type of urban form.
In addition, the final results converted to polygons from Google Earth Engine were

saved as polygons using the globally available GUF and WSF data from DLR. These data
larger than 0.1 ha were validated as well (Figure 3, validation).

The MDADT method is an innovative unique method to capture land cover change in
the form of buildings due to the following characteristics:

• Compared to existing land cover change methods, the MDADT Method uses only
SAR data.

• This data is analysed in a freely available cloud from Google Earth Engine, Infrastruc-
ture as a Service.

• The MDADT method is very easy to program in the cloud.
• The result is used for long term civil land cover changes of buildings, not like other

methods for oil spills, flood plains and vehicles etc.
• Compared to Che & Gamba 2021 [62], the buildings are validated in the global north.
• In addition, this allows for multitemporal coverage of land cover changes over large

areas and long time periods (see Figure 4). Thus, like the MDADT method, it can also
be performed on an occasion-by-occasion basis.

• The validation of the results takes place with the help of freely available geospatial
data (Section 2.2 Spatial Data).

• The results even allow a verification of the actual validation data.
• Furthermore, the very accurate results allow to show conclusions about the urban

form and the validation data (Section 3 Results).
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Figure 4. Multitemporal SAR representation of the former Opel plant I using an additive colour
representation. The grey marked pixels represent the time of the respective land cover change, point
one (P1) blue state 5 January 2020 in the eastern surroundings of the plant; P2 cyan change between
2017 and 2020 at the southern edge of the plant; P3 light green to cyan state 7 January 2017, former
northern halls; P4 yellow change between 2015 and 2017, former central hall section; P5 red state
7 January 2015, former halls; P6 magenta change between 2015 and 2020, former southern halls;
today DHL distribution centre. In this period, long-lasting land cover changes overlap; on the one
hand factory halls were demolished, and on the other hand, the DHL distribution centre was built
here afterwards. Here no already-depicted changes are shown, but only the difference between
the first and the last image. P7 does not know of any changes to the still-existing administration
building—today “O-Werk” [52,60].

3. Results

Using the MDADT method, land cover changes in the form of building demolitions
and new buildings in Bochum, Germany were recorded. The additive colour mixture in
Figure 4 shows impressively when the former Opelwerk I in Bochum was demolished. From
this, the time periods of the demolition and the new construction of the DHL distribution
centre can be determined.

A total of 21 land cover changes were extracted from the three radar images (Figure 5).
Ten land cover changes can be verified as buildings by the house perimeters, which were
newly built before. Of the remaining eleven land cover changes, two are taller buildings.
One was demolished in the meantime and is thus no longer included in the house perimeter
dataset, and the second building is not present in the house perimeter dataset at all. This
building is a new university building, which itself is not yet included in the current house
perimeter dataset. Another six land cover changes are new buildings that can only be
explained by validation of current optical data. The remaining three changes result from
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sporadic backscatter of metal or already-demolished factory buildings or motor vehicles
and temporary refugee housing.
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Figure 5. Recorded and validated multitemporal land cover changes between 2015, 2017, and
2020 [49,52].

In an additional time series analysis of the data set of house perimeters between 2016
and 2021, the identical building demolitions and new buildings are shown (Figure 6). A
few buildings are not captured by the MDADT method, e.g., because they were completed
before the first recording in 2015 or were still under construction during the third and last
recording in 2020 (Figure 7). This pattern corresponds to the characteristic life patterns of
buildings [63].

Using the clip with the previously validated results of the MDADT method with the
GUF data set, 23 land cover changes over 1000 m2 are now identified. The different number
can be explained due to the coarser spatial resolution of the GUF dataset of 12 × 7 m and
the coarse subdivision into only two classes. Of these, the GUF data set presents nine
as unsealed. For four this is true, for five they are sealed areas. In addition, 14 areas are
built-up according to the GUF data set; for eight this is true, and for six it is a matter of
unbuilt-up areas.
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Figure 6. Composite changes in the house perimeter dataset from 2016 to 2021 compared to the
results of the MDADT method’s recorded land cover changes in yellow (2015–2017), cyan (2017–2020)
and magenta (2015–2020) [49,52].

The GUF dataset can be used to roughly categorize unsealed and sealed areas. Due to
this simple categorization, it is only partially useful for validating land cover changes. It
can rather serve as a reference for similar analyses.

Comparing the WSF 2015 and WSF 2019 datasets, 22 land cover changes larger than
1000 m2 can be identified. Again, the different number can be explained based on the
coarser spatial resolution of the WSF dataset of 10 × 6 m and the coarse subdivision into
only two classes. Three of them coincide with the changes recorded here by the MDADT
method. Another nine can be explained by the house perimeters. In terms of height, none
of the remaining 10 can be identified as buildings. With optical data, these can be identified
as metallic objects on construction sites.

In the previously described validations with public high-resolution third-party geospa-
tial data (Table 2), the results could be verified very well. In an additional check with respect
to the validity or accuracy of the land cover changes captured by the MDADT method in
the respective time periods, it can be seen that the majority are “True positive”, i.e., really a
building has been newly constructed, e.g., between 2015 and 2020 (Table 3, Figures 8 and 9).
A few are “True negative”, because a large building was demolished in the same place and
then a new smaller building was erected. The remaining area of the former larger building
is no longer used by a new building, but is brownfield.
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Table 3. Overview of the accuracy of the land cover changes recorded and validated by the MDADT
method in the respective time periods [52].

Constructed Constructed—
Deconstructed Deconstructed Deconstructed—

Constructed Metal
Sum

True
Positive

True
Negative

True
Positive

True
Negative

True
Positive

True
Negative

True
Positive

True
Negative

True
Positive

True
Negative

2015–2017 3 1 1 5
2015–2020 9 1 1 11
2017–2020 1 1 1 2 5

sum 10 0 2 0 4 0 1 1 3 0 21
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In relation to the different categories of urban form studied, it can be noted that under
the category of materials human constructs like building demolitions and new buildings
can be well identified in the form of land cover changes of urban form. A majority of
buildings were constructed in the period of 2015–2020 (Table 4, Figure 10). Three land
cover changes represent building demolitions between 2015 and 2017. In the configuration
category, two-dimensional changes and distribution of spatial patterns were recorded in
terms of their spatial extent of urban form (Figure 10).
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Figure 9. Accuracy of land cover changes recorded and validated by the MDADT method in the
respective time periods [49,52].

Table 4. Overview of land cover change recorded by the MDADT method in relation to the type of
change [52].

Constructed Constructed—
Deconstructed Deconstructed Deconstructed—

Constructed Metal Sum

2015–2017 3 2 5
2015–2020 9 1 1 11
2017–2020 1 1 1 2 5

sum 10 2 4 2 3 21
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Figure 10. Recorded and validated multitemporal land cover changes between the years 2015, 2017,
and 2020 of the MDADT method in terms of land cover change type [49,52].

On some medium-sized areas (0.1–1 ha), buildings were erected or dismantled, e.g.,
between 2015–2020 (Table 5, Figure 11). Only half as many large sites are affected.

Table 5. Overview of land cover changes detected by the MDADT method in relation to its spatial
extent [52].

Large Middle Small Sum

2015–2017 2 3 5
2015–2020 2 6 3 11
2017–2020 1 4 5

sum 5 13 3 21

In the comparison of the investigated aspects of urban form, it is noticeable that more
buildings were newly erected than demolished (Table 6). In some large areas (>1 ha) differ-
ent changes took place. In small areas (<0.1 ha), new buildings were erected. From these
results, it can be concluded that structural change leads to only some large-scale changes,
but to a large number of changes in medium-scale areas. The category time/dynamics and
its temporal aspect allows to present a time series analysis of land cover changes.
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Figure 11. Land cover changes detected by the MDADT method between 2015 and 2020 shown in
their spatial extent: large (>1 ha), middle (0.1–1 ha) and small (<0.1 ha) [49,52].

Table 6. Overview of land cover changes detected by the MDADT method in relation to its type of
change and spatial extent [52].

Pattern
(Area)\Type Constructed Deconstructed Deconstructed—

Constructed Metal Sum

large 1 1 2 1 5
middle 8 3 0 2 13
small 3 0 0 0 3

sum 12 4 2 3 21

In comparison, the globally available GUF and WSF data are less clear in identifying
land cover changes (Figure 12).
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4. Discussion

Land cover changes can be well identified by this SAR-based MDADT method. These
land cover changes in the form of building demolitions and new buildings represent a
change in urban form. Thus, land cover changes can be analysed multitemporally at three
time points for an extended period of time. This is in contrast to the REACTIV method,
which can better identify land cover changes for specific events (Figure 13) [64].
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Figure 13. Multitemporal SAR representation of the former Opel plant I using the REACTIV method
in HSV colour space; see Figure 4 in comparison in the RGB colour space. Land cover changes from
7 January 2015 are shown in light red, e.g., in the eastern part of the former Opel plant. Land cover
changes around 7 January 2017 are marked in blue–cyan. Changes until 5 January 2020 are shown in
dark red, e.g., southern surroundings of Opelwerk [64,65].

With the REACTIV method, changes in land cover can be represented in a short period
of time. Thus, spatially explicit short-term changes can be represented differently than in
the treated study area period. Also the exact date or period of the change cannot be derived
so easily in contrast to the additive representation in the RGB colour space. In addition,
there is a noise floor in the image that makes it difficult to identify smaller changes.

It overestimates land cover changes due to different backscatter [40]. The analysis
presented here is good at identifying building demolitions and new construction. Moreover,
this also reveals weaknesses from the actual third-party geospatial data. For example, the
IA and IB buildings of the Ruhr University Bochum are not represented in the current
house perimeter dataset, even though they have existed since mid-2018. This would be a
use case for this MDADT method. However, the authority responsible for this also accepts
improvement hints in the context of crowdsourcing [66].
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The already existing Landscape Change Service (LaVerDi) of the Federal Agency for
Cartography and Geodesy uses only optical data; see detail in Table 7. Thus, SAR properties
are not considered and land cover changes in the form of buildings are underestimated.

Table 7. Overview of the properties of LaVerDi.

Specifications\Data LaVerDi

Coverage Germany
Spatial resolution >0.5 ha

Temporal reference 2020

Output data LULCC digital Land Cover
Model Germany (LBM-DE) and sentinel-2

Position projection—Reference System
EPSG 4258

Height projection–
Reference System

EPSG
/

Data format SHP

Typology/Class/Attribute Confidence, Land use land cover; probability
of change, method, Area

Version /
Geometric resolution

Scale /

Thematic accuracy >80
Production time 2020

Accessibility Open data
License not required

Source-Responsible organisation BKG
Reference [67–69]

LaVerDi shows, in part, only changes in vegetation and ground surface for the years
2018–2019 in the study area used here [68]. It only fails to capture new construction
represented by the analysis presented here (Figure 14). In addition, LaVerDi also makes
statements about the reliability of the recorded land cover change. In the investigated area
it is only highest at the former Opel plant I, in the other cases it is not very reliable.

The GUF data do a poor job of identifying land cover changes because they only
roughly detect anthropogenically influenced areas. In addition, the GUF creation date does
not match the study period used here. Nevertheless, conclusions can be drawn about the
informative value of the GUF dataset. Chini et al., 2018 also notes that the GUF dataset
overestimates built-up areas and, in addition, sealed areas or parking lots are sometimes
represented as urban [70]. In addition, a regular new edition as already done with the WSF
dataset would be desirable.

With the WSF, the level of detail has already been improved. Therefore, both datasets
provide a rough identifier of land sealing.

An important criterion in the analysis presented here is the choice of the time points
or length of the period between the images. This has a significant influence on whether or
not land cover change can be detected. A mask is created by extracting the values above
ten and minus ten from the ratio between exposures. Specifically, in the first period, no
land cover change is identified, in the second the change occurs, and in the third period, it
is already absent. In the specific case, for example, it is a temporary land cover change that
is only present in one image. This is only present for too short a time to identify it with the
land cover change analysis presented here.

Therefore, only permanent land cover changes in the study area during this period can
be analysed. Overall, permanent land cover changes of urban form in the form of building
demolition and new construction can be well captured by this SAR-based MDADT method.
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5. Conclusions

With this SAR-based study, land cover changes such as building demolitions and new
buildings can be recorded over a period of several years.

After the initial run of the workflows described in Section 2.3, Methodology, too many
land cover changes were recorded. This could be reduced by choosing January images.

Subsequently, the different backscatter generated more land cover changes. This
problem could be solved by selecting a filter > 10 for buildings. Since the focus of this study
is on long term land cover changes in the form of sealing by buildings in the study area,
this filter turns out to be very suitable.

This left a few lands cover changes that could be explained by SAR interaction with
metallic objects in the validation. These could be easily categorized in the validation with
partly high-resolution third-party data. The validation shows also weaknesses of these
public high resolution geospatial data. The land cover changes of the urban form show
densities in the urban space. No land cover changes in the form of new buildings in the
open space were recorded.

This can be applied, for example, in a city administration that wants to check its
previous functional zoning or green space planning by analysing whether urban sprawl
has been reduced and whether planned urban consolidation has taken place.

Furthermore, the responsible geospatial data authority, for example, can check and
update its data timeliness. In addition, it can also be determined whether land cover
changes have occurred in areas that are protected -worthy of protection.
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The processes of structural change in the vicinity of urban renewal areas, such as those
caused by the demolition of Opelwerk I and II and the economic reorientation caused by
new buildings, can be well recorded.

Also, on the one hand, the consequences of migration can be seen through the con-
struction of temporary refugee accommodations and, on the other hand, structural change
through tertiarization, such as through the construction of a new university building and
student dormitories. In contrast, this land cover change analysis cannot capture short-term
land cover changes as with the REACTIVE method.

This study presented here allows the detection of large-scale permanent land cover
changes over a long period of time. The importance of this study lies in the recording of the
progressive urban sprawl in urban areas. Natural areas are often destroyed by development.
A natural resilient habitat becomes vulnerable to extreme events. To capture this in urban
areas, SAR data with a high recurrence rate are particularly suitable. They can capture land
cover changes quickly, easily, and straightforwardly. So far, only passive data is often used
in land cover change analyses, but they depend on cloud cover.

This argument also leads to the novelty of this study because it uses only SAR data
and can be easily implemented globally. It also provides an opportunity to review and
or update existing data. Previous similar studies do not focus on medium-term civil use
cases. In addition, this study uses open data from Sentinel-1 and is Cloud Infrastructure as
a Service based. The land cover changes captured can be applied multitemporally, over
large areas, and accurately indicate the time period of land cover changes. These results
can be used to represent and describe processes of urban form.

In addition, the validation with also freely available data showed high accuracy. Thus,
land cover changes of large-scale industrial areas in the global north could be identified.

This study could also be applied to other areas without any problems. To exclude the
interaction of SAR waves with rain or puddles, however, weather data are necessary.

Furthermore, existing house perimeter data can facilitate the interpretation of the
results. In addition, however, it should be noted that the respective urban form can
significantly complicate the transferability.

This is because in very small-scale parcelled heterogeneous urban forms, such as slums
or old city centres, the recording of land cover changes becomes more difficult. This con-
trasts with large-scale homogeneous urban forms such as planned housing developments
or industrial facilities.

This hindrance can be explained due to the backscatter of SAR waves and the spa-
tial resolution of Sentinel-1. Thus, all possible land cover changes at the bottom within
10 x 10 m are averaged. Therefore, no land cover changes smaller than 100 m2 can be de-
tected. Due to these sensor properties of Sentinel-1, this study can only detect medium-term
land cover changes in the form of buildings in large homogeneous areas.
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