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Abstract: Forest is the largest vegetation carbon pool in the global terrestrial ecosystem. The spatial
distribution and change of forest biomass are of importance to reveal the surface spatial variation
and driving factors, to analyze and evaluate forest productivity, and to evaluate ecological function
of forest. In this study, broad-leaved forests located in a typical state nature reserve in northern
subtropics were selected as the study area. Based on ground survey data and high-resolution
remote sensing images, three machine learning models were used to identify the best remote sensing
quantitative inversion model of forest biomass. The biomass of broad-leaved forest with 30-m
resolution in the study area from 1998 to 2016 was estimated by using the best model about every two
years. With the estimated biomass, multiple leading factors to cause biomass temporal change were
then identified from dozens of remote sensing factors by investigating their nonlinear correlations.
Our results showed that the artificial neural network (ANN) model was the best (R2 = 0.8742) among
the three, and its accuracy was also much higher than that of the traditional linear or nonlinear
models. The mean biomass of the broad-leaved forest in the study area from 1998 to 2016 ranged from
90 to 145 Mg ha−1, showing an obvious temporal variation. Instead of biomass, biomass change (BC)
was studied further in this research. Significant correlations were found between BC in broad-leaved
forest and three climate factors, including average daily maximum surface temperature, maximum
precipitation, and maximum mean temperature. It was also found that BC has a strong correlation
with the biomass at the previous time (i.e., two years ago). Those quantitative correlations were used
to construct a linear model of BC with high accuracy (R2 = 0.8873), providing a new way to estimate
the biomass change of two years later based on the observations of current biomass and the three
climate factors.

Keywords: broad-leaf forest; forest biomass; machine learning; remote sensing retrieval; climatic
factors

1. Introduction

Forest biomass is a fundamental characteristic factor for evaluating forest ecosystems,
as well as one of the important variables for quantifying the structure and function of forest
ecosystems [1,2]. Forest biomass accounts for about 85% of global terrestrial vegetation
biomass, which is the energy base and source of nutrients for the operation of the entire for-
est ecosystem [3,4]. Based on forest biomass estimation, many studies have been conducted
on forest ecosystem productivity, terrestrial ecosystem carbon cycling, and global climate
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change [5]. Exploring the response of long-term climate factors to forest biomass changes
can help to understand the impact of climate change on forest stand growth. In-depth
quantitative analysis of key factors will provide not only a basis for establishing forest
biomass prediction models, but also a scientific basis for the evaluation and prediction of
forest ecosystem evolution and carbon cycle effects under future climates [6].

Traditional biomass estimation methods include the clear-cutting method [7–9], stan-
dard wood method [10,11], and regression method [12,13]. Although the traditional meth-
ods to estimate biomass are comparatively accurate, there are some disadvantages, such as
time-consuming, low efficiency, and greater damage to ecological environment. Remote
sensing technology could quickly, accurately, and nondestructively estimate forest biomass
at large scales, especially for some areas where ground measurements are difficult to obtain,
leading to the unique advantages of remote sensing estimation of biomass. Remote sensing
parameter conversion is a common method for forest biomass estimation, in which an
inversion model of forest biomass can be constructed by combining parameters extracted
from remote sensing images with observational samples of biomass [14,15]. LiDAR is the
most advanced technology currently used for aboveground-biomass (AGB) prediction.
Due to the high cost and small detection range of LiDAR, the free and effective images
from Landsat series of satellites are selected as remote sensing data sources for long-term
biomass studies [16,17]. With the rapid development in the field of artificial intelligence, it
has become common to construct forest biomass models by machine learning methods, and
then combine them with remote sensing data to estimate the biomass of a certain area [18].
As typical methods in machine learning, artificial neural network (ANN), support vector
machine (SVM), and random forest (RF) models are more accurate than traditional linear
regression models [19]. When ANN is applied to the remote sensing estimation of forest
biomass, its input variables are the pixel gray value and vegetation index in the relevant
bands of remote sensing data, and its output variable is the forest biomass in the geographic
locations corresponding to the image pixels. Then, the model is trained by using limited
sample/survey data. The advantage of ANN is that it can effectively represent the complex
nonlinear relationship of multiple variables. If the training data are representative enough,
ANN can achieve high estimation accuracy [20,21]. In areas with higher biomass, the ANN
model is more accurate than SVM and multivariate linear regression [22]. In the inversion
of biomass, ANN can be used to improve the range of biomass estimation with the least
spectral and texture variables [23].

Based on accurate estimation of forest biomass, studying dynamic biomass changes
can reveal the change of forest biomass timely and accurately, which can help to strengthen
forest management and predict its variation. Through remote sensing biomass modeling,
researchers can estimate the biomass of their study area in different periods and analyze
the causes and trends of biomass changes. In the dynamic study of biomass, researchers
carefully analyzed anthropogenic factors, climatic factors, environmental factors, and land
use type changes that affect the dynamic change of resources [24]. In the general method of
biomass dynamic change research, firstly, an inversion model based on machine learning is
often selected. The time series of spectral indices and topographic factors are processed by
radiation normalization. Annual raster data of forest biomass during a study period are
obtained using the prediction model of machine learning. Finally, the biomass at each pixel
of the remote sensing image is extracted, and the dynamic change analysis of biomass is
conducted [25]. Currently, it is a hot topic to estimate the spatial and temporal dynamics of
forest biomass. The remote sensing images of Landsat satellite have been widely used in
the study of dynamic changes in tropical and subtropical forest biomass [17]. In temperate
and subtropical regions, broad-leaved forest is the most typical forest type, and the study
of broad-leaved forest biomass change has important implications for climate change [26].
Forest biomass has been studied frequently from the continental scale to a single forest park
or forest farm. The timescales of those studies are mainly 15–40 years, and their temporal
resolutions are mainly 5 and 10 years. However, there are no published studies with finer
temporal resolutions (e.g., 2 years) on greater time scales (e.g., 20 years) [27–32].
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Since the 1940s, the study of the relationship between climate and forest biomass has
become a hot topic. Many scholars have found that climate factors are significantly related
to forest biomass. Climate factors affect the spatial distribution of forest biomass, among
which temperature and precipitation are important climatic driving factors. The study of
the distribution characteristics of forest biomass along temperature gradient showed that
total biomass was significantly positively correlated with minimum temperature [33]. As
the impact of temperature on forest biomass is consistent at different biogeographic scales
and climatic gradients, the annual average temperature may be an effective indicator to
reflect the impact of climate change on ground biomass [34]. When researchers summarized
a large amount of tropical forest biomass data, they found that there was a certain linear
relationship between annual average precipitation and forest biomass, and the R2 of the
fitted estimation equation reached 0.55. Their further analysis showed that there was a
significant linear relationship between forest biomass and annual average temperature,
which could affect the change of species biomass [35]. At the continental scale, by studying
the climate factors and soil factors affecting forest biomass, it was found that the model
accuracy with the participation of climate factors, such as annual average precipitation and
temperature, was higher than that with soil factors, and its R2 reached 0.47 [36]. Climate
factors such as temperature and precipitation also drive the net primary production (NPP)
closely related to biomass. Rainfall, temperature, and evapotranspiration can affect the
growth, development, and metabolism of forests, thereby promoting the accumulation of
forest biomass [37]. That is to say, climate affects biomass by influencing the rate of biomass
accumulation (i.e., NPP), and vegetation NPP increases with annual average temperature.
In the analysis of the climate driving forces of NPP in the Yellow River Basin of China, it
was concluded that the average correlation coefficients of vegetation NPP with monthly
mean temperature and monthly precipitation are 0.57 and 0.56, respectively [38]. In gen-
eral cases, there is a positive correlation between forest NPP and precipitation [39]. In a
study of tropical forest aboveground biomass mapping, it was also found that tempera-
ture and precipitation are important variables of forest aboveground biomass prediction
models [40]. Climate factors are important factors to cause dynamic changes of forest
biomass. Generally, climate factors and human disturbance have been considered in forest
biomass studies [41–44]. However, no research has been reported to improve the prediction
accuracy of biomass models by adding the biomass of the previous period as an additional
factor to the dynamic model of forest biomass change, and no research has been conducted
to model and analyze the temporal changes of forest biomass.

In this study, we used the survey data of 2019 and WorldView-2 images in combination
with the three machine learning algorithms (i.e., RF, SVM, and ANN) to establish a model
for AGB estimation of broad-leaved forest. By filling in some abovementioned research
gaps, the specific scientific objectives of this study are (1) to estimate the AGB at satellite
image pixel grids in 2019; (2) to identify the best model from RF, SVM, and ANN; (3) to
model and estimate the biomass change of broadleaf forest from 1998 to 2016 with two-year
resolution; (4) to analyze the temporal change of broad-leaved forest biomass in the natural
reserve of northern subtropics and quantitatively reveal the key climate factors affecting
forest biomass change; (5) to provide a scientific basis for evaluating the stability of forest
ecosystems in subtropics.

2. Data and Methodology
2.1. Overview of the Study Area

Tianma National Nature Reserve is in Jinzhai County, Anhui Province (31◦10′–31◦20′N,
115◦20′–115◦50′E), and it is in the hinterland of Dabie Mountain in the ecotone of Hubei,
Henan, and Anhui Provinces (Figure 1). The reserve is a transition area from the northern
edge of the subtropical zone to the warm temperate zone in Eastern China. The reserve
preserves a relatively complete area of natural broad-leaved forests in the north subtropical
zone of China. Its vertical distribution of vegetation is clear. The conservation areas of the
reserve are the north subtropical evergreen and deciduous broad-leaved forest. The broad-
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leaved forest in this study is the natural secondary oak deciduous broad-leaved forest. Its
forest stands are mostly middle-aged forest and near-mature forest. The Regulations of
the People’s Republic of China on Nature Reserves stipulates that forestry production and
management activities shall not be carried out in nature reserves, forest cutting is strictly
prohibited, and protection priority and natural restoration are emphasized. This reserve
covers an area of 28,930 hectares, consisting of Tiantangzhai Town and Mazongling Area,
Wanshadang Area, Kangwangzhai Area, and Jiufengjian Area. The reserve belongs to
the northern subtropical humid monsoon climate zone, which is characterized by four
distinct seasons, mild climate, varying spring temperature, abundant rainfall, significant
plum rains, and concentrated summer rains. Its average annual temperature is 13.5 ◦C,
annual rainfall is 1400–1600 mm, annual sunshine hours are 2225.5 h, and average altitude
is 900 m. The area of broad-leaved forest reaches 35% of the entire reserve, and the major
broad-leaved tree species include Quercus serrata Murray var. brevipetiolata (A.DC.) Nakai,
Castanea seguinii Dode, Cyclobalanopsis glauca (Thunb.) Oerst., Quercus acutissima Carruth.,
Carya cathayensis Sarg., Emmenopterys henryi Oliv., Toona sinensis, Paulownia fortunei (seem.)
Hemsl., Platycarya strobilacea Sieb. et Zucc., Celtis sinensis Pers., Liquidambar formosana
Hance, and Pistacia chinensis Bunge.

Figure 1. Location of the study area.

2.2. Data
2.2.1. Sample Plot Data

The biomass sampling survey was conducted from 23 July to 31 July 2019. Typical
sampling methods were used to establish broad-leaf forest plots of different ages and stand
conditions to comprehensively investigate the forest resources in the study area. All sample
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plots were 20 m × 20 m, and all the living trees in the plots with a diameter at breast
height more than 5 cm were measured. Differential GPS (DGPS) was used to determine
the geographic locations of the sample plots. The calculation method of forest biomass,
proposed by Li and Lei [45], is the most widely used method for calculating of mixed
broad-leaved forest biomass. Its specific formula is

W = 0.044(D2H)
0.9169

+ 0.023(D2H)
0.7115

+ 0.0104(D2H)
0.9994

+ 0.0188(D2H)
0.8024

(1)

where W (Mg ha−1) is the forest biomass, D (cm) is the breast diameter, and H (m) is the tree
height. Finally, estimated biomass data and its location of 35 sample plots were obtained,
and they were used to establish a forest biomass model by machine learning.

2.2.2. Satellite Images

WorldView-2 satellite images are used in this study for remote sensing quantitative
model construction of broad-leaved forest biomass in conjunction with the abovementioned
forest survey data. They were taken on 23 June 2019, with a spatial resolution of 0.46 m
panchromatic image and 1.85 m multispectral image, and they were used to determine
the key input variables of machine learning model derived from satellite data. The remote
sensing data used to retrieve the temporal and spatial distribution of forest biomass are
ten scenes of Landsat series satellite image from 1998 to 2016 (http://www.gscloud.cn/
accessed on 1 March 2021), whose detailed image parameters are shown in Table A1. The
time interval of two adjacent images is about 2 years, ensuring that the cloud amount
of each image in the study area is less than 1% to meet the requirements of further data
analysis. Radiation correction of remote sensing data was performed using ENVI5.3 to
obtain irradiance data, and the FLAASH module of MODTRAN4+ radiative transfer model
was used to perform atmospheric correction of irradiance data to obtain remote sensing
reflectance images.

2.2.3. Meteorological Data

The meteorological data used in this study are from a weather database for the public
(http://data.sheshiyuanyi.com/WeatherData/ accessed on 5 March 2021), and its dataset
is the record of China’s general ground meteorological observatory, including temperature,
precipitation, humidity, sunshine duration, ground temperature, and evaporation. Con-
sidering that there is no weather station inside the study area, it is impossible to obtain
its local meteorological data directly. Therefore, this study uses the data of two nearby
weather stations (Huoshan station and Gushi station, Figure 1). Most of the data come
from Huoshan station. However, there are missing records for limited time at Huoshan
station, so those records from Gushi station are used in 2015. All weather data records
include 44 statistical factors such as monthly maximum temperature, monthly minimum
temperature, monthly precipitation, and solar radiation (Table 1). After postprocessing
these weather data, the meteorological factors of 24 months before the imaging time of each
Landsat image are used for further analysis and to model forest biomass change.

http://www.gscloud.cn/
http://data.sheshiyuanyi.com/WeatherData/


Remote Sens. 2022, 14, 1066 6 of 19

Table 1. All available meteorological factors in the study area. A total of 44 factors were used in this
study, including temperature, precipitation, humidity, sunshine duration, and evaporation.

Number Meteorological
Factor Number Meteorological

Factor Number Meteorological
Factor

1 Total mean surface
temperature (◦C) 16 Min precipitation (mm) 31 Max sunshine hours (h)

2 Average mean surface
temperature (◦C) 17 Total mean temperatures

(◦C) 32 Min sunshine hours (h)

3 Max mean surface
temperature (◦C) 18 Average mean temperatures

(◦C) 33 Total mean relative
humidity (%)

4 Min mean surface
temperature (◦C) 19 Max mean temperatures

(◦C) 34 Average mean relative
humidity (%)

5 Total daily maximum
surface temperature (◦C) 20 Min mean temperatures

(◦C) 35 Max mean relative
humidity (%)

6 Average daily maximum
surface temperature (◦C) 21 Total daily maximum

temperature (◦C) 36 Min mean relative
humidity (%)

7 Max daily maximum
surface temperature (◦C) 22 Average daily maximum

temperature (◦C) 37 Total minimum relative
humidity (%)

8 Min daily maximum surface
temperature (◦C) 23 Max daily maximum

temperature (◦C) 38 Average minimum relative
humidity (%)

9 Total daily minimum
surface temperature (◦C) 24 Min daily maximum

temperature (◦C) 39 Max minimum relative
humidity (%)

10 Average daily minimum
surface temperature (◦C) 25 Total daily minimum

temperature (◦C) 40 Min minimum relative
humidity (%)

11 Max daily minimum surface
temperature (◦C) 26 Average daily minimum

temperature (◦C) 41 Total evaporation (mm)

12 Min daily minimum surface
temperature (◦C) 27 Max daily minimum

temperature (◦C) 42 Average evaporation (mm)

13 Total precipitation (mm) 28 Min daily minimum
temperature (◦C) 43 Average evaporation (mm)

14 Average precipitation (mm) 29 Total sunshine hours (h) 44 Min evaporation (mm)
15 Max precipitation (mm) 30 Average sunshine hours (h)

2.3. Remote Sensing Classification of Forest Types

After remote sensing image preprocessing, ENVI5.3 software was used to monitor and
classify the ten images from 1998 to 2016. The land use types of Tianma Nature Reserve
were categorized into four forest types: broad-leaved forest, coniferous forest, coniferous
and broad-leaved mixed forest, and nonforest land. Random forest method, maximum like-
lihood method, and Marxist distance method were selected to classify forest types. Kappa
coefficient (i.e., an index to measure the accuracy of classification) and validation data were
used to test the accuracy [15,46]. After classification, majority/minority processing was
carried out to obtain the remote sensing classification results of forest types in the reserve.

2.4. Selection of Biomass Remote Sensing Estimation Factors

In order to obtain as many comprehensive remote sensing factors related to forest
biomass as possible, this study initially screened 36 candidate factors from vegetation index,
topography factor, and texture factor. These factors are B532_contrast, B532_correlation,
B532_dissimilarity, B532_entropy, B532_homogeneity, B532_mean, B532_secondary mo-
ment, B532_variance, B3_contrast, B3_dissimilarity, B3_entropy, B3_homogeneity, B3_mean,
B3_secondary moment, B3_variance, B4_dissimilarity, B4_entropy, B4_homogeneity,
B4_mean, B4_secondary moment, B4_variance, B5_contrast, B5_correlation, B5_dissimilarity,
B5_entropy, B5_homogeneity, B5_mean, B5_secondary moment, B5_variance, Slope, DVI,
EVI, MSAVI, RVI, SAVI, and NDVI. The descriptions of these factors are shown in Table 2.
B532 refers to the combination of Landsat band 5, 3, and 2. B3, B4, and B5 refer to bands
3, 4, and 5, respectively. Vegetation index and texture information are obtained by using
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corresponding band information in ENVI5.3, and slope factor is extracted from 30-m DEM
data in ArcGIS10.2.

Table 2. Biomass modeling factors of broad-leaved forest in Tianma Nature Reserve. There are three
types: spectral index, textural parameter, and topographic parameter.

Type Factor Description

Spectral indices

NDVI (NIR1− Red)/(NIR1 + Red)
RVI NIR1/Red
EVI 2.5(NIR1− Red)/(NIR1 + 6NIR1− 7.5Blue + 1)
DVI NIR1− Red
SAVI 1.5(NIR1− Red)/(NIR1 + Red + 0.5)

MSAVI 1
2

[
(2NIR1 + 1)−

√
(2NIR1 + 1)2 − 8(NIR1− Red)

]

Textural Parameters

Entropy N−1
∑

i,j=0
iPi,j

(
−lnPi,j

)
Secondary Moment N−1

∑
i,j=0

iPij2

Dissimilarity N−1
∑

i,j=0
iPij|i− j|

Mean N−1
∑

i,j=0
iPi,j

Homogeneity N−1
∑

i,j=0
i

Pij

1+(i−j)2

Correlation N−1
∑

i,j=0
iPij

[
(i−ME)(J−ME)√

VAiVAj

]
Contrast N−1

∑
i,j=0

iPij(i− j)2

Variance N−1
∑

i,j=0
Pij(i−ME)2

Textural Parameters Slope Slope (◦)

2.5. Identify Core Factors from Candidates

In general, there is redundant information among the above 36 possibly related factors,
because some of them are derived from the same sources (e.g., NIR1, Red). It is necessary to
identify some core factors as the inputs to machine learning models, so that computation
loads can be reduced, and important features can be extracted easily.

The idea to identify the core factors is to try to eliminate some factors which have high
correlation with other factors. Instead of using Pearson correlation coefficient, which can
only measure linear relationship, nonlinear correlation coefficient (NCC) [47] was used to
estimate the relationship between two factors.

Given 1005 random selected samples of the 36 factors from the same noncloudy
WorldView-2 scene of the reserve on 23 June 2019, NCCs were estimated between any two
factors among those 36 factors. After removing the factors with high NCC (i.e., NCC > 0.6),
19 remaining factors were selected as the core factors with no or low correlation to each
other. These 19 core factors are list in Table 3, and they are used as input variables of the
machines learning models in this study.

Table 3. Nineteen core factors were selected from 36 candidate factors using nonlinear correlation
coefficient method.

Serial
Number Factor Serial

Number Factor Serial
Number Factor Serial

Number Factor

1 B532_contrast 6 B532_variance 11 B4_dissimilarity 16 RVI
2 B532_mean 7 B3_variance 12 Slope 17 B532_homogeneity

3 B3_secondary
moment 8 B5_contrast 13 B532_entropy 18 B3_mean

4 B4_variance 9 B532_dissimilarity 14 B3_entropy 19 B4_mean
5 B532_correlation 10 B3_contrast 15 B4_entropy
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2.6. Machine Learning Algorithm

In this study, three machine learning algorithms of random forests (RF), support vector
machine (SVM), and artificial neural network (ANN) are selected as candidates to construct
a suitable forest biomass retrieve model.

2.6.1. RF

The RF algorithm is a machine learning algorithm proposed by Breiman [48]. Firstly,
bootstrap samples are used to extract K samples with the same sample size from the orig-
inal training set. Then, a decision tree model is established for each sample to obtain
K classification results. Finally, each record is voted on according to the K classification
results to determine its final classification [48]. This algorithm is the extension of the tradi-
tional decision tree algorithm by combining multiple decision trees to improve prediction
accuracy [49].

In the regression analysis of biomass estimation by RF, there are two key parameters:
ntree and mtry. Ntree is the number of decision trees that are resampled using bootstrap.
Mtry is the number of random features, i.e., the number of input variables, whose size is
usually one third of the number of input variables. However, mtry needs to be optimized
to achieve an optimal model [50].

2.6.2. SVM

SVM is a supervised learning algorithm. In forest applications, it was mainly used for
forest classification and then developed into the inversion and regression of forest biomass.
For SVM, data are points in an N-dimensional space, and the purpose is to find the best N-1
hyperplanes to segment the points in the N-dimensional space. The key problems of SVM
are kernel function selection and parameter combination optimization. The commonly
used kernel functions are linear kernel function, polynomial kernel function, and Gaussian
kernel function. The advantage of SVM is that it is supported by mathematical theory and
has strong interpretability. For a given training sample D = {(x1,y1), (x2,y2), . . . . . . (xi,yi)
. . . . . . (xn,yn)}, generally, linear regression models attempt to obtain a prediction function
f (x) by learning to minimize the sum of squared errors (SSE) between the observed and
predicted values of dependent variable. However, one drawback of minimizing SSE is
that the parameter estimation of the model will be affected by some points far away from
the overall trend of the data. To avoid this issue, SVM is implemented by assuming that
the model can tolerate deviations of at most ε (ε > 0) between the observed and predicted.
Those points with absolute values of residuals less than ε will not contribute to the SVM,
while those with greater than ε will contribute to the model in a linear proportion, such
that large outliers will only have a limited effect on SVM, as there is no squared residual
involved [51,52].

2.6.3. ANN

ANN started in the 1940s and is one of the earliest machine learning methods, working
by imitating human brain neural network to process and memorize information [53]. ANN
is a multilayer feedforward neural network with forward propagation of information and
backward propagation of error. Information is first processed layer by layer from input
layer through hidden ones. Output results in output layer are compared with the expected
values. When the error between the output results and the expected values is greater than
a predetermined value, backward propagation is performed. Then, network weights and
thresholds are adjusted by the prediction error, and the network is transferred back to the
forward propagation. This process is repeated until the error is less than the predetermined
value, so that the output values and the predicted ones are close enough [54,55].
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2.7. Construction of Remote Sensing Quantitative Model of Broad-Leaved Forest Biomass and
Model Accuracy Assessment

Using the 35 samples (from Section 2.2.1) with their corresponding 19 core factors
(from Section 2.5), three machine models (i.e., RF, SVM, and ANN) were trained to compare
their performances, so that the best one can be selected as the best prediction model in this
study. All data (including factors and biomass) were rescaled onto [–1,1], so that they are
all dimensionless variables at the same scale. Then, 70%/15%/15% (i.e., 25/5/5) samples
were randomly selected as the training/testing/validation samples. Because the number
of 35 samples is not a large amount, it is not a wise way to use many hidden layers and
hidden nodes in ANN. Fifteen hidden nodes and up to three hidden layers were used to
identify the best ANN structure in this study. After comparison, three hidden layers with
8 × 5 × 2 nodes were chosen as the best ANN structure.

Cross validation is a method that can be used to estimate the performance of machine
learning algorithms, and its variance is smaller than the segmentation variance of a single
training test set. In this study, determination coefficient (R2) and root mean square error
(RMSE) are used to evaluate the accuracy.

R2 =

(
∑N

i=1(xi − x)(yi − y)
)2

∑N
i=1 (xi − x)2 ∑N

i=1 (yi − y)2 (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − xi)
2 (3)

where xi is the ith observed value, yi is the ith model estimated value, N is the size of x and
y, x is the average value of x, and y is the average value of y.

2.8. Analysis on Broad-Leaved Forest Biomass Dynamic Change Driving Forces

In order to identify the major driving factors of biomass change in terms of climate,
the 44 climate factors in Table 1 were used to estimate their Pearson correlation coefficients
with the mean biomass change (BC), which is the difference of mean biomass (MB) of the
entire reserve over two adjacent observational times (i.e., about two years). In particular,
BCi = MBi – MBi−1. We can determine some driving forces of broad-leaved forest biomass
dynamic change based on p values.

3. Results and Analysis
3.1. Remote Sensing Classification Results of Forest Types in Tianma National Nature Reserve

The Kappa coefficients for remote sensing classification of forest types in random forest
method, maximum likelihood method, and Marxist distance method were 0.97, 0.92, and
0.80, respectively. Therefore, the random forest method with the greatest Kappa coefficient
was chosen to classify the remote sensing images of the study area in this study, and its
classification results are shown in Figure 2.
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Figure 2. Land use classifications of the Tianma Nature Reserve using random forest method from
1998 to 2016.

3.2. Construction of Remote Sensing Quantitative Model of Broad-Leaved Forest Biomass

The results of the three models (RF, SVM, and ANN) are list in Table 4, which indicates
that ANN has the best performance, with high R2 and low RMSE. Thus, ANN with
8 × 5 × 2 structure was chosen as the best machine learning model to retrieve broad-leaved
forest biomass in this study. Please note that both SVM and ANN models were from
the Statistics and Machine Learning Toolbox of Matlab R2019b, and RF model was from
“randomForest” package of R language.

Table 4. Performance assessments of three different machine learning methods. R2 and RMSE were
obtained through training, testing, validation, and all samples, respectively.

R2 RMSE
Training Testing Validation All Training Testing Validation All

RF 0.6334 0.6798 0.0728 0.6602 0.2779 0.2202 0.3981 0.2441
SVM 0.8620 0.4705 0.9638 0.8151 0.1714 0.1643 0.3207 0.1988
ANN 0.8917 0.8726 0.9304 0.8742 0.1625 0.1210 0.1319 0.1531

3.3. Spatial Distribution of Broad-Leaved Forest Biomass in the Reserve

After applying the ANN model to 19 core factors (from Section 2.5) derived from
the ten Landsat images from 1998 to 2016, the biomass data of effective pixels of broad-
leaved forest were obtained in Tiantangzhai Town and Mazongling area, Wanshadang area,
Kangwangzhai area, and Jiufengjian area. The numbers of effective pixels of each image
are shown in Table A2. Because the position and number of effective pixels in each image
are different, only the averaged biomass within a region can be analyzed meaningfully.
Therefore, the mean biomasses of each area and the entire nature reserve were calculated,
and results are shown in Figure 3.

As a result, the mean biomass of the broad-leaved forest in the entire nature reserve
was between 90–145 Mg ha−1 from 1998 to 2016, and the temporal change characteristic was
clear. It showed a change characteristic of “decreasing–increasing–decreasing–increasing–
decreasing”, and it reached the lowest value of only 92.9 Mg ha−1 in 2006. The characteristic
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of mean biomass change in each area is consistent with the entire nature reserve. From the
results, it is not clear what causes the time variation of biomass, thus it will be studied in
the next section.

1 

 

 

Figure 3. Mean biomass (Mg ha−1) in Tianma Nature Reserve from 1998 to 2016 with two-year
interval, including mean biomass in each area and entire reserve.

In addition, the results of the spatial dynamic distribution of broad-leaved forest
biomass in each area and the entire reserve are shown in Figure 4.

Figure 4. Spatial distribution of broad-leaved forest biomass about every two years from 1998 to
2016. This study categorizes broad-leaved forest biomass into 7 classes: <60 Mg ha−1, 60–80 Mg ha−1,
80–100 Mg ha−1, 100–120 Mg ha−1, 120–140 Mg ha−1, 140–160 Mg ha−1, and >160 Mg ha−1.
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3.4. Analysis on Broad-Leaved Forest Biomass Dynamic Change Driving Forces in the Reserve

Based on P values, only four significant climate factors (p < 0.05) were identified
(Table 5); besides, the correlation between BC and its previous MB (PMB) was also calculated
(i.e., the correlation between BCi and MBi−1), and its result shows that it is also a significant
factor (Table 5).

Table 5. Significant correlation (p < 0.05) between the predictive mean BC of the reserve and climate
factors, as well as the PMB.

Significant Factor CC p Value

Total daily maximum surface temperature (◦C) 0.7169 0.0298
Average daily maximum surface temperature (◦C) 0.7206 0.0285

Max precipitation (mm) −0.7027 0.0348
Max mean temperature (◦C) 0.6869 0.0410

The mean biomass of the previous time (Mg ha−1) −0.7118 0.0315

Based on the four significant identified climate factors in Table 5, a regression model
of biomass change was constructed. However, very high correlation was noticed between
total daily maximum surface temperature (TmaxT) and average daily maximum surface
temperature (Tmax) (CC = 0.9998, P = 1.87 × 10−13), so TmaxT can be removed from the
modeling. The linear regression model based on climate factors becomes

BC = −282.8201 + 7.2221× Tmax− 0.2269× Pmax+ 2.9199× Tavg (4)

where Pmax is max precipitation, Tavg is max mean temperature, regression’s correspond-
ing R2 = 0.8063, CC = 0.8979 (P = 0.001). After the coefficients of Tmax, Pmax, and Tavg are
transformed into standardized coefficients, their corresponding standardized coefficients
are 0.5177, –0.5384, and 0.0799, respectively. It indicates that, when only climate factors
are considered in modeling BC, Tavg is less important, while Tmax and Pmax are equally
important. Considering that the mean biomass of the previous time (i.e., PMB) was signifi-
cantly related to BC (see Table 5), PMB is then added as an additional variable to the above
regression. The updated linear regression model then becomes

BC = −31.6973 + 5.1720× Tmax− 0.2225× Pmax− 0.8564× Tavg− 0.5260× PMB (5)

This updated regression is with R2 = 0.8873, CC = 0.9420 (P = 1.4656 × 10−4). This
updated regression is more accurate than the previous one, implying that PMB plays a
very import role in modeling BC. After transforming the coefficients of Tmax, Pmax, Tavg,
and PMB into standardized coefficients, their standardized coefficients are 0.3707, −0.5279,
–0.0234, and –0.3727, respectively. It implies that Tavg is still relatively insignificant, but
Tmax, Pmax, and PMB are significant, although Pmax and PMB have negative impact
on BC.

In addition, it is noticeable that the negative correlation between mean BC and max-
imum precipitation becomes more significant as the study area is closer to the climate
observatory, which is shown in Figure 5. It implies that higher negative correlation could
be observed if more accurate precipitation observations can be provided in the study area.
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4. Discussion

Forests cover about one third of the land surface; there are many studies on forest
aboveground biomass, and most of them have focused on tropical and subtropical re-
gions [56]. This study area is located in the transition region from the northern edge of the
subtropical zone to the warm temperate zone. Its results can provide not only evidence
for the response of climate factors to forest biomass changes in a single-temperature zone,
but also a basis for further research on the response mechanism of climate factors to forest
biomass changes in different temperature zones. At large scales, how to accurately predict
forest biomass and explore the dominant factors of forest biomass changes in spatiotem-
poral space is always a hot topic and difficult problem in forest ecology research [46]. In
addition to climate factors, forest age, human disturbance, forest management activities,
and other factors can affect, more or less, the change of forest biomass in previous stud-
ies [34,57–60]. These factors are easy to analyze for even-aged forests with complete data
storage and small time gradient. However, for the Tianma Nature Reserve, broad-leaved
forest is its secondary major natural forest. With the natural growth and renewal of trees,
forest age is hard to accurately know. In-depth analysis of the dominant factors of for-
est biomass changes in spatial and temporal scales could be started by integrating forest
parameters, climate factors, land use, management activities, and other factors. In this
study, we compared three machine learning algorithms (i.e., RF, SVM, ANN), constructing
the biomass estimation model of broad-leaved forest by using ground survey data and
high-resolution remote sensing images. The accuracy of the model reaches R2 = 0.8742,
which is much higher than that of the traditional linear or nonlinear model [61]. Com-
pared with other areas in China, for example, Wu et al. obtained the inversion results
of forest aboveground biomass (R2 = 0.9, RMSE = 16.9 Mg ha−1) by using random forest
algorithm [62]. Li et al. built a broad-leaved forest biomass estimation model based on
XGBoost machine learning algorithm with R2 = 0.8, RMSE = 19.25 Mg ha−1 [63]. Luo et al.
constructed a broad-leaved forest biomass estimation model with model accuracy R2 = 0.73
and RMSE = 24.67 Mg ha−1, respectively [64]. Compared with other regions in the world,
the optimal model R2 constructed by some researchers in Congo was 0.86, and RMSE was
10.22 Mg ha−1 [65]. Pablito et al. used SVM algorithm to obtain the estimation model of
forest biomass in northwestern Mexico, with an accuracy of R2 = 0.8 [66]. In general, the
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model accuracy obtained in this study is on the same level as previous and latest models.
By randomly selecting more than 1000 broad-leaved forest pixel points in the study area to
screen remote sensing modeling factors, its data volume for training is larger than that of
the traditional ground survey. This provides a new method for remote sensing estimation
of forest biomass in the areas lacking ground survey data in some historical satellite images.
This study starts from the establishment year of Tianma National Nature Reserve, with a
timespan of about 20 years. It uses about two years as time interval, which is finer than
a span of 5 years or 10 years in current literature, so that it can detect the details of forest
biomass changes on a smaller timescale.

On the other hand, previous literature mostly focused on the construction of biomass
model. This study aims to find the variation of biomass changes more accurately, so
biomass change instead of biomass is modeled directly. The model results showed that
the regressions correspond with R2 = 0.8063 and CC = 0.8979 (P = 0.001). Considering
that the mean biomass of the previous time (i.e., PMB) was significantly related to BC,
PMB is added as an additional variable to improve the above regression. The resulting
updated linear regression model showed better results, with R2 = 0.8873 and CC = 0.9420
(P = 1.4656 × 10−4).

Our results imply that temperature has significantly positive correlation with forest
biomass, which is consistent with most studies [67,68]. When the precipitation is sufficient
or excessive in the growing season, the absorption and accumulation of aerobic minerals
in the tree root will be reduced. Additionally, the precipitation is significantly negatively
correlated with the radial growth of trees [69,70]. It was noted that when the average
annual precipitation is greater than 900 mm, tree growth decreases with increasing annual
precipitation [71]. The annual precipitation of Tianma Nature Reserve is 1400–1600 mm,
and the rainfall is abundant. Such annual precipitation has negative correlation with forest
growth, thereby affecting the reduction of forest biomass in the reserve. It can also confirm
the conclusion in this study that the maximum precipitation is negatively correlated with
the variation of biomass in the model.

In China, the north subtropical region mainly includes Anhui, Jiangsu, Zhejiang,
Hubei, Jiangxi, Hunan, and the southern part of Henan Province. In the study of comparing
the estimation model algorithms of aboveground forest biomass in subtropical China,
researchers took Zhejiang Province as the research area, and the biomass predicted by ANN
model was from 19.1 to 187.1 Mg ha−1, and the average biomass was 88.4 Mg ha−1 [72]. In
the process of taking the forest biomass of Yushan National Forest Park in Jiangsu Province
as the research object, the aboveground biomass data of the broad-leaved forest sample
plot investigated ranged from 32.03 Mg ha−1 to 219.67 Mg ha−1, and the average biomass
was 96.76 Mg ha−1. The minimum value predicted by the model was 8.79 Mg ha−1 and the
maximum was 206.79 Mg ha−1 [73]. In the northwest of Hunan province, the minimum
and maximum aboveground biomass of the surveyed broad-leaved forest plots were
9.42 Mg ha−1 and 223.35 Mg ha−1, respectively. The predicted biomass was mostly <30 or
>150 Mg ha−1 [74]. Xiangjiang River is located in the subtropical monsoon humid climate
zone, and the entire basin passes through Hunan and Jiangxi Province. Their results
showed that the aboveground biomass of broadleaf forest predicted ranged from 4.93 to
189.30 Mg ha−1 [75]. Therefore, our results that predicted biomass of broad-leaved forest
biomass ranged from <60 to >160 Mg ha−1 are reasonable. At present, the broad-leaved
forest in this study is still in the early and middle stages of natural succession and has not
reached the stage of zonal top community. Due to the lack of necessary forest management
measures, the growth of natural secondary broad-leaved forest in mountainous areas is
relatively slow. However, the biomass per unit area of tree layer would increase with the
increase of age and growth of stand, and the AGB per unit area will also increase with the
increase of age and growth of stand with the succession progress.
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5. Conclusions

In this study, we applied the forest ground survey data of 2019 to calculated surveyed
AGB for broad-leaved forest following the study from Li and Lei [46]. As high-resolution
remote sensing images could reflect the position of ground objects and predicted biomass
accurately, we extracted 36 candidate factors from WorldView-2 satellite images of 2019
and DEM, and 19 factors were selected as the core factors with no or low correlation to
each other. By comparing three machine learning algorithms (i.e., RF, SVM, and ANN),
ANN was identified as the best method of remote sensing biomass model for broad-leaved
forest with R2 = 0.8742 and RMSE = 0.1531. This method was further carried out to estimate
broad-leaved forest biomass from 1998 to 2016 using ten Landsat series historical remote
sensing images. The results showed that the mean biomass of broad-leaved forest in the
reserve was between 90–145 (Mg ha−1) from 1998 to 2016.

It is known that biomass is a cumulative value at a specific time. In order to reflect
the driving factors of biomass change more scientifically and accurately, BC with two-year
resolution was introduced as the dependent variable. Four significant climate factors
(i.e., TmaxT, Tmax, Pmax, and Tavg) were identified from 44 candidate factors through
regression analysis. A linear regression model excluding TmaxT was constructed because
of the very high correlation between TmaxT and Tmax. Furthermore, the linear regression
model was with higher accuracy (R2 = 0.8873, CC = 0.9420 (P = 1.4656 × 10−4)) when PMB
was introduced. It implied that Tavg was relatively insignificant, but Tmax, Pmax, and
PMB were significant, although Pmax and PMB had negative impact on BC.

Those approaches in this study are useful for improving the national estimation of
carbon storage within aboveground biomass of broad-leaved forest and will improve the
capacity to report carbon storage at Tianma National Nature Reserve, forest areas of the
same forest type, and elsewhere. The research results can provide reference for other forest
types. More importantly, our approaches and results can be used to evaluate the proportion
and role in subtropics for forest ecosystem.
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Appendix A

Table A1. Information of remote sensing images in study area from 1998 to 2016.

Landsat Image ID Imaging Date Sensor Type Code Number Line Number Data Level Spatial Resolution

LT51220381998036BJC00 5 February 1998 TM 122 38 L1T 30
LT51220382000042BJC00 11 February 2000 TM 122 38 L1T 30
LT51220382001364BJC00 30 December 2001 TM 122 38 L1T 30
LT51220382004021BJC00 21 January 2004 TM 122 38 L1T 30
LT51220382006106BJC02 16 April 2006 TM 122 38 L1T 30
LT51220382008096BJC01 5 April 2008 TM 122 38 L1T 30
LT51220382010085BKT00 26 March 2010 TM 122 38 L1T 30
LT51220382011088BJC00 29 March 2011 TM 122 38 L1T 30

LC81220382014064LGN01 5 March 2014 ETM+ 122 38 L1T 15
LC81220382016038LGN00 7 February 2016 ETM+ 122 38 L1T 15
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Table A2. Counts of valid pixels for different scenes in four different regions of the reserve.

Date of Scene Region 1 Region 2 Region 3 Region 4

5 February 1998 89,155 3076 7789 4753
11 February 2000 60,929 2005 8929 5487
30 December 2001 125,408 1388 4568 3179

21 January 2004 62,406 631 6057 452
16 April 2006 62,418 631 6057 452
5 April 2008 77,351 582 7773 2239

26 March 2010 82,955 522 7139 5484
29 March 2011 71,156 491 6582 5504
5 March 2014 93,162 545 7093 6271

7 February 2016 67,801 1273 7452 6632
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