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Abstract: Accurate information on port shipping activities is critical for monitoring global and local
traffic flows and assessing the state of development of the maritime industry. Such information is
necessary for managers and analysts to make strategic decisions and monitor the maritime industry
in achieving management goals. In this study, we used monthly night light (NTL) images of the
Suomi National Polar-Orbiting Partnership (Suomi NPP) Visible Infrared Imaging Radiometer Suite
(VIIRS) Day/Night Band, between 2012 and 2020, to study the night lights emitted by ships in
ports’ anchorage areas, as an indicator for shipping activity in anchorage areas and ports. Using a
dataset covering 601 anchorage areas from 97 countries, we found a strong correspondence between
NTL data and shipping metrics at the country level (n = 97), such as container port throughput
(Rs = 0.84, p < 0.01) and maximum cargo carried by ships (Rs = 0.66, p < 0.01), as well as a strong
correlation between the number of anchorage points and the NTL values in anchorage areas across
the world (Rs = 0.69, p < 0.01; n = 601). The high correspondence levels of the VIIRS NTL data with
various shipping indicators show the potential of using NTL data to analyze the spatio-temporal
dynamic changes of the shipping activity in anchorage areas, providing convenient open access and
a normalized assessment method for shipping industry parameters that are often lacking.

Keywords: VIIRS/DNB; nighttime lights; shipping; spatial analysis; anchorage area

1. Introduction

The global rise in the standards of living, consumption volumes, as well as the devel-
opment and use of marine resources, are leading to an increase in global shipping, despite
a temporary slowdown in maritime trade growth in 2018 as a result of trade tensions,
protectionism, Brexit [1], and shipping restrictions following the COVID-19 outbreak [2].
According to estimates of the United Nations Conference on Trade and Development
(UNCTAD), the volume of international trade by sea accounts for approximately 80% of the
volume of world trade [3]. The general trend points to a steadily increasing and developing
rate of maritime transport over the past two decades [1]. Ports are important centers of
trade between countries, and their cargo handling capacities (loading and unloading of
goods) are one of the most basic and important indicators for measuring the development
status of ports [4–6]. The port anchorage area (PAA) is a place where ships wait for their
turn to enter the port outside the port areas. The PAA is an important part of the shipping
and port management segment [5]. Accurate statistical information on the number of ships
and cargo loaded and unloaded over a certain period in the port is of decisive importance
for monitoring the movement of ships, assessing the state of development of the port, the
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country’s economy, as well as assessing global trends [6–8]. To date, periodical statistics
on port activity are published by various global organizations such as UNCTAD [9], as
well as by the ports authorities themselves. Statistical data in frequent comparisons are
difficult to access (Lloyd’s List Intelligence) [10], varied, and rarely published, making
it difficult to analyze data consistently or in near real-time. The recent development of
automatic identification systems (AIS), which show the exact location of ships in almost
real-time and with an average update of one minute, as well as additional parameters (ship
dimensions, etc.) and dynamics (location, direction, speed, etc.), are expensive and complex
in processing [11]. While the effects of some anthropogenic activities in marine areas are
examined in detail, for example, oil spills from shipping [12,13], our understanding of
the spatial and temporal trends of artificial night-time light (NTL) in port anchoring areas
remains limited [14].

Conventional methods for monitoring ships at sea from space include optical and
synthetic aperture radar (SAR) images obtained using remote sensing. Daytime optical
sensors allow the detection of ships; however, their sensors are usually not sensitive enough
for detecting low light levels as emitted at night-time [15]. While SAR images have all-
weather and day and night capabilities, this approach for detecting ships at sea requires the
processing of large amounts of data, and at the moment, there is no operational product
offering vessel detection from SAR data [16–18]. Thus, there are still many gaps in the
monitoring of ships at daily, monthly and annual time scales. Recent studies have promoted
the use of VIIRS low light imaging data for monitoring ships that are using artificial lights
within the fisheries industry [19,20]. In this study, we propose the use of night light data
to monitor shipping activity in anchorage areas, thereby filling the research gap with a
new method for assessing statistical parameters of shipping activities at the port level.
This study provides a new approach based on monthly/annual NTL values at different
geographic levels (port and country). The challenges we faced included variability in NTL
emitted from different ships, the low sensitivity of satellite sensors (VIIRS) to small and
weak light sources, and the need for correcting NTL data to minimize the influence of
natural light, light from cities, and persistent cloud cover in certain areas [21,22], to measure
the magnitude of NTL emitted by ships in the anchorage area.

Research Question and Objectives

Our main objective in this paper was, therefore, to determine to what degree can we
use NTL as a proxy for shipping activities in anchorage areas, with the following two
specific aims:

1. To what extent can night-time lights in anchorage areas serve as an indicator of ship-
ping activity in port anchorage areas? To do this, we will examine the correspondence
between the night-time lights and shipping data at the port level and the country level.

2. Which variables at the country level can explain the intensity of lighting in anchorage
areas? To do this, we will examine various variables that represent economic activities
such as GDP, exports, etc. and their correspondence with NTL.

2. Materials and Methods

An anchorage area is a place where boats and ships can safely drop anchor. Anchorage
areas vary by the types of anchoring which are allowed (size of boat, type of anchor, vessel
size, and type) and the authority in charge of the anchorage area (local government, county
government, or state government) [23].

2.1. Process of Creating the Anchorage Polygons

To examine port activities, we created polygons of anchorage areas using the anchorage
points (the offshore location where ships can lower anchors while waiting to be allowed in
the ports) dataset of the Global Fishing Watch (GFW) (https://globalfishingwatch.org/data-
download/datasets/public-anchorages:v20200316) (v1_20191205) (accessed on 2 August
2020). The anchorage points represent the centers of the anchorage circle (Figure 1). In

https://globalfishingwatch.org/data-download/datasets/public-anchorages:v20200316
https://globalfishingwatch.org/data-download/datasets/public-anchorages:v20200316
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different weather conditions, the ship moves radially around the anchor center, so as not to
interfere with other ships and the movement of other ships in the port.

Figure 1. An anchorage area at the southern entrance to the Suez Canal. Circles provide anchoring
places for different types of vessels, following their size and type (Tanker, Cargo, etc.). In the center
of each circle is marked the “anchor”, where the ship drops the anchor (source: openseamap.com,
(accessed on 10 November 2021)). Colored symbols represent navigation buoys.

To extract the NTL values from VIIRS over the anchorage areas globally, we created a
polygonal database of anchorage areas (Figure 2, showing as an example the anchorage
areas of Fujairah, United Arab Emirates) covering most of the world’s ports. To extract
the polygons from the point layer of GFW, first, we transformed the point data to raster
format with a cell size of 1 km, using an equal-area projection. We filled the gaps inside
each polygon using spatial closing filters with a 7 × 7 moving window. We included in
our analysis only anchorage areas with at least 10 anchorage points (Figure 2) and which
were not close to the coastline so that night-time lights within them will be less affected
by coastal urban lights. The night lights emitted by a coastal city can reach offshore areas
via scattering by the atmosphere [24]. Moreover, this glow distance varies not only as
a result of the density of light sources and the type of lighting but also via atmospheric
scattering conditions. The purpose of the following section is to demonstrate the glow of
urban coastal night lights into offshore areas.

openseamap.com
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Figure 2. Astronaut photography (ISS038–E–16344) of the Eastern part of the Persian Gulf, 2013 (a).
The average NTL values for 2019 at the vicinity of Fujairah port (b), UAE (black dots represents
centers of anchorage circles for vessels, based on the dataset of Global Fishing Watch), whereas the (c)
image shows an image of the same area acquired by Sentinel 1 (9 June 2019). The anchorage area of
the port is about ten kilometers from the coastline. Coastal NTL does not affect the anchorage area of
the port. The main type of vessel operating in the Fujairah port is tankers.

As can be seen from Figure 2, the urban and coastal areas of Fujairah were much
more illuminated by artificial night-time lights (more than 50 nW cm−2 sr−1) compared
with the anchorage area in which the radiance values of night-time lights ranged between
2–7 nW cm−2 sr−1. Despite the strong night illumination of the city, it did not affect the
amount of light in the area of the anchorage area since the influence of city lights from
Fujairah ended about 6–7 km from the coastline.

The resulting anchorage polygons which we created included 601 anchorage polygons
belonging to 97 countries. Finally, these anchorage areas included 44,570 anchorage points
out of a total of 119,478 anchorage points in the original dataset of GFW.

2.2. VIIRS Night–Time Light Data (Response Variables)

The VIIRS DNB data are more sensitive to low light levels than the DMSP/OLS and
have a higher spatial resolution of 742 m × 742 m footprint from nadir out to the edge
of scan [25]. The monthly VIIRS products are gridded to a 15 arc-second grid, which is
slightly finer than the original pixel footprints [26]. In this study, we used VIIRS DNB
monthly cloud–free average data products for the period between April 2012 and March
2020 provided by the NOAA service (https://ngdc.noaa.gov/eog/viirs/download_dnb_
composites.html, (accessed on 20 June 2021)). The dataset includes radiance data and
cloud-free coverages (the number of cloud-free acquisitions available for a given month

https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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for calculating night-time brightness in each pixel). The DNB radiance data excluded data
impacted by stray light, lightning, lunar illumination, and cloud cover before averaging,
while some temporal lights from auroras, fires, boats, etc., are reserved [27]. Two configura-
tions of the VIIRS composites are available: “vcmcfg” excludes any data contaminated by
stray light (typically solar illumination) and “vcmslcfg” excludes data impacted by stray
light are corrected but not removed. We selected the “vcmslcfg” products as they offer
greater temporal and spatial coverage [28]. Moreover, we calculated the annual sum of
lights within each anchorage area by multiplying the polygon area with the average values
of NTL. We used the equal–area Mollweide projection to calculate anchorage areas and to
calculate the sum of lights (SOL) of anchorage areas. To extract NTL values of anchorage
areas data, we used the Google Earth Engine (GEE) platform [29]. We extracted and merged
both data configurations: ‘VCMSLCFG’ for the period of January 2014–March 2020 and
‘VCMCFG’ for the period of April 2012–December 2013, of two available bands:

• “Avg_rad”—value represents the monthly average value of NTL.
• “Cf_cfg”—cloud–free days (this was important to interpolate monthly radiance values

for months that were too cloudy, as detailed below).

We used the correction coefficients provided by Coestfield [22] for correcting the
temporal variation of natural light sources such as airglow and thus corrected the monthly
time series of NTL using their published coefficients, which are especially important in
areas with low levels of NTL.

In various anchorage areas, NTL values were underestimated in certain months due to
high cloud cover for most of the month. We used a threshold of an average of at least one
day without cloud cover per month within the anchorage area as the minimum threshold in
which we accepted NTL values for a specific month that would be “valid” for our analysis
of the anchorage areas. According to our dataset of NTL for 96 months and 601 anchors,
almost 95% of the months in all ports had sufficient cloud–free data (Table 1). In the majority
of cases, cloudy months (with cloud–free days below 1) were usually isolated (3.1% of all
months; Table 1). More than 50% of all anchorage areas experienced at least one event of
two consecutive months with persistent cloud coverage (cloud–free days below 1; Table 1).

Table 1. Distribution of the number of months without sufficient NTL data measurements due to high
cloud cover. The left–hand column shows the number of consecutive months without sufficient cloud–
free measurements (average cloud–free days < 1). Our dataset included 96 months and 601 anchorage
areas (96 × 601 = 57,696). The first group, “0 = Zero”, indicates months with no missing data.

Number of
Consecutive Missing
Months with Cloud

Free Days (CFD)
Value < 1

Sum of Months in
Each Group across all

Anchorage Areas

% of the Sum of
Months in Each
Group across all

Anchorage Areas (out
of 57,696)

Number of Anchorage
Areas in Each Group
of Missing Months

% Number of
Anchorage Areas in

Each Group of Missing
Months (out of 601)

0 54,589 94.6% 113 18.8%
1 1772 3.1% 488 81.2%
2 731 1.3% 344 57.2%
3 375 0.6% 235 39.1%
4 149 0.3% 126 21.0%
5 56 0.1% 53 8.8%
6 24 0.04% 24 4.0%

To fill the monthly gaps in NTL values, we interpolated NTL values for months with
average cloud–free days of less than one day, based on the six months before and after
the missing month. Based on this method, the missing values were filled in, and the
original values for months with CFD ≥ 1 were not changed (see example in Figure 3 for
the anchorage area of Punta Arenas, Chile).
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Figure 3. Interpolation of NTL values for cloudy months (for the anchorage area of Punta
Arenas, Chile).

Finally, to estimate the impact of the interpolation method of “Interpolating NTL for
cloudy months” on the average NTL values in all anchorage areas, we performed a 2-tails
t-test. The test was used to determine if there was a significant difference between the
means of the original NTL values vs. the interpolated values for each of the anchorage
areas. Running a t-test between the NTL time series of each anchorage before and after the
interpolation of months in which the number of the cloud–free day was less than one, we
found that the null hypothesis (H0—no difference between the original monthly values
and the interpolated ones) could not be rejected (see example Figure 3 for Punta Arenas
anchorage area) for any of the anchorage areas (i.e., the average NTL values before and
after the interpolation were not different).

2.3. Explanatory Variables

We collected a range of quantitative information on maritime activities at the port level,
as well as various parameters (economic, environmental, etc.) at the country level, using
data sourced from the United Nations Conference on Trade and Development (UNCTAD)
(https://unctad.org/statistics, accessed on 12 October 2021), the World Bank (https://
data.worldbank.org, accessed on 12 October 2021), and www.trademap.com (accessed on
12 October 2021) at the port and country–level (Table 2). The UNCTAD “Port calls/Port
performance” parameters group is one of the main sources of maritime shipping data
and is part of a suite of port call and performance statistics that provide an overview
of the characteristics of ships and the time they spent in a country’s ports over a given
period [30,31]. Together, the “Port calls/Port performance” includes statistics for up to eight
parameters, covering: Median time in port—the median time vessels spent within port
limits (in days); Average size of the vessel—the average gross tonnage of the vessels that
have called in the country’s ports during the year, as well as the “Maximum” parameters of
the largest ships that have called during the period, the maximum cargo carrying capacity
and the maximum container carrying capacity of container ships; Average cargo carrying

https://unctad.org/statistics
https://data.worldbank.org
https://data.worldbank.org
www.trademap.com
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capacity—the average deadweight tonnage of the vessels that have called in the country’s
ports during the year; Average container carrying capacity per container ship—the average
capacity to carry the 20–foot equivalent units (TEU) of the container ships. Another data
source from the UNCTAD is the container port throughput (CPT)—measurements of the
container flow from land to sea transport modes, and vice versa, in 20–foot equivalent
units (TEUs), a standard–size container [32]. Data refer to coastal shipping as well as
international shipping. Trans–shipment traffic is counted as two lifts at the intermediate
port (once to off–load and again as an outbound lift) and includes empty units. The liner
shipping connectivity index (LSCI) represents the country’s integration level into global
liner shipping networks [33,34]. The LSCI is an index set at 100 for the country with the
maximum value of country/port connectivity in the first quarter (Q1) as of 2006, which was
then China. From the Wordlbank, we have downloaded the following data at the state level:
Electric power consumption—electric power consumption per capita (kWh), which are
the main indicators of the size and level of development of the country’s economy; Fossil
fuel consumption (% of total)—comprises coal, oil, petroleum, and natural gas products by
country; Population—a country population based on national population censuses. Most
of the explanatory variables used in the study represent the average values over a certain
period (Table 2). Since the NTL data we used covered a wider time range (2012–2020), we
calculated, for each of the explanatory variables, the mean over the period corresponding
to the response variable (NTL data) or the widest time range that could be extracted, for
example, TSC data were available for 2016–2020. Most of the explanatory variables were
only available at the country level and only a few at the port level. These data describe
various aspects directly or indirectly related to maritime ship activity in the ports at the
country level and thus may explain the number of ships in the anchorage areas.

Table 2. List of explanatory (independent) variables at the country and port level.

Parameter

C
—

C
ou

nt
ry

P—
po

rt

Years Data Source

Number of anchorage points C/P 2019 [35]

Average cargo carrying capacity C 2018–2020 [31]

Average container carrying capacity C 2018–2020 [31]

Average size of vessel C 2018–2020 [31]

Average CO2 emissions C 2016 [36]

Container port throughput (CPT) C 2016–2019 [37]

Electric power consumption C 2013–2014 [38]

Fossil fuel consumption C 2013–2015 [39]

Gross domestic product (GDP) C 2016–2020 [40]

GDP growth (annual %) C 2016–2020 [41]

Import C 2016–2020 [42]

LSCI C 2016–2020 [31]

Maximum cargo carrying capacity of vessels C 2018–2020 [31]

Maximum container carrying capacity of vessel C 2018–2020 [31]

Maximum size of vessels C 2018–2020 [31]

Median time in port (days) C 2018–2020 [31]

Population growth (%) C 2016–2020 [43]

Population total C 2016–2020 [44]

Monthly average number of vessels in the PAA of Santos P 2016–2020 Sentinel 1

Santos port statistics (Import/Export, ship numbers by class and by waiting time) P 2016–2020 [45]
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Data collection on Vessel Numbers in Anchorage Areas from Sentinel 1

To further examine the potential of using NTL as a measure of temporal changes
in ship activity in ports, we collected data on the number of ships anchored in the port
anchorage area. Using Sentinel 1 (SAR) satellite images (which offer all–weather capabilities
and enable ship detection; [46]) from January 2016 to March 2020 in the port of Santos
(Brazil’s largest port), the average number of vessels sighted in the anchorage area was
calculated based on 4–5 images per month. The port of Santos was chosen because it is
a relatively large port with a remote anchorage area. Such a large anchorage area can
accommodate more than 50 ships at any given time, which can create a large amount of
night–time light that will not be affected by city lights. Thus, a port such as Santos is a
good place to test the hypothesis that night lights may serve as an indicator of temporal
changes in shipping activity in the anchorage area.

To perform a detailed analysis at the port level for Brazil’s largest port (the port of
Santos), the following statistical data from the port’s website (http://www.portodesantos.
com.br/informacoes-operacionais/estatisticas/mensario-estatistico/ (accessed on 1 Febru-
ary 2022)) were also used: monthly volumes of imports and exports, the monthly number
of ships waiting (total and those waiting >72 h) in the anchorage area, and the number of
ships from different segments (general cargo, bulk solids, bulk liquids [tankers], passengers,
etc.) that visited the port of Santos.

2.4. Analysis

We conducted a correlation analysis at two levels: at the port level and the country
level. We chose to include a country–level analysis as well, as it is useful in our view to
conduct between–countries comparisons, which is also common practice in other studies of
economic activities using night lights [28,47,48]. For each spatial level, various explanatory
and response variables were prepared (average NTL and Sum of Lights). For the country–
level analysis, we calculated the mean values of the explanatory parameters and the mean
value of the NTL of all anchorage areas of that country. At the port level, a comparison
was made between the monthly average NTL and the average number of vessels, using
the example of the port of Santos, Brazil. Spearman’s rank correlation coefficient (denoted
here by Rs) was calculated using SPSS to examine the correspondence between the average
annual NTL 2012–2020 and the explanatory variables (Table 2). The use of NTL was proven
to be effective for the study of large areas, such as at the country, state, county, or city
level [49].

3. Results

Overall, we identified and analyzed 601 anchorage areas representing 97 countries with
a temporal coverage of 96 months (April 2012–March 2020). In this study, an assessment
was made of the level of the correlation between the average values of VIIRS (monthly,
annual) sum of lights (SOL) both at the level of a single anchorage and at the country level.

The map of the distribution of the average annual NTL value for 2012–2020 (Figure 4)
indicates high concentrations of anchorage points per port along the coasts of China
(Figure 4c), the Persian Gulf (Figure 4b), the Mediterranean Sea (Figure 4a), Gulf of Guinea,
the Southern Coast of Brazil, and the Southern Caribbean, which indicates high shipping
activity in these regions during the study period. The spatial distribution of ports by their
number of anchorage points varies greatly, with the highest number of anchorage points
found along the coast of China. The anchorage area of the port of Xingang (China) had the
highest number of anchorage points (1197), followed by the port of Fujairah (United Arab
Emirates) with 725 anchorage points. The port of Shanghai had several anchorage areas,
which combined included more than 1300 anchorage points; The port of Lome (Togo), with
620 anchorages, was the largest of any African port. Of the European ports, Malta had the
largest number of anchorage points (498). The Brazilian port of Santos was the leading port
in the number of anchorage points (449) within the Americas.

http://www.portodesantos.com.br/informacoes-operacionais/estatisticas/mensario-estatistico/
http://www.portodesantos.com.br/informacoes-operacionais/estatisticas/mensario-estatistico/
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Figure 5 show a map of the anchorage area and their average annual sum of lights
(SOL) values for 2012–2020. On overage, the ports of the Persian Gulf (Figure 5b) were
among the most brightly lit (112 nW/cm2cr). Anchorage areas located in Asia (especially
in the East China Sea, Figure 5c) had significantly lower average values (43 nW/cm2cr).
The anchorage areas of the American continent, especially the northern part, were much
less lit, with an average of 39 nW/cm2cr. Of the seas of the European continent, the
anchorage areas of the Mediterranean Sea (Figure 5a) were the most lit with an average
of 48 nW/cm2cr, with Malta’s being the most lit with 443 nW/cm2cr. The average NTL
values of the anchorage areas of European ports in the Atlantic Ocean and the Northern
Sea had lower SOL values (23 nW/cm2cr), while the most lit anchorage area (Rotterdam)
was ranked globally as 23rd most lit anchorage area with an average SOL of 187 nW/cm2cr.
China’s anchorage areas had relatively low SOL values (average of 45 nW/cm2cr based
on 87 areas, with only 10 anchorage areas with SOL values higher than 100 nW/cm2cr),
despite a high average number of anchorage points of 155 per anchorage area (n = 87). The
anchorage areas of Xingang and Ningbo (China), with an average of 354 and 328 nW/cm2cr,
respectively, were the most lit among Chinese ports regarding anchorage areas. Anchorage
areas along the East Coast of Africa were less lit (37 nW/cm2cr) than those of the West Coast
of Africa (59 nW/cm2cr) and the Southern Coast of the Mediterranean Sea (57 nW/cm2cr).
The port areas of Luanda (Angola) and Lome (Togo) were the most lit on the African
continent, 252 nW/cm2cr and 240 nW/cm2cr, respectively. The anchorage area of the port
of Kandla was the most lit (523 nW/cm2cr) among all the investigated anchorage areas in
India. The Port of Kandla had the largest number of anchorage points among all ports in
India (178 anchorage points) and was ranked 53rd out of all anchorage areas in terms of its
number of anchorage points.

Figure 4. Map of anchorage areas (ports) symbolized by their number of anchorage points (source of
anchorage points: www.globalfishingwatch.org, accessed on 5 October 2020). Enlarged maps show
the following areas: (a) The Mediterranean Sea; (b) The Persian Gulf; (c) The Yellow Sea region.

www.globalfishingwatch.org
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Figure 5. Map of anchorage areas and their average annual sum of lights (SOL) intensity for the
period of April 2012–March 2020. Enlarged maps show the following areas: (a) The Mediterranean
Sea; (b) The Persian Gulf; (c) The Yellow Sea region.

3.1. General Patterns of NTL as an Indicator of Shipping Activity

In this section, we present the results of the correlation analysis obtained at the global
level. The purpose of this section is to assess the correlation between two fundamental
parameters, NTL and the number of anchorage points at different geographical levels

Figure 6 show a statistically strong and significant (Rs = 0.69, p < 0.01) correlation
between the number of anchorage points per area and the average annual value of NTL
sum of light (SOL) for 2012–2020 based on 601 anchorage zones. This result indicates a
strong relationship between the total number of anchorage points for ships within the
anchorage area and the average SOL reflected from anchorages at sea. A higher number of
anchorage points increases the amount of NTL lights measured by the satellite sensors.

Figure 7 present the correlation between the total number of anchorage points in the
ports of each country (97 in total) and the average NTL value for 2012–2020. Despite the
similarity of the two graphs (6 and 7), a higher correlation was obtained at the country level
(Rs = 0.84, p < 0.01) between anchorage points and NTL than at the port level. In countries
with a developed maritime industry such as China, Japan, Turkey and the USA, a large
number of anchorage areas exist, and as a result, they emit high levels of NTL.

Figure 8 show a scatter plot of the correlation analysis between the annual average SOL
and the signal to noise ratio (SNR = Average/Standard Deviation) for the period 2012–2020.
We obtained a significantly strong correlation (Rs = 0.49, p < 0.01) between the annual
average SOL value and the SNR over the investigated period of 2012–2020. Anchorage
areas with SNR values below one indicate high variability in monthly NTL values. Out
of 601 anchorage areas, 33 (5%) had SNR values below 1, while China had 12 (13% of all
Chinese anchorage areas) and Germany had 5 and 7 anchorage areas. Anchorage areas
with SNR values above 2 represent are areas with more stable monthly/annual NTL. The
most stable NTL values were obtained in the anchorage areas of the port of Tenerife, Spain
(Average/Stdv 258.37/19.9 nW/cm2sr, SNR = 13), Valencia, Spain (166.45/13.7 nW/cm2sr,
SNR = 12.2), and Kuwait (164.56/15.5 nW/cm2sr, SNR = 10.6), while the most unstable of
the highly active ports (with average NTL above 150 nW/cm2sr) was the anchorage area of
Khalifa Bin Salman, Bahrain (153.9/484.8 nW/cm2sr, SNR = 0.3).
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Figure 6. Spearmen correlation between the number of anchorage points per anchorage area and
averages of annual SOL from 2012 to 2020 (Rs = 0.69, p < 0.01), N = 601.

Figure 7. Logarithmic scatter plot of Spearmen correlation between the total number of anchorage
points by country and averages of annual NTL sums, from 2012 to 2020 (Rs = 0.84, p < 0.01), based on
N = 97.
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Figure 8. Scatter plot of all anchorage areas’ average SOL and the signal to noise ratio
(SNR = Average/Standard deviation) for the period of 2012–2020. (Rs = 0.49, p < 0.01), based on
N = 601.

3.2. Temporal Analysis of NTL Values within Anchorage Areas

Figure 9 and Table 3 present the results of a correlation analysis between the NTL
values within the port of Santos, Brazil and different statistical parameters of the port and
the number of ships counted from Sentinel 1 images. The purpose of this section is to
assess the feasibility of using the monthly average of NTL values as an indicator of the port
shipping activity by estimating the number of ships in an in anchorage area on a monthly
basis. The port of Santos is a relatively large port with a large anchorage area in which,
during the study period, the average daily number of ships in the anchorage area was 60
with a standard deviation of 16 ships per month. The average monthly number of ships
waiting for more than 72 h was 110 with a standard deviation of 23.

Over most of the study period, the five parameters in Figure 9 show statistically
significant correlations, with corresponding peaks and lows. In the first half of 2019, the
NTL values had a local peak which was not present in the number of ships as counted from
Sentinel 1; however, this peak was found in the variables of total exports and ships waiting
for more than 72 h.

VIIRS monthly sum of light values were moderately correlated with the number of
ships counted from Sentinel 1 images (Rs = 0.51), the number of ships carrying bulk solids
(Rs = 0.41), and the number of ships that waited for more than 72 h in the anchorage
area (Rs = 0.41) (Table 3). Strong correlations (Rs ≥ 0.72; Table 3) were found between all
combinations of the following pairs of variables: the number of ships waiting, the number
of ships waiting for more than 72 h (being on average 29% of all ships waiting), bulk solids
ships (being on average 26% of all ships), and exports. Moreover, the number of bulk solids
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ships correlated with several other parameters: ships counted from Sentinel 1 (Rs = 0.5)
as well as with exports (Rs = 0.87), while for the imports, a weaker correlation was found
(Rs = 0.39). We also observed good correlations between the total monthly number of ships
(based on the port’s official statistics) and monthly exports (Rs = 0.74), the monthly number
of bulk solid ships (Rs = 0.72), the number of ships counted from Sentinel 1 (Rs = 0.48), and
with the monthly number of general cargo ships (Rs = 0.47) (Table 3).

Figure 9. Time series presenting the correspondence between the average number of vessels counted
from Sentinel 1, total exported goods, number of vessels waiting for more than 72 h in anchorage
area, number of ships carrying bulk solids and average NTL over the anchorage area of Santos port,
Brazil. All variables were normalized between their respective minimum and maximum values from
Jan 2016 to Mar 2020 to ease the visual comparison between them.

Extending the temporal analysis to all anchorage areas, Figure 10 show a global
map of temporal trends in NTL within anchorage areas for the period 2012–2020. In 219
(36%) of the anchorage areas, temporal trends were not significant (p-value > 0.05), with a
relatively even distribution across continents. Of the 382 anchorage areas in which we found
statistically significant results, in 112 (18%) of the anchorage areas, there was a decrease
in NTL, while in 270 of the anchorage areas, there was an increase in NTL values. In the
Mediterranean region (Figure 10a), the temporal trend of the NTL value of anchorage areas
showed an increase (avg. Rs = 0.31, p < 0.01, Stdv = 0.38) based on 67 observations, while
only 13 anchorage areas recorded a decrease. The NTL values growth in the Mediterranean
region was mainly due to Turkey’s anchorage areas, where 12 anchorage areas had a
statistically significant and strong temporary trend of increase (avg. Rs = 0.6, p < 0.01). On
the African continent, a significant difference in temporal trends was obtained between
the Eastern part (avg. Rs = 0.34, p < 0.01, Stdv = 0.33) and the Western part (avg. Rs = 0.8,
p < 0.01, Stdv = 0.53). The anchorage area of Mogadishu (Somalia) presented the highest rate
of increase in NTL during the study period 2012–2020 with (Rs = 0.94, p < 0.01), probably
reflecting its slow recovery from the long civil war. On the South American continent, on



Remote Sens. 2022, 14, 1079 14 of 23

average, there was a downward trend in NTL with (Rs = −0.18, p < 0.01, Stdv = 0.41). In
Northern America, NTL values increased with an average value of Rs = 0.27, p < 0.01, Stdv
= 0.27. The NTL values in the Persian Gulf (Figure 10b) increased similarly to those in
North America (Rs = 0.25, p < 0.01) but with a wider deviation between anchorage areas
(Stdv = 0.47), mainly due to a decrease in the Qatar anchorage areas. The NTL values in
China (Figure 10c) increased on average by Rs = 0.32, p < 0.01 and Stdv = 0.32, with only
Turkey surpassing China. In Australia, there was a relatively stable neutral trend in NTL
values. Among the countries, the decrease in NTL values occurred mainly in the anchorage
areas of Japan (nine anchorage areas), Brazil (seven), Chile (seven), India (seven), while
in the ports of Venterminals and Guanta (Venezuala), Capetown (South Africa) the most
significant decrease occurred within the investigated period with a negative correlation
below than Rs = −0.72, p < 0.01. A significant increase in NTL values also occurred in
the anchorage areas of the ports of Huanghua (China) Rs = 0.91, p < 0.01, Izmir (Turkey)
Rs = 0.88, p < 0.01, Taman (Ukraine) Rs = 0.86, p < 0.01, Poti (Georgia) Rs = 0.83, p < 0.01,
Lagos (Nigeria) Rs = 0.82, p < 0.01, and Basrah (Iran) Rs = 0.78, p < 0.01.

Table 3. Matrix of Spearmen correlation coefficients of monthly statistical parameters for the port
of Santos (Brazil) and VIIRS monthly values for the period of January 2016–March 2020 (n = 51).
Positive correlation coefficients greater than 0.4 are highlighted.

Remote
Sensing Official Statistics from the Port of Santos
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VIIRS monthly sum 1

Ships counted Sentinel 1 0.51 1

Exports 0.37 0.59 1

Imports 0.24 0.34 0.42 1

Ships waiting 0.17 0.44 0.82 0.45 1

Ships waiting > 72 h 0.41 0.68 0.78 0.25 0.72 1

General cargo ships −0.20 0.03 0.23 0.20 0.54 0.06 1

Bulk solid ships 0.41 0.50 0.87 0.39 0.85 0.80 0.18 1

Tankers −0.07 0.15 0.21 0.38 0.34 0.19 0.05 0.12 1

Passenger ships 0.09 −0.12 −0.48 −0.29 −0.62 −0.38 −0.34 −0.54 −0.31 1

Roll–on/roll–off ships −0.19 −0.06 0.20 −0.15 0.23 0.26 −0.10 0.13 0.28 −0.36 1

Others ships 0.03 0.03 −0.10 0.29 −0.11 −0.13 0.05 −0.14 0.05 0.12 −0.16 1

Total number of ships 0.22 0.48 0.74 0.38 0.85 0.67 0.47 0.72 0.33 −0.22 0.10 −0.02 1
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Figure 10. Global map of anchorage areas and their temporal trends over the 2012–2020 period. The
temporal trends were assessed using the Spearmen correlation. The number in brackets represents
the number of anchorage areas in each group of temporal trends. Enlarged maps show the following
areas: (a) The Mediterranean Sea; (b) The Persian Gulf; (c) The Yellow Sea region.

3.3. Statistical Analysis at the Country–Level

At the country level, we found statistically significant correlations for 10 of the ex-
planatory variables (Figure 11). The annual average values of NTL were very strongly
correlated with the CPT (Rs = 0.84, p < 0.01), and strongly correlated with the country’s
population (Rs = 0.68, p < 0.01), maximum cargo capacity of the vessels (Rs = 0.66, p < 0.01),
average import of the country (Rs = 0.62, p < 0.01), GDP (Rs = 0.61, p < 0.01), and LSCI
(Rs = 0.6, p < 0.01). Moderate correlations were found for maximum container carrying
capacity (Rs = 0.55, p < 0.01), maximum vessel size (Rs = 0.51, p < 0.01), and port calls
Rs = (0.42, p < 0.01).

Figure 12 provide a scatter plot of the correlation between CPT and NTL values at
the country level. As shown in Figure 11, NTL data were most strongly and significantly
correlated with “CPT” at the state level (Rs = 0.84, p < 0.01). China ranked first among
the countries in terms of CPT (223,809,105 TEU), was four times higher than the USA
CPT (52,716,134 TEU), and its average annual SOL was also four times higher (3876 and
943 TEU).
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Figure 11. Spearmen correlation coefficients at the country level (* p < 0.05, ** p < 0.01; n = 97) for the
response variable of average annual SOL values. Variables are ordered by the magnitude of their
correlation coefficient with the SOL at the country level.

Figure 12. Scatter diagram of the correspondence (Rs = 0.84, p < 0.01) between the average Container
Port Throughput (CPT) 2016–2020 by country and averages annual SOL for the period of 2012–2020,
N = 97.
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4. Discussion

To track global and local traffic flows and assess the state of development of the
maritime industry, accurate data on port shipping activities is essential. Information of this
nature is crucial for managers and analysts to make strategic decisions and monitor the
maritime industry’s progress towards its management goals.

Sources of artificial lights in the marine realm vary and include coastal cities, oil
rigs, harbor lighting, fisheries, and anchoring ships [50]. The use of night–time remote
sensing data for ship surveillance is a relatively new research field. Night light remote
sensing technology has a unique night vision capability that can overcome the problem
that traditional optical daytime remote sensing images cannot track targets at night. In
existing studies, the VIIRS data on night illumination is widely used in the socio–economic
sphere [28,51,52], the development of algorithms and applications for monitoring fishing
vessels [19,53,54], assessment of the airport’s throughput of traffic flow [51], assessment
port economics scores [55], as well as assessment of countries’ economic situation during
the crisis [56]. Using VIIRS night light data, we showed that it is possible to assess shipping
activities at the port level for which there is little or no consistent information at the
global level. The NTL data on port anchorage areas are therefore a vital source of data
for calibration and validation of, for example, the port collaborative decision making
(PortCDM) concept [57], UNCTAD maritime and shipping parameters [33,58], and country
economic assessments. Shipping activity in the water area near the port (anchorage area)
proceeds without respite around the clock. To ensure normal operation at night–time,
similarly to daytime, electricity is used on the ship, including for lighting the ship. This
study is based on large data sets (601 anchorage areas) covering most of the anchorage areas
of the world’s major ports over the period from April 2012 to March 2020, thus providing a
method for estimating both the average monthly number of ships in the anchorage area and
various shipping and trade variables. Eight of the explanatory variables presented in Table 2
were significantly correlated (Rs > 0.50, p < 0.01) with the annual average (2012–2020) SOL
values of VIIRS at the country level. The CPT index, which provides information on the
number of unloaded and loaded containers by the port, was strongly correlated (Rs = 0.84,
p < 0.01) with the NTL values. A possible reason might be that in most of the ports there is
infrastructure for loading and unloading containers from ships as well as from container
trucks (IMO, 2021). Moreover, based on other independent UNCTAD parameters (Table 2),
a high correlation was obtained for the annual shipping parameters related to the aspects
of “maximum” (instead of average): the maximum cargo carrying capacity (dwt) of vessels
(Rs = 0.66, p < 0.01), the maximum container carrying capacity (TEU) of container ships
(Rs = 0.55, p < 0.01), and the maximum size (GT) of vessels (Rs = 0.51, p < 0.01). A similar
assessment of the use of night–time lighting data as an indicator has also been provided in
studies of evaluating port economics comprehensive scores (PECS), based on UNCTAD,
1987 [59], with a correlation of (R2 > 0.85) in the case of Shanghai port [55] and even an
assessment of airport throughput (represent the annual number of aircraft movements
or passengers [60]) with a significant correlation of (R2 > 0.85) [51]. The domination of
“Maximum metrics” and their higher correlation with NTL could be the result of port
prioritization and commercial considerations by operating companies [61] in the entrance
of large ships carrying high amounts of cargo [62]. Such prioritization leads to the long
waiting time of smaller ships that wait for their queue to enter the port in the anchorage
area [63,64]. Moreover, we also found significant correlations of NTL with countries’ socio–
economic parameters such as: country’s average population 2016–2020 (Rs = 0.68, p < 0.01),
average import 2016–2020 (Rs = 0.62, p < 0.01), and average GDP (Rs = 0.61, p < 0.01) [65],
despite the relative decline in the importance of cities with large populations in global
traffic [66]. Countries with large populations and high GDP often require high levels of
imports and a large number of different ship segments that serve a high standard of living
a large country’s population. This conclusion is supported by the strong correlation of the
LCSI parameter with NTL (Rs = 0.60, p < 0.05), which indicates the variability level of the
country’s integration into the global liner transportation networks [33,58]. The use of fossil
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fuels for energy (Rs = 0.27, p < 0.05) and CO2 emission (Rs = 0.19) were not found to be
strongly correlated with NTL, probably because the ships are not a significant factor [67] or
are not counted in the overall balance of the country for each of these parameters. Thus,
NTL data is an indicator of shipping that can be used to accurately estimate a wide range
of activity (port, maritime, country, economy) parameters of ports and country, which
is also confirmed by the results Liu (2019), where the researchers show that NTL data
is a proxy indicator of economic assessment ports of China, despite high variability of
port pixels and light interference around the port area [68]. The results obtained are of
applied importance for assessing the dynamics of the development of seaports and the
socio–economic parameters of the country, similar to how Bennet, 2017 [69] shows the
correlation of NTL with socio–economic parameters on various spatio–temporal scales,
thereby compensating for the lack of statistical data on the activities of ports and country
parameters. On a local level, the observed negative temporal trend in the Venezuelan
anchorage areas (five out of six anchorage areas having a temporal decrease of Rs < −0.3,
and three with a decrease of Rs < −0.6) is confirmed by the results of a study conducted by
Zhang et al. 2020 [56]; they assessed the economic crisis in Venezuela using NTL data for
April 2012–December 2018, based on 12 cities, finding high correlations (R2 > 0.8) between
the sum of urban lights and several economic parameters (crude oil production, USD
exchange rate and the number of asylum seekers), thus demonstrating the use of NTL data
as an indicator of the economic state of Venezuela during the crisis. At the port level, results
of statistical analysis showed lower correlations than at the country level, but the results
of a detailed analysis we conducted for the Port of Santos, Brazil, (Table 3) shed light on
some of the correspondence between NTL and the number of ships counted in Sentinel
1. In 2019, when we observed a discrepancy between the NTL value and the number of
ships counted on Sentinel 1 images, only the parameter “number of ships waiting for more
than 72 h” showed a similar trend. The bulk ship segment constitutes the majority of
those waiting in the anchorage area of the Santos port (Rs = 0.85) and those that are over
72 h (Rs = 0.67), which are mainly dedicated to exports (Rs = 0.87). Hence, when there
is a decrease in exports via bulk ships, fewer ships will be waiting in the anchoring area.
Perhaps this is the reason for the discrepancy between the NTL value and the number of
ships counted on Sentinel 1 flights in 2019. Although Sentinel 1 SAR data is not affected by
cloud cover (whereas cloud cover hampers the detection of night lights by VIIRS), VIIRS
acquires night–time imagery every night, whereas the revisit time of Sentinel 1 is lower
(six days; [70]). Hence, the two sensors did not acquire their images at the same dates and
time of day, which may explain some of the discrepancies between the data from these
two sensors. Therefore, the proposed method using night lights as an indicator of ship
activity is particularly suitable for assessing spatial and temporal trends in the maritime
industry, complementing other methods of tracking ships (AIS, SAR images), especially
where official statistics are not available.

A detailed analysis of the causes of temporal variations makes it possible to improve
the sensitivity of DNB to changes in illumination [68]. In this study, we developed and
implemented several correction methods for VIIRS data to better analyze the light emitted
from anchorage areas, although VIIRS significantly improved quality over DMSP/OLS in
terms of spatial resolution, dynamic range, quantization, calibrations, and spectral range
availability over DMSP–OLS [25]. First, to minimize the influence of temporal variation
of natural light such as airglow, we used the method proposed by Coesfeld, 2020 [22].
Thus, fluctuations in natural light sources that limit the ability of night light sensors to
detect changes in small artificial light sources have been minimized, increasing the ability
to analyze the light emitted by ships. Moreover, city lights also represent an important
factor that influences scattering over the marine environment, as light from brightly lit
coastal cities can reach considerable distances at sea (Figure 2) by scattering through the
atmosphere [24]. As of today, there is no method of amendment developed to minimize the
influence of city lights over adjacent coastal waters (to assess the amount of NTL emitted
from the coastal waters themselves), and thus we focused on anchorage areas that were too
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close to the coast. Secondly, due to the high cloudiness in some areas of the earth, monthly
data from VIIRS are often underestimated. To fill in the gaps, we applied an interpolation
method for calculating the monthly values for the underestimated months based on the
VIIRS values of 12 adjacent months. Results of the t-test showed that the interpolation
method filled the data in cloudy months and did not affect the original data.

The use of VIIRS data has certain limitations. Among the limitations is the coarse
spatial resolution of 742 m [25], which does not allow a more detailed analysis of small
dense areas and objects. Cloudiness, which is in principle a frequent occurrence near
coastal areas, and in some regions (e.g., the tropics) a frequent occurrence, does not allow
information to be collected on a large percentage of the days of the year. Moreover, the
coastal light emitted by cities and ports themselves is much stronger than the light emitted
by ships, which in some cases makes this approach ineffective [71] if an anchorage area is
located too close to a brightly lit city. Additional sources of variation in emissions of NTL
from ships are associated with the types of ships in anchorage areas and their night lights
used. In this study, we did not have data on ship types (e.g., oil tankers, cargo ships, etc.),
which lowered our ability to explain the variability in NTL between anchorage areas. AIS
data can be a suitable source for replenishing knowledge about the types of ships in future
studies. In the case of comparison between the anchorage areas, there may be variations
in the volumes and powers of lighting permitted by local port authorities. Moreover, this
difference can also exist between the ports of the same country, and even the policy of the
port about the use of night light can change over time, which can lead to temporal changes.
The VIIRS sensor is panchromatic and does not measure night light in the blue channel,
thereby losing the night light emitted by ships in blue wavelength (which is a significant
component of light emitted by LED lightings) [72]. Finally, due to the wide coverage on
the ground by a single image, VIIRS imagery is mostly not acquired at nadir [22,73], and
changes in the zenith and azimuth view angles may affect the amount of light received by
the sensor from the ships, as was documented for light emissions from cities [74].

The ability of NTL data to serve as a proxy for shipping activity also depends on the
number of anchorage points and their density, the type of ships entering the port, and
waiting times in the anchorage area. The world’s standards for the construction of ships as
well as the rules on movement at sea, require ships to be equipped with a variety of lights,
most of which are standardized [75,76]. Consequently, more sensitive sensors will enable
measurement and distinguish the NTL values for different types of shipping segments [54].
For example, fishing vessels are the most illuminated ships at night–time. Depending on
the type of fishing, fishery vessels have different types and directions of night–time lights,
both for fishing and for working onboard [77]. Generally, fishing is prohibited in the harbor
area and at most anchorages; therefore, their night–time light should not affect the light
emitted from anchorage areas. Moreover, in ports with long queues, a ship that waits for
more than one night will increase its night signature compared with ships or anchorage
areas with short anchorage time (without anchorage during night–time hours). All these
factors affect the ability of satellite sensors to capture night light produced by ships and
to be used as an indicator for shipping activity. For example, the ports of Fujairah and
Malta are mostly hosting tankers [78]. Their anchorage areas are located a few kilometers
from the city coast and the light they emit, which makes it possible to measure mainly the
light emitted by one sector of the maritime industry, while such an assessment is almost
impossible inside the port due to the strong light emitted by the port infrastructure [68].
Thus, for remote ports that are not exposed to coastal lights, it is maybe easier to use night
light values as a proxy for shipping activities, considering additional parameters such as
ship size, anchorage point density, etc. In ports with a small number of anchorage points
and with a small number of vessels in the anchorage area, the proposed method of using
night lights may be limited in its ability to assess shipping activities, as not enough lights
will be emitted that can be captured by the VIIRS sensor, as also found for other small scale
economic activities [79].
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5. Conclusions

In this study, we carried out a global assessment of shipping activity using the VIIRS
satellite data by measuring the night lights emitted from ships at anchorage areas. The
analysis was carried out at three geographic levels: overtime at the anchorage level using
the example of the port of Santos (Brazil), overall anchorage areas at the country level
(n = 97), and across all anchorage areas globally (n = 601).

The main conclusion of this study is that monthly/annual VIIRS data can serve as
a good proxy for estimating the number of vessels as well as various shipping metrics
(such as CPT, LSCI) in anchorage areas at the port and country levels. The estimation of
the number of ships in anchorage areas with a small number of ships is probably limited
due to the low energy of night light emitted by a small number of ships, and in such cases,
VIIRS data cannot be used as an indicator. VIIRS NTL data can be implemented in a wide
global range of studies of shipping and for assessing the economic development of ports
and country parameters. Moreover, this method allows analyzing shipping, ports, and
countries parameters, for which we have obtained a significant correlation with NTL data,
for example, container port throughput. As a result, we conclude that NTL data can be
used as an indicator for a wide range of assessments of ports, countries, and the shipping
industry in general, and is applicable for ports and countries that do not share information,
as well as for tracking spatial and temporal trends.

Finally, the results should be useful to international maritime organizations, gov-
ernments, policy–makers, and stakeholders in formulating effective strategies for devel-
oping tools to assess shipping activities in the anchorage area and their use in overall
port operations.
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