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Abstract: Individual tree crown (ITC) delineation in temperate forests is challenging owing to the
presence of broadleaved species with overlapping crowns. Mixed coniferous/deciduous forests with
characteristics that differ with the type of tree thus require a flexible method of delineation. The
ITC delineation method based on the multi-criteria graph (MCG-Tree) addresses this problem in
temperate monospecific or mixed forests by combining geometric and spectral information. The
method was used to segment trees in three temperate forest sites with different characteristics (tree
types, species distribution, planted or natural forest). Compared with a state-of-the-art watershed
segmentation approach, our method increased delineation performance by up to 25%. Our results
showed that the main geometric criterion to improve delineation quality is related to the crown
radius (performance improvement around 8%). Coniferous/deciduous classification automatically
adapts the MCG-Tree criteria to the type of tree. Promising results are then obtained to improve
delineation performance for mixed forests.

Keywords: individual tree crown; delineation; LiDAR; passive optical image; temperate forest;
coniferous; deciduous

1. Introduction

The temperate forest biome accounts for about 9% of emerged land. It is the second
biggest forest biome after boreal forest and is currently increasing due to afforestation [1].
These forests represent an important resource for forestry and contribute greatly to carbon
stocks [2,3]. In southwestern France, temperate forests cover more than 30% of the land
with a majority of broadleaves species (including oak and beech) and some coniferous
species (including pine, fir and spruce) [4]. Monitoring these forests is crucial to evaluate
tree resources and to manage the resources for biodiversity preservation. Monitoring
requires access to specific parameters that characterize their status, i.e., essential biodiversity
variables [5,6]. Some can be obtained by field measurements, including tree dendrometric
indicators, such as the diameter at breast height, height and crown diameter or biodiversity,
e.g., species population classes, but are only available for limited areas [7]. One way to
overcome this limitation is remote sensing, which makes it possible to characterize forest
ecosystems over larger areas [8,9].

A preliminary step to estimate specific ecological indicators at the tree scale (e.g.,
species identification) [10,11] is crown delineation. In remote sensing, tree crown delin-
eation consists of segmenting forest cover into individual tree crowns (ITCs) based on
remote-sensed data [12]. Segmentation is of direct interest for forestry management, to
enable them to locate each ITC and derive certain individual stand parameters (e.g., tree
density) [13].
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Tree crown delineation is often achieved using light detection and ranging (LiDAR)
data that provide information on the vegetation’s vertical structure and on the ground
topography [14]. Methods used for delineating tree crowns can be classified into two main
categories according to the dimension of the processed data: 3D approaches based on an
entire three-dimensional point cloud, and 2D approaches based on the canopy height model
(CHM) derived from a point cloud [15–18]. Standard 3D approaches are based on K-means
clustering [19], spatial clustering such as DBSCAN [20] or a voxel approach [21]. However,
recent works showed that standard image processing methods like mean shift [22–24] or
region growing [25] adapted to the point cloud formats produce good results. Xiao et al.
correctly delineated 87.5% of the tree crowns in a mixed forest using a mean shift method
adapted to point clouds with a kernel shape adaptable to tree crowns [22]. The CHM raster
is computed by subtracting a digital terrain model (DTM) from a digital surface model
(DSM). Image-processing methods like watershed [26–28] and region growing [26,29] are
often used to implement CHM-based approaches.

The 3D approaches outperform raster-based methods for coniferous forests [18,30].
In the case of temperate mixed forest, Hastings et al. compared raster-based methods
(watershed and region growing) with a 3D point cloud-based region-growing approach.
Both methods performed similarly, especially for broadleaf species, where they achieved an
overall accuracy of 46% with a simple raster-based watershed and point cloud-based region
growing [18]. Generally, the performance of 3D-based delineation methods decreases with
a decrease in LiDAR point density [31]. Other studies reported that raster-based methods
produce more over-segmentation than point cloud-based methods, the latter having a
tendency to under-segment the canopy cover [17,30,32].

A CHM raster is often operated and could be used instead of 3D point clouds in the
case of low-point-density LiDAR data. Barnes et al. compared watershed and region-
growing methods applied to a CHM raster acquired over a mixed forest and obtained
better results with the watershed approach (92% correctly segmented tree crowns with the
region-growing method compared to 70% with the watershed method) [26]. Watershed
is a commonly used method for ITC delineation. It considers the CHM raster as a topo-
graphic surface and identifies a watershed starting from local maxima seed points [33].
Some studies suggest improving watershed segmentation by filtering the CHM before
processing [26,27] or by correcting segments after watershed application [26,31,34]. An-
other possible way to improve watershed segmentation is to use graphs [31]. The graph
approach has the advantage of facilitating comparison between a segment and its neigh-
bors by assessing and comparing specific parameters related to tree crowns [34]. The
tree crown parameters can be computed using LiDAR data (structural information) or
multispectral/hyperspectral data (spectral information). Recent studies underlined the
advantage of combining structural and spectral information to improve delineation perfor-
mance [16,18,35]. Some authors demonstrated that segmentation algorithms, like region
growing or mean shift, make it possible to delineate individual tree crowns using spectral
data (specific hyperspectral bands or red green blue—RGB images) [35–37]. In the case
of temperate forest with notable species diversity, spectral information enhances edge
detection between neighboring crowns belonging to different species [36]. Lee et al. used
hyperspectral information combined with LiDAR 3D point clouds in a graph-based ap-
proach to delineate ITC [31]. Some improvement in delineation performance was obtained
using spectral information, especially for mixed forests. However, the method proposed
in the Lee et al. study is unable to correct for over-segmentation, in particular, for large
tree crowns. In the proposed approach, incorporating spectral information did not make
it possible to reverse cases of over-segmentation, even if segments corresponding to the
same crown had a similar spectral signature. In the present work, we investigated the
complementarity of spectral and geometric information for ITC delineation with the aim of
limiting over-segmentation.

Most published studies only apply segmentation to a single forest site. Zhen et al.
reviewed 212 papers related to ITC delineation and reported that only 16.4% of these
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works applied their method to more than one type of forest [16]. Temperate forests are
heterogeneous and contain stands of broadleaf species, stands with mixed species (conifer-
ous/broadleaf) and mono-species stands. The distance between trunks differs considerably
as does crown size depending on whether the forest is planted or natural. Planted forests
contain areas with closely spaced trees and even-aged stands. In a natural forest, trees
are generally not the same age and several species are mixed. The adaptability of the
method of delineating different types of trees and of forests is a key to correctly delineating
tree crowns [16,18]. Coniferous species are characterized by a regular conical form and
clearly defined treetops. This facilitates delineation and many studies have obtained ex-
cellent results for coniferous trees (more than 90% accuracy for mono-species coniferous
forests) [18,25,38]. Broadleaf forests are characterized by larger and more irregular tree
crowns with marked overlapping of the crowns of neighboring trees. Segmentation of
these species is thus often less accurate than for the coniferous species [18,21]. The case
of mixed forests is challenging because the method of delineation has to be adapted to a
variety of geometric tree characteristics.

In the proposed study, we present a generic tree crown delineation approach com-
bining geometric and spectral information that can be applied regardless of the site of the
temperate forest. The classical watershed segmentation applied to CHM [16,18] is both the
first step of our proposed approach and is used as the reference method for the purpose
of comparison. In the second step, our method uses a graph-based approach to improve
the performance of the initial watershed segmentation using several adaptive geometric
and spectral criteria to (1) correct over-segmentation and (2) adapt the delineation to the
type of tree. Performance analyses related to mono-species and mixed-species cases are
led owing to the application on three forest sites of different characteristics. The results are
compared to those obtained with the reference method. The main objective of the study is
to propose a new approach to correct over-segmentation of watershed ITC segmentation
and to evaluate the applicability of the method on various temperate forest sites.

In Section 2, we describe the forest sites, input data and the training set before detailing
our approach and the performance assessment principle. In Section 3, we explain how we
calibrated the method on a small site before assessing its performance at three sites. In
Section 4, we discuss the results we obtained, and in Section 5, we present our conclusions.

2. Materials and Method
2.1. Study Sites

Three sites located in southwestern France with different species diversity were se-
lected for this study (Figure 1). The first site is the Suc-et-Sentenac national forest surround-
ing the Bernadouze peat bog, part of the “Haut-Vicdessos” Human-Nature Observatory
located in Ariège (French Pyrenees), supported by the French CNRS and the LabEx DRI-
IHM [39]. This is a long-term study site where hydrological, climatological, botanical,
archeological, remotely sensed surveys are monitored regularly. This natural forest is
mainly composed of beech with some conifers. The site covers about 23 ha and the mean
altitude is around 1500 m asl.

The second site is the Fabas forest located in the “Vallées et Coteaux de Gascogne”
(Haute-Garonne, France), belonging to the ZA PYGAR long-term socio-ecological research
site (LTSER) [40]. It covers about 550 ha of hilly terrain with an average altitude of 371 m
asl. This forest was extensively reforested between 1968 and 1975. The majority of trees
are coniferous species, including Douglas fir, Corsican pine, maritime pine, black pine
and silver fir. It only contains marginal numbers of broadleaf species, mainly oak but also
locust. Over the years, this site has become very heterogeneous with reserve oak trees in
conifer plantations.

The third site is the forest of La Massane National Nature Reserve [41], located in the
eastern part of the Albères massif (Pyrénées-Orientales, France). The forest extends over
336 ha between 600 and 1150 m asl. Considered as one of the 40 last old-growth forests in
the Mediterranean basin, this forest was recently classified as a UNESCO World Heritage
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site. It is a biodiversity hotspot with 6467 species of flora and fauna including 23 tree
species. The main tree species, i.e., represented by more than 10 trees per hectare, are beech
and pubescent oak. Some maples, alders, black pines, cherry woods, holm oaks and white
birch are scattered across the site.

Figure 1. Locations of the study sites (red dots) in southwestern France (IGN map: France Raster®,
RGB representations: BD ORTHO® [42] 50 cm/10 cm). Coordinates in UTM (zone 31N). (a) Fabas
forest. (b) Bernadouze forest. (c) La Massane forest.

2.2. Data Acquisition and Preprocessing

The LiDAR data were acquired over the Bernadouze forest on 5 September 2014, at
11.15 a.m. UT (Universal Time), at 3245 m above sea level under scattered cloud condi-
tions, using an Optech 3100EA sensor (wavelength: 1064 nm, spot diameter: 0.8 m, point
density: 3 pts/m2). The data were processed by the French National Mapping Agency
IGN and the French Aerospace Lab (ONERA) using TerraSolid software (@TerraSolid Ltd.,
02600 Espoo, Finland) and the open-access SPDLib library to generate a CHM with 1 m
spatial resolution [43,44]. On 12 September 2014, an airborne hyperspectral image was
acquired at the same flying height and the same sky conditions as the LiDAR data, using
a VNIR-1600 HySpex sensor (Norsk Elektro Optikk AS, Lørenskog, Norway) with 1 m
ground spatial resolution and 3.6 nm spectral resolution in the VNIR (visible near-infrared
spectral range [400:1000] nm) domain (160 spectral bands) (Table 1). The surface reflectance
image was retrieved from the georeferenced radiance image using the Cochise tool [45].
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Table 1. Image dataset description per site.

Site Spectral Image 1 CHM 2 Forest Type 3

Bernadouze HS 4-VNIR-1 m 1 m Mono-species (beech)

Fabas HS 4-VNIR-1 m 1 m Mixed-species (five major species, two
types: deciduous and coniferous)

La Massane RGB-Visible-0.1 m 0.5 m Mixed-species (23 species, but the majority
beech, one type: deciduous)

1 (Type-spectral range-spatial resolution), 2 Spatial resolution, 3 Mono- or mixed-species, 4 HS = Hyperspectral.

For the Fabas forest, a LiDAR point cloud was acquired in May 2016 with a Riegl
LMS Q680i during the MUESLI project (MUltiscale mapping of Ecosystem Services by very
high spatial resolution hyperspectral and LiDAR remote-sensing Imagery, funded by the
University of Toulouse [46]). The flying height of the LiDAR acquisition was 600 m above
the ground and the point density was about 4 points/m2. The point coordinates were
computed using RiAnalyze and RiWorld (Riegl) software. DSMs (digital surface models)
and DTMs (digital terrain models) were generated from this point cloud using TerraSolid
software. The difference between the DSM and the DTM provided the CHM in raster
format with a 1 m spatial resolution. Airborne hyperspectral images were acquired over the
Fabas forest on 15 September 2015 at 8:07 UT with a HySpex VNIR-1600 camera system. The
flying height was approximately 1287 m above this site under clear sky conditions. After
geometric and atmospheric corrections, the images obtained represented top-of-canopy
spectral reflectances with a spatial resolution of 1 m in the VNIR domain (Table 1).

The LiDAR dataset was acquired over La Massane forest site on 19 May 2016 with a
Riegl LMS Q680i 600 m above the ground, with an averaged point density of 56 points/m2.
After preprocessing, the CHM was generated with 50 cm spatial resolution. The spectral
data used for this forest site were ORTHO HR® (high-resolution orthophotography), pro-
vided by the IGN, composed of aerial RGB images with a 10 cm spatial resolution, acquired
on 19 April 2016 (Table 1).

2.3. Training and Testing Datasets

A reference dataset was built for each site (Table 2) by photointerpretation. Crowns
were manually segmented using CHM and orthophotography with a high spatial resolution
to be sure the geometrical information was accurate. Crown locations were referenced by
computing the centroid of each crown segment. The reference crowns were distributed
over each study area, with different characteristics related to their location in the forest (in
the heart and/or at the edge of the forest), tree geometry (crown size and shape), tree type
(coniferous/broadleaf, mixed/mono-species) and observation conditions (shaded surface)
(Table 2). The reference dataset was built respecting a balance between the different classes
(especially coniferous/broadleaf species) and covering the entire forest sites homogeneously.
The reference database was randomly divided into two parts: the training set used to
optimize input parameters was composed of 50% of the polygons and the validation set
used to assess performance included the remaining 50%. Ten random splits were performed
to ensure robust results.

Figure 2 presents the structural characteristics of the crowns at the three forest sites,
estimated using the reference dataset. The maximum height corresponds to the maximum
value of the CHM within a tree crown. The second characteristic is related to the difference
between the maximum and minimum values of the CHM within a tree crown. The third
characteristic corresponds to the tree crown radius. Each site has specific crown characteristics:

• The maximum heights in La Massane forest are relatively shorter than at the two
other sites,

• Two modes were identified in the radius histogram for Fabas forest, corresponding to
coniferous and broadleaf species.
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Table 2. Description of the reference dataset per site.

Study Area Tree Crown
Number

Mean Crown
Area (m2) Description Data Used for

Photo-Interpretation

Bernadouze 96 73 Different locations in the forest and
different crown sizes

CHM (1 m)
BD ORTHO® (0.5 m)

Fabas
(entire site) 449 75

Tree types (coniferous/broadleaf) and
species spatial distribution

(mixed/monospecific)

CHM (1 m)
BD ORTHO® (0.5 m)

Fabas
(test area) 200 58

Tree types (coniferous/broadleaf) and
species spatial distribution

(mixed/monospecific)

CHM (1 m)
BD ORTHO® (0.5 m)

La Massane 200 60 Tree species, different locations and crown
sizes

CHM (0.5 m)
BD ORTHO® (0.1 m)

Figure 2. Histograms of the structural characteristics of the tree crowns (maximum height, difference
between minimum and maximum heights, tree crown radius) for each forest site. These characteristics
were calculated using the reference dataset.

These characteristic differences highlight the need to develop an adaptive method.
The Bernadouze dataset was used to represent different tree locations in a mono-

species forest; it includes 59 tree crowns on the forest edge and 37 crowns in the heart of the
forest. These two tree locations explain the two modes identified in the maximum height
histogram in Figure 2. Trees at the forest edge have a lower height than trees in the heart of
the forest.

The Fabas dataset includes 233 broadleaf trees and 216 pines. Of the broadleaf trees,
170 are located in mixed stands (pine and broadleaf trees). Of the pines, 184 are located
in mixed stands. The shadow represents 39% of the pixels in the crowns due to the early
acquisition time and relief slopes. The Fabas forest was divided into three areas to reduce
the data volume and processing time. Each area was characterized by a specific tree
distribution (Table 3). A small extract of Fabas forest, called the test area, was used to
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calibrate the method of delineation. The area covered 11.6 ha and contained the same
proportions of coniferous and broadleaf species as the whole site (Table 3).

Table 3. Fabas forest: Tree-type characteristics (numbers of reference tree crowns). N/A, not acquired
at the site concerned.

Coniferous
(Mono-Type

Area)

Coniferous
(Mixed Area)

Broadleaf
(Mono-Type

Area)

Broadleaf
(Mixed Area)

Bernadouze
(23 ha) N/A N/A 98 N/A

La Massane
(52 ha) N/A N/A 200 N/A

Fabas
Area 1 (155 ha) 32 34 31 35
Area 2 (160 ha) N/A 41 32 44
Area 3 (235 ha) N/A 109 N/A 91

Total 32 184 63 170

Test area
(11.6 ha) 65 80 30 25

Figure 3 presents the structural characteristics of the crowns of broadleaf and conifer-
ous species in the Fabas test area. The main differences in radius (about 3 m) and height
(about 5 m) between the two types of trees underline the need to adapt the method of
delineation to the type of tree.

Figure 3. Histograms for the Fabas forest test area: structural characteristics of coniferous and
broadleaf tree crowns (maximum height, difference between minimum and maximum heights, radius
of the tree crown). These characteristics were estimated using the reference dataset.

The La Massane dataset comprised 200 crowns of broadleaf species. This dataset
was completed by a ground inventory including species identification and DBH provided
by ecologists.
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2.4. MCG-Tree Method

The MCG-Tree (multi-criteria graph) method provides a tree crown delineation map.
Figure 4 presents the four main steps of the MCG-Tree method. The inputs are CHM and
optical images (hyper- or multi-spectral images, ortho-photography). The method is based
on an initial watershed segmentation of the CHM.

Figure 4. MCG-Tree method principle.

This initial segmentation map is transformed into a graph where a segment corre-
sponds to a node and links to its neighbors [33]. This permits grouping segments belonging
to the same crown [33]. This step is achieved by applying spectral and geometric criteria,
followed by thresholding.

Spectral information is introduced to complete the geometric criteria at different levels
of the MCG-Tree method:

• During preprocessing, to mask the shadowed pixels;
• During graph processing, to merge segments belonging to the same tree;
• During post-processing, to classify the tree type to adapt the geometric criteria.

The spectral parameters of these three levels are detailed in the following paragraphs.
When optical images are not available, the MCG-Tree method applies geometric criteria to
produce a graph and the shadowed pixels are not masked.

The MCG-Tree method is implemented with the scipy [47], scikit-learn [48] and scikit-
image [49] python packages.

2.4.1. Preprocessing

A global mask is generated by combining a vegetation mask and a shadow mask.
The vegetation mask is obtained by thresholding each pixel of the CHM to select pixels
corresponding to the tree layer. In this work, the height threshold was set to 2 m to mask
pixels corresponding to bare soil and low-growing plants. The shadow mask was computed
from the hyper or multi-spectral images. Considering blue, green, red and near-infrared
(NIR) spectral bands (respectively 480, 550, 670 and 780 nm), the following formulation
was applied to produce a composite image [50]:

1/6(2blue + green + red + 2NIR)
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A threshold in reflectance was applied to the composite image. The value of this
threshold is evaluated in Section 3.1.1. When no hyper or multi-spectral image is available,
the global mask represents only the vegetation mask.

A median filter was applied to the CHM to reduce the noise while maintaining sharp
edges. The optimal size of the filter is defined in Section 3.1.1.

A combination of three spectral bands to enhance the spectral information was selected
to compute the spectral characteristics and define the spectral criteria to cut the graph
(Figure 4). To reduce the processing time, only three spectral bands were selected, following
the study by Lee et al. [31]. Two spectral band combinations were tested and compared:

• RGB bands at 480, 550 and 670 nm, a standard combination that is often accessible by
passive optical remote sensing.

• A combination of the first components of principal component analysis (PCA) was
applied to the hyperspectral image [51]. This improves the interpretability by creating
uncorrelated features with maximized variance [52].

2.4.2. Initial Segmentation (Reference Map)

In the present study, the initial segmentation was obtained using the watershed
method applied to the CHM, using the local maxima as seed points [33]. This map was
used as the reference map to compare the ITC maps.

2.4.3. Graph Generation and Parameter Computation

A graph was produced to improve segmentation by merging segments belonging to
the same crown, using geometric and spectral criteria. The graph permitted the application
of criteria to each segment and comparison with neighbors [53]. The initial segmentation
map was converted into a graph where each segment corresponded to a node and was
connected to its neighbors by links.

The geometric characteristics related to the CHM are the maximum height value
and the location of the pixels of maximum height. The spectral characteristic is the mean
spectral value from RGB or PCA image bands. Each spectral or geometric characteristic is
computed at each node of the graph.

Several parameters are deduced from these characteristics at each link that connects
two nodes. In Table 4, the list of MCG-Tree parameters reports the different parameters we
used in the MCG-Tree method. They are defined so as to distinguish crown characteristics.
Then, for each link, the four following parameters are selected (Figure 5):

• Difference in height between the maximum heights of two adjacent nodes (∆hmax);
• Planar Euclidian distance between the maximum heights of two adjacent nodes (dhmax);
• Local variation in height corresponding to the difference in height between the max-

imum and minimum values on a transect connecting the maximum heights of two
adjacent nodes (∆hloc),

• Euclidian distance between mean spectral values of two adjacent segments (∆spec).

Table 4. List of MCG-Tree parameters.

Method Steps Parameters

Preprocessing Shadow mask threshold

Median filter size
Graph generation/Segment
clustering Difference in height between the maximum heights ∆hmax

Planar Euclidian distance between the maximum heights dhmax

Local height variation between the maximum heights ∆hloc

∆spec (on RGB image or three first components of ACP)
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Figure 5. MCG-Tree parameters. Description of the geometric parameters ∆hmax, dhmax and ∆hloc

(left) and the spectral parameter ∆spec (right). The hatched part on the right graph represents the
difference between the two mean RGB spectra (segment 1 in blue and segment 2 in red) evaluated
using the ∆spec parameter (the same principle as when using three first PCA components).

2.4.4. Segment Clustering

The previous parameters were used to merge segments corresponding to the same
tree crown based on a voting approach. Each parameter (∆hmax, dhmax, ∆spec and ∆hloc)
was independently compared to a threshold. If the parameter value was higher than the
threshold, the vote is positive; otherwise, it was negative. If the majority of votes were
negative, the link between the two nodes being compared was cut; otherwise, the link
was conserved. This operation was applied to every link of the graph. Once this process
was complete, nodes that remained linked were merged, giving the final delineation
map. Figure 6 illustrates the different graph-cut and segment-merging steps of the MCG-
Tree method.

Figure 6. Diagram showing graph cut and segment merging. The initial graph corresponds to the
initial watershed segmentation. First, a graph cut is applied according to MCG-Tree criteria. Nodes
already linked by links are finally merged (colored dots) and are considered to correspond to the
same crown.

The thresholds of all the parameters were automatically trained using the characteris-
tics of the forest under study, to obtain the optimal parameter values. For each parameter,
the value interval was set according to forest characteristics (Section 2.3):

• Variations in tree height in the forest canopy were used to set the ∆hmax and ∆hloc
intervals;

• The overall shape of the tree crown defined the dhmax interval;
• Spectral variation among tree types was used to set the ∆spec interval.

All the combinations of the parameter values set in these ranges were then assessed
on a training set. The optimal combination of values defined the thresholds used to process
the whole forest site.
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2.4.5. Automatic Adaptation of the MCG-Tree Method According to the Type of Tree

At this point, the MCG-Tree method did not account for differences in the charac-
teristics between coniferous and broadleaf species in one forest site and a single set of
parameters was applied to the entire site. Consequently, automatic adaptation of the MCG-
Tree method according to the tree type was applied if a hyper or multi-spectral image
was available. In this study, we only applied this adaptation to Fabas forest, which is a
mixed forest.

A delineation map was produced for each tree type (coniferous, broadleaf). The
geometric parameter thresholds were then set according to the tree type (Section 3.1.2). To
this end, a preliminary step was required to distinguish coniferous from deciduous trees
using passive imagery. This mask was incorporated in the method to automatically merge
the delineation maps according to the tree type (Figure 7).

Figure 7. Combination of the delineation maps according to tree type. Green and red segments
correspond to delineation with parameters optimized for tree types 1 and 2, respectively. The
classification map makes it possible to choose the segments to keep for the merged delineation map.

The tree types were classified independently of the delineation using Random Forest
(RF), a widely used machine-learning algorithm [54]. We used the RF algorithm in the
scikit-learn python package [48]. After classification, cascaded individual median and
erosion/dilatation filters were applied to the resulting map to obtain homogeneous patches
of classes [55]. Each segment of the delineation maps was superposed on the classification
map. If a segment of the delineation map adapted to a certain tree type contained a majority
of pixels classified as this tree type, the segment was kept on the merged delineation map.

2.5. Performance Assessment

The performance was assessed by comparing the resulting tree crown and the reference
ITC [18,23,26]. The accuracy of delineation was expressed in terms of one of the following
categories [18] (Figure 8):

• Matched—The reference ITC recovered more than 50% of a segment and this segment
recovered more than 50% of the validation ITC;

• Missed—The reference ITC did not recover more than 50% of any segment;
• Over-segmented—The reference ITC recovered more than 50% of several segments;
• Under-segmented—A segment recovered more than 50% of the reference ITC but the

reference ITC did not recover more than 50% of the segment.

The number of correctly delineated crowns required to assess the global performance
ratio was the number of matched cases normalized by the total number of reference ITCs.
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Figure 8. Evaluation approach based on crown recovery, (a) Matched, (b) Under-segmented, (c) Over-
segmented, (d) Missed.

3. Results

This section is divided into two parts. The first section concerns the calibration step to
produce the optimal parameter sets. The second section presents the multi-site application
of the approach together with its performance.

3.1. Calibration Step

All the parameters listed in Table 4 have an impact on delineation results. In this
section, these parameters are optimized on the Fabas test area. A sensitivity analysis of
those key parameters is reported. The input parameters differ depending on the tree type.
Their sensitivity to the tree type and their influence on the overall delineation performance
are analyzed before we present an automatic adaptation of the MCG-Tree method to the
tree type.

3.1.1. Optimal Input Parameter Values
Shadow Mask Threshold

The impact of the shadow mask on delineation performance is illustrated in Figure 9.
The other MCG-Tree parameters are set at optimal values estimated empirically (median
filter window = 3 × 3 pixels, dhmax = 3.5 m and ∆hloc = 0.6 m). It is important to note that
these parameters are adapted to an application regardless of the tree type.

Figure 9. Variation of delineation performance according to the shadow mask threshold and the tree type.
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The shadow threshold impacts the delineation performance of the reference and MCG-
Tree methods, especially in the case of coniferous trees. The selected threshold is set to 0.035,
which produces the best performance for coniferous species (delineation performance: 0.78)
and for all trees whatever the type (performance: 0.81). Figure 9 also shows that the
MCG-Tree method mainly improves the performance for broadleaf species compared to
coniferous ones. The fact that broadleaf trees have bigger crowns than coniferous species
results in more over-segmented cases in the watershed segmentation. The MCG-Tree, which
corrects over-segmented cases, thus has more impact on the crowns of broadleaf trees.

CHM Median Filter Size

Figure 10 shows the assessment of delineation performance for four window sizes
of the median filter (2 × 2, 3 × 3, 4 × 4 and 5 × 5), with the other parameters set to the
following values: 0.035 for the shadow mask threshold, 3.5 m for dhmax and 0.6 m for ∆hloc.

Figure 10. Difference in delineation performances according to the median filter size and the tree type.

With the reference method, the optimal filter size depends on the tree type. The best
performance is obtained:

• For the coniferous type, with a 2 × 2 window size;
• For the broadleaf type, with a 4 × 4 window size;
• For all trees, with a 3 × 3 window size.

With the MCG-Tree method, a 3 × 3 window size produces the best results in all
cases. This method has the advantage of fixing the median filter size to a single value in
comparison to the reference method. The 2 × 2 window size is useful because it leads
to marked over-segmentation on the initial delineation map, perfectly suited to areas
with narrowed trees in planted coniferous forests. However, Figure 10 does not show the
improved performance for coniferous species with the MCG-Tree method even with a 2 × 2
median filter size because the parameter that is set was chosen to be suitable for global
application. This filter size will be further investigated in monospecific coniferous stands
with a suitable set of parameters (dhmax, ∆hloc). The 3 × 3 window size of the median filter
is used for application to the whole forest site.

Single-Criterion Analysis

The influence of each MCG-Tree criterion on delineation performance is evaluated.
This enables identification of the optimal combination of criteria for the following applica-
tion to all of the forest sites.
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The shadow mask threshold is set to 0.035 and the median filter window size 3 × 3.
These parameters give a delineation performance of 0.71 using the watershed reference method.

The threshold value for each geometric and spectral parameter varies (Section 2.4.3)
and the delineation performance of the MCG-Tree method is assessed for each thresh-
old. Figure 11 shows the impact of each geometric or spectral criterion threshold on the
delineation performance.

Figure 11. Different delineation performance of each individual MCG-Tree criterion in the Fabas
forest test area.

Up to a specific value, the dhmax and ∆hloc parameter thresholds improve the delin-
eation performance. The best results are obtained with the following thresholds: dhmax
3.5 m (performance 0.76) and ∆hloc 1.1 m (performance 0.79). Analyzed individually, the
∆spec and ∆hmax parameters reduce the delineation performance. ∆spec is estimated
over RGB bands or the three first PCA components. As shown in Figure 11, the drop in
performance caused by ∆spec is smaller with PCA than with RGB band selection. Owing
to their specific impact on performance, dhmax and ∆hloc are only kept for the following
sensitivity analysis.

Multiple-Criterion Analysis (Vote Assessment)

Application of the MCG-Tree method criteria is based on a voting approach that
combines criteria. The dhmax and ∆hloc criteria were analyzed separately in the previous
section. Here, the thresholds of the criteria dhmax and ∆hloc are varied simultaneously to
identify the optimal value pair that produces the best-quality delineation. The ranges of
variation of the dhmax and ∆hloc thresholds are 0–7 and 0–2, respectively. With a sampling
interval of 0.5 for dhmax and 0.1 for ∆hloc, the best performance of 0.81 is obtained with
the following values: dhmax threshold set to 3.5 m and ∆hloc threshold equal to 0.6 m
(Figure 10).
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3.1.2. Calibration According to Tree Type
Range of Input Parameters According to Tree Type

The tuning of MCG-Tree geometric parameters according to the tree type is analyzed
by simultaneously evaluating dhmax and ∆hloc. The ranges of variation of the dhmax and
∆hloc thresholds are the same as in Section 3.1.1. The number of over-segmented and
under-segmented cases is analyzed for each type. The optimal median filter size is 2 × 2 for
coniferous species and 3 × 3 for broadleaf species.

Table 5 lists the combinations of geometric criteria selected for each tree type. For each
parameter, the performance of all the values included in the initial range is equivalent. The
number of cases of over-segmentation is low for both tree types. There are more cases of
under-segmentation for coniferous species, even though the median filter window size is
optimal for this type, due to the small crown radius and the proximity of neighboring trees.

Table 5. Best delineation performance for coniferous and broadleaf trees obtained in the Fabas forest
test area.

Median
Filter Size dhmax ∆hloc P 1 Matched Missed O-S 2 U-S 3

Coniferous 2 × 2 [0.5–2] [0.1–
0.9] 0.80 116 0 0 29

Broadleaf 3 × 3 [3–5] [0.5–
1.1] 0.93 51 0 2 2

1 Performance, 2 Over-segmentation, 3 Under-segmentation.

The selected optimal values of the geometric parameters depend on the characteristics
of each tree type (Figure 3). The range of dhmax thresholds that produce the best results
for each tree type (Table 5) is linked to the tree crown radius in the test area (around 3 m
for coniferous and 5 m for broadleaf trees). Crowns of coniferous trees usually have a
smaller radius than the crowns of broadleaf trees. The best delineation performance is thus
obtained for the coniferous type with a lower dhmax threshold value (performance 0.80).
The dhmax values listed in Table 5 are slightly lower than the mean crown radius (Figure 3).
In fact, the distance between two segments located in an over-segmented tree crown is
slightly shorter than this crown radius.

Criterion ∆hloc is linked to the difference between the maximum and minimum heights
of the tree crowns (Figure 3). This characteristic depends only to a slight extent on the tree
type, which is why the ∆hloc intervals giving the best results for each tree type are similar
(around 0.7 m).

Automatic Adaptation of MCG-Tree Method

The automatically adaptable version of the MCG-Tree method is applied to distin-
guish coniferous from deciduous trees. To provide a complete tree type (coniferous and
deciduous) cartography, 50% of the ITCs delineated by photo-interpretation are used for
RF training and 50% to assess the accuracy.

A median filter (4 × 4 window) and a dilatation/erosion filter are applied to the
classification map to select homogeneous coniferous and broadleaf regions. The resulting
overall accuracy of the classification is 0.87. Different dilatation and erosion filters ranging
between 1 and 10 in size are tested. The best classification map is obtained with a size
5 dilatation filter followed by size 2 erosion.

The resulting classification map is then used as a mask to merge the two delineation
maps obtained for the coniferous and broadleaf types and results in a global delineation
performance of 0.83. The adaptation of MCG-Tree parameters according to the forest type
slightly improves the delineation performance with an increase of around 2% compared to
previous results (Figure 10, performance around 0.81).
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3.2. Performance of the MCG-Tree Method

Table 6 lists the results obtained for the three forest sites. The input parameter intervals
are set according to the calibration stage presented previously (Section 3.1.2). The MCG-
Tree method performance is compared to that of the reference method. The values or
intervals reported for each parameter in the table correspond to the optimal sets giving the
best delineation performance for each forest site.

Table 6. Best global delineation performance obtained for each forest site using the MCG-Tree method
and the reference method.

Median
Filter Size dhmax ∆hloc P Reference P MCG-Tree

Fabas
Area 1 3 × 3 [0.5–2.5] 1 0.76 0.82
Area 2 3 × 3 [0.5–3.5] [1.5–1.6] 0.61 0.75
Area 3 3 × 3 [0.5–2.5] 1.6 0.59 0.73

All 3 × 3 [0.5–2.5] [1.5–1.6] 0.65 0.76
Bernadouze

3 × 3 4.5 [0.7–1.3] 0.45 0.70
La Massane

3 × 3 3 1 0.61 0.72

Following the results in Section 3.1.1, the median filter size is set to 3 × 3 pixels
whatever the tree type. The ranges of variation in the parameters defined in Section 3.1.2
are evaluated.

The best performance is obtained for the Fabas forest test area, which contains more
coniferous trees and less crown overlap between trees. Whatever the forest site, the MCG-
Tree method improves the delineation performance compared to the classical watershed
method. The biggest improvement is achieved for Bernadouze forest (around 0.25 the
global performance). The least improvement was achieved for Fabas forest area 1 (0.057),
containing the largest area of monotype coniferous trees, leading to low over-segmentation
cases after watershed application. In this case, the MCG-Tree method only enables limited
improvement. Figure 12 shows examples of delineation results for the three forest sites. The
MCG-Tree method has more impact on the two broadleaf forests (Bernadouze and La Mas-
sane) because of the presence of more cases of watershed over-segmentation on broadleaf
tree crowns. Overall, the disparity (difference between best and worst performance) in
the delineation performance in all three forest sites is lower with the MCG-Tree method
(0.12) than with the reference method (0.31). Our method provides the most homogeneous
performance when applied to more than one site.

Figure 2 shows tree crown characteristics according to each forest site. The comparison
between these tree crown characteristics and MCG-tree method criterion thresholds (Table 6)
confirms that dhmax can be defined using the crown radius. The relationship between the
∆hloc threshold and the difference in maximum height versus minimum height is more
ambiguous. This characteristic was very similar at the three sites and explains why the
optimal ∆hloc threshold value is similar for each site. A ∆hloc threshold in the range of
1–1.6 m seems to be a good tradeoff regardless of the forest site concerned. To conclude, the
MCG-Tree method leads to an improvement of between 0.057 and 0.25 compared to the
reference method.
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Figure 12. Examples of ITC delineation maps obtained for the three forest sites superposed on CHM.
(A) Extract of delineation map obtained for Bernadouze forest. (B) Extract of delineation map obtained
for Fabas forest. (C) Extract of delineation map obtained for La Massane forest. (D) Example of correct
segmentation case (La Massane, broadleaf type). (E) Example of over-segmentation case uncorrected
by the MCG-Tree method (La Massane, broadleaf type). (F) Example of under-segmentation case
uncorrected by the MCG-Tree method (Fabas, coniferous type).

4. Discussion
4.1. Benefit of Spectral Information for Tree Crown Delineation

The spectral criterion (∆spec) has a negative impact on the correction of over-segmented
crowns. Lee et al. proposed a similar graph approach with spectral information from hy-
perspectral data processing and structural information extracted from LiDAR data. The
feature space of hyperspectral imagery was reduced using PCA to delineate tree crowns,
and adding spectral information with LiDAR data (six points per m2) reduced the per-
formance [31]. Although spectral signatures can identify edges between two crowns of
different species, segmentation errors are often detected between the same type of tree
(especially overlapping crowns between broadleaf trees). This explains the limited benefit
of spectral parameters when LiDAR-based delineation is added, especially in monospe-
cific forests with similar spectral signatures. It is also important to take into account the
registration error when different kinds of data are combined. In our case, the registration
error is lower than the pixel resolution, but in the future, it will be interesting to check the
robustness of the method to registration error by sensitivity analysis.

The shadow mask permits removing noise due to the shadow. This improves the
delineation performance by enhancing the information of interest used by the segmentation
method. The present study showed that shadow between tree crowns has a greater impact
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on delineation quality than spectral criteria. For this study, a simple shadow mask based
on intensity thresholding was implemented. An optimal shadow mask threshold was set
by taking the solar angle linked with time acquisition, spacing between trees, tree heights
and relief of the study site into account. These characteristics influence the extent of the
shadow area, which in turn, has a direct impact on delineation performance, for example,
by affecting the number of pixels taken into account for each crown. An automatic shadow-
thresholding calculation has been developed and can be adapted for application to forests,
provided that geometric and spectral data are correctly georeferenced [56]. The combined
use of spectral-based (histogram thresholding) and geometrical-based (ray tracing) methods
could enable very precise shadow detection.

4.2. Advantage of Geometric Information for Tree Crown Delineation

The watershed algorithm tends to over-segment large trees [31] but this behavior can
be controlled by two specific geometric criteria, dhmax and ∆hloc. These criteria are related
to tree crown structural characteristics that can be estimated in advance using local in-field
measurements or photo-interpretation, to adapt MCG-Tree thresholds to the forest site
under study, to enhance delineation performance. Estimating a mean crown radius makes
it possible to define an optimal dhmax threshold value. The definition of ∆hloc is more
complex, but in this study, the optimal interval threshold values obtained for the three sites
were similar (between 1 and 1.6 m).

Estimating parameter thresholds related to the crown characteristics is a promising
way to apply the method to other sites. However, this threshold estimation is based on prior
knowledge of the general characteristics of the forest and can be optimized. For example,
the sequential forward floating selection approach may provide the optimal combination
of criteria to distinguish distinct crown segments [57].

In this paper, the crown radius was used to define criteria, but complementary metrics
can also be used. For example, some authors compute tree crown characteristics from
LiDAR point clouds (point density, crown shape, intensity of points, leaf area index—LAI,
etc.) to enhance delineation [58,59]. The MCG-Tree method produced good results for the
three forest sites, using low-density point clouds derived into a CHM, but a density higher
than the one used in our study (Bernadouze and Fabas forest sites) is usually required to
effectively compute tree crown characteristics from a point cloud. The method proposed
by Strîmbu et al. used graph hierarchy as a criterion to evaluate whether two segments
belong to the same crown with a 30 points/m2 LiDAR density [58]. New criteria were then
calculated directly from a 3D point cloud based on tree structure detection or variation in
density. Some recent tree-detection studies based on 3D point clouds with different point
densities (from 10 to 200 points/m2) produced good results, especially for stem detection,
which can be a useful parameter for crown delineation [60,61]. These criteria based on high-
density point clouds could be integrated to improve delineation performance and to suit
other applications like standing dead-tree delineation [62] or the detection of understory
trees [34].

4.3. Automatic Adaptation in the Case of a Mixed Forest

In the case of mixed forest, the structural characteristics differ between coniferous and
broadleaf trees (Figure 3). MCG-Tree criteria need to be locally adaptable to obtain the best
results. In this study, supervised classification (RF method) was applied to discriminate
between coniferous and broadleaf trees, as we introduced into the delineation process. The
results showed a slight increase in global delineation performance in the Fabas forest test
area. However, the performance decreased for the entire site versus that obtained with a
single criterion. This result is due to the very mixed appearance of Fabas forest, where
some broadleaf trees are surrounded by a large number of coniferous trees, thus requiring
more precise mapping of the two types of trees. Classification combining the CHM texture
and hyperspectral data improved the initial classification closest to the edges of delineation
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segments as defined in the CHM. It also made it possible to increase the classification to
more than two classes.

The adaptability of MCG-Tree criteria also varies with the amount of over-segmentation.
Coniferous trees with a smaller crown radius than broadleaf crowns need a smaller segment
size. On the contrary, too many segments in a large broadleaf tree crown lead to over-
segmentation. One way to control the over-segmentation obtained by initial watershed
segmentation is to adapt the size of the CHM median filter window according to the tree
type. Our results show that a 2 × 2 median filter size is optimal for coniferous trees with
a 3-m crown radius and a 1-m CHM resolution. For broadleaf trees with a 5-m radius, a
3 × 3 median filter size produces the best results. Another way to adapt over-segmentation
would be to adapt the CHM spatial resolution, as some studies showed that the CHM reso-
lution influenced the delineation performance [26,63]. In the presented study, the CHM of
La Massane had a higher spatial resolution than the other sites. The higher pixel number in
a unique tree crown leads to more important intra-crown variation, which generates more
cases of over-segmentation (Figure 12). Identifying the optimal CHM resolution according
to tree crown size would make it possible to determine the data properties (LiDAR point
density, optical data resolution, etc.) best suited to each forest site.

4.4. MCG-Tree Adaptability to Multi-Sites

The results for the delineation of mixed and coniferous forests were generally better
than those for deciduous forests. The delineation of Fabas forest (mixed forest) was better
than that of Bernadouze forest (beech forest) and La Massane forest (multi-species broadleaf
dominant forest) using the MCG-Tree method. This result is in agreement with some studies
that compared results for delineation of different tree types [18,64,65]. However, in addition,
our method is able to adapt criteria based on crown characteristics related to the tree type,
thereby reducing the disparity between different forest applications.

High recovery between neighboring tree crowns is a real difficulty in distinguishing
broadleaf ITC. The use of point clouds with a high point density could make it possible to
link variations in the canopy to individual tree trunks, thereby improving broadleaf tree
delineation [59]. Application to forest sites with different characteristics is necessary to
evaluate the adaptation of the method [16,18]. Few authors applied their methods to more
than one forest site [16]. Lee et al. obtained mitigated results when working on coniferous-
or broadleaf-dominated forests [31]. Spectral and geometric variability between forest
sites due to the presence of different species and/or tree spatial distribution (mixing rate)
and/or the presence of shadows makes it difficult to rely on a single delineation method.
That is why in this study, we explored an adaptive approach based on crown characteristics
specific to the forest site under study. This approach now requires further study to develop
operational delineation methods.

5. Conclusions

The MCG-Tree method consists of a graph-based approach using multiple geometric
and spectral criteria to correct over-segmentation on an initial watershed delineation map,
used as a reference map to quantify performance. Our method was applied to three
temperate forest sites with different characteristics (mixed forest, mono-species broadleaf
forest and a mainly multi-species broadleaf forest) using CHM with different spatial
resolutions (0.5–1 m) and several optical data (hyperspectral and BD ORTHO® RGB). The
MCG-Tree method improved the overall performance in the three forest sites by up to 25%
compared to the reference watershed method.

Our method combines spectral and geometric criteria and is able to add new criteria if
required. Criteria evaluation showed that only two geometric criteria (dhmax and ∆hloc) are
needed to correct over-segmentation. One is directly related to the tree crown radius, and
the optimal corresponding threshold value can be defined before the method is applied
using tree crown information estimated for the study sites concerned. Shadow masks
deduced from optical images also influenced delineation performance.
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Tree crown characteristics of mixed forests containing both coniferous and broadleaf
species vary considerably. A preliminary step to classify the tree type was thus added to
automatically adapt MCG-Tree criteria to the tree type. Promising results were obtained
in a small area but further investigations of tree-type classification at larger scales are
required. Adapting the delineation to the tree type involves controlling over-segmentation,
for example, by modifying the CHM median filter size. For a 1-m spatial resolution of
CHM, a 2 × 2 median filter size is optimal for coniferous tree crowns with a radius of 3 m,
and a 3 × 3 median filter size is optimal for broadleaf tree crowns with a radius of 5 m.

In this study, only the raster CHM was used to compute geometric criteria characteriz-
ing tree crowns. Using new criteria based on the tree structure derived from high-density
(>10 points/m2) LiDAR point clouds could make it possible to detect more complicated
structures like understory trees or dead standing trees.

Delineation tree crown maps can be used for forest management or tree resource
evaluation. In future work, delineation will be the first step before species classification at
the tree scale using airborne hyperspectral data. Object-based classification using delineated
tree crowns as the input will be compared to a pixel-based approach.
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