
remote sensing  

Article

Improved U-Net Remote Sensing Classification Algorithm
Based on Multi-Feature Fusion Perception

Chuan Yan 1, Xiangsuo Fan 1,*, Jinlong Fan 2 and Nayi Wang 1

����������
�������

Citation: Yan, C.; Fan, X.; Fan, J.;

Wang, N. Improved U-Net Remote

Sensing Classification Algorithm

Based on Multi-Feature Fusion

Perception. Remote Sens. 2022, 14,

1118. https://doi.org/10.3390/

rs14051118

Academic Editors: Siyuan Wang,

Qianqian Zhang, Hao Jiang, Cong Ou

and Yu Feng

Received: 9 February 2022

Accepted: 22 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical, Electronic and Computer Science, Guangxi University of Science and Technology,
Liuzhou 545006, China; 221055221@stdmail.gxust.edu.cn (C.Y.); 221055204@stdmail.gxust.edu.cn (N.W.)

2 National Satellite Meteorological Center of China Meteorological Administratio, Beijing 100089, China;
fanjl@cma.gov.cn

* Correspondence: 100002085@gxust.edu.cn

Abstract: The selection and representation of remote sensing image classification features play crucial
roles in image classification accuracy. To effectively improve the classification accuracy of features,
an improved U-Net network framework based on multi-feature fusion perception is proposed in
this paper. This framework adds the channel attention module (CAM-UNet) to the original U-
Net framework and cascades the shallow features with the deep semantic features, replaces the
classification layer in the original U-Net network with a support vector machine, and finally uses
the majority voting game theory algorithm to fuse the multifeature classification results and obtain
the final classification results. This study used the forest distribution in Xingbin District, Laibin
City, Guangxi Zhuang Autonomous Region as the research object, which is based on Landsat 8
multispectral remote sensing images, and, by combining spectral features, spatial features, and
advanced semantic features, overcame the influence of the reduction in spatial resolution that occurs
with the deepening of the network on the classification results. The experimental results showed that
the improved algorithm can improve classification accuracy. Before the improvement, the overall
segmentation accuracy and segmentation accuracy of the forestland increased from 90.50% to 92.82%
and from 95.66% to 97.16%, respectively. The forest cover results obtained by the algorithm proposed
in this paper can be used as input data for regional ecological models, which is conducive to the
development of accurate and real-time vegetation growth change models.

Keywords: multifeature fusion; U-Net; channel attention; remote sensing image classification;
majority voting game

1. Introduction

Remote sensing technology plays an important role in the fields of crop monitoring,
geological investigation, and precision agriculture [1–3]. Carbon balance has always
been a topic of concern worldwide, and forest resources largely contribute to the global
carbon balance, so it is necessary to accurately monitor the dynamic changes of forest
resources [4]. However, the use of remote sensing images to identify different features with
high accuracy, and to classify and count various kinds of feature information, is a popular
and difficult research point in remote sensing information extraction. The essence of the
image-specific target segmentation challenge in remote sensing is to construct a target
feature space and its mapping model. The current mainstream remote sensing classification
methods mainly include traditional machine learning methods and semantic segmentation
methods based on deep learning, and the corresponding algorithms will be introduced in
the following section.

Related Work

Traditional remote sensing image classification methods, such as the k-means cluster-
ing method [5], watershed algorithm [6], and active contour model [7], manually extract
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feature values corresponding to targets in a remote sensing image space to form a feature
space and construct a mapping model from the feature space to the target space. How-
ever, the mapping model from the feature space to the target space is a high-dimensional,
strongly nonlinear relationship, which is difficult to implement using manual methods.
Thus, some scholars have proposed learning-based remote sensing image segmentation
methods to establish mapping models through sample learning. Dong et al. [8] introduced
a number of single complementary features combined with back propagation (BP) neural
networks to improve the accuracy of single tree detection. Sun et al. [9] introduced a
Mahalanobis Distance kernel to improve the classification performance of support vector
machines (SVMs) for remote sensing images. Li et al. [10] combined spectral features,
vegetation indices, texture features, and topography to establish a random forest model to
identify the forest types in the HeiLongJiang Cap Mountains. The aforementioned early
remote sensing image classification methods mainly use the low-level features of images for
model training. However, there is an insufficient utilization of feature information, which
needs to be improved for feature refinement classification, and it is difficult to distinguish
complex feature types.

The semantic segmentation method based on deep learning is applied to remote
sensing image classification and shows good performance. Deep convolutional neural
networks (CNNs) can automatically extract different classes of features in remote sensing
images [11–15] with good accuracy. Kussual et al. [16] proposed a multi-level deep learn-
ing method for land cover and crop type classification using multitemporal multisource
satellite images to classify 11 classes of crops, such as wheat, corn, and sunflower. Alshe-
hhi et al. [17] combined low-level features with high-level semantic features extracted by
CNNs to classify roads and buildings in cities. Csillik et al. [18] used CNNs to identify
citrus trees from UAV images. Nowadays, deep neural networks are highly capable of
image feature extraction, and extreme learning machines (ELMs) and SVMs, which are
traditional linear classifiers, have strong capabilities in classification. Therefore, the use of
ELMs or SVMs in classification has been proposed to improve accuracy after the feature
extraction of CNNs is in effect. Wang et al. [19] proposed a CNN and ELM fusion method,
where a CNN is used for feature extraction and an ELM is used as a classifier. Cao et al. [20]
designed a combined CNN and SVM method to identify ships. Meng et al. [21] used a
CNN to classify remote sensing images of wetlands and compared it with methods based
on spectral SVM and texture and spectral SVM. Sun et al. [22] designed a seven-layer
CNN structure, trained the samples with the CNN, and then used an SVM to classify
remote sensing images and tested them with volcanic ash clouds. The aforementioned
studies used CNNs for feature extraction and used ELM and SVM classifiers to improve
classification accuracy. However, these studies only extracted the features of one layer and
did not consider the features of different layers together. Long et al. [23] proposed a fully
convolutional network (FCN) model. The FCN model replaces the fully connected layers in
a CNN with convolutional layers, so it can accept the input of arbitrary size and can output
the corresponding size. The FCN also extends the classification at the image level to the
pixel level. Fu et al. [24] proposed an FCN-CRF (fully convolutional network-conditional
random field) remote sensing classification algorithm with an average improvement in
accuracy of 2% compared to the FCN. SegNet [25] uses inverse pooling in the encoder
to upsample a feature map to bring it back to the input scale. Although this operation
helps to maintain the integrity of the semantic information, it ignores the proximity infor-
mation when inverse pooling is performed on low resolution feature maps. U-Net [26]
was initially applied to segmentation in the medical imaging domain, and was applied in
several domains such as remote sensing images for its practicality and its ability to learn
with small data volumes. Therefore, several U-Net based networks and improved U-Net
networks were used in remote sensing image segmentation studies [27–30]. Deeplabv3 [31]
uses ResNet50 [32], InceptionRseNetV2 [33], MobileNet [34], Xcepition [35] as a backbone
network to extract features, the extracted features are used as input of the atrous spatial
pyramid pooling (ASPP) module, the output of the ASPP module is upsampled through
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bilinear interpolation and concatenated with the features extracted from the backbone net-
work, and bilinear interpolation is then performed again to achieve semantic segmentation.
Reducing the interference of redundant information and extracting discriminative features
in a limited sample are also a challenge in remote sensing image classification. The attention
mechanism tells us where to focus our attention [36], and weighting the features using the
attention mechanism is an effective approach [37]. Because U-Net requires less data and has
excellent segmentation in several domains, many networks add the attention mechanism
to the original U-Net to focus on important features. Attention-UNet [38] proposed the
attention-gate structure, which implements the attention mechanism by supervising the
features of the next level to the features of the previous level. To alleviate the gradient
disappearance problem, the traditional convolutional blocks in U-Net are replaced with
residual structures [39–41]. EAR-UNet [39] uses EfficientNetB4 [42] as an encoder based on
the U-Net framework, replaces the convolutional blocks in the decoder with residual blocks,
and adds the attention-gate structure in the jump connection. SAR-UNet [40] replaces the
convolution of U-Net with the residual module based on the U-Net framework, while
introducing the Squeeze and Excitation (SE) block [42] in the encoder and replacing the
transition and output layers with the ASPP module. Res-UNet [41] also replaces the convo-
lution of U-Net with the residual module, replaces the upsampling operation with bilinear
interpolation, and finally introduces a CRF to postprocess the network output. However,
the above methods only use deep learning features for classification, and the method of
classifying different categories using a single feature needs to be improved because the
salient features of different categories in remote sensing images are not the same.

Previous research works mainly use the residual module or attention mechanism to
improve and optimize the U-Net network, or use a CNN to extract crop features and then
combine SVM or ELM as classifiers, which provided the research idea for this paper. In this
paper, an improved network structure of CAM-UNet, which adds the channel attention
module (CAM) to the original U-Net framework, is proposed using SVM to replace the
classification layer in the original U-Net network, using this network to preferentially
select three different levels of features for multifeature cascade as input of the SVM,
and finally using the majority voting game theory algorithm. The majority voting game
theory algorithm is applied to the classification results of the SVM to obtain the final
classification results. This algorithm can provide a new idea for the improvement of the
classification accuracy of remote sensing images.

2. Materials and Methods
2.1. Study Area Overview

The study area selected for this study is located in Xingbin District, Laibin City,
Guangxi Zhuang Autonomous Region (GZAR) (108°43′43′′E–109°36′7′′E and 23°15′58′′N–
24°4′38′′N) (Figure 1). The study area has a subtropical monsoon climate. The unique
climatic and geographical factors make sugarcane one of the major crops in Guangxi,
and its planting area accounts for approximately 60% of the country. The planting area of
sugarcane in the study area is more than 80% of the total agricultural land, so it is important
to accurately and effectively obtain the planting area of sugarcane for local agricultural
development, accurate management, and yield estimation.
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Figure 1. Location of the study area and Landsat 8 remote sensing images.

2.2. Field Sampling and Remote Sensing Image Preprocessing

To obtain the distribution of actual feature types in the study area, a total of 2876 sam-
ple points of different feature types were obtained through field data collection and field
observations (Table 1). Among sample points, in the process of the field collection of
sugarcane and rice samples, priority was given to continuous planting areas with an area
larger than 900 m2. The acquired data were used to accumulate a priori knowledge and
to verify the accuracy at a later stage. In this study, multispectral images covering the
study area taken by the Landsat 8 satellite with a resolution of 30 m from 2–8 October 2019,
containing 11 bands, were used as the data source (Figure 1). The images from 2–8 October
2019, were taken during the peak growth period of sugarcane and rice. To obtain more
effective image information, preprocessing such as geolocation, radiometric calibration,
atmospheric correction, mosaicking, and cropping was performed on the images to obtain
the sample library data through a combination of indoor supervised classification and field
validation, and the sample library data had 4,874,817 samples, 60% of which were used
for training, with 20% for validation and 20% for testing (Figure 1). In this paper, high-
resolution Sentinel-2 satellite data were used as an aid to validate classification accuracy.
The Sentinel-2 Level-C image on 3 October 2019, was downloaded from the USGS website,
and the Sentinel-2 Level-C image multispectral data were first corrected for atmosphere, to-
pography, and cirrus clouds using the Sen2Cor software. Subsequently, the SNAP software
was used to upsample the bands, increase the resolution to 10 m, and convert them to ENVI
format. The 12 bands of the multispectral image were then fused using the ENVI software,
and the Seamless Mosaic tool was used to mosaic the image and import the vector data
of the study area for cropping. Finally, the latitude and longitude information of the field
collected data was imported into the corresponding Sentinel-2 images of the study area
to obtain the sample data of the corresponding location, and the classification result map
based on the Sentinel-2 images was obtained by supervised classification and accuracy
verification of the sample data.

Table 1. Number of field collections of different sample types.

Class Sugarcane Rice Water
Construction

Land Forest Bare Land
Other
Land Total

Samples 826 342 116 665 680 114 133 2876

2.3. Improvements to U-Net

As a network goes further, semantic information becomes richer, but spatial resolution
becomes lower. To maintain the spatial resolution and semantic features, the U-Net [27]
model uses the skip connection operation to fuse the feature maps of different levels. In this
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paper, we added a channel attention mechanism based on U-Net, used the model trained
by the CAM-UNet network to extract three different levels of features, put them into
SVM classification, and then analyzed the voting results after the majority voting game to
obtain the final results and evaluate classification accuracy. A flowchart of the proposed
multifeature fusion perception algorithm framework is shown in Figure 2. The framework
consists of four main components: the U-Net model, CAM, SVM classifier, and majority
voting game module.

Figure 2. Algorithm network framework.

2.3.1. U-Net Model

The U-Net model is an end-to-end semantic segmentation network, which is named
U-Net because its structure is symmetrical like the letter U. The U-Net model consists of
an input layer, a convolutional layer, a pooling layer, a transposed convolutional layer,
an activation function, and an output layer. The convolution layer uses multiple convolu-
tion kernels with a size of 3 × 3 and a step size of 1 to perform the convolution operation,
and the output after this operation is a feature map. In the convolution process, all input
information shares a set of weights (weight sharing), which significantly reduces the train-
ing parameters and increases the computational speed. Convolution also has the ability of
local perception, which improves neural network signal transmission to a certain extent.
The activation operation is the process of increasing the nonlinearization of neural network,
which makes the neural network better fit the nonlinear mapping and improves the expres-
siveness of the model. The commonly used activation functions include sigmoid, Tanh,
and ReLU. The U-Net model chooses ReLU as its activation function, which is defined as

ReLU =

{
x x ≥ 0
0 x < 0

(1)

ReLU has a one-sided suppression capability, outputting directly positive values for
positive numbers and zero for numbers less than zero. This capability speeds up network
training while converting dense features into sparse features, effectively improving the
robustness of the features, and the sparse features are mapped into a high-dimensional
feature space with stronger linear differentiability. The essence of transposed convolution
is upsampling, and the feature map size is restored to the original image size by multiple
transposed convolution operations. The U-Net model proposes the skip connection to
retain the information at each level and improve the generalization ability of the network.
Upsampling is fused with the downsampled feature channel dimension splicing at the same
time, which effectively fuses the image detail information with the contour information.
Fusion is performed. Finally, the feature vectors are mapped to the desired number of
classes using a 1 × 1 convolution kernel. The loss function, also known as the optimization
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performance metric, is the optimal performance metric to be achieved by varying the
weights of the neural network, and is used to indicate how similar the predicted value is to
the true value. U-Net uses boundary weights as its loss function. It is defined as

E = ∑
X∈Ω

ω(x) logp`(x)
x (2)

where p`(x) is the loss function of Softmax, and `:Ω→ {1, . . . , k} is the label value of the
pixel point.

2.3.2. Classifier

The logistic regression layer of the traditional U-Net model uses the Softmax function
to achieve classification, which is based on the principle of regression, and its loss function
is a probabilistic model considering global data. It normalizes the data in the feature
space and presents the classification results in the form of probabilities. It is defined as
follows: Let there be N classes of sample data. The output of the final convolution layer
is Y = (y1, y2, . . . , yN)

T ,and the output after Softmax calculation is S = (s1, s2, . . . , sN)
T ,

where

Sj =
exp

(
yj
)

∑N
j=1 exp

(
yj
) (3)

SVM has superior performance compared to Softmax. The basic idea of an SVM is
the introduction of a kernel function, which maps linearly indistinguishable features to a
high-dimensional feature space and thus makes the feature data linearly distinguishable.
The essence of SVM makes the search for the optimal classification hyperplane and does
not cause the change in the hyperplane due to the change in nonsupport vector samples.
However, in Softmax, any changes in the samples lead to a change in the decision plane.

2.3.3. Channel Attention Module

In recent years, the channel attention mechanism has been used for image classification
and segmentation with significant success, and it has obtained good results in the field of
remote sensing image segmentation [43]. To obtain a more effective feature map, channel
attention is introduced to extract image features adaptively before the maximum pooling
layer. The specific operation of the CAM is as follows: A feature map (H × W × C) is
obtained by global average pooling Fc

avg (1 × 1 × C) and global maximum pooling Fc
max

(1 × 1 × C). Fc
avg and Fc

max are then fed into the shared network consisting of two fully
connected layers and an activation layer. Finally Fc

avg and Fc
max passing through the shared

network are operated by the Add function and fed into the sigmoid function to obtain
the channel attention map Mc ∈ R1×1×C. Afterwards, the size of the first fully connected
layer is R1×1×C/r, and the size of the second fully connected layer is restored to R1×1×C.
The channel attention module is shown in Figure 3. Channel attention is calculated
as follows:

Figure 3. Channel attention module.
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2.3.4. Feature Extraction and Fusion

The most meaningful three levels of the features of the original image are extracted
by the network model and put into the SVM for classification, and the final classification
is obtained by voting on the three classification results. In this study, to prefer features at
different levels, we first extracted images with a size of 256 × 256 containing all classification
labels from remote sensing images as experimental samples, and selected all convolutional
layers in the network model to train the SVM on the features extracted from the samples
separately. The size of the training, validation, and testing samples were 60%, 20%, and 20%
of the total sample size, respectively. The features extracted from Layers 2, 56, and 57 of the
network model were finally selected for SVM classification through empirical comparison,
and the classification results were then subjected to voting games.

2.4. Experimental Environment

In deep learning networks, hyperparameters need to be obtained based on empirical
debugging, including the learning rate, the small batch extracted in each iteration, gradient
clipping, and other hyperparameters. The learning rate is a hyperparameter that controls
the convergence speed of the model. The lower the learning rate is, the slower the change
rate of the loss function is and the slower the convergence time is, but it can ensure
that the best accuracy is achieved locally. On the contrary, if the learning rate is too
high, the local minima will be missed, and the gradient threshold is usually set to enable
gradient clipping and suppress the network gradient explosion caused by a very high
learning rate. After several experimental debuggings, the experimental learning rate is
set to 0.01, and each minibatch contains pixel patches with a size of 256 × 256. There are
30 rounds in total, and 1000 minibatches are extracted in each iteration of each round for
a total of 30,000 iterations. The gradient threshold and gradient decay rate are 0.05 and
0.0001, respectively. The code of the experiment is performed using Matlab 2021b, and the
experimental environment consists of Intel(R) Core(TM) i5-8500 CPU with an NVIDIA
GeForce RTX 2060 GPU.

3. Results

Information on the data categories of the sample pool in the study area is shown in
Table 2. Sixty percent was used for training, with 20% for validation and 20% for testing.
The following experiments were conducted using the sample pool data in Table 2.

Table 2. Category information of the data in the sample pool of the study area.

No. Class Train Val Test

1 Sugarcane 1,090,123 150,147 223,668
2 Rice 130,736 63,053 62,050
3 Water 74,437 12,503 14,818
4 Construction land 228,496 33,128 48,244
5 Forest 1,219,936 510,557 443,841
6 Bare land 142,496 46,798 83,573
7 Other land 172,069 73,276 70,835

Total 3,058,293 889,462 947,029

3.1. Model Building
3.1.1. Parameter Optimization and Network Optimization

To verify the effect of MinibatchSize on the network, it was designed with parameter
optimization, and overall accuracy (OA), average accuracy (AA), and kappa coefficient
were used as evaluation indexes of classification performance. The specific experimental
results are shown in Table 3. MinibatchSize is the size of the small batch processing for
each training iteration. The larger the MinibatchSize is, the longer it takes for each iteration,
but within a certain reasonable range, the larger the MinibatchSize is, the more accurate its
determined descent direction is. When MinibatchSize = 8, each iteration takes 1 s, and when



Remote Sens. 2022, 14, 1118 8 of 18

MinibatchSize = 16, each iteration takes 2 s. Although it takes twice as long, the overall
accuracies of the test set and the real set is improved by 1.66% and 0.5%, respectively,
as seen from the comparison of the classification accuracy of U-Net. The accuracies of
forestland in the test set and real set were improved by 0.87% and 0.23%, respectively.
Because this experiment is for the fine classification of crops, it is worth spending twice as
much time to train and improve accuracy.

Table 3. Classification accuracy (%) for different MinibatchSize values of U-Net.

MinibatchSize = 8 MinibatchSize = 16
Class Test Validation Test Validation

Sugarcane 90.24 89.28 92.68 90.04
Rice 68.57 62.54 62.67 56.48

Water 86.60 88.62 91.84 91.59
Construction land 92.28 92.56 88.93 90.50

Forest 94.79 95.03 95.66 95.26
Bare land 84.56 83.60 88.62 87.65

Other land 72.21 73.89 78.61 79.33

OA (%) 92.40 92.46 90.71 87.80
AA (%) 88.76 88.28 86.06 83.96
kappa 0.8412 0.8270 0.8643 0.8343

To verify the effect of different network structures on classification accuracy, this paper
compared the U-Net structure with only the channel attention mechanism added (CAM-
UNet) with the U-Net structure with both the residual units and attention mechanism
added (Res-CAM-UNet) for experimental analysis, and the corresponding experimental
results are shown in Table 4. Table 4 shows the effect of residual units on CAM-UNet.
Res-CAM-UNet has a higher classification accuracy in sugarcane and construction land
compared to CAM-UNet, with an improvement in the test and validation sets: 6.53%,
10.74%, 2.18%, and 5.86%, respectively. However, the classification accuracies obtained
in forestland and rice were lower and decreased in the test and validation sets: 30.48%,
41.18%, 3.73%, and 6.71%, respectively.

Table 4. Classification results of CAM-UNet and Res-CAM-UNet in the test set and validation set.

CAM-UNet Res-CAM-UNet
Class Test Validation Test Validation

Sugarcane 91.74 87.35 98.27 98.09
Rice 77.91 79.17 47.43 37.99

Water 92.33 92.47 94.36 91.59
Construction land 89.72 89.72 91.90 95.58

Forest 97.14 97.41 93.41 90.70
Bare land 88.28 87.78 90.38 89.71

Other land 84.19 84.06 86.64 84.09

OA (%) 92.40 92.46 90.71 87.80
AA (%) 88.76 88.28 86.06 83.96
kappa 0.8916 0.8785 0.8675 0.8083

3.1.2. Comparison of Multiple Methods

To evaluate the performance of deep network methods with multifeature fusion per-
ception in remote sensing classification, the improved algorithm proposed in this paper
was compared with U-Net [26], SegNet [25], Attention-UNet [38], SAR-UNet [40], Res-
Net [41], Deeplabv3 + ResNet50, Deeplabv3 + Xception and Deeplabv3 + MobileNet [31],
the methods were tested and analyzed for comparison. Tables 5 and 6 show the classifi-
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cation accuracies of the different methods for the test set and validation set of the remote
sensing images of the study area. The algorithms proposed in this paper had the highest
values of OA, AA, and kappa compared to the other algorithms. In the test set, the OA
was also improved by 1.16% after adding an SVM to U-Net, which improved the classifica-
tion accuracies of forestland, rice, and water bodies. Compared with the original U-Net,
the algorithm proposed in this paper improved in each category, and the improvement was
greater for rice, water bodies, construction land, forestland, bare land, and other cultivated
land: 14.2%, 1.38%, 1.75%, 1.5%, 1.22%, and 5.93%, respectively. The OA was improved by
2.32%. When compared with U-Net + SVM, the OA of the algorithm proposed in this paper
was improved by 1.16%, the classification accuracy of each category was slightly improved,
and the improvement is more obvious in sugarcane and other cultivated land: 2.41% and
3.17%, respectively. The overall classification accuracy of Deeplabv3+, SegNet, and SAR-
UNet was poor. The classification accuracy of SAR-UNet for sugarcane and construction
land was the highest. The classification accuracy of Deeplabv3+ was approximately 92% for
forestland and 81% for sugarcane. Res-UNet had a higher classification accuracy for water
bodies and forestland than other networks after adding the SVM. In the validation set,
CAM-UNet + SVM still performed outstandingly, its classification accuracy was superior
to those of other networks, except for sugarcane and construction land, and the overall
classification accuracy and kappa value were the highest.

Table 5. Comparison of the classification accuracy of different methods on the test set of remote
sensing images in the study area (%).

Class CAM-UNet
+SVM U-Net SegNet Attention

-UNet
SAR

-UNet
U-Net
+SVM

Res-UNet
+SVM

Deeplabv3
+Resnet50

Deeplabv3
+Xception

Deeplabv3
+MobileNet

Sugarcane 92.9 92.69 93.52 93.55 98.76 90.49 88.06 81.05 80.51 82.12
Rice 76.9 62.7 13.63 69.95 29.44 75.08 70.51 39.5 60.62 41.6

Water 93.23 91.85 67.33 89.74 90.36 92.56 94.39 72.47 74.26 72.17
Construction

land 90.69 88.94 80.6 89.92 98.74 87.89 87.34 73.86 76.71 74.63

Forest 97.16 95.66 79.82 94.56 75.36 97.2 97.88 91.57 92.66 92.95
Bare land 89.84 88.62 62.7 89.55 85.74 88.61 89.62 59.76 62.6 60.96

Other land 84.24 78.61 55.8 77.07 79.16 81.07 81.45 42.72 48.86 44.2

OA (%) 92.82 90.5 75.26 90.6 80.5 91.66 91.22 78.01 80.66 79.3
AA (%) 89.28 85.58 64.77 86.33 79.65 87.56 87.04 65.85 70.89 66.95
Kappa 0.8976 0.8643 0.6515 0.8666 0.7307 0.8807 0.8737 0.6791 0.7203 0.6973

Table 6. Comparison of the classification accuracy of different methods for the validation set of
remote sensing images in the study area (%).

Class CAM-UNet
+SVM U-Net SegNet Attention

-UNet
SAR

-UNet
U-Net
+SVM

Res-UNet
+SVM

Deeplabv3
+Resnet50

Deeplabv3
+Xception

Deeplabv3
+MobileNet

Sugarcane 89.43 90.04 91.94 92.07 98.35 86.69 85.9 76.06 74.04 76.4
Rice 77.26 53.5 12.61 67.7 25.77 69.11 56.85 35.9 58.39 45.63

Water 92.83 91.59 73.81 91.74 88.72 92.35 90.79 72.97 73.93 71.46
Construction

land 91.24 90.49 82.21 92.1 99.68 90.06 92.45 75.46 76.29 74.09

Forest 97.47 95.26 80.07 94.15 73.26 96.7 95.57 90.38 93.14 92.61
Bare land 89.37 87.65 64.26 89.11 86.7 87.13 88.33 60.28 62.15 62.08

Other land 84.59 79.33 56.06 79.39 78.54 81.02 82.12 43.87 49.44 45.95

OA (%) 92.89 89.69 74.48 90.33 76.47 90.95 89.52 77.88 81.33 80.1
AA (%) 88.88 83.98 65.85 86.61 78.72 86.15 84.57 64.99 69.63 66.89
Kappa 0.8856 0.8343 0.611 0.847 0.6552 0.8539 0.8309 0.639 0.694 0.6726

Tables 7 and 8 show the mixture matrix of the algorithm proposed in this paper,
and it can be seen that the percentages of forestland, sugarcane, and rice misclassified into
each other were large. The probabilities of the misclassification of forestland and rice into
sugarcane in the test set were 3.12% and 1.02%. The probabilities of the misclassification of
forestland and sugarcane into rice were 18.24% and 2.19%. The probabilities of the misclas-
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sification of sugarcane and rice into forestland were 1.39% and 0.71%. The probabilities of
the misclassification of forestland and rice as sugarcane in the validation set were 5.71%
and 1.41%. The probability of the misclassification of forestland and sugarcane into rice
were 16.71% and 3.86%. The probabilities of the misclassification of sugarcane and rice into
forestland were 1.08% and 0.88%. Sugarcane, rice, and forestland are misallocated from
each other because sugarcane is the most planted cash crop in the study area, covering
most of the planting area in the study area, and woodland covers almost half of the study
area. The unique spatial distribution resulted in the intersection of the woodland, rice,
and sugarcane planting areas. Restricted by the 30 m resolution of the Landsat 8 remote
sensing images, the scattered woodlands were not easily distinguished from the rice and
sugarcane plantation areas. This also caused the mixing of agricultural land and forestland.
The construction land contains cities, villages, and roads. Many rural roads are made of
different materials, including stone, dirt, cement, and asphalt. The difference in materials
causes some rural roads to be classified as bare land. Villages are surrounded by cropland
and woodland, and it is normal that one image element at 30 m resolution may contain
construction land, woodland, and cropland and does not distinguish them well.

Table 7. Mixing matrix of the test set based on the algorithm proposed in this paper.

Class Sugarcane Rice Water Construction
Land Forest Bare

Land
Other
Land Total

Sugarcane 207,796 1362 9 1619 6195 2354 2614 221,949
Rice 2278 47,717 411 0 3172 23 889 54,490

Water 8 216 13,815 218 113 4 136 14,510
Construction land 608 7 231 43,753 4 2918 1065 48,586

Forest 6989 11,321 179 10 431,241 355 1092 451,187
Bare land 2014 6 1 1892 40 75,080 5371 84,404

Other land 3975 1421 172 752 3076 2839 59,668 71,903
Total 223,668 62,050 14,818 48,244 443,841 83,573 70,835 947,029

User’s Accurcy (%) 93.62 87.57 95.21 90.05 95.58 88.95 82.98 -
Producer’s Accuray (%) 92.9 76.9 93.23 90.69 97.16 89.84 84.24 -

OA (%) 92.82
Kappa 0.8976

Table 8. Mixing matrix of the validation set based on the algorithm proposed in this paper.

Class Sugarcane Rice Water Construction
Land Forest Bare

Land
Other
Land Total

Sugarcane 134,272 2453 7 725 5539 1449 3021 147,466
Rice 2112 48,717 277 3 4474 8 1771 57,362

Water 4 172 11,606 158 114 7 185 12,246
Construction land 562 3 95 3,0225 5 1020 718 32,628

Forest 8574 10,534 386 4 497,624 204 2060 519,386
Bare land 1000 6 1 880 44 41,825 3538 47,294

Other land 3623 1168 131 1133 2757 2285 61,983 73,080
Total 150,147 63,053 12,503 33,128 510,557 46,798 73,276 889,462

User’s Accurcy (%) 91.05 84.93 94.77 92.64 95.81 88.44 84.82 -
Producer’s Accuray (%) 89.43 77.26 92.83 91.24 97.47 89.37 84.59 -

OA (%) 92.89
Kappa 0.8856

Figure 4 shows the results of the remote sensing image segmentation of the study area
by different methods. As shown in Figure 4, most of the construction land in the study area
is concentrated in the central part, and small towns and villages are scattered. The study
area is mainly dominated by forests and sugarcane, with few other crops, more concentrated
rice cultivation land, and a very low percentage of bare land. In this paper, the decoded
data of the Sentinel-2A satellite covering the study area with higher resolution were used to
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verify the accuracy of the classification results of Landsat 8, and the classification categories
and total accuracy of both were roughly the same from the county scale.

Figure 4. Comparison of remote sensing image classification results of the study area by differ-
ent methods, where (a–l) are, in order, the ground truth category, Sentinel-2A, CAM-UNet+SVM,
U-Net, SegNet, Attention-UNet, SAR-UNet, UNet+SVM, Res-UNet+SVM, Deeplabve3+Resnet50,
Deeplabve3+Xception, and Deeplabve3+MobileNet.
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3.2. Land Use Change in Laibin

In this study, the 2 November 2010, 14 April 2015, and 2 October 2019 Landsat
series images were downloaded from the USGS website (https://earthexplorer.usgs.gov/,
acceseed on 8 February 2022) to carry out feature classification of the study area, where
the 2010 images were Landsat 7 images and the 2015 and 2019 images were Landsat 8
images. To obtain more effective image information, the images were preprocessed with
geolocation, radiometric calibration, atmospheric correction, mosaicking, and cropping.
Owing to the sensor failure of the Landsat 7 satellite on 31 May 2003, the Landsat 7 images
since then have the problem of strip loss, and after its repair, six bands were finally obtained.
In this study, higher resolution images and field collection data were used for supervised
classification to obtain the sample library data of the 2010 and 2015 study areas, and the
algorithm proposed in this paper was used to classify and evaluate the images of the 2010,
2015, and 2019 study areas. Tables 9–11 show the mixing matrices of the remote sensing
images of the study area in 2010, 2015, and 2019 based on the algorithm proposed in this
paper, respectively, and the OAs were 94.02%, 90.41%, and 93.62%, respectively, which
meet the needs of the study.

Table 9. Accuracy evaluation table of classification results in 2010.

Class Sugarcane Rice Water Construction
Land Forest Bare

Land
Other
Land Total

Sugarcane 1,738,978 16,978 8 24,857 30,125 25,444 5504 1,841,894
Rice 7186 81,929 749 6575 287 1280 3326 101,332

Water 12 1065 112,631 3183 2434 1152 187 120,664
Construction land 16,566 10,557 5001 391,476 455 15,696 705 440,456

Forest 24,364 530 2937 684 1,712,164 11,897 3636 1,756,212
Bare land 19,272 1818 2504 15,845 10,212 495,667 5 545,323

Other land 5397 3737 560 3029 4336 2499 69,367 88,925
Total 1,811,775 116,614 124,390 445,649 1,760,013 553,635 82,730 4,894,806

User’s Accurcy (%) 94.41 80.85 93.34 88.88 97.49 90.89 78.01 -
Producer’s Accuray (%) 95.98 70.26 90.55 87.84 97.28 89.53 83.85 -

OA (%) 94.02
Kappa 0.9157

Table 10. Accuracy evaluation table of classification results in 2015.

Class Sugarcane Rice Water Construction
Land Forest Bare

Land
Other
Land Total

Sugarcane 1,115,511 28,890 2 14,170 58,446 65,754 4858 1,287,631
Rice 7946 83,477 0 1291 565 5292 3526 102,097

Water 8 1 64,381 3997 712 5 0 69,104
Construction land 10,709 2095 2483 412,243 2877 23,160 10 453,577

Forest 45,100 2243 279 3184 2,260,528 48,003 3955 2,363,292
Bare land 45,503 8705 1 29,322 23,637 473,550 6529 587,247

Other land 3477 2328 21 775 3889 5982 17,401 33,873
Total 1,228,254 127,739 67,167 464,982 2,350,654 621,746 36279 4,896,821

User’s Accurcy (%) 86.63 81.76 93.17 90.89 95.65 80.64 51.37 -
Producer’s Accuray (%) 90.82 65.35 95.85 88.66 96.17 76.16 47.96 -

OA (%) 90.41
Kappa 0.85842497

https://earthexplorer.usgs.gov/
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Table 11. Accuracy evaluation table of classification results in 2019.

Class Sugarcane Rice Water Construction
Land Forest Bare

Land
Other
Land Total

Sugarcane 1,388,389 10,652 25 8298 36,382 9134 17,896 1,470,776
Rice 9091 186,789 1321 9 16,838 54 4930 219,032

Water 52 1117 97,608 1176 541 20 653 101,167
Construction land 5289 28 1071 286,889 18 9490 4960 307,745

Forest 37,617 51,684 929 21 2,111,327 903 5781 2,208,262
Bare land 6394 22 11 7805 139 243,454 13,905 271,730

Other land 17106 5493 793 5670 9089 9812 268,055 316,018
Total 1,463,938 255,785 101,758 309,868 2,174,334 272,867 316,180 4,894,730

User’s Accurcy (%) 94.40 85.28 96.48 93.22 95.61 89.59 84.82 -
Producer’s Accuray (%) 94.84 73.03 95.92 92.58 97.10 89.22 84.78 -

OA (%) 93.62
Kappa 0.908313744

The spatial distribution of land use and land use change are shown in Figure 5.
From the spatial distribution of land use, forestland, and sugarcane are the main land use
types in the study area, followed by construction land, which is mainly concentrated in
the central part, and the rest is scattered in the study area. The main rivers run through
the whole study area, and the lakes and reservoirs are distributed more evenly. Rice, bare
land, and other arable land are located in a small area. In terms of land use change, there is
more conversion of sugarcane to forestland and more conversion of other arable land to
forestland and sugarcane.

Figure 5. Spatial and temporal distribution of land use in 2010 (a); 2015 (b); 2019 (c); Land use change
in 2010–2015 (d); 2015–2019 (e); 2010–2019 (f).
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The types of land use changes in the last decade are shown in Table 12. The area of
forestland has the largest ratio to the total area of the study area, followed by sugarcane,
other land, construction land, bare land, and rice, and water bodies have the smallest
share of the total area of the study area. In terms of land use changes, the areas of
forestland, rice, and other cultivated land increased by 25.74%, 116.15%, and 255.37%,
respectively. By contrast, the areas of sugarcane, construction land, water bodies, and bare
land decreased by 20.15%, 30.13%, 16.16%, and 50.17%, respectively.

Table 12. Changes in land use types in different periods in Xingbin District, Laibin City, 2010–2019.

Class 2010
(km2)

2015
(km2)

2019
(km2)

2010–2015
Area Change Rate

2015–2019
Area Change Rate

2010–2019
Area Change Rate

Forest 1580.59 2126.96 1987.43 0.3456 −0.0656 0.2574
Sugarcane 1657.7 1158.86 1323.69 −0.3009 0.1422 −0.2015

Construction land 396.41 408.21 276.97 0.0297 −0.3215 −0.3013
Rice 91.19 91.88 197.12 0.0075 1.1453 1.1615

Water 108.59 62.19 91.05 −0.4273 0.4639 −0.1616
Bare land 490.79 528.52 244.56 0.0768 −0.5373 −0.5017

Other land 80.03 30.48 284.41 −0.6191 8.3295 2.5537

3.3. Changes in Forest Dynamics

From the classification results of the remote sensing images of the study area for the
three periods of 2010, 2015, and 2019, it can be seen that the algorithm proposed in this paper
has the highest classification accuracy for forestland. Therefore, the algorithm was used to
monitor the dynamic change of forest resources in the past 10 years, and the forest areas for
the three periods in the study area were analyzed and compared. The classification results
and dynamic change of forests are shown in Figure 6, and the forest change monitoring
area statistics are shown in Table 12. From the results of the forest change monitoring in the
study area, it was obtained that the forest area was 1580.59608 km2 in 2010, 2126.9628 km2 in
2015, and 1987.4358 km2 in 2019. The forest area in 2010–2015 increased by 34.56%, whereas
the forest area in 2015–2019 decreased by 6.55%. The forest area in 2010–2019 increased
by 25.74%. The main reason for the change in forest area is the natural environment and
human activities. In 2010–2015, under the call of the Chinese government’s policy of
returning farmland to forest, people planted trees to make the overall forest area increase
significantly. The forest area in 2015–2019 decreased overall, mainly because eucalyptus
trees planted under the policy of returning farmland to forest absorbed a high amount of
groundwater, which caused drought in some areas. Therefore, the government introduced
a new policy to encourage farmers to plant trees that benefit the ecological environment
more than eucalyptus trees, so it is normal for some of the area to decrease and for some
forestland to be converted into cropland.
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Figure 6. Distribution of forestland in 2010 (a); 2015 (b); 2019 (c); dynamics of forestland in 2010–2015
(d); 2015–2019 (e); 2010–2019 (f).

4. Discussion

The traditional U-Net fuses multilayer features while upsampling, and the fused
features are then trained. On the other hand, multifeature fusion adds the channel attention
mechanism to U-Net, fuses the multilayer features into the network model, extracts the
optimal three levels of features for SVM classification, and performs the majority voting
game on the three classification results. The algorithm adopts the form of multifeature
cascade to reduce the problem of gradient dispersion, and introduces channel attention to
assign feature weights, which is a big improvement compared with U-Net. Remote sensing
image classification has many difficulties from the acquisition of remote sensing image
resources to classification, and the sample size has a great influence on the results. As shown
in Table 5, the U-Net segmentation accuracy is higher than that of Deeplabve3+ and SegNet,
which are basic semantic segmentation models, so U-Net is chosen as the backbone network.
The features obtained by SAR-UNet after the SE module are combined with the upsampled
features so that it can have good results for the objects with very obvious single features
such as sugarcane, cities and water bodies, which are more beneficial for the binary
classification problem. In this paper, the feature map obtained by CAM-UNet was only
connected to the pooling layer without combining with the upsampled features, which
made the attention domain larger and more beneficial for the multiclassification of remote
sensing images. By combining with jump links, there was no significant improvement in
the classification accuracy of the multispectral remote sensing images in the study area
compared with U-Net, which may be more suitable for super-resolution remote sensing
images. The OA was improved after adding U-Net network to SVM. Thus, extracting
different levels of feature classification and then performing the majority voting game
reduced misclassification to a certain extent. The accuracy of woodland and sugarcane
planting area in this study was relatively satisfactory, but misclassifying woodland into
sugarcane planting area was larger, as observed by the data sampled in the field. Woodland
will be mixed in the large area of sugarcane and rice planting area, and sugarcane and rice
will be planted around the large area of woodland. Further extraction of the planting areas



Remote Sens. 2022, 14, 1118 16 of 18

of woodland, sugarcane and rice on Landsat 8 remote sensing images is the direction that
needs further research.

5. Conclusions

U-Net suffers from insufficient information utilization and pays insufficient attention
to some features. In this study, to improve and optimize the U-Net, we combined it with
a CAM and replaced the classifier of the original U-Net with an SVM. The CAM-UNet
model was used to extract multiple features from the study area, and the SVM, in turn, was
used to classify multiple features. The final classification results were obtained using the
majority voting game on the classification results of each feature, and the accuracy of the
classification results was evaluated and analyzed with the field research data. We used a
multifeature cascade to reduce gradient divergence and added a CAM to each convolutional
unit of the U-Net encoder to make the network learn image features adaptively and focus
more on important features. The results showed that the improved deep network algorithm
with multifeature fusion perception has better classification results with images in the
study area compared to U-Net, SegNet, Deeplabv3+, Attention-UNet, SAR-UNet, and Res-
UNet. Adding the channel attention mechanism to the U-Net encoder can effectively
improve network performance, and using the classification results of SVM for the majority
voting game can reduce misclassification and improve classification accuracy, especially
in forestland monitoring. This improved depth network algorithm based on multifeature
fusion perception can better identify feature information and can effectively improve
the classification accuracy of remote sensing images. This algorithm can provide a new
technical reference for remote sensing image classification.
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