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Abstract: Synthetic aperture radar (SAR) is a widely used tool for Earth observation activities. It is
particularly effective during times of persistent cloud cover, low light conditions, or where in situ
measurements are challenging. The intensity measured by a polarimetric SAR has proven effective
for characterizing Arctic tundra landscapes due to the unique backscattering signatures associated
with different cover types. However, recently, there has been increased interest in exploiting novel
interferometric SAR (InSAR) techniques that rely on both the amplitude and absolute phase of a
pair of acquisitions to produce coherence measurements, although the simultaneous use of both
intensity and interferometric coherence in Arctic tundra image classification has not been widely
tested. In this study, a time series of dual-polarimetric (VV, VH) Sentinel-1 SAR/InSAR data collected
over one growing season, in addition to a digital elevation model (DEM), was used to characterize
an Arctic tundra study site spanning a hydrologically dynamic coastal delta, open tundra, and
high topographic relief from mountainous terrain. SAR intensity and coherence patterns based
on repeat-pass interferometry were analyzed in terms of ecological structure (i.e., graminoid, or
woody) and hydrology (i.e., wet, or dry) using machine learning methods. Six hydro-ecological cover
types were delineated using time-series statistical descriptors (i.e., mean, standard deviation, etc.)
as model inputs. Model evaluations indicated SAR intensity to have better predictive power than
coherence, especially for wet landcover classes due to temporal decorrelation. However, accuracies
improved when both intensity and coherence were used, highlighting the complementarity of these
two measures. Combining time-series SAR/InSAR data with terrain derivatives resulted in the
highest per-class F1 score values, ranging from 0.682 to 0.955. The developed methodology is
independent of atmospheric conditions (i.e., cloud cover or sunlight) as it does not rely on optical
information, and thus can be regularly updated over forthcoming seasons or annually to support
ecosystem monitoring.

Keywords: ArcticDEM; Arctic tundra; coherence; InSAR; SAR; Sentinel-1; machine learning

1. Introduction

The Arctic tundra biome is among the most vulnerable landscapes on Earth, un-
dergoing dramatic changes to vegetation, water, and soil surface properties over recent
decades. These widespread physical ecosystem changes are driven by rising concentra-
tions of greenhouse gases [1], resulting in fundamental consequences to wildlife [2] and
human populations [3]. Despite being one of the coldest biomes on Earth, this water-rich
region is warming twice as fast as the global average—a phenomenon known as arctic
amplification [4]. Accelerated warming of the climate is having profound impacts on
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high-latitude freshwater-terrestrial processes, including permafrost thaw [5], wetland flood-
ing frequency [6], vegetation shifts such as shrub expansion [7], and altered partitioning
between groundwater and surface water [8]. Permafrost degradation, or active layer thick-
ening, is particularly important because of the role permafrost plays in governing water
flow, soil moisture, and storage [9]. The Arctic tundra permafrost contains twice as much
carbon as there is in the atmosphere [10], making warming-induced permafrost thaw a
concern for immense greenhouse gas emissions that would support a permafrost carbon
feedback, further accelerating warming of the Earth [11]. Landcovers with wet or moist
surfaces (i.e., wetlands) contain some of the largest stores of soil carbon due to low decom-
position rates, making the transient zone between inundated and dry areas very susceptible
to increased carbon loss under a shifting climate [12]. Therefore, there is a growing need to
map and frequently monitor Arctic tundra ecosystems and their changing conditions.

Arctic tundra regions are remote and often inaccessible environments, making in
situ observations and field-based data collection a challenging task. Constraints around
weather, low light conditions, and lack of infrastructure make satellite remote sensing
the only option for consistent, timely, and repeatable data collection across this spatially
extensive biome [13]. Optical satellite sensors (e.g., Landsat) have traditionally been used
to develop and validate Arctic tundra landcover products [14]. However, these passive
sensors are dependent on the sun’s electromagnetic energy and are affected by atmospheric
clouds or haze. Synthetic aperture radar (SAR), in contrast, can operate independently of
weather and during day or night, overcoming the limitations of optical remote sensing by
providing reliable time-series data. Several recent studies have demonstrated the value of
active SAR imaging for classification and mapping of Arctic tundra environments [15–21].

SAR imaging systems are also appropriate for Arctic tundra ecosystem mapping and
monitoring because of the sensitivity of microwaves to dielectric moisture and the physical
properties of vegetation [16,22,23]. Yet, until recently, SAR data of high spatial resolution
(e.g., < or =10 m) have not been frequently collected at regional to global scales. The
launch of the European Space Agency (ESA) Copernicus Sentinel-1A and -1B satellites
in 2014 and 2016 changed this, resulting in SAR observations collected at 10 m spatial
resolution and with a temporal revisit time of 12 days for each satellite, or 6 days when
combined [24]. This unprecedented source of SAR data has led to remarkable developments
in spaceborne remote sensing. Additionally, dense stacks of multi-temporal Sentinel-1 SAR
data are permitting the advancement of innovative remote sensing methods, one of which
is repeat-pass Interferometric SAR (InSAR [25]).

InSAR, which uses both the phase and amplitude of the backscattered energy, relies
on two or more co-registered SAR images to produce measurements called interferograms.
Interferogram images contain information associated with differences in the phase of the
SAR signal returned to the satellite. Interferometric coherence observations produced from
InSAR analysis have been of great interest recently, with studies demonstrating the efficacy
of time-series InSAR products over a variety of environments, such as urban [26–28],
wetland [29–33], permafrost [34–36], forested [37–39], and ice-covered sea [40–42] areas.

Coherence describes the correlation between the SAR signals acquired at two different
moments in time and is related to the phase variance. For InSAR to be useful in landcover
characterization, coherence must be preserved between image pairs. Coherence preser-
vation implies that a target does not move or change. For distributed targets in natural
environments, this can be challenging, especially for longer temporal baselines (i.e., the
time between image acquisitions). The amount of phase noise (i.e., decorrelation) is associ-
ated with the SAR sensor’s characteristics, including temporal and spatial baselines [43],
wavelength (e.g., X-, C-, or L-band [44]), and polarization [45]. Moreover, decorrelation can
be caused by changes in physical surface properties, such as soil moisture, vegetation, and
water levels [46]. For example, phenological changes to vegetation, or even movement of
leaves and branches, may lead to decorrelation.

Despite the promising results and diverse applications of InSAR, there is limited
research on this technique’s ability to characterize Arctic tundra ecosystems. Most re-
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search employing SAR for mapping high-latitude landcovers have used only backscatter
intensity [18,20,21] or decomposition products [15–17,19] from a fully polarimetric SAR.
Thus, the primary aim of this study was to fill this notable gap in the literature by investi-
gating the potential of both dual-polarimetric SAR intensity and coherence products for
the characterization of highly transient Arctic tundra systems. In particular, our study’s
objectives were:

1. To analyze the temporal signatures of intensity and coherence measurements from
Sentinel-1A C-band SAR data in relation to environmental conditions, thus providing
insight on their utility for landcover characterization;

2. To develop a machine learning methodology capable of identifying the hydro-ecological
state (e.g., wet or dry, and general vegetation structure) of Arctic tundra landcovers
using a time series of SAR/InSAR data and terrain metrics;

3. To provide recommendations on the efficacy of each input data source for the devel-
opment of baseline landcover data.

2. Materials and Methods
2.1. Study Area

The study area for this mapping experiment was the Mackenzie Delta and surround-
ing region (Figure 1), as this area represents a variety of Arctic tundra landcovers. The
Mackenzie Delta is a post-glacial low-lying alluvial plain located in Canada’s western
Arctic, in the Northwest Territories. Inuvik and Aklavik are the principal settlements in
the region. For reference, located 50 km north of Inuvik is the Trail Valley Creek Research
Station (68◦44′25′′N 133◦29′36′′W) which has been a hub for vegetation, permafrost, snow
and other land and ecosystem change research [47–49]. The delta is part of the Mackenzie
River Basin (MRB), which is the second largest river basin in North America, occupying
20% of Canada’s landmass. This area is mainly drained by the Mackenzie River, which is
Canada’s longest, flowing northwest out from Great Slave Lake through the delta and into
the Beaufort Sea, Arctic Ocean. It is also the largest riverine source of organic carbon and
sediment to the Arctic Ocean [50]. Recent studies have shown an increase in discharge in
the Mackenzie River, suggesting a northern response to changing climatic conditions [51].
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The Mackenzie delta is an incredibly productive, sensitive, and dynamic ecosystem,
and is the largest arctic delta in North America with an area of 13,000 km2, and the world’s
second largest [52]. The delta provides important habitat for mammals, fish, and migratory
birds, which is recognized through the establishment of the Kendall Island Bird Sanctuary.
Surrounding the delta to the east are dry, hilly uplands of the Tuktoyaktuk Coastlands
consisting of various permafrost features such as polygonal terrain, ice wedges, and pingos.
To the west are the Richardson Mountains, part of the northernmost ranges of the Cordillera,
which parallel the boundary between the Northwest Territories and the Yukon.

The Mackenzie Delta is considered part of the discontinuous permafrost zone largely
due to shifting river channels and the presence of thousands of lakes and wetlands, whereas
the surrounding tundra uplands contain ice-rich continuous permafrost [53]. The dynamic
hydrology of the delta has shown to result in 95% surface water coverage at flood peak [54],
making it an excellent area to assess the efficacy of Earth observation satellite data for
hydrological mapping and monitoring. Moreover, peak flooding often occurs following
winter ice break up and during the summer after heavy rainfalls [55].

2.2. Vegetation of the Mackenzie Delta and Hydro-Ecological Classes of Interest

The Mackenzie Delta transitions from boreal forest in the south to low-shrub tundra
in the north, a result of the region’s climatic gradient and traversing of the treeline. The
northern tundra of the delta is dominated by sedges and dwarf shrubs, with specific
successional communities influenced by flooding and sedimentation processes [56]. This
includes hydrophilic graminoids in poorly drained areas that transition from open water
areas, such as sedges (Carex aquatilis) and emergent horsetail (Equisetum). Willow (Salix spp.)
and alder (Alnus crispa) species are also very common, found along frequently flooded
lakeshores and levees. Dwarf to low ericaceous shrubs commonly grow on the drier
uplands. The central and southern parts of the delta more commonly contain dry white
spruce (Picea glauca) forests, tall shrub communities, and open canopy peatlands with
stunted woody vegetation and wet organic soils (Sphagnum spp.).

For this experiment, we identified six main semantic classes of interest found in the
study area, defined based on dominant vegetation composition and/or hydrological prop-
erties. Classes were defined with consideration of the major influences on SAR backscatter,
including physical vegetation structure and moisture. Classes included open water, wet
graminoid, wet woody, dry woody, tundra, and mountain/unvegetated (Figure 2). Open
water areas included lakes, ponds, and linear features such as streams and channels, and
could contain aquatic plants (e.g., Nuphar spp.). Wet graminoid areas were poorly drained
areas that experienced temporally dynamic flooding and drawdown processes and con-
tained sedges and rushes with little presence of shrubs or trees (<20%). The wet woody
class was poorly to imperfectly drained areas with wet soils, often visible ponding, and
the presence of woody vegetation (>20%). The hydrology of wet woody areas was less
dynamic than that of open water and wet graminoid areas, and contained willows, alder,
and sometimes an open canopy coverage of standing dead or live spruce species. Woody
peatlands were included in this class. Dry woody areas were vegetated uplands with well
drained and dry soils, and contained either a very dense coverage of ericaceous shrubs
or thick needleleaf or deciduous trees. Tundra areas were elevated regions outside of
the delta that were well drained, having continuous permafrost, and mostly contained a
coverage of grasses, lichens, and mosses with relatively small areas of trees and shrubs [57].
Mountain/unvegetated areas contained exposed rock or soil with little to no vegetation.
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Figure 2. Field photos of landcover classes. (a–c) Open water, (d–f) wet graminoid, (g–i) wet woody,
(j–l) dry woody, (m–o) mountain/unvegetated, and (p–r) tundra. Photos were provided by Ducks
Unlimited Canada (DUC).

2.3. Reference Data

Spatially referenced training and testing polygons were collected and validated using
high-resolution multi-spectral WorldView-2 and -3 satellite imagery (Figure 3). Two scenes
were acquired for this task, one located in the low-shrub northern region of the delta
(imaged 9 July 2020), and a second in the middle-south region of the delta covering a range
of ecotypes, including woody wetlands, exposed mountains, and sparsely vegetated tundra
(imaged on 17 August 2020). Both scenes were acquired as 11 bit GeoTIFF raster files with
a ground sample distance (GSD) spatial resolution of 1.84 m. Spectral bands spanned the
visible to near infrared regions of the electromagnetic spectrum, and included coastal blue
(400–450 nanometers; nm), blue (450–510 nm), green (510–580 nm), yellow (585–625 nm),
red (630–690 nm), red edge (705–745 nm), near infrared-1 (770–895 nm), and near infrared-2
(860–1040 nm) bands. To assist in the photointerpretation process, a normalized differenced
vegetation index (NDVI [58]) layer was derived.
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Figure 3. Reference data derived from high-resolution satellite imagery used for model training
and testing. (a) WorldView-2 scene, (b) NDVI layer derived from WorldView-2 scene, (c) refer-
ence polygons derived from WorldView-2 scene, (d) WorldView-3 scene, (e) NDVI layer derived
from WorldView-3 scene, (f) reference polygons derived from WorldView-3 scene, (g,h) zoomed-
in examples of reference data, and (i) spectral signatures of landcover classes derived from the
WorldView imagery.

While the high-resolution imagery and NDVI layer were the primary datasets used for
digitizing, topographic information from a digital elevation model (DEM) also supported
the interpretation process (e.g., for identifying depressions and low-lying areas). DEM
characteristics are described later in Section 2.10. Both WorldView-2 and -3 scenes were fully
digitized, resulting in end-to-end reference polygons. Photointerpretation was completed
using a consistent scale range of 1:2500 to 1:8000. The collection of polygons resulted in a
contiguous area, and each polygon represented a relatively homogenous landcover type.
The final database of reference polygons was split 50% for model training and 50% for
model testing.

2.4. Sentinel-1 SAR Imagery

SAR imagery used in this study was from the European Space Agency’s open-access
and polar-orbiting Sentinel-1A satellite. Although Sentinel-1A and 1B satellites are identical,
Sentinel-1A was chosen because of its longer historical archive, which offers the potential
for greater year-to-year ecosystem monitoring beyond this study. Six Sentinel-1A C-band
SAR scenes were downloaded from the Alaska Satellite Facility’s (https://search.asf.alaska.
edu/, accessed on 24 January 2022) distributed archive center and in the Interferometric
Wide (IW) swath mode. Level-1 Single Look Complex (SLC) products were used rather
than Ground Range Detected (GRD) products because SLC retains both amplitude and
phase information necessary for InSAR analysis. The IW swath mode collects data using

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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the Terrain Observation with Progressive Scans SAR (TOPSAR) acquisition method. This
method results in each IW SLC product containing one image per sub-swath (three total),
per polarization (i.e., VV and VH), for a total of six images. Each sub-swath then contains a
series of nine bursts. Together, these total a 250 km swath. We used all three sub-swaths
(IW1, IW2, and IW3) and all nine bursts available in each IW SLC scene for our analysis.

Multi-temporal analysis was performed on the time series of six Sentinel-1A scenes
spanning July 2020 to August 2020. Sentinel-1 has a consistent and high repeat imaging
schedule; however, we only used scenes acquired across the approximate short 2020
growing season (i.e., the period during which weather conditions are conductive to plant
growth) of the region; winter and fall scenes were excluded due to the sensitivity of SAR
measurements towards the dielectric properties of snow, ice, and surficial geocryological
characteristics [59]. For example, previous research has found SAR scattering mechanisms
to vary greatly depending on season and the freeze/thaw state of the ground surface
in permafrost regions [60]. Our study also used both the VV and VH polarizations for
analysis. While the co-polarized HH channel from a SAR sensor has shown to be optimal
for interferometric coherence and hydrological applications, VV can be considered the
next best polarization [61]. Further, while many studies assessing InSAR for hydrological
applications use only one polarization (e.g., HH or VV), we also explored including the
cross-polarization VH channel. This is because cross-polarized backscatter is known to be
sensitive to vegetation canopy volume [16].

2.5. SAR Backscatter

A fully polarimetric SAR sensor acquires data using both horizonal (H) and vertical
(V) polarizations and can be represented by a 2 × 2 Sinclair scattering matrix (S):

S =

[
SHH SHV
SVH SVV

]
(1)

where SHH, SHV, SVH and SVV are complex backscattering coefficients for different polari-
metric combinations. However, Sentinel-1 is a dual-polarization SAR sensor that collects
a fraction (precisely half of the scattering matrix components) of the total polarimetric
information and thus S must be modified to the following:

S =

[
0 0

SVH SVV

]
(2)

Moreover, it is known that S inadequately represents the scattering characteristics of
radar targets [62]. Instead, the 2 × 2 covariance matrix (C2) can be used to represent each
SAR pixel at each point in time and can be represented by the following:

C2 =

[
C11 C12
C21 C22

]
=

[
〈SVV〉

〈
S∗VV

〉
〈SVV〉

〈
S∗VH

〉
〈SVH〉

〈
S∗VV

〉
〈SVH〉

〈
S∗VH

〉 ] (3)

where * is the complex conjugate operation. C2 members are the second-order scattering
information produced from the spatial averaging of the scattering vector k = [SVV, SVH]T

found in (3), where superscript T indicates the matrix transpose. It can be seen from (3) that
the diagonal value of C2 is real and the off-diagonal complex value. Thus, C11, C12, and C22
contain all the necessary backscattering information about C2, as C2 is a symmetric matrix.
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2.6. Interferometric Coherence

The interferometric coherence (also called the complex correlation coefficient) is the
normalized complex correlation between two SAR images acquired at different times. It is
a measurement of the quality of the interferometric phase and can be expressed as:

γ =
E[z1z∗2 ]√

E[|z1|2]·E[|z2|2]
(4)

where z1 and z2 are two complex and co-registered SAR images, E is the expectation
operator, and * is the conjugate operation [63]. The expectation operator in practice is
approximated using a sampled average of pixels within a given window [64]. This is
frequently referred to as multi-looking. When doing so, Equation (4) then becomes:

γ̂ =
〈z1z∗2〉√
〈|z1|2〉〈|z2|2〉

(5)

γ has a range of values of 0.0 to 1.0 and is a measure of decorrelation between z1 and
z2. It is a fundamental source of information used to exploit SAR interferograms and to
assess their quality. Low values of γ indicate decorrelation between z1 and z2, whereas high
values indicate image correlation. There are three main factors that cause decorrelation,
which are thermal noise, spatial baseline decorrelation, and temporal correlation:

γtotal = γthermalγspatialγtemporal (6)

where γthermal is the SAR system noise, γspatial is associated with the platform’s positioning
during image acquisitions, and γtemporal is caused by changes in feature scattering between
the two SAR acquisitions [43]. Changes to ground ecological or hydrological conditions
have been found to decrease γ over natural environments, such as wetlands (e.g., vegetation
phenology, soil moisture, and water level). Estimation of γ is difficult when its value is low,
which is indicative of a poor interferogram.

2.7. Sentinel-1 Image Processing

Backscatter intensity was first derived from each SAR scene using the Sentinel Appli-
cation Platform (SNAP) toolbox [65]. Steps for deriving backscatter included thermal noise
removal, radiometric calibration to sigma-nought (σ◦), TOPSAR deburst, multi-looking,
and geometric terrain correction. To obtain the backscattering coefficient (or normalized
radar cross section) expressed in decibels, the following equation was used:

σ◦(dB) = 10 log10 DN (7)

where DN is the Sentinel-1 scene pixels. Multi-looking was applied using a window of 4 × 1
in range and azimuth and terrain correction was completed using the ESA’s Copernicus
GLO-30 DEM (1.0 arcseconds). Backscatter images were exported at 15 m spatial resolution.

Coherence was computed following [66]. Sub-swaths (i.e., IW1, IW2, and IW3) for
each Sentinel-1 scene were processed separately, which was performed by splitting (i.e.,
selecting) the scenes using the S-1 TOPS Split operator in SNAP. Precise orbit information
was then applied, followed by image pairs closest in acquisition date being co-registered;
the earlier image was always designated as the ‘master’ image, and the later the ‘slave’.
This produced five co-registered pairs, each with a temporal baseline of 12 days. Co-
registration was completed based on satellite orbits along with information from the
Copernicus GLO-30 DEM. The quality of the co-registration process was also increased
by applying range and azimuth shift corrections using the Enhanced Spectral Diversity
operator in SNAP. Interferogram processing for all co-registered pairs was completed using
a coherence window of 10 × 3 pixels in the range and azimuth. The resulting coherence
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products had their burst seamlines corrected and then sub-swaths were merged with the
S-1 TOPS Merge operator. Lastly, merged coherence products were multi-looked, terrain
corrected, and exported at 15 m spatial resolution to match the intensity products (Figure 4).
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2.8. Time-Series Statistical Descriptors

After preprocessing the Sentinel-1 images, we calculated several statistical metrics
for each pixel in the time-series stack, for each polarization (VV and VH), and for both
coherence and intensity. The statistical descriptors chosen largely followed earlier studies
that performed similar analysis [30,31,67]. Multi-temporal, pixel-based statistical descrip-
tors included mean, standard deviation, coefficient of variation, median, maximum, and
minimum. These descriptors were derived using the raster package of R [68] and were
used as machine learning model inputs.

2.9. Meteorological and Hydrometric Environmental Data

Historical environmental measurements were obtained across our study’s summer
2020 observational period. This included wind speed, precipitation, water level height, and
discharge (Figure 5). All measurements were acquired from the Government of Canada’s
Meteorological Service of Canada [69]. Hydrometric data (Figure 5a) were obtained from
the Mackenzie River weather station and meteorological data (Figure 5b) from the Inuvik
weather station. These environmental datasets aided in the interpretation of SAR intensity
and coherence products and machine learning classification results.
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2.10. Topographic Data

To aid in the classification of hydro-ecological conditions within our study area, a DEM
was acquired. This was the Copernicus GLO-30 DEM [70], a Digital Surface Model (DSM)
at 30 m resolution representing all features on the Earth’s surface. Several topographic
metrics were derived from the DEM, as terrain morphology is a major influencer on water
flow and pooling across landscapes. In addition to elevation, these metrics included slope,
the wetness index [71], and Height Above Nearest Drainage (HAND [72]). All terrain
metrics were processed using python scripting and with the WhiteboxTools geospatial data
analysis platform [73]. Terrain metrics were resampled to 15 m and co-registered to the
SAR imagery.

2.11. Random Forest Modelling

A machine learning approach was used to classify the combination of the SAR time-
series data and terrain metrics. For this, we choose the Random Forest algorithm [74],
which is very popular for remote sensing applications due to reported accuracies [75],
ability to handle non-normally distributed datasets with high dimensionality and multi-
collinearity [76], computational efficiency [77], and insensitivity to overfitting [78].

Random Forest is a robust, non-parametric ensemble learning algorithm that combines
multiple decision trees models for problem solving using a bootstrap aggregating (i.e.,
bagging) method [79]. With bagging, each decision tree in the forest uses a random subset
of samples from the dataset with replacement, resulting in each tree being unique. This
training process uses two-thirds of the samples, while the remaining one-third is employed
to independently cross-validate the model’s performance. This one-third of samples is
referred to as out of bag (OOB). A final decision is then made by majority voting, whereby
the membership class with the most prediction votes is selected. This leads to more accurate
and stable classification results while mitigating overfitting [79]. The premise here is that a
large ensemble of uncorrelated models will perform better than any single model.

To implement Random Forest, we set two key parameters—first was the number of
randomly sampled variables used to split each node of a decision tree (mtry), and second
is the number of generated decision trees (ntree). Rather than arbitrarily setting these
parameters, we applied an algorithm-tuning process to find optimal values. A search
function was used for mtry, whereby a minimum improvement in error (5%) was required
for the search to continue until an optimal value was found, whereas ntree was assessed
in incremental steps of 50 trees. Each parameter was assessed using OOB error. Random
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Forest tuning and classification were run using the randomForest and Caret packages in
R [68].

A total of 11 Random Forest models were built in this study, each representing different
optimally chosen model parameters (i.e., mtry and ntree) and different input data. These var-
ious models were then statistically examined, allowing for an understanding of the unique
and combined contributions of SAR/InSAR and topographic data for hydro-ecological
condition classification.

2.12. Accuracy Assessment

Random Forest model classifications were validated using the independent reference
data polygons described in Section 2.3. Validation statistics included overall accuracy
and per-class precision, recall, and F1 score. Statistical equations for these metrics are
the following:

Overall Accuracy =
Number of Correctly Classified Samples

Number of Total Samples
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 Score =
2× Precision × Recall

Precision + Recall
(11)

where TP are true positives (correct hit), FP false positives (false alarm), and FN false
negatives (miss). F1 score is the harmonic mean (i.e., weighted average) of precision
and recall.

3. Results and Discussion
3.1. Temporal Observations of Coherence and Intensity

Prior to classification tests, the temporal evolution of SAR variables was observed.
Figure 6 shows boxplots of time-series coherence for each class and image pair. For both
VV and VH, coherence was found to be highest for most classes at the beginning of the
ice-free season when discharge and water levels were greatest from runoff and increased
precipitation (Figure 5). Coherence was then visibly lowest from 25 July to 6 August
during the peak of the summer growing season. This suggests that flooded vegetation
(e.g., wet woody areas) was maintaining a consistent double-bounce scattering during
very wet periods [44,80,81], whereas vegetation phenological changes (i.e., green-up) and
landscape drying result in decorrelation. Moreover, image pairs following this period
(i.e., during August) showed a minor increasing trend in coherence during a period of
relatively stable flow and water levels. For VV, the mountain/unvegetated class exhibited
the highest coherence across the time series, followed by tundra and wet woody areas. Dry
woody, wet graminoid, and open water areas all displayed rather low coherence in both
VV and VH, around or below 0.3, and regardless of image pair. Open water in particular
was very low with coherence values closer to 0.25 for both VV and VH. This is because
smooth water bodies reflect the SAR signal away from the sensor, causing decorrelation.
Nevertheless, these values of coherence were distinctly lower than other classes, producing
a unique signal for this open water class. With VH, wet woody areas were the most coherent
class, followed by tundra and mountain/unvegetated areas. Wet woody surface types
were also far more coherent in VV then wet graminoid surface types. Other studies have
noted a similar observation [29,31,82] in that flooded woody vegetation (e.g., in swamps or
peatlands) produce greater return signal than herbaceous vegetation due to double-bounce
scattering from trunks, branches, and stems. This allows for maintenance of coherence over
longer temporal baselines.
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Several studies have found the co-polarization channel (i.e., VV or HH) of a SAR to
maintain better coherence than the cross-polarization channel (i.e., VH or HV), especially
for hydrological applications such as inundation monitoring or wetland mapping [82–84]
and regardless of wavelength (e.g., X-, C-, or L-band). This is because of the physics of
Fresnel reflection from dielectric surfaces, which produces stronger backscatter in the HH
channel than the VV [31]. This observation holds true in the case of this study, whereby all
six hydro-ecological classes of interest maintained highest coherence in the co-polarization
VV (Figure 6).

Figure 7 shows the time series of backscatter intensities (σ◦) for each class of interest.
The dry woody class had a relatively strong backscatter time series with VV (−9 dB) and
VH (−16 dB) maximums on August 6 and lows on August 30, hence following the peak
and conclusion of the growing season. Evidently, the backscatter is being influenced by the
amount of leaves and branches (i.e., phenology) that cause volume scattering. Wet woody
and mountain/unvegetated areas showed a similar trend with VV and VH backscatter
intensity maximums on August 06. Tundra areas showed highest VV (−12 dB) and VH
(−17 dB) backscatter intensities in early July, followed by a general and minor decline
towards the end of August. Earlier onset of greenness for low shrub tundra landcovers
has been observed in other remote sensing research [85]. Open water areas showed a
pronounced difference in scattering with the lowest backscatter intensities of all classes
in both SAR polarizations, although open water backscatter intensities were stable in the
VH time series and highly variable from date to date in VV. Water bodies typically act as
specular reflectors of SAR energy (i.e., forward scattering) due to their smooth surfaces [86].
However, wave development and fetch can disrupt the often flat/smooth target geometry
of surface water, creating roughened surfaces leading to an increase in diffuse scattering.
This was observed in the open water VV time series, in which the backscatter patterns
were broadened, and intensities were highest on image acquisition dates corresponding
with high wind speeds (Figure 5b). The wet graminoid class demonstrated the most signal
variability, with a strong incline in intensity that reached a maximum VV backscatter of
−8 dB on August 6 and VH backscatter of −18 dB on August 30. These distinct changes in
the intensity time series are attributable to an increase in double-bounce scattering from
tall, mature graminoids [87], which become more exposed as their phenology changes and
water level heights decrease (Figure 8). Under such conditions, when the vegetation–water
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interface is pronounced creating a right angle, deflected backscatter from double-bounce
(i.e., dihedral) scattering is high [88].

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 7. Time-series evolution of VV and VH SAR backscatter intensity. (a–c) dry classes, and (d–
f) wet classes. 

 
Figure 8. WorldView-3 false color example of wet graminoid areas highlighted in yellow. These 
emergent dominated areas are associated with shallow wetlands and lakes, where water levels are 
very dynamic. 

3.2. Feature Space Analysis 
The feature space positions of each class were also visually observed, prior to classi-

fication, for SAR intensity and coherence variables. Figure 9 shows the feature space po-
sitions based on the mean value derived from the SAR time-series stacks. Open water 

Figure 7. Time-series evolution of VV and VH SAR backscatter intensity. (a–c) dry classes, and (d–f)
wet classes.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 7. Time-series evolution of VV and VH SAR backscatter intensity. (a–c) dry classes, and (d–
f) wet classes. 

 
Figure 8. WorldView-3 false color example of wet graminoid areas highlighted in yellow. These 
emergent dominated areas are associated with shallow wetlands and lakes, where water levels are 
very dynamic. 

3.2. Feature Space Analysis 
The feature space positions of each class were also visually observed, prior to classi-

fication, for SAR intensity and coherence variables. Figure 9 shows the feature space po-
sitions based on the mean value derived from the SAR time-series stacks. Open water 

Figure 8. WorldView-3 false color example of wet graminoid areas highlighted in yellow. These
emergent dominated areas are associated with shallow wetlands and lakes, where water levels are
very dynamic.



Remote Sens. 2022, 14, 1123 14 of 26

3.2. Feature Space Analysis

The feature space positions of each class were also visually observed, prior to classifica-
tion, for SAR intensity and coherence variables. Figure 9 shows the feature space positions
based on the mean value derived from the SAR time-series stacks. Open water showed a
clear separability from all other classes when the VV intensity variable was plotted against
other VH intensity and VV coherence (Figure 9a,c). Combining co- and cross-polarization
VV and VH intensity separated the wet graminoid class well (Figure 9a). The wet woody
class generally showed high overlap with several classes, both wet and dry, and in all fea-
ture space plots, although ellipse centers had less overlap when a combination of coherence
and intensity variables were plotted (Figure 9c,d). The dry woody class feature cluster
center was best separated using the cross-polarization VH coherence and VH intensity
(Figure 9d). Mountain/unvegetated areas showed variable feature space positioning in all
graphs, although were best separated using VV and VH coherence (Figure 9b). This aligns
with the distinct and high coherence values seen in Figure 6. Tundra areas had relatively
high overlap in all feature space plots, indicating the poorest separability. It is likely that a
combination of topographic and SAR data, including both intensity and coherence in the
co- and cross-polarization channels, is necessary for accurate classification and separability
of these detailed hydro-ecological classes.
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Figure 9. Feature space scatterplots for SAR intensity and coherence variables. Plots were created
using the mean time-series descriptor. Ellipses represent the 95% confidence-level regions. (a) VH
and VV intensity, (b) VH and VV coherence, (c) VV intensity and VV coherence, and (d) VH intensity
and VH coherence.
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3.3. Classification Results
3.3.1. Effects of Model Hyperparameter Tuning

OOB data were used to obtain an internal and unbiased running estimate of classifica-
tion error while incrementally adding trees to the forest [89]. This process allowed each
Random Forest model to be fine-tuned based on the input variables. Figure 10a–k shows
the results of the hyperparameter tuning process for all 11 Random Forest models. The
graphs in Figure 10 show the average OOB model error rate curve along with per-class OOB
error and the optimal mtry value. mtry values varied by model and ranged from 2 to 4. It is
evident that an increase in model complexity (i.e., input variables) reduced overall model
error. In general, VV and VH intensity (Figure 10d,e) produced lower OOB error rates
than VV and VH coherence (Figure 10b,c). The synergistic use of coherence and intensity
greatly decreased OOB error (Figure 10h), which aligns with the findings of previous stud-
ies that demonstrated InSAR and backscatter features to be complimentary for capturing
hydrological patterns [30,44,61,90,91]. Inclusion of topographic data noticeably improved
all Random Forest model performances, and even performed relatively well in isolation
with an average OOB error rate of 11.85% (Figure 10a). This is because Arctic tundra
biotic communities establish along environmental gradients, manifesting in clear areal
patterns [92]. For low lying wet areas, topographic variations create plant zonation patterns
in response to flooding frequency and duration, and soil moisture. The wettest areas of
the Mackenzie Delta support shallow standing water, wetlands and lakes, whereas areas
slightly elevated are subject to variable flooding or pulsing hydroperiods and the ensuing
drainage processes, leading to the establishment of wet tolerant graminoids, shrubs, or
trees, depending on elevation (i.e., wet graminoid or wet woody land covers [93]. The
tussock-forming tundra areas are elevated higher outside the delta, with drier conditions
that create their own micro-uplands that are distinct from wet areas. The Random Forest
model using all intensity, coherence, and topographic variables produced a lowest OOB
error of 5.69% (Figure 10k). In several Random Forest models, the wet woody class had the
highest per-class OOB error, whereas open water was often the lowest.

3.3.2. Classification Accuracy Assessments

Table 1 presents the independent per-class accuracy assessments for all 11 Random
Forest model scenarios which varied based on input predictor variables. Overall, these
independent assessments relate closely to the internal OOB model estimates presented in
Figure 10. It is apparent from these statistical results that the combined use of intensity,
coherence, and topography is required to accurately discriminate the complex hydro-
ecological classes of the Mackenzie Delta and surrounding region. Each set of predictor
variables offers differing characterization capabilities depending on their sensitivity to
hydrological or ecological features.

For the wet classes (i.e., open water, wet graminoid, and wet woody), the co-polarization
VV intensity (model 4) identified open water areas more accurately than coherence or to-
pography with an F1 score of 0.860. In most cases, the open water class had the highest
F1 score of the three wet classes, with model 11 achieving a highest F1 score of 0.955. This
was followed by the wet graminoid class; wet graminoid areas were mostly incoherent
(Figure 6) and thus VV or VH coherence could not identify them accurately. However,
their intensity time series was considerably distinct (Figure 7), especially in VV where
double-bounce scattering from flooded vegetation is more prevalent [94,95] depending
on phenological stage. This was reflected in the VV intensity model (model 4) with an
F1 score of 0.590. A highest F1 score of 0.921 was achieved with model 11 for the wet
graminoid class. Overall, wet woody surface types were the most difficult class to classify.
This is despite the relatively high coherence from this class (Figure 6). It was only once
topographic data were combined with intensity or coherence data (models 9 and 10) that
this class could be classified accurately. Model 11 achieved a highest F1 score of 0.682 for
the wet woody class.
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Most coherence or intensity only SAR scenarios (models 2 to 7) had difficulty classify-
ing dry land cover types (i.e., dry woody, tundra, and mountain/unvegetated). The dry
upland classes contained various combinations of short statured (i.e., height) shrubs, trees,
or herbaceous vegetation, often producing minor differences in scattering mechanisms
and absent of a strong and separable double-bounce signal more commonly associated
with flooded states. Ullmann et al. [19] also noted the difficulty in using the VV/VH dual-
polarization mode associated with Sentinel-1 for mapping of Tuktoyaktuk’s Arctic tundra
landcover types; this earlier study suggested that a multi-frequency, multi-polarization, or
multi-sensor approach is necessary for such applications. Nonetheless, the combination of
both VV and VH coherence and intensity inputs (model 8) did result in relatively adequate
F1 scores for the dry upland classes, ranging from 0.402 to 0.747. A multi-source approach
with the inclusion of topographic information significantly reduced upland classification
confusion, with model 11 resulting in F1 scores of 0.815–0.826 for these landcover types.
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Table 1. Summarized per-class accuracy assessment statistics, displayed as a heatmap.
OW = open water; WG = wet graminoid; WW = wet woody; DW = dry woody; TU = tundra;
MU = mountain/unvegetated; DEM = digital elevation model; C = coherence; I = intensity.

Model Inputs Statistic OW WG WW DW TU MU

1 DEM
Precision 0.625 0.952 0.587 0.429 0.725 0.993

Recall 0.926 0.372 0.084 0.877 0.875 0.461
F1 score 0.746 0.084 0.148 0.577 0.793 0.630

2 CVV
Precision 0.441 0.000 0.056 0.318 0.376 0.811

Recall 0.752 0.000 0.002 0.504 0.855 0.128
F1 score 0.556 0.000 0.004 0.390 0.522 0.222

3 CVH
Precision 0.366 0.000 0.625 0.265 0.329 0.880

Recall 0.753 0.000 0.010 0.399 0.685 0.044
F1 score 0.492 0.000 0.019 0.319 0.445 0.083

4 IVV
Precision 0.762 0.954 0.000 0.408 0.443 0.929

Recall 0.988 0.427 0.000 0.877 0.804 0.026
F1 score 0.860 0.590 0.000 0.557 0.571 0.050

5 IVH
Precision 0.642 0.751 0.000 0.442 0.398 0.735

Recall 0.983 0.141 0.000 0.880 0.783 0.025
F1 score 0.776 0.237 0.000 0.588 0.527 0.048

6 CVV, CVH
Precision 0.485 0.000 0.088 0.356 0.400 0.899

Recall 0.817 0.000 0.003 0.592 0.886 0.142
F1 score 0.609 0.000 0.006 0.445 0.552 0.246

7 IVV, IVH
Precision 0.754 0.911 0.167 0.463 0.457 0.940

Recall 0.988 0.579 0.004 0.898 0.813 0.079
F1 score 0.856 0.708 0.008 0.611 0.585 0.145

8
CVV, CVH,
IVV, IVH

Precision 0.797 0.932 0.153 0.608 0.457 0.962
Recall 0.993 0.571 0.009 0.968 0.944 0.254

F1 score 0.884 0.708 0.017 0.747 0.616 0.402

9 CVV, CVH,
DEM

Precision 0.612 0.973 0.908 0.614 0.731 0.991
Recall 0.956 0.312 0.529 0.938 0.930 0.534

F1 score 0.746 0.472 0.668 0.742 0.818 0.694

10 IVV, IVH,
DEM

Precision 0.914 0.990 0.866 0.570 0.749 0.993
Recall 0.993 0.831 0.321 0.934 0.906 0.725

F1 score 0.952 0.903 0.468 0.708 0.820 0.838

11
CVV, CVH,
IVV, IVH,

DEM

Precision 0.919 0.993 0.919 0.700 0.737 0.993
Recall 0.994 0.859 0.542 0.975 0.939 0.706

F1 score 0.955 0.921 0.682 0.815 0.826 0.826

Figure 11 presents the overall accuracy statistics for all 11 Random Forest models. SAR
intensity models (models 4 and 5) produced higher overall accuracies than SAR coherence
models (models 2 and 3). In both cases, combined dual-polarimetric information (i.e., VV
and VH; models 6 and 7) from intensity or coherence performed better than use of only one
SAR channel (i.e., VV or VH; models 2 to 5). Several previous studies examining InSAR
coherence for hydrological applications have included only the co-polarization channel of
a SAR (i.e., VV or HH) with the assumption that this channel is more sensitive to surface
water and flooded conditions [29–31]. While this is true in many instances, our study
highlights the collective contributions of co- and cross-polarization SAR data for hydro-
ecological characterization. This aspect of our study is important and can be attributed
to the sensitivity of VH to vegetation canopy structures and volume scattering [95,96].
Merging intensity and coherence data (model 8) produced a relatively high overall accuracy
of 64%. This SAR-only result is encouraging when considering the complexity of hydro-
ecological landcover classes identified, the spatial extent of the Sentinel-1A scene, and
that high-latitude regions are often cloudy with low-light conditions which limits the use
of optical sensors. Mapping of Arctic tundra ecosystems therefore demands the use of
SAR methods, which allow for better sampling due to cloud independence [97], although
inclusion of topographic data significantly improved classification results, with model 11
achieving the highest overall accuracy of 84%.
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3.3.3. Variable Importance

A significant by-product of Random Forest calculations are measures of feature im-
portance [79]. This algorithm characteristic is important for understanding parameter
predictive power. Model 11 (Figure 12), which used all topographic and SAR time-series
predictor variables, was selected for variable importance analysis since it resulted in the
most significant overall accuracy (84%). For this study, we analyzed predictor power based
on the distribution of the average minimal depth for each input variable [98]. The concept
of minimal depth provides a measure of the distance of a variable to the root of the tree, thus
allowing for an understanding of a variable’s role in the model structure and prediction.
This is because at each node in the model, a random subset of predictor variables is used
to make a split in the data; the most strongly associated variable is the one used to make
the split. This indicates that variables closer to the root have stronger predictor power,
are more important, and are most strongly associated with the dependent variables (i.e.,
output classes).

Figure 13 displays the top 20 variables from model 11 calculated using top trees. The
smaller the mean minimal depth, the more important the predictor variable is. All four
topographic variables, including elevation, HAND, slope, and the wetness index appeared
as top 20 variables, further demonstrating the role topography plays in this Artic tundra
landscape [92]. The most important predictor variable was the mean VV intensity, which
is understandable due to VV’s sensitivity to hydrological conditions including moisture,
flooding, and the accompanying double-bounce scattering mechanism. The mean VV
coherence was also ranked very high at number three, furthering this understanding.
Thus, the temporal signatures (i.e., those that are stable, and those that are dynamic) of
VV coherence (e.g., Figure 6) and VV intensity (Figure 7) were captured well within the
time-series statistical descriptors, resulting in strong classification predictive power. Nine
of the top 20 variables were SAR intensity variables, indicating that SAR intensity provides
greater predictor power in this landscape than SAR coherence.
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3.3.4. Limitations and Future Analysis

Supervised data classification using machine learning algorithms such as Random
Forest is a convenient and accurate means to land cover determination and delineation.
However, there are various limitations that must be considered such as the potential of
overfitting, difficulty in transferability from one site to another, run-time performance,
and the requirements of time-consuming and sometimes costly training and testing data
preparation [79], whether that be by in situ field methods, which are considered “gold
standard”, or photointerpretation. The former is incredibly challenging in remote Arctic
tundra environments, and the latter can be prone to human error and noise, even for an ex-
perienced image analyst. Regardless, quality training data of sufficient size (i.e., number of
samples) is a requirement for machine learning algorithms such as Random Forests [99,100].
Without such a dataset, acceptable classification accuracies are difficult to achieve, giving
rise to the problematic computational threat of “garbage-in-and-garbage-out” [101]. Our
study presents a workflow that identifies the hydro-ecological state of Arctic tundra land-
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covers with both quantitatively and qualitatively (i.e., through visual inspection) acceptable
results; however, it is recommended that future research assesses unsupervised clustering
algorithms. Sometimes labelled sample data are not available, and thus unsupervised
learning may present an alternative approach to thematic map generation. For example, in
a recent study, Minotti et al. [102] used a Self-Organizing Map (SOM) neural network to
cluster InSAR data from Sentinel-1 for wetland hydroperiod pattern.

Our mapping approach was also applied using pixel-based image analysis (PBIA)
which, when applied to heterogeneous areas such as coastal deltas or Arctic tundra terrain,
has limitations. For example, the heterogeneity in spatially near pixels, the occurrence of
mixed pixels, and the effects of hydrological and ecological differences within a single class
that may result in speckled noise [103]. Thus, it is suggested that this classification approach
applies object-based image analysis (OBIA) in future work to address the heterogeneity of
this dynamic landscape, as OBIA has shown to increase classification accuracies in many
previous studies [75,104].

The availability of SAR satellites with open data policies and short revisit times, such
as Sentinel-1A/1B, has made InSAR analysis more realizable for the geospatial community.
This has resulted in many recent studies demonstrating the efficacy of time-series InSAR
products over a variety of environments. Despite these promising results, readily available
coherence products are still limited. For example, the popular cloud-computing platform
Google Earth Engine contains only Ground Range Detected (GRD) Sentinel-1 data, meaning
the phase information necessary for coherence is not available [105]. As remote sensing
analysis moves farther away from local desktop processing, widespread adoption of both
SAR intensity and coherence may be challenging, despite demonstrated applications.
Moreover, the learning curve for InSAR processing may be steep for users more accustomed
to conventional intensity products. Fortunately, there are some recent options designed
to address the underutilization of InSAR products—one of which is the European Space
Agency’s Geohazards Thematic Exploitation Platform (GEP), an R&D activity designed
for large scale Earth observation data processing. Millard et al. [67] used this platform for
Sentinel-1 InSAR processing and peatland mapping, although they noted that processing
options were limited in comparison to a dedicated InSAR processing software (e.g., SNAP).
Piter et al. [106] discuss other cloud-based platforms including CODE-DE and the Alaska
Satellite Facility’s OpenSARLab and present their advantages and limitations. Improving
the adoption of coherence measurements depends on the remote sensing community
embracing InSAR cloud computing techniques, and thus future analysis should assess
these resources accordingly. Such efforts would relieve SAR/InSAR users of big data
downloads and processing time.

Lastly, while Sentinel-1 offers arguably the most consistent and reliable open-source
time-series SAR data, its dual-polarimetric channels (i.e., VV and VH) and C-band wave-
length are somewhat limiting characteristics. Of the co-polarized SAR channels, HH is
favored because of its sensitivity to surface water and flooded conditions [95,107]. As a
result, the HH polarization has shown to produce higher coherence than VV over wet envi-
ronments such as coastal deltas [83]. The medium wavelength microwaves of Sentinel-1
(i.e., C-band) are also more sensitive to surface features which can mask significant co-
herence information [29]. In contrast, longer-wavelength L-band SAR data, being less
sensitive to surface roughness due to canopy penetration capabilities, has proven fruitful
for hydrological applications [44]. Future research should emphasize a combined multi-
frequency SAR approach for hydro-ecological Arctic tundra mapping. Upcoming L-band
SAR missions such as ALOS-4 and NASA-ISRO (NiSAR) offer promising opportunities for
this [108].

4. Conclusions

In this study, we presented a machine learning workflow and preceding analysis
using SAR/InSAR time-series products derived from Sentinel-1A for high-latitude hydro-
ecological landcover characterization over one growing season. To our knowledge, very lit-
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tle previous research has been dedicated to this over Arctic tundra environments. Moreover,
while knowledge of temporal landscape wetness is important for hydrological analysis, this
information lacks the additional vegetation detail necessary for accurate greenhouse gas
emission modelling, such as carbon and methane. Our study established a methodology
capable of deriving this critical hydro-ecological information, which, considering northern
ecosystems and their sensitivity to current climate warming, will be important for updating
over forthcoming years as permafrost thaw continues to alter Arctic tundra conditions.

Key findings from our study included the following:

1. Wet woody, tundra, and mountain/unvegetated landcovers maintained the highest
coherence over this study’s observation period, whereas wet graminoid, dry woody
and open water landcovers showed the lowest coherence.

2. Coherence was generally highest at the beginning of this study’s observation period,
when water levels and discharge were high, whereas decorrelation occurred from
phenological changes and landscape drying.

3. Open water and wet graminoid landcovers demonstrated the most variability in
backscatter intensity.

4. SAR backscatter intensity was able to classify hydro-ecological classes more accurately
than InSAR coherence.

5. When intensity and coherence were combined, overall classification accuracies and
per-class F1 score values were improved, suggesting that these SAR/InSAR variables
are complimentary.

6. Inclusion of topographic variables improved all machine learning model outcomes, a
result of topography’s control on Arctic tundra biotic communities.

7. A combination of coherence, intensity, and topographic variables resulted in a highest
overall classification accuracy of 84%.

8. The co-polarized VV channel demonstrated stronger predictor power than the cross-
polarized VH.

The Arctic tundra plays a significant role in global climate regulation, thus making the
mapping and monitoring of these sensitive environments and their structure and function
a significant task that is crucial for human adaptation. Our findings will help advance
knowledge around these sensitive ecosystems, providing a means for status and trends
updates at a suitable spatial and temporal detail.
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