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Abstract: Sentinel-2 offers great potential for monitoring water quality in inland and coastal waters.
However, atmospheric correction in these waters is challenging, and there is no standardized ap-
proach yet, but different methods coexist under constant development. The atmospheric correction
Case 2 Regional Coast Colour (C2RCC) processor has been recently updated with the C2X-COMPLEX
(C2XC). This study is one of the first attempts at exploring its performance, in comparison with
C2RCC and C2X, in inland and coastal waters in the east of the Iberian Peninsula, in retrieving water
surface reflectance and estimating chlorophyll-a ([Chl-a]), total suspended matter ([TSM]), and Secchi
disk depth (ZSD). The relationship between in situ ZSD and Kd_z90max product (i.e., the depth of the
water column from which 90% of the water-leaving irradiance is derived) of the C2RCC processors
demonstrated the potential of this product for estimating water clarity (r > 0.75). However, [TSM] and
[Chl-a] derived from the different processors with default calibration factors were not suitable within
the targeted scenarios, requiring recalibration based on optical water types or a shift to dynamic
algorithm blending approaches. This would benefit from switching between C2RCC and C2XC,
which extends the potential for improving surface reflectance estimates to a wide range of scenarios
and suggests a promising future for C2-Nets in operational monitoring of water quality.

Keywords: Sentinel-2; atmospheric correction; validation; C2X-COMPLEX; water quality

1. Introduction

The quality of inland and coastal waters is increasingly threatened by human-driven
activities and climate change [1], requiring timely and accurate information on the water
quality parameters to understand ecosystem dynamics [2] and achieve the Sustainable
Development Goals [3]. Water quality involves the measurement of the concentration of
many parameters, including phytoplankton biomass, total suspended matter, and water
transparency. These are key indicators of changes in the water column that provide valuable
information on, for instance, the trophic and ecological status, the nutrient surplus, and the
particulate load in the water column [4]. Due to the high spatiotemporal variability, water
quality monitoring requires frequent, global, and systematic measurements.

Accomplishing these demands, the new generation of Earth observation satellites
such as Landsat and Sentinels constellations provide free systematic data with enhanced
radiometric, spatial, and temporal resolutions with respect to the previous generation of
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Earth observation satellites. In particular, the Sentinel-2 satellites (S2A and S2B) operated
by the European Space Agency (ESA) have opened up new potential for monitoring
water quality in a wide range of geographical scopes [5,6]. However, achieving realistic and
systematic water reflectance and, thus, water quality estimates from satellite remote sensing
is challenging. Low reflectance of water in the visible–near infrared (VIS–NIR) regions of
the spectrum [7] prevents water-leaving reflectance from reaching more than 20% of the
total reflectance sensed at the top of the atmosphere (TOA), while atmospheric contribution
can reach up to 90% [8]. Correcting the contribution of atmospheric constituents (such
as gases and aerosols) in the captured images (radiance at the satellite sensor) for each
date and location is a major issue in remote sensing of aquatic environments. Atmospheric
correction is also challenged by additional effects such as the presence of sun glint (specular
reflection of sunlight over water) or land adjacency (radiance from surrounding land
affecting closest water pixels), which are complex to estimate and site-specific [9]. In
coastal and inland waters these effects are frequently coupled with high variability and
low covariance in optically active constituents. In these waters, classified as case-2, the
inorganic and/or organic sediments make an important or dominant contribution to the
optical properties [10], requiring high accuracy and precision in the atmospheric correction
algorithms to successfully retrieve water constituents.

Atmospheric correction in case-2 waters has not been solved yet. As a result, huge
efforts have been made to develop atmospheric correction processors, covering a wide
range of different methods [11–13]. However, the performance of the processors may
differ depending on the scenario (sun and observation geometry, atmospheric, optical,
and site-specific conditions), and there is no standardized approach yet, but atmospheric
correction processors keep evolving as new approaches and more data become available.
This makes it necessary to continue validating different atmospheric correction approaches
as well as water quality retrieval methods with in situ data accounting for a wide variety of
water types and environmental conditions.

The atmospheric correction Case 2 Regional Coast Colour (C2RCC) processor has
been updated. The C2RCC is a development of the original Case 2 Regional processor [14]
adapted to different multispectral satellites (e.g., Sentinel-2, Landsat-8). The most recent
update (available since February 2021) includes a new processor trained for atmospheric
correction in complex waters. The C2RCC thus currently accounts for three processors
(i.e., C2-Nets: C2RCC, C2X, and C2X-COMPLEX) using different training datasets within a
neural network (NN) approach.

This study focuses on the validation of the remote sensing reflectance and key wa-
ter quality parameters retrieved from Sentinel-2 Multispectral Imagery (S2-MSI) processed
with the different C2-Nets. The validation datasets include in situ measurements of above-
water radiometry (bottom of atmosphere reflectance, BOA), chlorophyll-a concentration
([Chl-a]) data as an indicator of phytoplankton biomass, total suspended matter ([TSM]) as
an indicator of particulate load, and Secchi disk depth (ZSD) measurements related to water
transparency. The study areas comprise a set of 12 different inland reservoirs and transitional
and coastal waters at the Eastern Iberian Peninsula (Spain). The objectives of the study
were to: (i) assess and compare the performance of C2-Nets for atmospheric correction of
case-2 waters; (ii) validate C2-Nets-derived water quality products (i.e., [Chl-a], [TSM],
and ZSD); (iii) define potential use cases and main constraints for C2-Nets-based operational
water quality monitoring.

2. Materials and Methods
2.1. Study Areas

Ten freshwater reservoirs (ca. 1 PSU), a coastal bay (Alfacs bay, ca. 35 PSU), and
Pétrola, an endorheic saline lagoon (ca. 60 PSU) were included in this study (Figure 1); all
of them are located in the Eastern Iberian Peninsula (Spain). The study areas have different
altitudes with respect to the sea level and include diverse morphological and biophysical
characteristics, covering a wide variety of trophic states (Table 1). The monitoring of water
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quality in these areas is challenging for remote sensing due to the complex and variable
characteristics of these environments (e.g., high spatiotemporal variability, small, shallow
waters, and land adjacency effects).
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Table 1. Descriptors of study areas by location, including the number of valid S2 images and in situ measurements (Nxxx), the altitude (elevation), surface, salinity,
and the ranges within S2 dates of atmospheric pressure, ozone (O3), [Chl-a], [TSM], and ZSD.

Location NDates
Elevation

(m)
Surface
(km2)

Salinity
(PSU) Pressure (hPa) O3 (DU) NRadiometry N[Chl-a]

[Chl-a]
(mg/m3) NTSM [TSM] (g/m3) NZSD ZSD (m)

Alarcón 2 814 68.4 1 [1014.1–1016.64] [247–252] 10 10 [1.1–5.26] - - 10 [1.75–4.6]
Bellús 3 159 8 1 [1006.14–1007.85] [251–252] 6 6 [13.86–68.01] 6 [18.66–22.13] 6 [0.45–0.63]

Benagéber 2 530 12 1 [1011.38–1011.74] [249–277] 7 6 [2.49–12.40] 6 [1.82–2.72] 6 [4–7.7]
Beniarrés 2 321 2.6 1 [1008.54–1012.23] [258–281] 6 6 [8.36–17.17] 6 [4.42–6.97] 6 [1.15–1.8]
Contreras 6 679 27.1 1 [1002.66–1014.47] [235–280] 23 21 [0.79–2.47] 15 [1.4–28.02] 21 [0.95–7.3]

María
Cristina 1 138 3.3 1 1004 245 2 2 [2.72–2.92] 2 [10.32–11.87] 2 0.75

Pedrera 1 111 12.7 1 1014.01 255 5 5 [0.86–1.19] - - 5 [2.95–3.25]
Regajo 3 407 0.8 1 [1009.43–1015.96] [264–271] 10 10 [4.03–10.21] 10 [2.95–9.12] 10 [0.95–4.25]
Sitjar 2 584 3.2 1 [1015.56–1004] [245–275] 4 4 [0.59–0.68] 4 [2.28–2.71] 4 [2.2–3.15]
Tous 4 163 9.8 1 [1007.74–1015.65] [251–273] 9 9 [0.58–1.72] 6 [0.67–1.13] 9 [6–9.1]

Alfacs 2 0 56 35 [999.78–1011.34] [243–249] 9 9 [3.65–6.73] - - 9 [1.55–3]

Pétrola 1 852 3.4 60 [1009.28–1015.07] [239–267] 5 5 [77.58–309.2] 3 [142.27–
162.33] 5 [0.17–0.45]

Total N 29 - - - - - 96 93 - 58 - 93 -
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2.2. Field Radiometry

Water-leaving radiance was obtained by the measurement of the above-water radiom-
etry taken within a three-hour interval before or after the satellite pass. An ASD FieldSpec®

HandHeld2 spectroradiometer and an Ocean Optics (HR 4000) spectrometer were used
(Table 2). The measurement procedure to obtain water-leaving radiance was carried out
following the methodology described by Mobley, 1999 [15], with a zenith angle of 40◦

and an azimuth angle of 135◦ to minimize sun-glint perturbations. For each point, five
measurements of the water-leaving radiance and total downward irradiance were taken
using a reflectance panel made of Spectralon® (25% nominal reflectance). With this data,
remote sensing reflectance (Rrs) of each measurement (Table 1) was obtained according
to [15] and convolved to the S2-MSI spectral bands using the Sentinel-2 Spectral Response
Functions (S2-SRF v2.0) [16].

Table 2. Spectroradiometer specifications.

Instrument Ocean Optics HR4000 ASD FieldSpec®

HandHeld 2

Manufacturer Ocean Optics, Inc.; Orlando,
FL, USA

Analytical Spectral Devices,
Inc.; Boulder, CO, USA

Acceptance angle 8◦ 8◦

Spectral sampling interval 0.2 nm 1 nm
Spectral range 200–1100 nm 325–1075 nm

2.3. Water Quality Measurements

Water quality parameters included Secchi disk depth (ZSD), chlorophyll-a ([Chl-a]),
and total suspended matter [TSM] concentrations. The ZSD data were measured by sub-
merging the Secchi disk vertically and slowly into the water until it was no longer visible.
The ZSD was then defined as the maximum visible Secchi disk depth. For [Chl-a] determi-
nation, water samples were filtered through 0.4–0.6 µm GF/F glass fiber filters, extracted
using standard methods [17], and calculated with Jeffrey and Humphrey’s (1975) equa-
tions [18]. The [TSM] was measured using the gravimetric method [19]. All water quality
measurements were carried out coinciding with above-water radiometry measurements,
but not all types of in situ measurements were available for all dates and locations (Table 1).

2.4. Sentinel-2 Data

The Sentinel-2 constellation consists of two satellites (S2A and S2B). Each one has on-
board the MultiSpectral Instrument (S2-MSI). The S2-MSI TOA Level-1 (L1C) imagery includes
information along 13 spectral bands centered at different wavelengths (~443–2200 nm) and
with different spatial resolutions of 10, 20, and 60 m (Table 3). A set of 30 S2-MSI TOA (L1C)
cloud-free images were downloaded from Copernicus Access Hub [20] coinciding with field
radiometry measurements (Figure 2) and resampled to 20 m using the Graph Processing Tool
(GPT) of the Sentinel Application Platform (SNAP v8.0) [21].

2.5. Atmospheric Correction Approaches

The Case 2 Regional Coast Colour is a development of the original Case 2 Regional
processor [14], based on a multi-sensor per-pixel artificial neural network (NN) method [12].
It processes TOA images of a variety of sensors, including S2-MSI, and generates atmospher-
ically corrected images. The output data include Rrs, as well as a set of automatic products
for water quality such as [Chl-a] (conc_chla) and [TSM] (conc_tsm), and the depth of the
water column from which 90% of the water-leaving irradiance is derived (Kd_z90max).
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Table 3. S2A and S2B spectral bands, central wavelength (λ), spatial resolution, and application. Data
from Copernicus Sentinel-2 MSI user guide [22]. The field ‘C2-Nets’ indicates the spectral bands
outputted by C2-Nets (Y = yes, N = no).

Bands ID in the
Study

Spectral
Region

Spatial
Resolution (m)

λS2A
(nm)

λS2B
(nm)

Bandwidth
S2A–S2B (nm) C2-Nets

B1 B443 Coastal
aerosol 60 442.7 442.2 21–21 Y

B2 B490 Blue 10 492.4 492.1 66–66 Y
B3 B560 Green 10 559.8 559 36–36 Y
B4 B665 Red 10 664.6 664.9 31–31 Y
B5 B705 Red-edge1 20 704.1 703.8 15–16 Y
B6 B740 Red-edge2 20 740.5 739.1 15–15 Y
B7 B783 Red-edge3 20 782.8 779.7 20–20 Y
B8 B842 NIR 10 832.8 832.9 106–106 N

B8A B865 NIR narrow 20 864.7 864 21–22 Y
B9 B945 Water vapor 60 945.1 943.2 20–21 N
B10 B1620 SWIR/Cirrus 60 1373.5 1376.9 31–30 N
B11 B1620 SWIR1 20 1613.7 1610.4 91–94 N
B12 B2200 SWIR2 20 2202.4 2185.7 175–185 N
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The Case 2 Regional Coast Colour includes different processors (C2-Nets) which differ
in the NN training ranges of inherent optical properties (IOPs; Table 4). The C2RCC-Net
(here C2RCC) is the original net covering typical ranges of coastal IOPs. C2RCC was com-
plemented with the CoastColour dataset to extend the range for coastal waters including
extreme cases [23] resulting in the C2X-Net (C2X). The C2X-COMPLEX-Net (C2XC) was
trained with intermediate ranges of IOPs, larger than C2RCC and tighter than C2X [24].
C2-Nets do not include specific correction for sun glint or land adjacency. The three C2-Nets
were applied on all valid S2-MSI images (Figure 2) through the GPT of SNAP v8.0. The
parametrization for the atmospheric correction of each image included: pressure (hPa) from
NCEPR2 data [25] and O3 (DU) from AuraOMI data [26] downloaded for each location
and date from the ocean data archive of NASA [27]. Salinity (PSU) was estimated in each
location by approximation with more frequent field measurements (Table 1). Despite the
salinity of Pétrola being ~60 PSU (Table 1), it was set to 40 PSU, the maximum value ac-
cepted by the C2-Nets. Given the unavailability of water temperature measurements, it was
left as default on all dates (15 ◦C). These site-specific parameters may influence atmospheric
correction calculations introducing uncertainty in the estimation of the aerosol optical
depth and are an inherent part in the C2-Nets NN processing [23]; thus, it is recommended
to consider them for reducing estimation uncertainty. For land/water segmentation, the
valid pixel expression was set as a threshold on the SWIR band B11 (Table 3) of S2-MSI
L1C images. The threshold ranged between 0.025 and 0.11, and it was heuristically de-
fined for each location and date according to the trade-off between keeping the maximum
number of pixels of interest (water pixels inside study areas) and the minimum noise
(e.g., mountain shadows, land). From each C2-Net, bands of TOA reflectance, remote sens-
ing reflectance (Rrs), and Kd_z90max were extracted. The conc_chla and conc_tsm products
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were also generated, with the default factors and exponents (conc_chla = 21 ∗ a_pig ˆ 1.04;
conc_tsm = 1.72 ∗ b_part + b_wit ∗ 3.1). In addition, C2-Nets flags [13], which include
codes for quality control of pixels, were exported.

Table 4. IOP training ranges of the C2-Nets [23,24].

IOPs (m−1) Description C2RCC C2X C2XC

a_pig Absorption coefficient of
phytoplankton pigments [≈0, 5.3] [≈0, 51.0] [≈0, 30.81]

a_det Absorption coefficient of detritus [≈0, 5.9] [≈0, 60.0] [≈0, 17.0]

a_gelb Absorption coefficient of
gelbstoff (CDOM absorption) [≈0, 1.0] [≈0, 60.0] [≈0, 4.25]

b_wit Scattering coefficient of white
particles (calcareous sediments) [≈0, 60.0] [≈0, 590.0] -

b_part Scattering coefficient of typical
sediments [≈0, 60.0] [≈0, 590.0] -

b_tot Scattering coefficient of typical
sediment and white particles - - [≈0, 1000.0]

2.6. Match-Up Exercise

The match-up exercise was performed for the three C2-Nets Rrs separately and applied
to each validation dataset (i.e., in situ Rrs, [Chl-a], [TSM], and ZSD).

(i) A 3× 3 pixel window, centered at the coordinates of in situ measurements, was extracted
for each date and location, and C2-Nets were quality-checked in all extracted pixels by
applying the recommended flags [12]. These quality flags indicate issues related to the
scope of the training range of the used NN and/or cloudy conditions [13,23] and should
be considered for reducing potential artifacts and uncertainty.

(ii) Flagged pixels, as well as pixels with negative Rrs at bands B443, B490, B560, and
B665 (Table 3), were removed from the analysis [28], and the number of remaining
pixels within each pixel window was checked. Windows with fewer than 5 remaining
pixels were removed from the analysis.

(iii) Outliers were defined through boxplot analysis applied separately to each pixel
window and available spectral bands (B443-B783 and B865; Table 3).

(iv) Pixels with outliers in any of the bands were removed. The number of pixels within the
pixel windows was revised once more, and those with fewer than 5 pixels remaining
were removed from the analysis.

(v) The coefficient of variation (CV in Equation (1)) of B560 was computed for each
remaining pixel window, removing those with CV > 15% [28].

CV = σ/x ∗ 100 (1)

where σ is standard deviation and x is the mean.

2.7. Performance Assessment of C2-Nets

From the validation dataset to the analysis of the performance of the C2-Nets, the
workflow is summarized in Figure 3.

2.7.1. Validation of Remote Sensing Reflectance (Rrs)

Validation of Rrs was broadly based on the scoring scheme proposed in [29]. However,
match-up criteria and the number of statistics differed. In addition, all available C2-Nets
spectral bands (Table 3) were included, validated, and used for the ranking in this study. The
assessment was carried out with the maximum possible number of match-ups for each C2-Net.
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above-water measurements and satellite spectral bands by a ranking system.

(i) Bands scoring
For each C2-Net Rrs and TOA reflectance band, a set of 5 statistical parameters and

their 95% confidence intervals were calculated for each available spectral band indepen-
dently. The Root Mean Squared Error (RMSE), the Relative RMSE (RMSErel), the Bias, the
RMSE of the Residual Error (RMSERE), and the Pearson’s r, were computed and trans-
formed into relative scores as in [29], evaluating the relationship of quality dependent on
the C2-Net. For scoring purposes, Bias was used in absolute terms (|Bias|) and r was
transformed to a negative orientated value (1–r). The RMSE, RMSErel, and RMSERE were
used directly. To each property, the evaluation scores were assigned by band separately. The
C2-Net with the smallest value in the statistical property received 2 points. Then, if a value
corresponding to another C2-Net fell within the confidence interval of the best, this C2-Net
received 2 points as well. If the value of a C2-Net was outside the confidence interval of the
best but their confidence intervals overlapped, this algorithm received 1 point. Else, the
C2-Net was given 0 points. See [29] for detailed information on the scoring-based method.

(ii) Spectral shape fitting
First, the spectral bias was removed by normalizing in situ and satellite-a-derived

spectra to 560 nm (B560 in S2) before the evaluation. Chi-square tests (χ2) of the in situ and
C2-Nets-derived spectral shapes (including all available C2-Nets bands) were conducted
for each match-up, and the percentage of chi-square values lower than the 95% confidence
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level (Nχ2
95) was calculated. Finally, the mean χ2 (χ2) for each C2-Net Rrs and TOA

match-ups were derived.

(iii) Match-up efficiency
The relative number of valid match-ups (Rmatchs) was calculated as the ratio between

the valid observations after the match-up exercise for each C2-Net and the potential initial
match-ups with in situ radiometry

2.7.2. Validation of Water Quality Products

In situ [Chl-a] and [TSM] were validated with the conc_chla and conc_tsm derived
from C2-Nets with default factorization. The performance metrics selected for these
parameters were the Mean Average Error (MAE; Equation (2)), the Root Mean Squared
Error (RMSE; Equation (3)), the Bias (Equation (4)), and the Pearson’s r (r). The kd_z90max
is a variable strongly correlated with the ZSD [30,31], however, being different variables,
only the r was used for the comparison with the measured ZSD. In addition, the coefficient
of determination (R2), the slope (m), and intercept (b) of linear regression were calculated.

MAE =
1
N

N

∑
i=1
|Mi −Oi| (2)

RMSE =

√√√√√√√
N

∑
i=1

(Mi −Oi)
2

N
(3)

BIAS =
1
N

N

∑
i=1

(Mi −Oi) (4)

where Mi are the estimated values from C2-Nets and Oi the field measured ones.

3. Results
3.1. In Situ Water Quality

The inclusion of different locations and dates involved wide ranges of water quality
(Table 5). Most of the measurements corresponded to [Chl-a] < 3 mg/m3 and [TSM] < 4 g/m3

(median in Table 5). Minimum [Chl-a] and [TSM] (0.58 mg/m3 and 0.74 g/m3) were found
in the Tous reservoir related with maximum ZSD (9.1 m). Contrarily, maximum [Chl-a] and
[TSM] (309.62 mg/m3 and 162.33 g/m3) were associated with the minimum ZSD (0.17 m) in
the hypertrophic salty lagoon of Pétrola.

Table 5. Number of water quality measurements by type (N), their concentration ranges (min, max),
median, mean and standard deviation (σ).

WQ Parameters N min max median mean σ

[Chl-a] (mg/m3) 93 0.58 309.6 2.72 20.55 61.5
ZSD (m) 93 0.17 9.10 3.00 3.34 2.4

[TSM] (g/m3) 58 0.67 162.3 3.65 13.70 33.5

3.2. Match-Up Analysis

The match-up exercise was carried out in a strict manner, thus maximizing the quality
of the performance of each C2-Net. After the quality check, the number of match-ups
was reduced by between ~12% to ~66% depending on the C2-Net and the type of in situ
measurement (Figure 4). Most of the rejected match-ups were due to pixel windows having
CV > 15% in B560. For all in situ datasets, a higher number of valid match-ups was found
with C2RCC, while the lowest number was found for C2X (Figure 4).
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3.3. Validation of Rrs

Comparing C2-Nets, disregarding the different number of match-ups, the bands’
statistical results (Table A1) were translated into the similar scoring of C2RCC and C2XC in
B443-B490, highest scoring of C2RCC in B560-B665, highest scoring of C2XC in B705-B783,
and C2X ranking first in B865 (Figure 5a). Despite the winner’s variability in single bands
scoring, C2XC was the unique C2-Net scoring at all bands, ranking first in the total band
score (Figure 5b). C2X did not score in B665 and C2RCC and did not achieve any point
from B740-B865 (Figure 5a).

In general terms, all C2-Nets tended to underestimate Rrs of blue and green bands,
with most of the errors within the [−50, 50] % interval (Figure 6). Relative errors were
more dispersed between B665-B865 and C2XC, and C2X clearly improved C2RCC in cases
with greater NIR Rrs (Figure 6). These led to better fitting of C2X and C2XC Rrs in NIR
wavelengths (Figure A1) and contributed to making C2XC (which included higher relative
number of match-ups with greater NIR Rrs) the most capable of retaining the spectral shape
with χ2 closest, to 0 (χ2 = −0.02) and maximum Nχ2 = 1 (Figure 5b).

However, with C2RCC more radiometry match-ups (85%) were kept than with C2XC
(53%) and C2X (33%). Match-ups with high reflectance pixels with peaks in B560 and B705
and/or greater NIR Rrs were more susceptible to rejection with C2RCC (e.g., Pétrola in
Figure A2g), and potential match-ups related to more clear waters with lower Rrs along
the spectrum and/or a single peak in B560 were more likely rejected with C2X and C2XC
(e.g., Tous in Figure A2f). This was visible even from TOA reflectance (Figure 7), although
all C2-Nets included match-ups with different types of spectrums (e.g., Figure A2a,c).

Exploring the relation of the performance of C2-Nets with TOA reflectance, a k-means
classification (4 classes) was conducted including TOA reflectance, in situ Rrs, and C2-Nets
Rrs separately for C2-Nets (Figure 8). Clusters found for different C2-Nets were grouped
by similarity (proximity) in cluster centers. In general terms, the clusters C1 and C4
(Figure 8) grouped those pixels with TOA and C2-Nets peaks at 560 and 705 nm, frequently
associated with increasing NIR Rrs (e.g., Figure A2b,d,e). Clusters C* and C** fit in the
same category, although the small numbers of match-ups (Figure 8a) mainly highlight the
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trends of four locations and dates which were included in C1 or C4 with the C2RCC dataset
(e.g., Figure A2c) or only accepted with C2XC (Figure A2g).
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The C3 class grouped more than 50% of the valid match-ups of the three C2-Nets
(Figure 8a), including smoother TOA reflectance spectrums generally related to lower NIR
Rrs and/or presence of a single/dominant C2-Nets B560 peak (e.g., Figure A2f,h). The
match-ups of the C2 class were only included with C2RCC and C2XC (Figure 8), and all
of them correspond to the same location and date. These spectrums were characterized
by high TOA reflectance in all spectral regions (Figure 8a), including relatively high SWIR
reflectance (Figure A2d), although the in situ Rrs was similar to the measurements in C3
(Figure 8b).

3.4. Validation of Water Quality

For [TSM] and [Chl-a], the MAE, RMSE, Bias, and Pearson’s r analysis were conducted.
For assessing the Kd_z90max and ZSD relationship, only Pearson’s r was calculated. Both
for [TSM] and [Chl-a], C2RCC achieved the lowest MAE and RMSE, with BIAS closest to
0, followed by C2X and C2XC (Table 6). However, the C2XC dataset included extreme
measured [Chl-a] and [TSM] (Table 6), for which high underestimation was observed
(Figure 9a,b). Such extreme match-ups had a high impact on C2XC-derived MAE, RMSE,
and Bias (Table 6), but higher relationships between measured and derived [Chl-a] (r = 0.94)
and [TSM] (r = 0.81) from the C2XC dataset were observed (Table 6). Despite this, relative
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errors were highly variable even for [Chl-a] < 25 mg/m3 and [TSM] < 25 g/m3, leading to
uncertain retrievals, especially for [Chl-a].
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Table 6. Summary of validation of [Chl-a], [TSM], and Kd_z90max derived from C2-Nets. m and b
stand for slope and intercept of the linear regression.

C2Net Parameter In Situ
min–max

C2-Nets
min–max MAE RMSE Bias r R2 m b

C2RCC
[Chl-a]

0.58–68.01 0.43–23.68 5.7 11.5 −1.16 0.72 0.52 0.26 4.38
C2X 0.61–68.01 1.84–100.25 10.2 17.3 5.85 0.81 0.66 1.16 3.96

C2XC 0.59–309.20 0.01–139.56 17.8 48.1 −12.1 0.94 0.88 0.45 5.03

C2RCC
[TSM]

0.74–28.02 0.93–19.13 2.9 4.6 −0.13 0.75 0.56 0.65 2.17
C2X 2.28–28.02 3.84–56.22 10.9 14.9 8.77 0.68 0.46 1.42 3.95

C2XC 2.28–162.33 0.33–58.52 13.1 29.0 −2.76 0.81 0.65 0.33 9.71

C2RCC
ZSD

0.45–9.1 0.45–7.03 - - - 0.77 0.59 1.09 0.08
C2X 0.45–5.80 0.27–4.00 - - - 0.82 0.67 1.09 0.29

C2XC 0.17–7.70 0.27–6.63 - - - 0.94 0.88 0.88 0.12
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Regarding ZSD, the highest correlation was observed with Kd_z90max derived from
C2XC (r = 0.94), but r > 0.75 was retrieved with all C2-Nets (Table 6). The Kd_z90max from
C2RCC included a subset of the in situ ZSD measurements corresponding to increasingly
clear waters with ZSD > 6 m (match-ups mainly included by C2RCC). The Kd_z90max was
lower than ZSD for this set of points (Figure 9c).
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4. Discussion

To date, only C2RCC and C2X have been previously explored for retrieval of water
surface reflectance or water quality (e.g., [12,32]). This study evaluates the new C2XC
processor, comparing it to the previous C2RCC and C2X.

4.1. Performance on Retrieval of Rrs with C2-Nets

Comparing C2-Nets scoring (Figure 5), C2X and C2XC retained the spectral shape
better than C2RCC, with C2XC outperforming C2X in all bands except B560 and B865
(Figure 5a) and showing greater consistency than other C2-Nets in the relative errors of
B443-B783 through different types of waters (Figure 8d). However, with C2X and C2XC, a
great number of pixel windows were rejected (Figure 4), mainly related to oligotrophic–
mesotrophic waters. Most of these match-ups were only kept with C2RCC. Contrar-
ily, the match-ups rejected with C2RCC were related to higher Rrs and associated with
green (B560) and NIR (B705) peaks (C1 and C2 in Figure 8). In these scenarios, C2RCC
tended to highly underestimate Rrs, even overlooking spectral peaks, limiting the use
of this processor in eutrophic–hypertrophic waters. In those scenarios, C2X and C2XC
retrieved the peaks more accurately, especially in the NIR (e.g., Figure A2c,e), although they
tended to mismatch in the green peaks, especially in the presence of large B705 reflectance
(e.g., Figure A2b,e,g). This may be related to the absorption of colored dissolved organic
matter (CDOM), as found in [33] in lakes with high concentrations of optically active
constituents, where CDOM absorbs most of the light in the blue part of the spectrum [34],
complicating the optimum retrieval of IOPs and leading to mismatching of peaks in green
bands. Even so, C2X and C2XC provided for a better representation of the overall spectral
shape in more turbid waters.

The different performances of C2-Nets along different scenarios could be explained by
the different range of training datasets (Table 4) and the minimization of adverse effects by
the NN [35]. The C2RCC showed better performance in oligotrophic–mesotrophic waters,
but in ultraoligotrophic waters (clear waters with ZSD > 3 m and [Chl-a] < 2.5 mg/m3)
accurate retrieval of Rrs was complicated (e.g., Figure A2f) as also observed in [13]. The
C2XC was suitable for more complex waters (up to hypereutrophic reservoirs) but also im-
proved the performance of C2RCC in some mesotrophic scenarios, such as coastal waters in
Figure A2h. Although C2X has been observed to be more suitable for coastal and complex
waters than for clear waters [13,32,35], the reduced number of valid match-ups (33%) and
lower consistency in the accuracy along the spectrum observed with this processor made
it the most uncertain C2-Net. This could be related to the large training range of IOPs of
C2X, which may allow good Rrs retrievals to be achieved in different types of scenarios
(e.g., Figure A2b,e)—including oligotrophic–clear and eutrophic–turbid lakes [36]—although
the width of IOP ranges may also introduce a risk of diverging from the actual solution
from the inversion, leading to confusion [33].

4.2. Recommendation on the Selection of C2-Nets

The aforementioned suggests combining C2-Nets to improve Rrs estimates in a wide
range of scenarios. The choice of the C2-Nets could be limited to C2RCC and C2XC for most
of the scenarios observed in the studied areas targeted. Different studies have proposed
to switch between atmospheric correction methods depending on optical water types
(OWTs). To define OWT, [37] developed a classification based on key features of the Rrs
reflectance spectrum, such as the location of the spectral maximum, slopes, and amplitude.
However, the choice of the atmospheric correction processor strongly affects the OWT
classification and has to be performed after the atmospheric correction process. In [13],
it was observed that the accuracy of several atmosphere correction processors improved
markedly after the prior classification of water types defined by [Chl-a] and ZSD ranges
of in situ measurements. However, this kind of classification implies prior knowledge on
dynamic ranges of water quality parameters, and biophysical characteristics are not always
the unique factor defining the performance of C2-Nets (see Figure A2a,b).
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To improve these approaches, we suggest that research focused on the classification of
TOA optical types might be useful for selecting the optimum C2-Net, improving accuracy
in the retrieval of Rrs. The TOA measurements do not require prior knowledge of the
conditions of the studied area and somehow include information on the atmosphere, the
optical properties of water, and additional effects such as sun glint or land adjacency. A
simplistic classification of the TOA reflectance spectrum and its relationship with C2-Nets
choice is shown (Figure 8). Further research including more data and deeper classification
analysis should also be conducted attending to the severity of sun glint and the effect of
land-adjacency, which have a larger impact in small inland waters [38]. After selection and
processing with the optimum C2-Net, methods accounting for spectral shape, magnitude,
and distinctive Rrs spectral features (e.g., [37,39,40]) will be further evaluated for accurately
defining the OWT.

4.3. Recommendations for Water Quality Estimation with C2-Nets

For estimation of ZSD, the Kd_z90max band derived from C2-Nets showed great po-
tential (Figure 6), particularly with C2XC (Table 6). Despite this, estimating the ZSD in clear
waters seems more challenging, while in other meso-eutrophic waters, light attenuation-
related products have already demonstrated great accuracy [36]. Other studies proposed
to use the B560/B705 ratio [41] for estimating ZSD, but this approach should be more
limited to mesotrophic–eutrophic waters since in hypereutrophic waters accuracy in green
reflectance decreases, which may lead to higher uncertainty of this band ratio in turbid
waters. Regarding [Chl-a] and [TSM], both conc_chla and conc_tsm bands from C2-Nets
did not provide acceptable estimations, and their use with default parameters (factors and
exponents) is not suitable for the whole range of optically active constituent concentrations
and scenarios targeted here. The performance of C2-Nets’ [Chl-a] and especially [TSM]
products could be improved by recalibrating with in situ data the factors used in the
C2-Nets for their computation, but they might need to be adapted for specific locations.
A common alternative approach is to switch between different empirical and bio-optical
algorithms depending on the optical water type (OWT). Algorithm blending based on
OWT has proven to be superior to single algorithms when considering the entire dynamic
range of environmental conditions [40].

In general terms, for estimation of [Chl-a] in more complex waters, it would be
recommended to avoid the use of blue and green bands, with higher uncertainty in the
presence of peaks in B705. Also, in eutrophic waters, the reflectance peak of phytoplankton
shifts towards longer wavelengths, and the use of B705 is recommended [5,42,43]. Thus, in
those cases, the combined use of red and NIR bands—for which C2XC and C2X showed
better agreement with in situ Rrs in these types of waters—must be considered. For
instance, band ratios based on red–NIR combinations have been demonstrated to be able to
accurately retrieve [Chl-a] in turbid eutrophic waters [42,44,45]. In more clear waters, related
to oligo-mesotrophic status, empirical standard algorithms based on VIS combinations such
as OC2, OC3, and OC4 are frequently applied with an accurate estimation of [Chl-a] [13,40,42].
The use of blue and green bands is appropriated in oligotrophic waters (<4 mg/m3), although
red bands contain relevant information for retrieving [Chl-a] in these types of waters too [32],
and the retrieval of [Chl-a] through the combination of red and green bands has shown less
sensitivity to the atmospheric correction in oligotrophic to mesotrophic waters [6].

For the estimation of [TSM], the optimal spectral range is located between 680 and
730 nm [46], and different studies propose to exploit the B705 band, alone or in combination
with VIS bands, with which linear relationships have been observed for a wide range of
TSM concentrations [41,47,48].

5. Conclusions

The study highlights the potential of the combination of C2-Nets processors for im-
proving the accuracy and consistency of water surface reflectance estimates on a pixel-wise
basis. Within the processors, this study is one of the first attempts to test the capabil-
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ities of C2XC, the most recent evolution of the C2RCC. The results suggest that com-
bining the use of C2RCC and C2XC—depending on the pixel optical type in the TOA—
would lead to improved accuracy in the retrieval of Rrs in a wide range of waters, along
with several different scenarios. Regarding the retrieval of water quality parameters, the
C2-Nets Kd_z90max product demonstrated great capabilities as a proxy of ZSD. However,
for estimating [Chl-a] and [TSM], the use of the products included in the output of the
C2-Nets, with default factors and exponents, is limited and site-specific. Thus, different
approaches might be selected, including the recalibration of the constants in the C2-Nets
parametrization or the blending of different algorithms, depending on the optical water
type and the related performance of the atmospheric correction. An in-depth exploration
of TOA reflectance classification could contribute to an accurate selection and combination
of C2-Nets and their further evolution, which suggests a promising future for supporting
the monitoring of inland and coastal waters.

Author Contributions: Conceptualization, J.S.-G., E.P.U., E.A. and J.D.; methodology, J.S.-G., E.P.U.,
E.A., C.A. and C.T.; formal analysis, J.S.-G., E.P.U., C.A. and A.R.-V.; data curation, J.S.-G., E.P.U., C.T.
and X.S.-P.; writing—original draft preparation, J.S.-G. and E.P.U.; writing—review and editing, J.D.,
A.R.-V., C.T., X.S.-P., E.A., E.V. and C.A.; supervision, J.M.; funding acquisition, J.M. All authors have
read and agreed to the published version of the manuscript.

Funding: Jesús Soriano held a pre-doctoral grant funded by Agència de Gestió d’Ajuts Universitaris i
de Recerca (2020FI_B2 00148). Esther Patricia Urrego holds a pre-doctoral grant funded by Ministerio
de Ciencia, Innovación y Universidades (PRE2019-088232). This research was partially funded by the
European Union—ERDF and the Ministry of Science and Innovation and the State Research Agency
of Spain under project RTI2018-098651-B-C51 (FLEXL3L4—Advanced Products L3 and L4 for the
FLEX-S3 mission).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors especially acknowledge the work of the team of researchers and
technicians of the Institut d’Investigació i Tecnologia Agroalimentàries (IRTA) that participated in the
field surveys and laboratory analysis.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Table A1. Band statistics for TOA and Rrs derived from C2-Nets datasets. Best results for each band
and statistic are highlighted.

C2Net Band RMSE RMSErel RMSERE |Bias| r

C2RCC_TOA

B443

0.1260 30.900 0.0139 0.1250 0.615
C2RCC_Rrs 0.0043 0.548 0.0030 0.0031 0.817
C2X_TOA 0.1250 20.200 0.0109 0.1240 0.672
C2X_Rrs 0.0052 0.4970 0.0044 0.0029 0.568

C2XC_TOA 0.1250 28.200 0.0159 0.1240 0.682
C2XC_Rrs 0.0036 0.806 0.0035 0.0004 0.739
C2RCC_TOA

B490

0.1020 14.850 0.0193 0.0997 0.639
C2RCC_Rrs 0.0051 0.552 0.0036 0.0036 0.853
C2X_TOA 0.1010 10.300 0.0140 0.0998 0.717
C2X_Rrs 0.0059 0.476 0.0049 0.0033 0.728

C2XC_TOA 0.1030 14.100 0.0207 0.1006 0.642
C2XC_Rrs 0.0041 0.886 0.0041 0.0000 0.814



Remote Sens. 2022, 14, 1124 19 of 24

Table A1. Cont.

C2Net Band RMSE RMSErel RMSERE |Bias| r

C2RCC_TOA

B560

0.0819 8.490 0.0235 0.0785 0.740
C2RCC_Rrs 0.0047 0.587 0.0040 0.0025 0.894
C2X_TOA 0.0849 5.720 0.0189 0.0828 0.794
C2X_Rrs 0.0062 0.517 0.0061 0.0010 0.747

C2XC_TOA 0.0861 8.290 0.0226 0.0831 0.635
C2XC_Rrs 0.0051 0.921 0.0050 0.0003 0.809
C2RCC_TOA

B665

0.0557 20.720 0.0252 0.0496 0.517
C2RCC_Rrs 0.0022 0.543 0.0017 0.0014 0.972
C2X_TOA 0.0551 11.080 0.0212 0.0509 0.720
C2X_Rrs 0.0039 0.600 0.0038 0.0006 0.863

C2XC_TOA 0.0579 20.600 0.0251 0.0522 0.332
C2XC_Rrs 0.0018 0.710 0.0018 0.0000 0.921
C2RCC_TOA

B705

0.0519 29.300 0.0262 0.0449 0.581
C2RCC_Rrs 0.0036 0.560 0.0033 0.0015 0.845
C2X_TOA 0.0524 14.226 0.0237 0.0467 0.798
C2X_Rrs 0.0026 0.793 0.0026 0.0004 0.949

C2XC_TOA 0.0593 29.300 0.0283 0.0520 0.690
C2XC_Rrs 0.0024 0.753 0.0024 0.0004 0.985
C2RCC_TOA

B740

0.0467 78.200 0.0257 0.0391 0.282
C2RCC_Rrs 0.0014 4.690 0.0014 0.0005 0.741
C2X_TOA 0.0422 42.000 0.0209 0.0367 0.476
C2X_Rrs 0.0007 0.761 0.0006 0.0004 0.975

C2XC_TOA 0.0508 86.300 0.0263 0.0435 0.347
C2XC_Rrs 0.0013 0.673 0.0012 0.0004 0.990
C2RCC_TOA

B783

0.0468 65.640 0.0268 0.0384 0.281
C2RCC_Rrs 0.0014 4.332 0.0013 0.0004 0.728
C2X_TOA 0.0423 40.990 0.0222 0.0361 0.460
C2X_Rrs 0.0009 0.753 0.0007 0.0005 0.977

C2XC_TOA 0.0506 84.802 0.0272 0.0427 0.289
C2XC_Rrs 0.0007 0.576 0.0007 0.0001 0.996
C2RCC_TOA

B865

0.0430 246.000 0.0274 0.0332 0.194
C2RCC_Rrs 0.0007 0.635 0.0006 0.0004 0.694
C2X_TOA 0.0371 55.900 0.0224 0.0296 0.313
C2X_Rrs 0.0004 0.659 0.0003 0.0001 0.957

C2XC_TOA 0.0455 291.000 0.0277 0.0361 0.077
C2XC_Rrs 0.0006 0.591 0.0005 0.0003 0.985
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