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Abstract: The classification of urban land-use information has become the underlying database for
a variety of applications including urban planning and administration. The lack of datasets and
changeable semantics of land-use make deep learning methods suffer from low precision, which
prevent improvements in the effectiveness of using AI methods for applications. In this paper, we
first used GIS data to produce a well-tagged and high-resolution urban land-use image dataset.
Then, we proposed a combined convolutional neural network named DUA-Net for complex and
diverse urban land-use classification. The DUA-Net combined U-Net and Densely connected Atrous
Spatial Pyramid Pooling (DenseASPP) to extract Remote Sensing Imagers (RSIs) features in parallel.
Then, channel attention was used to efficiently fuse the multi-source semantic information from the
output of the double-layer network to learn the association between different land-use types. Finally,
land-use classification of high-resolution urban RSIs was achieved. Experiments were performed
on the dataset of this paper, the publicly available Vaihingen dataset and Potsdam dataset with
overall accuracy levels reaching 75.90%, 89.71% and 89.91%, respectively. The results indicated
that the complex land-use types with heterogeneous features were more difficult to extract than the
single-feature land-cover types. The proposed DUA-Net method proved suitable for high-precision
urban land-use classification, which will be of great value for urban planning and national land
resource surveying.

Keywords: urban land-use classification; semantic segmentation; remote sensing; deep convolutional
neural network (DCNN)

1. Introduction

Urban land-use classification plays a key role in applications such as urban construc-
tion, land-use planning, infrastructure construction management, natural disasters and
crisis management [1]. The faster the growth of the country, the more rapid the change in
land-use. Land-use surveys are time-consuming, labor-intensive and costly [2]. A national
land-use survey is implemented every ten years in China. The development of processing
technologies for high-resolution remote sensing could help planners to collect exhaustive
land-cover information in a timely and cost-effective manner [3]. For example, deep convo-
lutional neural networks (DCNNs) could automatically extract serval-specific features in
remote sensing images to fully realize the classification of urban land-use.

For land-use classification, one typical class may contain more than one kind of object,
according to current standards. Each could also include different kinds of objects under
different standards. For example, the contents are different for The Land-Use Standard
of the 2nd and the 3rd National Land-Use Resource Survey. The complex spatial and
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textural patterns in one class pose great challenges to convolutional neural networks (CNN)
attempting to classify high-resolution remote sensing images [4]. Early FCN-based models
could identify features to a certain extent, but suffered from loss of high-frequency details,
blurred boundaries, and a limited ability to reconstruct spatial information while obtaining
rich contextual information. To deal with this problem, a skip connection was added
to the networks. U-Net Architecture, designed by Ronneberger et al., aggregated the
multi-layer feature maps from the encoder using the decoder structure for step-by-step
upsampling and generated high-resolution feature maps [5]. The fusion of high-and-low
level semantic information improves the classification effects of object boundaries. Later,
Yu and Koltun introduced atrous convolution into fully convolutional networks (FCN),
which were able to keep the resolution of a featured image and expand the receptive
field to capture multi-scale context information and improve the accuracy of semantic
segmentation using spatial information in the images [6]. To better capture global context
information, Spatial Pyramid Pooling (SPP) [7] has been widely adopted. Zhao et al., used
a pyramid pooling module to aggregate the context of different regions to exploit the
capability of global context information [8]. Chen et al. realized pyramid-shaped atrous
pooling in spatial dimensions [9] and heaped up atrous convolution [10] with different
atrous in cascade or in parallel to obtain multi-scale information [11]. However, Atrous
Spatial Pyramid Pooling (ASPP) [9] still had some limitations, as the resolution in the scale
axis dimension was not sufficient to accurately extract target features in remote sensing
images (RSIs). Therefore, Yang et al. proposed densely-connected Atrous Spatial Pyramid
Pooling (DenseASPP) [12], which was able cover a wider scale of the feature map and
obtain more intensive receptive field information in order to better classify complex scenes
under the premise of not increasing the size of the model.

To improve the accuracy of the urban land-use classification, it needs to deal with
the inherent challenges in current classification methods, and to build a labor-intensive
fundament, including well-tagged remote sensing image labels for the latest urban land-
cover types under different classification standards. It is also an effective method to combine
algorithms generating the higher-level sematic class images for replacing the origin images
in labor-intensive jobs.

According to the characteristics of urban land-use types, which contain multiple
elements in one type, we proposed a double-layer deep convolutional neural network
called DUA-Net, which mainly combined two networks with different advantages, U-Net
and DenseASPP, into a parallel structure. The method used in this paper can generate the
land use classification of urban area into the bigger and continuous block. When using
the image of this classification result as the input of man-made fine classification, it can
significantly reduce the operation times and manual interactions, which can improve the
efficiency. In addition, with the help of vector data, we can also make full use of the same
standard to classify the images at different times to analyze the changes of land types at
different times.

This was an effort to effectively obtain the characteristics of land-use types in high-
resolution RSIs. First, we produced the tagged land-use labels under the Land-Use Standard
of the 2nd and the 3rd National Land-Use Resource Survey by combining the urban road
networks and generated an image dataset for test and automatic applications. Second,
we used Very Deep Convolutional Networks (VGG16) [13] as the backbone algorithm
to extract the urban land-cover features from RSIs. Then, feature maps were processed
in parallel using the U-Net module and the DenseASPP module to fully extract land-
use type feature information and boundary ambiguity and class imbalance problems
in semantic segmentation. Finally, the newly added feature fusion module fused the
spatial information, boundary information, multi-scale contextual information, and global
contextual information obtained by parallel processing. The experiments were conducted
using the dataset constructed in this paper, the publicly available ISPRS Vaihingen dataset
and Potsdam dataset. The proposed DUA-Net was compared with other typical methods,
such as FCN, U-Net, SegNet, DenseASPP and Deeplab v3. The overall accuracies of
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the proposed DUA-Net in the land-use classification of self-built image datasets and in
land-cover classification of Vaihingen datasets and Potsdam datasets were 75.90%, 89.71%
and 89.91%, respectively, and the average F1 scores were 74.68%, 86.64% and 86.93%,
respectively.

The rest of this article was organized as follows: Section 2 will introduce the related
work. Section 3 will propose the overall structure of the model and the details of each
module. Section 4 will present the experimental details and results. Section 5 will discuss
the major findings and limitations of the study. Finally, a brief conclusion will be provided
in Section 6.

The main contributions of this paper can be summarized as follows:

• We proposed a double-layer deep convolutional neural network (DUA-Net) combining
U-Net and DenseASPP to improve the accuracy of urban land-use classification by
avoiding the incorrect classification of fragmented single elements and enhancing the
holistic classification of multiple elements.

• We employed SENet to build a lightweight Channel Attention Fusion module to
optimize the weight assignment of different land-use types and alleviate the problem
of incorrect segmentation caused by similar features of similar types.

• We constructed an RSI dataset for classification experiments under the standard of the
3rd Land Resource Survey classification (3rd LRSC) from different temporal satellite
images and aerial photographs with the help of urban road network vector data
acquired from a public map service.

2. Related Work

In this section, we briefly reviewed the development of land-use classification and
semantic segmentation, and then discussed the limitations of the current methods.

2.1. Land-Use Classification

An increasing number of remote sensing image datasets are being created. The land
cover and land use categories used in these datasets vary, and in order to improve the
surface coverage, Castillo-Navarro et al. [14] have created datasets covering multiple
scenes. Besides, there are differences in the labels attached to the datasets [15]. For example,
SEN12MS [16] provides pixel-level labels and BigEarthNet [17] provides image-level labels,
and these datasets with different scene categories can only be used for specific semantic
segmentation applications. LULC, for example, has many semantic classes, even hundreds
of fine-grained classes, which can be subdivided into buildings, roads, vehicles, countryside,
urban areas, etc. In particular, the relationships within and between semantic classes are
simply ignored in many datasets, and the contexts that can reveal the relationship between
the content of interest and its surroundings are rarely considered [18].

High-resolution RSIs have rich and detailed spatial information, geometric structures
and texture information [19]. The obtained features from these images can be interpreted
with high accuracy for land-use classification. Land-use classification of RSIs has experi-
enced the development process from pixel-based image analysis, to object-based image
analysis, to pixel-level semantic segmentation [20].

Traditional classification methods have mainly used spectral information from remote
sensing images to classify low-resolution remote sensing images. For complex land-use
types, such as residential land and wasteland, the classification results are often not ideal,
because the spectral features of pixels, lacking textural features and structural features,
cannot comprehensively represent the characteristics of land-use types [21]. Residential
land and industrial land may contain similar pixels in different land-use types. Aimed
at enlarging the scale and promoting the efficiency of training datasets, some techniques
have been developed [22], such as Transfer Learning [23], Active Learning [24], and others.
Ammour et al., used a pretraining network for feature extraction, combined two asymmetric
networks for data domain adaptation and classification, mapped the two networks to the
same feature space, and carried out post-training for the two networks’ weight coefficient
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adjustment method [25]. Zhou et al. carried out migration experiments on data from
the same sensor at different times [26]. They also designed a tremendously challenging
migration experiment which was carried out on hyperspectral remote sensing data from
different perspectives—and which verified the effectiveness of feature extraction and
migration structure.

To compensate for the shortcomings of traditional pixel-based classification methods,
the object-oriented classification method [27] considers the correlation information between
pixels and the internal texture features of ground objects while utilizing the spectral in-
formation of RSIs [28]. Nonetheless, feature descriptions are not comprehensive and the
obtained information is often not enough to support the classification and recognition of
ground objects. By mastering shape and texture features of different objects, deep learn-
ing breaks the limitation of artificial features, guides object classification, and realizes
pixel-level land-use classification of RSIs.

Numerous efforts have been devoted to use deep learning in RSIs for land-use classifi-
cation. Deep filter banks were proposed to combine multicolumn stacked denoising sparse
autoencoders (SDSAE) and Fisher vectors (FV) to automatically learn the representative
and discriminative features in a hierarchical manner for land-use scene classification [29].
Xu et al., proposed a land-use classification framework for photos (LUCFP) and success-
fully applied it to the automatic verification of land surveys in China [30].Considering
the high-level details in an ultrahigh-spatial-resolution (UHSR) unmanned aerial vehicle
(UAV) dataset, adaptive hierarchical image segmentation optimization, multilevel feature
selection, and multiscale supervised machine learning (ML) models were integrated to
accurately generate detailed maps for heterogeneous urban areas from the fusion of the
UHSR ortho mosaic and digital surface model (DSM). This framework exhibited excellent
potential for the detailed mapping of heterogeneous urban landscapes [31]. Multitem-
poral relearning with convolutional long short-term memory (LSTM) Models is another
novel hybrid framework. It integrates spatial–temporal semantic segmentation with post
classification relearning, and is efficient in terms of classifying complex LULC maps with
multitemporal VHR images [32].

More and more data are applied for classification. Points of interest (POIs), the most
common type of crowdsourced data, promise the potential to characterize geographic
spaces and provide an alternative to current methodologies for land-use and land-cover
(LULC) classification [33]. Linked open geospatial data, such as POI data, can be taken
as inputs in a land-use classification model at a moderate spatial resolution [34]. This
could pave the way for innovative solutions to urban land-use extracting problems [28].
Among deep learning models, there are many combined models. Considering the lack of a
large number of well-annotated samples, Semi-MCNN was proposed to select samples and
generate a dataset from large amounts of unlabeled data automatically, integrated with
a multi-CNN framework, which could improve generalization ability and classification
accuracy [35]. For heterogeneous urban land-cover, considering the different contributions
of various types of ground objects in land-use classification, such as landscape patterns
and building functions, Zhang et al. proposed the impervious surface area-weighted
building-based indices from the building outline data [36].

2.2. Semantic Segmentaion of RSIs

Semantic segmentation of RSIs is used to classify and add color to different ground
objects in the image. DCNNs extending convolutional neural network (CNN) structure,
such as FCN, SegNet, U-Net and DeepLab, are often used in urban semantic segmentation
of RSIs. However, these architectures are usually changed to address different challenges
in urban semantic segmentation of RSIs, such as boundary pixel classification problems,
ignorance of spatial/contextual information by CNNs, class imbalance problems [22], etc.
To address boundary pixel classification problems, Sherrah applied a full convolutional
network [37] to add semantic labels to high-resolution remote sensing data by fine-tuning
the pretrained VGG16 network and smoothing the edge portion with conditional random
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fields. The U-Net framework could alleviate the boundary pixel classification problem in
semantic segmentation with its skip connections. Yi et al., proposed DeepResUnet [38]
to efficiently perform pixel-level urban building segmentation from very high resolution
(VHR) images. Since pixel-based segmentation methods tend to ignore spatial/contextual
information, atrous convolution is widely used. Diakogiannis et al. proposed ResUNet-
A [39], which used the U-Net encoder/decoder framework to infer object boundaries
and segment mask boundaries, distance transformation and input of reconstruction by
combining residual connections, atrous convolutions, pyramid scene parsing pooling and
multi-tasking inference. Xu et al., proposed HRCNet [40], a feature enhancement feature
pyramid (FEFP) module to integrate multi-scale context information by merging DenseNet
and ASPP [41].

The classification of land-cover in RSIs is often highly unbalanced, which leads to the
severe problem of class imbalance in the semantic segmentation of RSIs. Inspired by dense
connections, Dong et al., proposed DenseU-Net [42], which connected convolutional neural
network features through cascading operations, and used its symmetrical structure to fuse
shallow detail features in shallow layers and the abstract semantic features in deep layers
to alleviate the problem of class imbalance. After that, others used multiple FCNs to form
new networks [37], such as the building segmentation architecture [43] which combined
the SegNet [44] and U-Net [5], which was a combination of multiple FCNs [45]. These
combined networks exploit the advantages of different models for multi-objective semantic
segmentation.

In order to efficiently fuse feature maps outputted by combined networks, the correla-
tion between feature channels needs to be considered. Attention mechanisms are widely
used as a contextual aggregation design, which makes CNNs context-aware in the process
of semantic information acquisition and effectively improves the accuracy of the classi-
fication of large targets [46]. Hu et al., focused on channel relations and proposed the
Squeeze-and-Excitation (SE) block [47], which increased the sensitivity of the network to
information features. Fang et al. extended DenseNet using a spectral attention mechanism
to enhance the distinguishability of spectral features and improve the accuracy of HIS
image classification [48].

Urban land-use classification is one of the most important subfields in remote sensing
research. In general, the contents in remotely sensed images tend to vary with spatial
and temporal attributes, and the increasing complexity of urban systems in particular
makes accurate classification of urban land use extremely challenging [49]. Therefore,
the orientation of this paper is to create remote sensing image labels based on land use
classification criteria and train DUA-Net in order to serve actual urban land use planning.
Inspired by skip connection and dense connection, we designed a parallel architecture
combining the U-Net module and the DenseASPP module to maximize the extraction of
spatial information, boundary information, multi-scale contextual information, and global
contextual information. Then, we efficiently fused multi-information features through
channel attention to improve the accuracy of urban land-use classification. Our method
aimed to produce an automatic tool which would greatly reduce manual labor in National
Land Resource Survey works.

3. The Proposed Method

Our proposed model used parallel modules to acquire spatial information, boundary
information, multi-scale contextual information and global contextual information. Thus, it
was able to solve the incorrect, fragmented single element classification in urban land-use
semantic segmentation, improve boundary ambiguity and class imbalance, and enhance
the accuracy of urban land-use classification.

In this section, the proposed architecture of DUA-Net for urban land-use classification
was presented. Then, the main steps of the proposed architecture were described in detail,
including the U-Net module, DenseASPP module, and Channel Attention Fusion module.
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3.1. Overview of the Proposed Architecture

In this study, two different DCNNs, U-Net and DenseASPP, were applied to construct
the parallel architecture of DUA-Net, which made full use of the different advantages of
these two kinds of networks in the semantic segmentation of RSIs. As shown in Figure 1,
the proposed framework consisted of three parts: a backbone network, a parallel feature
extraction module and a feature fusion module. First, the VGG16 network [13] is introduced
as the backbone of U-Net and DenseASPP for feature extraction. Second, considering the
complexity of land-use type, structure and spatial distribution of irregularity, we adopt
the U-Net module and DenseASPP module to capture multiple semantic information in
parallel. For detail, the U-Net module fuses high-level and low-level semantic information
to enhance the extraction of spatial and boundary information, and the DenseASPP module
aggregates semantic information at different scales to capture multi-scale contextual infor-
mation and global contextual information. Then, in the Channel Attention Fusion module,
the feature maps outputted by the U-Net module and DenseASPP module were fused in the
channel dimension through the attention mechanism to alleviate the problem of incorrect
segmentation due to similar features of similar categories. Finally, the feature vectors were
mapped to the required number of classes through convolution with a convolution kernel
size of 1 × 1 to generate the segmentation results.

Figure 1. The overall framework of the proposed method.

Specifically, the RSI B is inputted to the U-Net module and the DenseASPP module
for parallel processing, respectively, so as to generate two different feature maps, F1 and F2:

F1 = U − Net(B) (1)

F2 = DenseASPP(B) (2)

Next, the Channel Attention Fusion module learned the correlation between feature
map channels, and F1 and F2 were fused in the channel dimension to promote specific
semantic features of interconnected feature maps to generate new features, Ffuse:

Ff use = Fusion(F1, F2) (3)

Lastly, Ffuse went through a 1 × 1 convolution to map the feature vectors to the desired
number of classes and produce the segmentation results.

3.2. U-Net Module

The architecture of U-Net was mainly composed of a contraction path to capture con-
text and a symmetric expansion path to enable precise localization [5]. In the downsampling
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step, U-Net performed feature extraction for RSI, in which each convolution block was
followed by a ReLU and a 2× 2 maximum pooling operation. At the same time, the number
of feature channels doubled in each downsampling step. Then, U-Net passed the contextual
information captured by downsampling through the expansion path to the upsampling
process in the same layer. In each upsampling step, the feature map went through a 2 × 2
up-convolution, and the number of output channels after the up-convolution became half
of the original image. Meanwhile, the corresponding cropped downsampled feature map
was concatenated with it and went through two 3 × 3 convolutions as well as a ReLU
action. Figure 2 illustrates this structure.

Figure 2. The adapted U-Net Module in the proposed method.

3.3. DenseASPP Module

In order to capture multi-scale contextual information and global contextual informa-
tion in RSIs, the DenseASPP module was introduced as the feature extractor. As shown in
Figure 3, DenseASPP adopts the idea of dense connection and organizes atrous convolution
layers in a cascading way to realize the integration at different levels with different dilation
rates [12]. This organization mode not only covers a larger scale, but also intensively covers
the scale without significantly increasing the model size. Specifically, in this work, it used
dense connections to feed the output of each atrous convolution layer to all previous unvis-
ited atrous convolution layers so as to obtain semantic information from different scales.
Moreover, the dilation rate of atrous convolution at each layer increased layer by layer,
expanding the receptive field while keeping the resolution of the feature map unchanged.
Among these, the layer with the smallest dilation rate was placed in the lower layer, while
the layer with the largest dilation rate was placed in the upper layer. Finally, the feature
map generated by multi-scale convolution was outputted. According to Equation (4), the
output expression of each layer in DenseASPP is:

yl = Hk,dl
([yl−1, yl−2, · · · , y0]) (4)

where dl represents the dilation of layer l, [ . . . ] represents the concatenation operation.
[yl−1, yl−2, · · · , y0] represents the feature map formed by concatenating the outputs from
all previous layers. It not only retains the pyramidal feature of increasing the atrous
convolution rate layer by layer, but also densely concatenates the output of all atrous
convolutions together so that more pixels are involved in the computation.
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Figure 3. The adapted DenseASPP Module of the proposed method.

3.4. Channel Attention Fusion Module

The traditional approaches usually ignore the correlation between feature channels
and express low sensitivity to important information features during the fusion process.
In order to effectively fuse the feature maps of the U-Net module and the DenseASPP
module, we adopted the channel attention method. Using SENet [47] to learn the correlation
between different feature channels (and to enhance the extraction of important features)
this fusion module achieved the automatic selection and weight assignment of attention
regions, then improved output feature quality. Specifically, its core operations mainly
included Concatenation, Squeeze and Excitation. The structure of the fusion module shows
as Figure 4.

First, the feature maps F1 and F2, outputted by the U-Net module and the DenseASPP
module, respectively, were concatenated from the channel dimension to obtain the feature
maps F, F ∈ RH×W×C, where F = [f1, f2, . . . , fc]:

F = {F1, F2} (5)

Secondly, the global spatial information was squeezed to generate channel statistics
and obtain channel descriptions Z. The statistic Z ∈ RC was generated by shrinking F
through its spatial dimensions H ×W, such that the c-th element of Z was calculated by:

Zc =
1

H ×W

H

∑
i=1

W

∑
j=1

fc(i, j) (6)

Next, the Excitation operation used the aggregated information from the Squeeze
stage to capture the importance of each feature channel after the sigmoid function. In order
to limit the model complexity and enhance the generalization ability, it was necessary to
downscale the first FC layer to 1/r, and r was the downscaling hyperparameter. After a
ReLU layer, it was then raised back to its original dimension through the second FC layer,
so W1 ∈ R C

r ×C and W2 ∈ RC× C
r . The calculation formula is as follows:

s = σ(W2δ(W1Z)) (7)

where σ denotes the sigmoid function, and δ denotes the ReLU function. Further, the final
output of the module was obtained by rescaling F with the activation s:

xc = Fscale( fc, sc) = sc fc (8)
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where X = [x1, x2, . . . , xc], Fscale( fc, sc) refers to channel-wise multiplication between the
scalar sc and the feature map fc ∈ RH×W .

Figure 4. Channel Attention Fusion Module.

4. Description Datasets and Experiment Settings

In this section, we introduce the experimented datasets, the experiment setting and
the evaluation metrics.

4.1. Experiment Datasets
4.1.1. Self-Built Image Dataset

In this paper, we built a semantic segmentation dataset of land-use types. In order
to make sure the samples in the training set and validation set were sufficient and to
ensure reasonable experiment results, the original image data of the satellite adopted open
multi-source remote sensing data. We selected satellite image data from the main urban
areas of one city’s urban district: Hunan Province in central China. The resolution of the
image was 0.5 m, and the image was composed of three channels: red, green and blue. The
GSD (Ground Sample Distance) range of each image was 35–60 cm and each image was
14,969 × 22,929 pixels. For the acquisition of land-use type labeled images, we divided
the area of the original image according to the third Land Resources Survey classification
(3rd LRSC) standard and combined it with the actual land-use in the main urban area. The
3rd LRSC was made in 2019 based on the actual land use in China, in order to rationalize
land use and ensure development efficiently (GB/T 21010-2017). Then, the Labelme image
annotation tool [50] was used to segment and mark different land-use types in the original
RSIs. It produced label images with different color categories in the dataset. According
to the importance of urban land-use types, the main research types of this paper were
residential land, industrial land, traffic land, woodland and unused land. Table 1 shows
the 5 classes used in this paper. We built all classes for 3rd LRSC, while these five classes
changed a lot over the years of urbanization.

Table 2 shows the statistics of areas and proportions of different land-use types in the
remote sensing image data.

In tasks with only a small number of training samples, data augmentation [51] was
critical for the invariance and robustness of the training network. In this experiment, the
original image data and label image data were preprocessed, including data cutting and
data augmentation, as follows: (1) The original remote sensing images were cut into blocks
of 256 × 256 pixels; (2) sample label images were created; (3) the images were processed by
data augmentation, such as rotation, displacement, random clipping and random scaling.
Finally, we obtained 4584 sample RSIs at a size of 256 × 256 pixels and assigned 60% of the
sample data to the training set, 20% to the validation set, and 20% to the test set.
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Table 1. Sample urban land-use classes.

Land-Use Class Class Meaning Origin Image Tagged Image

residential land
(tagged in red)

Refers to urban and rural residential land and the land
for community service facilities that support

residential life.

industrial land
(tagged in blue)

Refers to land for industrial production and ancillary
facilities directly serving industrial production.

traffic land
(tagged in purple)

Refers to land used for ground lines, yards and stations
for transport access. Includes land used for civil airports,

ports, terminals, surface transport pipelines and
various roads.

woodland
(tagged in brownness)

Refers to land on which trees, bamboo and shrubs grow.
Excludes wetlands, green woodland in towns and

villages, woodland within railway and road acquisitions,
and woodland on the slopes of rivers and ditches.

unused land
(tagged in green)

Refers to land classified as unplanned use in the
3rd LRSC.

Table 2. Statistics of areas and proportions of different land-use types.

Land-Use Type Area/m2 Proportion/%

residential land 11,146,206 12.99
industrial land 3,234,888 3.77

traffic land 3,303,533 3.85
woodland 10,528,402 12.27

unused land 57,593,021 67.12

total 85,806,050 100.00

In Figure 5, which displays part of the image map in the data set, Figure 5a is the
original image map, and Figure 5b is the label image of different land use types obtained.

4.1.2. ISPRS Vaihingen Dataset and Potsdam Dataset

We tested the proposed approach on two commonly used and high-quality RSI bench-
mark datasets: the Vaihingen and the Potsdam datasets.

The Vaihingen Dataset [52]: The dataset contains 33 tiles extracted from true orthopho-
tos and the corresponding registered normalized digital surface models (DSMs). Sixteen
image patches are used for the training phase, and the remaining 17 for the testing phase.
The spatial size of images varies from 1996 × 1995 to 3816 × 2550 pixels, and the ground
sampling distance (GSD) of this dataset is 0.09 m. The images in this dataset had six
common classes, including impervious surface, building, low vegetation, tree, car, and
background. According to the statistics, there were significant differences in the proportions
of pixels of objects. For example, the number of pixels of miscellaneous categories such
as water area was only 1/38 of the number of pixels on the ground. At the same time, the
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size of objects varied from place to place. Vehicles were similar to point features, while
vegetation, buildings and ground were close to surface features.

Figure 5. The data set generated by GIS data: (a) the origin images, (b) the corresponding
classifications.

The Potsdam Dataset [53]: The dataset contains 38 tiles extracted from true orthophotos
and the corresponding registered normalized digital surface models (DSMs). Twenty-four
image patches are used for the training phase, and the remaining 14 for the testing phase.
Each image has the same spatial size of 6000 × 6000 pixels. The ground sampling distance
(GSD) of this dataset is 5 cm. The defined object classes are the same as those in the
Vaihingen dataset.

On the two publicly available datasets, we first performed data preprocessing, includ-
ing data cutting and data enhancement. (1) The images in the data set were evenly cut into
image blocks of 256 × 256 pixels. (2) Data augmentation processing was performed on the
images used in the training model.

4.2. Experiment Setting and Evaluation Metrics

The proposed network and other comparison ones were trained on an NVIDIA
GeForce GTX 1080Ti GPU, and all the experiments were implemented using the Keras
framework with a Tensorflow backend. The stochastic gradient descent (SGD) optimizer
was used to optimize the experimental process. Due to the limited memory of GPU, the
batch size (BS) of 8 was chosen in the experiment. The learning rate (LR) was obtained
through experiments. The loss function adopted the Cross-Entropy Loss Function. The
learning rate strategy was the Polynomial Decay strategy, using the formula:

lr = lr0 ×
(

1− i
max_i

)p
(9)
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where lr is the learning rate, lr0 is the initial learning rate and was set to 0.001, and i refers
to the current iteration number, max_i refers to the maximum number of iterations and
obtains from the epoch multiplying the number of the training set image, and p is the
learning rate strategy index, which is set to 0.9 in the experiment.

For research on land-use classification, in order to make an effective evaluation of the
experimental results, this paper used the overall accuracy (OA), F1-score (F1) and mean
intersection over union (mIOU) of the semantic segmentation field as evaluation indices.

The formulas follow:
OA =

TP + TN
P + N

(10)

Pre =
TP

TP + FP
(11)

Rec =
TP

TP + FN
(12)

F1 = 2× Pre× Rec
Pre + Rec

(13)

mIOU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(14)

where P, N, TP, TN, FP, and FN represent the positive, negative, true positive, true negative,
false positive, and false negative pixels in the prediction map, respectively. The manning of
k is the total number of all pixel classes.

5. Experimental Results

To evaluate the performance of DUA-Net, we used five of the most advanced and
mature deep learning methods (FCN, SegNet, U-Net, DenseASPP, Deeplab v3) to conduct
experiments and compare results in the same environment and settings. Each method is
trained from scratch, no pre-trained models are used, and all networks converge during
training. The inference process of the five existing deep learning methods is the same as
that of DUA-Net.

For a fairer comparison between the single network approaches and the proposed
dual network setup, we replace the SENet part of DUA-Net by an identity function. We
named this method as DUA-Net (replaced by IF). To be specific, we concatenate the channel
dimensions of the feature maps outputted by the U-Net module and the DenseASPP
module, and due to the different number of channels in the two stages, 1 × 1 convolution
R1 and R2 is used to reduce the channel dimension in order to generate the new feature FIF
instead of Ff use:

FIF = {R1(F1), R2(F2)} (15)

The results of the examples show the overall results of the different networks for
randomly selected test regions.

5.1. Results of the Self-Built Image Dataset

In the self-built remote sensing image dataset, we selected five important land-use
types and conducted seven different experimental methods. Table 3 shows the semantic
segmentation results of the selected land-use types and the overall evaluation indices of six
different methods.

As shown in Table 3, the DUA-Net of this experiment achieved a higher degree of
accuracy than other typical methods. The overall accuracy improved by 5.24% compared
with FCN, since FCN does not consider the high frequency details of images. Compared
with SegNet and U-Net, DUA-Net also significantly improved. Although the SegNet
algorithm and U-Net algorithm also work by encoding and decoding structures, they only
use input images of one scale, and the encoding structure does not carry out feature fusion
for feature images of different scales. DenseASPP used dilated convolution to expand the
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receptive field of features and to integrate more features of pixels in RSI, but it failed to fully
consider the correlation between pixels. Compared to the Deeplab v3, the DUA-Net model
is better at extracting pixel association features from image data during the classification of
different land use types. The Deeplab v3 model uses only a 1 × 1 convolution kernel and a
single bilinear interpolation method in the final upsampling process to reduce the image
scale and obtain the final classification result. This approach loses image accuracy and
the parameters of the bilinear interpolation method are not learnable and therefore do not
take into account the phenomenon of pixel point association in the semantic segmentation
problem of land use classification. The method proposed in this paper exhibited greater
advantages in feature correlation analysis, which can be derived from the results of the
comparison between DUA-NET (replaced by IF) and DUA-Net. DUA-Net (replaced by
IF) is slightly inferior in acquiring features of complex land-use types for the reason that
DUA-Net with the Channel Attention Fusion module enhances the ability to learn feature
channel weights, so the segmentation accuracy of different land-use types is improved
to some extent. All in all, the overall accuracy, average F1 score and mIOU of DUA-Net
are better than DUA-Net (replaced by IF). For example, in the self-built image dataset,
industrial land was different from other land-use types and had complex features, so the
overall recognition effect fell behind other categories. The proposed method considered
the relationship between pixels and used the adjacent pixels for classification to improve
recognition accuracy of industrial land. DUA-Net ranked in first place among the methods
compared.

Table 3. Experimental results of the selected land-use types and overall evaluation indices.

Method

Land-Use Types
Overall

Accuracy
Average
F1-Score mIOUResidential

Land
Industrial

Land
Traffic
Land Woodland Unused

Land

FCN 82.05 60.36 79.71 85.16 72.31 70.66 70.13 76.32
SegNet 75.86 63.58 80.65 83.63 75.64 72.03 72.58 77.65
U-Net 80.87 60.74 83.36 80.63 69.58 69.83 67.24 78.85

DenseASPP 81.43 70.59 76.81 85.13 76.65 74.78 71.64 81.81
Deeplab v3 85.01 71.12 84.31 85.16 79.96 74.30 72.23 81.97
DUA-Net

(replaced by IF) 81.34 70.11 76.64 83.79 75.86 74.62 71.17 77.83

DUA-Net 85.64 71.20 85.14 85.28 80.52 75.90 74.68 82.23

Figure 6 shows the segmentation prediction results of the proposed method and
the other five classification methods. Compared with other existing methods, DUA-Net
effectively improved the problem of pixel classification and pixel correlation, and the
segmentation prediction results were more accurate. The black boxes in the sub-figures
show the errors caused by the failure of other models. These errors are mainly manifested
in the fragmented single element classification, which ignores the holistic nature of land use
types. As shown in Figure 6a–e, the obvious classification errors of land-use types involved
identification errors in residential land. This is because residential land contains many
other fragmented pixel features, such as trees and grass. Other typical methods typically
do not consider the correlation between pixels to classify these fragmented features one
by one. Similarly, there were more errors in the identification of industrial land, as shown
in Figure 6d, because industrial land contains more complex pixel feature types, such as
bare land, trees, grassland, water, etc. The proposed DUA-Net extracted the fusion features
between pixels in the recognition process and learned the association between different
land-use types. As such, it had greater advantages in the recognition process of land-use
types containing multiple pixels, and the recognition accuracy was better than in other
typical methods.
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Figure 6. Comparison of experimental results on semantic segmentation of land-use types. (a) are
the results of residential land and traffic land, (b) are the results of residential land, traffic land and
woodland, (c) are the results of residential land, traffic land and unused land, (d) are the results of
residential land, industrial land and unused land, (e) are the results of residential land, wood land,
unused land and traffic land.

5.2. Results of ISPRS Vaihingen Dataset and Potsdam Dataset

In the two publicly available datasets, we selected five land-cover types for our
experiments, namely impervious surface (Imp.Surf), building, low vegetation (LowVeg),
tree and car. Table 4 shows the semantic segmentation results of the selected land-cover
types and the overall evaluation indices of seven different methods. As shown, the DUA-
Net network achieved the highest overall accuracy, average F1 score and mIOU in this
dataset for all compared categories.

Table 4. Experimental results of the selected land-cover types and overall evaluation indices on the
Vaihingen dataset [52].

Method
Land-Cover Types Overall

Accuracy
Average
F1-Score mIOU

Imp.Surf Building LowVeg Tree Car

FCN 83.87 89.01 75.36 82.20 62.63 82.37 72.67 77.93
U-Net 83.82 87.80 74.92 84.73 61.16 82.32 72.53 78.85
SegNet 87.30 90.12 76.53 85.95 66.21 87.43 81.22 81.02

DenseASPP 88.53 90.07 79.87 86.35 67.16 87.68 82.34 81.81
Deeplab v3 89.01 91.10 82.68 86.65 67.77 88.96 85.68 81.97

DUA-Net
(replaced by IF) 83.25 88.13 75.11 84.52 62.01 83.25 75.33 79.17

DUA-Net 89.35 91.43 83.31 87.82 68.25 89.71 86.64 82.31
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Table 5 shows the experimental results of the method in this paper on the Potsdam
dataset. In particular, the high accuracy of identifying the building class in the Potsdam
datasets is due to the fact that people live in similar residential areas with similar archi-
tectural features, proving that the method in this paper takes into account the correlation
between neighboring pixels of buildings.

Table 5. Experimental results of the selected land-cover types and overall evaluation indices on the
Potsdam datasets [53].

Method
Land-Cover Types Overall

Accuracy
Average
F1-Score mIOU

Imp.Surf Building LowVeg Tree Car

FCN 85.62 90.86 77.31 84.22 64.88 83.62 73.92 79.18
U-Net 85.07 89.05 76.17 85.98 62.41 83.57 73.78 80.10
SegNet 88.50 91.37 77.78 87.20 67.46 88.68 82.47 82.27

DenseASPP 89.78 91.32 81.12 87.60 68.41 88.93 83.59 83.06
Deeplab v3 89.66 91.55 83.68 87.91 69.02 89.76 86.53 82.57

DUA-Net
(replaced by IF) 85.18 90.25 77.26 85.71 63.49 83.22 74.47 80.26

DUA-Net 89.88 91.76 83.86 89.01 69.19 89.91 86.93 82.71

The recent proposed Dual Attention Feature fusion method [54] and Class-Wise
FCN [55] also use these two datasets, and we compared the performances with the DAU-
Net. Table 6 shows the results. Our method achieved the higher accuracy of the serval
classes for considering one class as the whole block.

Table 6. Comparing the Performances of the DAU-Net design measured by mean F1-score (%) and
mean IoU (%) of all test samples.

Category Metric
Vaihingen Potsdam

Dual [54] Class-W [55] DUA-Net Class-W [55] DUA-Net

Imp.surf
IoU 80.11 78.02 89.35 78.78 89.88

F1 / 87.55 91.16 88.01 91.03

Building
IoU 86.57 84.22 91.43 85.84 91.76

F1 / 91.36 92.68 92.35 93.46

Low veg.
IoU 65.56 63.52 83.31 68.63 83.86

F1 / 77.32 85.63 81.20 85.63

Tree
IoU 76.24 73.42 87.82 71.37 89.01

F1 / 84.52 89.12 83.24 90.11

Car
IoU 66.64 62.59 68.25 79.79 69.19

F1 / 76.83 71.25 88.73 76.26

Avg.
IoU 70.51 72.35 82.31 76.88 82.71

F1 / 83.52 86.64 86.71 86.93

Figure 7 shows the predicted results of different networks in the publicly available
Vaihingen dataset. As shown, the DUA-Net network had a better semantic segmentation
effect on complex classes and classes with strong pixel correlation.
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Figure 7. Comparison of experimental results on semantic segmentation of land-cover types. (a) is
the input image, (b) is the ground truth image of the input image, (c) is the result by FCN method,
(d) is the result by U-Net method, (e) is the result by SegNet method, (f) is the result by DenseASPP
network method, (g) is the results by Deeplab v3, (h) is the result by DUA-Net where the fusion
module replaced by Identify function, (I) is the result by DUA-Net.

5.3. Comparison of Experimental Results between Self-Built Image Dataset and ISPRS
Vaihingen Dataset

The differences in the experimental results on the ISPRS dataset and the self-built
image dataset of the 3rd LRSC are mainly due to differences in the pixel features of land-use
types and land-cover types. The ISPRS dataset involves pixel marking for land-cover types,
while the self-built image dataset involves pixel marking according to land-use types in
actual urban planning. Figure 8a,c are the original and label images of ISPRS Vaihingen
Dataset and Figure 8b,d are original images and true label images for the self-built image
dataset. The blue part in Figure 8c represents the building label, which consisted of a single
land-cover type. The red part in Figure 8d represents the residential land in the self-built
image dataset, which was divided according to the 3rd LRSC and actual living conditions
of the resident. It was composed of a variety of land-cover types and had complex features,
making semantic segmentation more difficult.

Figure 8. Comparison of the ISPRS Vaihingen Dataset with the Self-built Image Dataset. (a,b) are the
input images, (a) is from ISPRS Vaihingen Dataset, (b) is from the self-built dataset, (c) is labeled as
for ISPRS dataset, and (d) is labeled for 3rd National Land use Survey.



Remote Sens. 2022, 14, 1128 17 of 21

In Sections 5.1 and 5.2, for the self-built image dataset with land-use types classification,
the accuracy of the proposed method was the highest, at 75.90%. For the Vaihingen dataset
with land-cover classification, the accuracy of the proposed method was also the highest, at
89.71%. The difference in the accuracy of image semantic segmentation was mainly due
to the difference in the feature labels. The aforementioned experimental results further
demonstrate that the DUA-Net network effectively fuses feature relationships between
adjacent pixels, is more suitable for interrelated complex semantic images, and improves
the overall accuracy of semantic segmentation.

6. Discussion

Since land-use types contain multiple elements and have characteristics similar to
adjacent land-use types compared with single element land-cover classification, there is
no specific edge division of land-use types. For example, residential land is often closely
related to industrial land, and they generally have similarities in their appearance. This
phenomenon leads to difficulty in distinguishing different urban functional areas. In order
to solve these problems, urban road networks have been used to optimize the boundary
blur problem in land-use types. Additionally, the uneven distribution of urban land-use
types leads to the phenomenon of category imbalance in semantic segmentation, primarily
caused by the high density of residential land and woodland in urban spatial distribution
and the relatively low density of industrial land distribution. Therefore, in this paper, we
combined the U-Net module and DenseASPP module to focus on optimizing boundary
blurring with skip connections and urban road network labeling, and on optimizing class
imbalance with densely connected atrous spatial pyramid pooling. Most importantly,
we used SENet in the Channel Attention Fusion module to obtain the relationships of
different classes, strengthen the important features and optimize the feature fusion process
to improve the aforementioned series of problems. The simple averaging method to
calculate the spatial information into a value is to obtain the spatial response distribution
of the characteristic channel and improve the important features. We focused attention to
get the coarse and high-level boundary for the complex land-use. The accuracy of land
cover classification is not higher as with other fusion algorithms. While these results are
suitable for the further processing of man-made production works, this fusion method is
just a case for one particular work; generally speaking, more algorithms should be tested
and developed further.

We chose the VGG 16 as the backbone to integrate into U-Net, and DenseASPP was
based on the functions of VGG. Our double layer network structure needs parallel pro-
cessing to capture multiple semantic information. VGG16 is a simple and quick backbone
compared to others.

In Section 4, we validated the proposed method on two urban remote sensing image
datasets: the self-built image dataset of the 3rd LRSC and the Vaihingen dataset, respec-
tively. The proposed method significantly outperformed the reference method in terms of
the average of F1 score and OA. In particular, DUA-Net enabled pixels with similar visual
appearances to be correctly labeled more successfully than the original U-Net model (see
Figure 5). For example, compared with DUA-Net, other typical deep learning methods
suffer from confusing classifications and blurred boundaries in land-use types like indus-
trial land and residential land. In addition, with the help of urban road network labels, the
boundary details and the overall segmentation performance were significantly improved.
Table 3 shows that, in the Vaihingen dataset, the accuracy of DUA-Net classification of low
vegetation was significantly higher than that of the original networks, demonstrating that
this structure effectively alleviated the problems of boundary blur and class imbalance.
This suggested that our method could better accomplish the holistic segmentation of land-
use types with mixed characteristics and similarity features due to the proposed parallel
structure and improve semantic segmentation performance of land-use types for urban
high-resolution RSIs.
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Compared with the existing results of the aforementioned Dual Attention Feature
fusion [54] and Class-Wise FCN [55], our method improved the results in classes of building
and others, but was lower in car class. With the target of generating the land use classifica-
tion of an urban area into the bigger and continuous block, our method will do better for
bigger classes on images. Other situations should be considered in future.

Although the deep learning model achieved impressive results in semantic segmenta-
tion performance, its recognition efficiency remained poor when confronted with mixed
land-use types in cities. The experimental results showed that, with higher purity of land-
use type, higher classification accuracy was achieved, indicating that trying to improve the
accuracy of land-use type classification faces the inherent difficulties of semantic segmenta-
tion, as well as special problems derived from land-use type features in RSIs. For example,
in the Vaihingen dataset, the pixel share of different land-cover types varied widely. In
the self-built image dataset, the pixel occupancy ratio of different land-use types varied
widely. Not only that, since the land-use types were composed of different land-cover
types, their semantic information was more difficult to obtain. This could be why the
segmentation accuracy of DUA-Net on the self-built image dataset was lower than that of
the Vaihingen dataset. In addition, there were inevitable errors in the manually labeled
urban land-use types, and such errors also affected the accuracy of the deep learning model
in semantic segmentation of urban land-use types. Today, the studied city is growing
rapidly and land-use types are always changing. It would be meaningful to obtain urban
remote sensing data and corresponding land-use type labels from previous years and more
recent years to construct training datasets, which would help DCNNs to better obtain the
characteristics of land-use types. In so doing, we could improve the accuracy of urban
land-use classifications.

7. Conclusions

In this paper, a double-layer deep convolutional neural network DUA-Net was pro-
posed to train urban remote sensing image datasets with urban land-use classification
criteria labels to achieve land-use classification of high-resolution urban RSIs. According
to the characteristics of urban land-use types, a parallel architecture, consisting of the
U-Net module and the DenseASPP module, was constructed to extract multiple features
and to enhance feature fusion with the Channel Attention Fusion module. This facilitated
the effective capture of the correlation between multiple elements of the same type and
the difference between different types. It also helped to alleviate the false segmentation
caused by similar features in similar types. In addition, urban road network data were
used to support semantic segmentation of different land-use types to ensure the integrity
of urban functional areas and to avoid fragmentation results. Specifically, the U-Net mod-
ule, designed to extract multi-scale features, and the DenseASPP module, designed to
extract abstract features of spatial distribution, were used. Finally, the channel attention
of image context was implemented for the extracted features to fuse multiple informa-
tion sources, enhancing the characterization capability of the network and improving the
classification performance.

We evaluated the proposed DUA-Net on the self-built image dataset and on the Vai-
hingen dataset. Firstly, using the self-built image dataset, we successfully extracted five
land-use types; DUA-Net achieved 75.90% OA and a 74.68% average F1-score. Compared
with U-Net, DUA-Net improved the OA and average F1-score by 4.12% and 7.44%, re-
spectively. Secondly, on the Vaihingen dataset, the OA of DUA-Net was 89.71%, and the
average F1-score was 86.64%, which illustrated the effectiveness and feasibility of DUA-Net
in improving land-use classification performance.

Nevertheless, the performance of DUA-Net was still constrained by the complex struc-
ture of land-use types and their uneven distribution. As a continuation of this work, some
widely used methods, such as semantic information edge detection and the dual attention
mechanism, will be considered in the future as methods to improve the performance of
DUA-Net for urban land-use classification.
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