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Abstract: Advancing understanding of the complexities and expansive spatial scales of river ecology
can be enhanced through the application of remote sensing. We obtained satellite (Quickbird) and
airborne (LIDAR, hyperspectral, multispectral, and thermal) imagery data of an alluvial gravel-bed
river floodplain in western Montana to quantify both riparian and aquatic habitats and processes.
LIDAR data provided a detailed bare earth DEM and vegetation canopy DEM. We classified river
hydraulics and aquatic habitats using a combination of the satellite multispectral, airborne hyper-
spectral, and LIDAR data coupled with spatially-explicit acoustic Doppler velocity profile data of
water depth and velocity. Velocity, depth, and Froude classifications were aggregated into similar
hydraulic zones of river habitat classes. Thermal imagery data were coupled with field measurements
of temperature and radon gas tracer to identify patterns of water exchange between the alluvial
aquifer and the surface. We found a high complexity of aquatic surface temperatures and radon
tracer linked to groundwater discharge from the alluvial aquifer. Airborne hyperspectral data were
used to identify “hot spots” of periphyton production, which coincided with the complex nature
of groundwater–surface water exchange. Airborne hyperspectral data provided differentiation of
vegetation patches by dominant species. When the hyperspectral data were coupled to LIDAR first
return metrics, we were able to determine vegetation canopy height and relative vegetation patch
age classes. The integration of these various remote sensing sources allowed us to characterize the
distribution and abundance of floodplain aquatic and riparian species and model processes of change
through space and time.

Keywords: river; floodplain; satellite imagery; airborne imagery; thermal imagery; LIDAR; acoustic
Doppler profile; hydraulics; hydrologic interaction; habitat

1. Introduction

River floodplains provide a critical habitat for a wide array of aquatic, terrestrial,
and avian species [1–3]. Unfortunately, because of the pervasiveness of dams, levees,
transportation corridors, and other factors that encroach on river hydrologic regimes
and/or geomorphic processes, they are also among the most endangered landscapes
on the planet [4,5]. Natural, unaltered floodplains are composed of multiple, dynamic
habitat mosaics [6] that change spatially due to physical drivers, particularly flooding and
sediment transport [7,8]. This complex, ever-changing biophysical system, characterized as
a shifting habitat mosaic [7], is a fundamental ecosystem attribute affecting the structures
and processes of floodplains. While this is true for virtually all river–floodplain systems
worldwide, the shifting habitat mosaic is exceptionally dynamic and bio-complex among
alluvial gravel-bed rivers.

The legacy of floodplain cut and fill alluviation also creates a complex floodplain
topography and channel bathymetry that affords many different aquatic and riparian
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habitat types. Flow pathways for surface water infiltrating into the alluvial aquifer create a
riverine hyporheic zone [9] that results in surface/subsurface water exchange influencing
surface and subsurface habitats throughout the floodplain. The hydrological exchange
occurs between river water and groundwater in expansive and geomorphologically hetero-
geneous gravel-bed river floodplains, which are filled with coarse-grained materials (i.e.,
cobble, gravel, and sand) that express a high hydraulic conductivity [10]. Knowledge of
groundwater flow paths, groundwater residence times, the occurrence of localized up- and
downwelling, and where mixing takes place is a prerequisite to understanding the creation
and maintenance of both groundwater and surface water habitats in alluvial floodplains
and across their surfaces. Diverse aquatic habitats on floodplain surfaces, such as spring-
brooks, side channels, ponds, oxbows, and backwaters, are maintained by their connectivity
to the groundwater. Biologically crucial aquatic floodplain habitats are characterized by the
amount and the type of groundwater they receive [11]. Hence, understanding aquatic flood-
plain habitats and their connectivity to the groundwater is necessary for their bio-physical
and chemical characterization.

Likewise, riparian vegetation responds to patterns of hydrologic and geomorphic vari-
ation. Vegetation establishment primarily occurs on newly deposited sediments appearing
on gravel bars following annual spring flooding. Maturing vegetation, which occurs on
paleo-floodplain surfaces [7], provides energy reduction and resistance to erosion and alters
flow patterns and sediment erosion/deposition patterns [12]. The result is bio-engineering
feedback to floodplain evolution and the creation of habitat complexity that is widely
distributed across the surface and embedded within the floodplain bed sediments. Scour,
deposition, inundation, and drought (and sometimes fire [13]) control the connection and
disconnection of these dynamic biophysical structures and processes [8].

High variation in the maximum annual discharge from year to year leads to extremely
active floodplain surfaces. The parafluvial zones of the floodplain [7] (i.e., scoured cobble
and gravel bars) are frequently inundated and scoured, resetting the temporal terrestrial-
ization of the floodplain surfaces. The orthofluvial zones of the floodplain [7] (i.e., older,
vegetated surfaces) are characterized by flood inundation, but with energy being dissipated
by mature vegetation, less scour, and much deposition of fines. Thus, patches of floodplain
surface appear across an array of successional stages of terrestrial vegetation. These stages
generally culminate in mature floodplain gallery forests; however, this successional vegeta-
tion trajectory is often interrupted and reset in time and space as the river floods, scours,
and redeposits sediment. Human modifications that truncate or amplify hydrologic or geo-
morphic processes will have cascading effects on floodplain simplification by shifting the
thresholds of complexity and connectivity, as well as ecological resilience or resistance [14].

Quantifying river channel and off-channel surface aquatic and terrestrial habitats, espe-
cially within river floodplains, is of great interest among river ecologists, hydrologists, geo-
morphologists, fisheries biologists, conservation biologists, and regulatory agencies [15–20].
Quantifying aquatic and riparian floodplain habitats is particularly difficult when employ-
ing traditional survey methods because of the high diversity and frequency of change in
river environments. For several decades, different field survey techniques have been used
to estimate aquatic spatial distribution and abundance of habitat [21]. However, these field
survey techniques, especially in large rivers, are limited by the field effort required and are
often fraught with high variance in both qualifying and quantifying habitat [22,23]. This is
further complicated by the extremely high variation when examining repeatability between
different field teams conducting the surveys. These inherent data collection problems
(it may take weeks or months to complete even a few kilometers of river length when
attempting high precision and detailed measures) are further complicated by changes in
river discharge that affect depth, velocity, hydraulics, inundation, and channel connectivity
in relation to field data collection time.

Various methodologies have been developed to model river hydraulics from first
principles of flow dynamics. For example, the physical habitat simulation (PHABSIM)
model, an incremental method for the determination of habitat at various discharge levels,
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is based on a one-dimensional hydraulics model and has been used extensively to provide
a prediction of physical habitat for fish and other species [24–26]. However, PHABSIM
models generally lack verifiable predictions between the physical habitat and measures of
organismal response, such as fish spawning or density [27,28]. Complex flow hydraulics,
typical of streams and rivers, pose a significant modeling challenge when trying to quantify
spatial complexity and range of channel habitat. This is especially true when trying to
assess change in hydraulics and habitat as a function of discharge variability. Studies of
the limitations in the transect-based, one-dimensional hydraulic modeling in PHABSIM
began incorporating two-dimensional models that better define depth and velocity in the
modeled river channel [29–31]. Nonetheless, the accuracy of these models, as a function
of channel geometry and instream flow measures, remains elusive and only represents a
small fraction of the total river.

Kondolf et al. [32] reviewed the assumptions, accuracy, and precision of both one-
dimensional and two-dimensional hydraulic modeling and the measurements that provide
input data for these models. They concluded that highly accurate hydraulic modeling
“seems infeasible for streams with complex channel geometry.” However, as we illustrate in
this paper, river mapping approaches employing rapid hydro-acoustic data coupled with
survey-grade GPS data and remotely sensed imagery allow river mapping over tens and
hundreds of kilometers of rivers geospatially, providing channel and flow complexity as
well as the ability to measure the spatial extent of bedload mobility [33,34]. Indeed, recent
methods of extensive river mapping of flow and bathymetric complexity over hundreds of
km of river length negate the need to rely on the concept of a reference reach [34,35] and
permit comprehensive analysis of flow integration with ecological processes.

The integration of GIS and remote sensing has been a prominent approach for vegeta-
tion mapping and data analysis for several decades [36]. Land cover classification over large
geographic areas using remotely sensed data from satellites is increasingly common due to
the requirements of national inventory and monitoring programs, scientific modeling, and
international environmental treaties [37]. Hyperspectral imaging sensors have permitted
estimating potential photosynthetic productivity [38] and species differentiation [39]. A
growing number of studies have focused on evaluating hyperspectral indices and sen-
sitivity to vegetation parameters and external factors affecting canopy reflectance [40].
Hyperspectral imagery has been employed to assess non-native plants [41], and data ac-
quired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) have been used
to produce vegetation maps, (e.g., Everglades National Park (20 m resolution), Florida,
USA [42]). However, the imagery appropriate for classification over large geographic areas
is often too coarse for the patch sizes that characterize the spatial resolution of floodplain
vegetation. Advances in the spatial and spectral resolutions of sensors now available
to ecologists make direct remote sensing of attributes requiring high resolution, such as
certain aspects of biodiversity and interspersion of species within stands, increasingly
feasible [43,44].

Airborne LIDAR is a well-established remote sensing research tool with increasing
application in ecosystem studies [14,18,20]. LIDAR is now used to obtain highly detailed
“bare earth” digital elevation models (DEM) and the three-dimensional distribution of plant
canopies [45,46]. In recent years, the use of airborne LIDAR technology to measure forest
biophysical characteristics has been rapidly increasing [20,46]. Ecohydrology recognizes the
complex biophysical elements and processes that define floodplains and acknowledges that
these riverscapes provide model ecosystems to test general hydrogeomorphic and ecologic
theories [47]. That testing requires measuring biophysical attributes of the floodplain at
broad scales is a problem perfectly fit for the application of remote sensing tools.

The purpose of this paper is to illustrate the use of an array of remote sensing tools,
both from satellite and airborne platforms, to provide insights into the characterization of
river floodplain structure and function. We focus on the ecological attributes of channel
hydraulics, aquatic habitats, water temperature, ground water/surface water exchange,
patterns of algal production, and riparian vegetation diversity, distribution, and age struc-
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ture. We used Quickbird multispectral satellite imagery, airborne LIDAR data, airborne
hyperspectral imaging, airborne ultra-high resolution multispectral (RGB) imaging, and
airborne thermal imaging. Each type of remote sensing was coupled with geospatially
explicit hydroacoustic, radon, chlorophyll, and GIS-based vegetation data. Collectively,
the remotely sensed data coupled to the field-based data provided a three-dimensional
analysis of the structure and function of a gravel-bed river floodplain. The applications
described herein have broad application across multiple subdisciplines within the broad
context of river and floodplain biophysical ecology and conservation.

2. Study Area

We conducted our remote sensing studies and method developments on the Nyack
floodplain, an approximately 12 km long by 2 km wide alluvial reach of the Middle Fork
of the Flathead River in northwestern Montana, USA (Figure 1A). Headwaters of the
Middle Fork originate in the Bob Marshall–Great Bear Wilderness complex of Montana.
At the site of the Nyack floodplain the river is an unregulated, natural flowing Horton–
Strahler fifth-order river with Glacier National Park along the northeast boundary of the
river with a combination of national forest and private lands along the southwest side of
the river channel and occupying approximately 80% of the floodplain (Figure 1B). The
Nyack floodplain is an alluvium-filled basin with a maximum depth to bedrock of ~150 m.
Bedrock approaches the surface along the longitudinal gradient of the river, producing
confined river reaches above and below the floodplain with distinct bedrock controlled
knickpoints at both the upper and lower ends of the floodplain. The hydrologic regime
is snowmelt dominated with maximum discharge generally occurring in May and June.
Bankfull discharge is achieved at approximately 450–500 m3/s. Summer base flow is
generally 30–50 m3/s. High discharge flooding events have been linked to PDO effects on
regional climate and weather (Figure 1C) that drive the dynamic character embodied in the
shifting habitat mosaic [7].

Forest vegetation throughout the majority of the floodplain consists of black cotton-
wood (Populus trichocarpa), Engelman spruce (Picea engelmannii), Douglas fir (Pseudotsuga
menziesii), western larch (Larix occidentalis), grand fir (Abies grandis), and fewer western
hemlock (Tsuga heterophylla) and western red cedar (Thuja plicata). Shrub species are
mainly willow (Salix spp.), alder (Alnus incana), hawthorn (Crataegus spp.), and dogwood
(Cornus stolonifera).

The floodplain parafluvial zone is dominated by cobble scoured during annual flood-
ing and point bars and island development. The largest cobble size is ~20 cm with most
frequent cobble in the 5–10 cm range. Large wood, captured from the riparian floodplain
forest as living trees, is transported by the river resulting in stranding on cobble bars and
occasionally piled into aggregated log jams. Individual logs can often cause the flow to
scour the river bed near the root wads with the deposition of fine gravel, sand, and silt
behind the scour zones [8]. Cottonwood seedlings, willow, and alder are the primary
woody species that colonize the cobble bars and islands, forming patches of vegetation that
are either re-scoured or begin the process of “terrestrialization” that initiates succession
toward orthofluvial zone development. The orthofluvial zone is characterized by a matur-
ing riparian forest dominated by cottonwood and spruce. The presence of large vegetation
in the orthofluvial results in fine sand and silt being deposited during floods as the large
vegetation provides flow resistance. Old growth forest on the floodplain contains very
old (>300 years) cottonwood, spruce, larch, and pine. The orthofluvial zone is frequently
intersected by paleochannels (i.e., decade- to centuries-old abandoned channels) derived
from the legacy of past flooding events, cut and fill alluviation, and channel avulsion [8].
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Figure 1. (A) Map of United States showing location of Nyack floodplain of the Flathead River in
western Montana. (B) Oblique aerial photograph of the Nyack floodplain looking toward the upper
end of the floodplain at the top of the photo. Glacier National Park is at the left side of the river in
this photo and the national forest and private lands are to the right side of the river. The river departs
the floodplain in the lower right corner of the photo. (C) Quickbird satellite image of the Nyack
floodplain with superimposed channel locations across nine years from 1945 to 2002 (modified from
Whited et al. (2007) [48]).

3. Remote Sensing Acquisition
3.1. Airborne Light Detection and Ranging

LIDAR data were acquired in cooperation with the National Center for Airborne
Laser Mapping (NCALM). Data were collected using an Optech ALTM (Airborne Laser
terrain Mapper). This system uses a laser beam pulsing at 33 KHz and is directed by
a scanning mirror to record the time and amplitude of a laser pulse reflected off target
surfaces. Terrasolid TerraScan Lidar processing software was used by NCALM to process
the raw LIDAR data and provide us with an unfiltered (i.e., first return) digital elevation
model gridded to 1 m, as well as a 1 m filtered (i.e., bare earth) DEM. A relative elevation
grid of the floodplain surface was derived from the bare earth DEM to estimate elevations
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above the water surface. The water surface and its associated elevation were extracted
from the DEM to create the relative elevation grid. These elevations were then interpolated
across the entire floodplain to create a water surface elevation grid. This floodplain water
surface elevation grid was then subtracted from the bare earth DEM to produce the relative
elevation grid. A vegetation canopy DEM to estimate plot-level tree heights [49] was
calculated as the difference between the bare earth DEM and the first return LIDAR data.

3.2. Satellite Multispectral Imagery

Quickbird satellite imagery, consisting of four multispectral bands (blue—450 to
520 nm, green—520 to 600 nm, red—630 to 690 nm, NIR—760 to 900 nm) at a 2.4 m spatial
resolution and a panchromatic band at a 0.6 m spatial resolution, was acquired for the
Nyack floodplain. The image was orthorectified using a USGS 30 m DEM and several
ground control points (GCPs) located throughout the floodplain.

3.3. Airborne Hyperspectral Imagery

We collected airborne hyperspectral data with an AISA hyperspectral imager from
Spectral Imaging, Oulu, Finland. We deployed this imager from our own aircraft, a Cessna
185. Our research team developed all flight-mission engineering and imager deployments.
The AISA system consists of a compact hyperspectral sensor head with digital data ac-
quisition from 256 individual spectral wavebands (400 to 950 nm) and a Systron Donner
C-MIGITS III GPS/INS sensor. A fiber-optic downwelling irradiance sensor (FODIS) is
mounted to the upper exterior surface of the aircraft to obtain instantaneous irradiance for
radiometric correction and conversion during post-processing of surface reflectance data.
All data are synchronized and streamed to an onboard computer that controls the imager
and stores the data. The fully programmable AISA system was configured to aggregate the
spectral data into 20 bands at a frame collection rate cycle of 30 milliseconds. The aircraft
with the AISA sensor was flown at 1000 m above ground level and at an approximate
ground speed of 100 km/h. The AISA frame cycle rate and lens focal distance, combined
with the altitude and ground speed, resulted in a pixel resolution of 1 m × 1 m. The
hyperspectral data were collected along predetermined flight lines oriented along the long
axis of the floodplain. Distance between flight lines was flown to produce a 40–50% overlap
among all neighboring flight line images. Individual flight line data were initially rectified
using Caligeo® software from Spectral Imaging. Final rectification and mosaicking were
completed in ERDAS Imagine®. We used a combination of digital orthoquadrangle data
(DOQs) and ground control points (GCPs) located throughout the floodplain to complete
the orthorectification. Minor color-balancing between flight lines was applied during the
mosaicking process. Imagery data were collected within a time period of 1.5 h at either
side of solar noon. We selected the clearest day possible during autumn to achieve the
maximum differentiation in leaf color between tree and shrub species, yet prior to leaf
abscission and fall.

3.4. Airborne Ultra-High Resolution Multispectral Imagery

We collected ultra-high resolution digital photogrammetry (RGB) data using a stan-
dard professional digital camera (14.8 megapixel) mounted with a 50 mm lens. Images
were collected simultaneously with the AISA hyperspectral data described above and have
a pixel resolution at the floodplain surface of 5 cm × 5 cm. We used these images to assist
in the classification of vegetation, river hydraulics, and georeferencing and mosaicking
of the hyperspectral imaging. Images were rectified and mosaicked in ERDAS Imagine®

using DOQs and GCPs.

3.5. Airborne Thermanl Imagery

We collected thermal data with an 8-bit digital thermal camera with video display
and full frame 30 Hz capture rate. The camera was hardwired to an on-board computer to
maximize data flow rate and provide direct, non-interference control of the camera. The
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camera was mounted on the pilot side wing strut ~2 m laterally from the aircraft fuselage
and away from engine exhaust and radiant heat to minimize potential interference with
the thermal imaging from flight operations.

4. Field Measures and Data Classification
4.1. River Hydraulics—Depth and Flow Velocity

We used a SonTek RS3000 Acoustic Doppler Velocity Profiler (ADP, SonTek/YSI,
San Diego, CA, USA) to acquire detailed water depth and vertical profile flow velocity
measurements within the main channel and off-channel habitats. We collected ADP data on
eight separate dates ranging in river discharge from a minimum of 17 m3/s to a maximum
discharge of 326 m3/s. The ADP uses three transducers generating 3 MHz acoustic pulse
beams with different orientations relative to water flow. As the sound travels through the
water, it is reflected in all directions by suspended particles transported with the flow. The
energy from the sonar is most strongly reflected from the channel bottom, providing a
measure of water depth. Energy reflected from advected particles suspended and moving
with the river flow returns to the transducers with a frequency change referred to as a
Doppler shift. Doppler shifts are linearly related to the velocity of the water. Data were
recorded as the average water column velocity every 5 s. These data were augmented with
a hand-held ADV (acoustic Doppler velocimeter) current meter for water depths <30 cm.
The hand-held ADV was used exclusively in shallow waters (<30 cm) where the larger
ADP cannot resolve velocity accurately.

We deployed the ADP from one of two watercraft, depending on river discharge.
When the river discharge was >50 m3/s, the sonar head was attached to a 4.9 m whitewater
catamaran and rowing frame. A rower and a sonar operator crewed the catamaran. When
discharge was <50 m3/s, the ADP was deployed from a small 1 m × 0.5 m aluminum
catamaran controlled by hand lines. The ADP was co-located with a Trimble AgGPS
132 v1.73 GPS receiver with one-meter positional accuracy. Data from the ADP and the
GPS were streamed to a laptop computer on-board the large catamaran or to a shoreline
operator by a FreeWave® wireless data transceiver (FreeWave Technologies, Inc. Boulder,
CO, USA) from the handline-controlled catamaran. All data were time-stamped for later
georeferencing of all depth and velocity profile measures. During data acquisition, the
ADP was maneuvered through the channel and into various hydraulic conditions, from
rapids and riffles to backwaters and glides, to obtain data from as complete an array of
aquatic habitats, depths, and velocities as possible.

In classifying water depth and velocity, we processed the data through three steps:
(1) the extraction of surface water features from the imagery, (2) the separation of off-
channel from main channel waters, and (3) the classification of channel depth and flow
velocities by statistical relationships established between spectral reflectance and the cor-
responding ground truth data from the ADP. Using the near-infrared band data from the
Quickbird and a normalized difference vegetation index (NDVI), we conducted a super-
vised classification to isolate and extract water surfaces from surrounding land areas. This
method depends on the relatively low near-infrared reflectance characteristics of water and
the high sensitivity of the NDVI to photosynthetic biomasses to isolate open water surfaces
from the surrounding landscape. The extracted water imagery was then converted from
raster to vector format to distinguish main channel and off-channel habitats. Off-channel
habitats had mud or sand/silt substrate and a unique spectral signature relative to the
main channel, which was dominated by cobble substrate. Main and off-channel features
were treated separately for classifying depth and flow characteristics measured in the field
with the ADP.

Water depth of the now isolated water imagery was calculated using a linear transform
model [50] that is widely used for estimating shallow water depth, including in-stream
channels [51,52]. Using a small subset of the ADP data (120 points), a stepwise regression
was applied to determine the best coherence between each spectral band and the observed
water depth. A regression Equation (1) using three of four bands (green—X2, red—X3,
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NIR—X4) constructed from the data was applied to the entire image. The water depth was
also aggregated into five depth categories (0–0.5, 0.5–1.0, 1.0–1.5, 1.5–2.0, and >2.0 m):

Water depth = −5.114 + ln(−4.563X2) + ln(−3.879X3) + ln(0.781X4) (1)

We used an unsupervised clustering approach (ISODATA, iterative self-ordering data
analysis, [53]) to enumerate similar clusters of spectral reflectances. The clusters were aggre-
gated into four velocity categories (0–0.5, 0.5–1.0, 1.0–1.5, >1.5 m/s). A subset of the ADP
data (677 points) was used to calibrate the classification relationship to spectral reflectance
to assign the appropriate depth and velocity categories. The remaining ADP data were used
to validate the relationship and assess the accuracy of the classification. This methodology
followed the approach developed by Whited et al. [53,54] and Lorang et al. [55].

4.2. Surface Water–Ground Water Exchange and Groundwater Residence

In combination with other hydrogeological methods, tracer data can be used to better
understand the hydrogeology of alluvial aquifer systems, especially near-surface ground-
water flow paths. The inert noble gas radon, (i.e., the radioactive isotope 222Rn; half-life
3.8 days), emanates from rock surfaces into surrounding waters after the decay of 226Ra
(emanation = recoil and diffusion; [56,57]) which is part of the radioactive decay series of
naturally occurring uranium (238U). The solubility of radon in water is sufficiently high that
it can be used as a groundwater tracer for determining the time a parcel of water has been
in the subsurface as groundwater of river origin [58]. Surface waters usually contain very
little radon unless they are receiving deep groundwater. During the recharge of aquifers,
downwelling river water (i.e., infiltration of river water to groundwater) increases in radon
activity as it flows in the subsurface. A constant radon activity concentration indicates that
a steady-state concentration has been reached between isotope ingrowth and decay. For
radon, about 90 percent of this steady state is reached after about 15 days.

Under plug-flow conditions, the law of radioactive ingrowth governs the radon activity
dissolved in the water. The radon water age, calculated in Equation (2), is under plug-flow
conditions using the radon activity concentrations of a sample (At) and at steady state (A∞
see, [58]), and adapted to the more general case of a non-zero initial activity, A0:

τ = −1/λ ln [(A∞ − At)/(A∞ − A0)] (2)

where λ = T1/2/ln 2 = 0.182 d−1, the decay constant for 222Rn.
Often, groundwaters of different residence times mix in aquifers. In the case of a

binary mixing of very young groundwater (i.e., recently infiltrated river water) with older
groundwater, the residence time of the young water component can only be assessed with
radon, if the actual mixing ratio is known. Nonetheless, elevated radon signals in surface
waters provide direct proof of upwelling groundwater into these habitats, and the level
of the radon signal gives an indication of both the upwelling intensity and the length of
time the parcel of upwelling groundwater has been in the subsurface. Since outgassing
of radon gas begins immediately when groundwater reaches the surface and is enhanced
by the turbulent flow conditions in rivers and streams, the measurement of high radon
concentrations in such waters indicates a high degree of connectivity to the groundwater.

We sampled surface waters, groundwaters from piezometers, groundwaters from
deep wells, and groundwaters from upwelling discharge points within carefully excavated
springs. Water was sampled from these diverse locations across the Nyack floodplain.
Sampled water was captured in special bottles, closed without an atmospheric bubble,
and returned to the laboratory for radon analysis on the same day. When piezometers or
wells were sampled, small submersible pumps (positive displacement; Whale Superline
99, Munster Simms Eng. Ltd., Bangor, UK) were used to avoid placing the water under a
vacuum, which would affect atmospheric pressure and degas the radon.

Radioactivity was measured as the number of decays per second, as Becquerel (bq),
and the radioactivity concentration as bq/L. Radon was measured with a NITON Rad7-
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H2O instrument (Durridge Co., Bedford, MA, USA) counted as a measure of the 222Rn
activity following standard procedures [59]. An α-spectrometric analysis is integrated in
the instrument as a measure of the radon concentration in water (counting error 1σ, about
±10% at 10 bq/L; detection limit, about 0.2 bq/L).

4.3. Water Temperatures

To “ground truth” the thermal imager, we collected temperatures with a hand-held,
field digital thermistor standardized to a laboratory-grade thermometer. Water tempera-
tures were carefully obtained from waters within 1–2 cm from the surface. This requirement
is because the airborne thermal imager can only collect thermal data from the water surface.
Thermal data were carefully georeferenced in the field and then georectified with the
airborne thermal imagery collected during the same solar and weather conditions taken
the following day.

4.4. Periphyton and Chlorophyll

We collected periphyton along shorelines of the channel corresponding to the range in
variation of attached algae growth near the water surface. In conjunction with the airborne
hyperspectral imagery, periphyton samples were taken as 3 cm × 3 cm scapings from cobble
surfaces, stored in whirl-packs, and placed on ice. Samples were georeferenced in the field
and returned to the laboratory for standard chlorophyll analysis. Chlorophyll results
were then referenced to the hyperspectral reflectance acquired from the georeferenced and
mosaicked imagery.

4.5. Riparian Vegetation

The Nyack floodplain is partially characterized by wide-ranging patterns in the
chronosequence of vegetation that results from processes leading to the development
and maintenance of the shifting habitat mosaic [7]. We established a stratified random
sampling design to observe vegetation colonization and development patterns associated
with different landform features, from parafluvial lateral and mid-channel bars to orthoflu-
vial shelves with old-growth forest. We sampled along the lateral floodplain dimension
to provide a characterization of vegetation associated with major topographic features
and spatially complex patches. We sampled on the longitudinal dimension of parafluvial
islands and bars to observe responses of vegetation recruited to accreting surfaces. We
also sampled along short transects across elevation gradients from orthofluvial shelves
to the midpoint of orthofluvial paleochannels. Because landform features influence the
site-specific ecology of plants, we sampled plant communities by major coverage catego-
rization, which allowed analysis of variance in plant community metrics within landforms.
Transects through large orthofluvial patches ranged up to several hundred meters in length,
island and bar transects were generally much shorter (100–200 m), and transects across
elevation gradients in the orthofluvial zones from shelves to paleochannels were generally
< 50 m. All vegetation data were georeferenced with the satellite and airborne mosaicked
imagery data.

5. Results and Discussion
5.1. LIDAR Bare Earth Model

The bare earth DEM derived from the LIDAR data shows the basin geomorphology of
the Nyack floodplain and surrounding hillslopes and valley form (Figure 2A,B). First- and
second-order watersheds draining the mountains from the southwest and northeast of the
floodplain are clearly observed. The relative elevations normalized to the water surface
along the longitudinal gradient of the river (Figure 2C) illustrate current channels, recent
channels, and older channels left as a legacy of cut and fill alluviation on the floodplain.
These data, from both the bare earth model and the water surface corrected model, were
used in conjunction with the satellite and airborne imagery to assess patterns of flow
hydraulics, aquatic habitats, alluvial aquifer zones of preferential flow, and groundwater
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discharge. The first return DEM from the LIDAR data allowed us to describe riparian
vegetation canopy heights and density (Figure 2D).
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Figure 2. (A) Digital elevation model (DEM) from LIDAR data of the Nyack floodplain. The black
dashed-line square is the area appearing in the remaining images on this figure. (B) Enhanced
close-up image of the LIDAR in (A) (within dash lines). (C) Relative elevations of water and land
normalized to the water surface along the longitudinal gradient of the river on the Nyack floodplain.
Intensity of gray-scale is set from black equal to 0 m to white equal to 6 m. (D) DEM constructed
from LIDAR first return data normalized to the water surface and the bare earth DEM illustrating the
height of the surface from water (0 m) and floodplain sediments to the top of the riparian floodplain
forest canopy (30 m).

5.2. Aquatic Habitat Defined by Flow Velocity and Water Depth

The water surface spectral reflectance patterns are directly related to surface water
roughness and light absorption and reflectance characteristics of the water column. An
unsupervised classification of the water body imagery (Figure 3A) was applied to differen-
tiate flow categories within the main channel classification and then within the off-channel
habitats. Linkage between field-measured flow and depth data with spectral reflectance
data derived from the imagery sources was accomplished by using GPS locations to co-
locate flow (Figure 3B) and depth (Figure 3C) with the spectral reflectance patterns of
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the water from pixels in the imagery that corresponded to those GPS locations. At the
relatively coarse scale of the 12 km × 2 km floodplain, this was done using the Quickbird
satellite imagery. When highly detailed analysis was desired, this was done using the high
resolution airborne photogrammetric imagery.
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Figure 3. (A) Quickbird satellite panchromatic background image with superimposed unsupervised
classification of multispectral reflectance of the water. (Color differentiation illustrated here represents
output of the unsupervised classification. The white square is the area of the floodplain illustrated in
the following Figures 4 and 5). (B) Quickbird image with superimposed classification of water depth
derived from the unsupervised multispectral data in (A). (C) Quickbird image with superimposed
classification of water velocity derived from the unsupervised classification of the multispectral data
illustrated in (A).
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Figure 4. (Left Panel) Quickbird satellite panchromatic background image with the superimposed
classification of Froude (see Equation (3)) illustrating the locations of highest flow to depth ratio.
In this classified image, Froude classifications are based on direct relationship between spectral
reflectance data and acoustic Doppler velocity profiler (ADP) data of river depth and velocity at a
river discharge of 46 m3/s. Image scale corresponds with the white square in Figure 3A. (Right Panel)
Quickbird satellite panchromatic background image with the superimposed classification of Froude
based on modeled depth and velocity for a river discharge of 467 m3/s. See text for further detail.
Area of classified images corresponds with area within dash line box in Figure 2A.
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y = 0.7754 ln(x) + 1.5088  (4)

Figure 5. (Left Panel) Quickbird satellite panchromatic background image with superimposed
classification of aquatic habitats based on Froude, depth, and location within the channel at a river
discharge of 46 m3/s. Image scale corresponds with the white square in Figure 3A. (Right Panel)
Quickbird satellite panchromatic background image with superimposed classification of aquatic
habitats based on Froude, depth, and location within the channel at a river discharge of 467 m3/s.
Habitat legend: shallow shore (depth < 0.4 m), low turbulent run (Ltr), medium turbulent run (Mtr),
high turbulent run (Htr/rapids), riffles (cobble with high Froude and depth < 0.4 m), off-channel
shallow (low Froude and depth < 0.4 m), and off channel deep (depth > 0.4 m).

Surface water roughness is a function of water depth, flow velocity, and bottom
roughness, and hence is also related to the energetic state of the water column as defined
by the Froude equation, a dimensionless number. For Froude values less than 1, the
flow condition is referred to as sub-critical, and for values greater than 1, the flow is in a
supercritical energetic condition that forces the water surface to break, forming a hydraulic
jump to reduce the energy gradient by increasing the water depth. Likewise, the river can
scour the bed to increase the depth until the flow reaches a subcritical condition. For this
reason, supercritical flow typically only occurs in bedrock reaches and at specific channel
locations rather than over broad areas. Using the depth and velocity data, we calculated
Froude (Equation (3)) for each ADP data ensemble as

Fr =
V√
g × h

(3)

where V is the mean velocity, g is the acceleration due to gravity, and h is the water depth
for each APD data ensemble located with GPS coordinates. As Froude values increase in a
flow, the water surface becomes increasingly rough. High Froude (e.g., >0.8) values were
observed in riffles and rapids. Very low Froude (e.g., <0.2) values were observed in pools
and glides. Thus, the spectral reflectance directly due to river surface roughness captured
by either the satellite or airborne photogrammetric imagery can be related to the Froude
number as well as direct measures of depth and velocity. For habitat mapping, linking
Froude to water surface roughness is a simple way to map the distribution of water depth
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and velocity together within an energetic context. When water is clear, which is often the
case among cobble-bed rivers at low flow, the water color correlates closely with water
depth. During the satellite Quickbird and airborne image acquisition, flow in the Flathead
River on the Nyack floodplain was <50 m3/s, and water clarity was extremely high so that
one could see the bottom to depths of up to 6 m except for areas where surface roughness
limited depth perception. These same attributes of surface roughness and water clarity
allow classification of flow velocity in much the same way one can visually recognize
relative water velocity from still pictures. Linking ADP data to image pixels allows a much
higher resolution of actual velocity bin intervals in the classification process.

The relative elevation DEM developed from the LIDAR data (Figure 2C) was used to
plot floodplain inundation and Froude from near baseflow (Figure 4 left panel; Q = 46 m3/s)
to bankfull conditions (Figure 4 right panel; Q = 467 m3/s). Using a stage-discharge
relationship based on the USGS gauge (12358500) located at West Glacier, Montana, we
plotted floodplain inundation at 10 cm stage increments for the range of discharges from
base flow to bankfull. In addition, flow velocity was plotted by establishing a basic
relationship between velocity and river stage. Multiple measures of flow and depth
developed this relationship at various discharge levels during the duration of our study.
Estimates of flow velocity for the flooding scenarios were based on the initial velocity
classification generated from the Quickbird satellite imagery. Only ADP data that were
associated with the main channel environment were used to estimate velocity. ADP
velocity data collected in backwaters and in off-channel environments were excluded, but
we used depth of backwater and off-channel habitats when calculating incremental depths.
Lorang et al. [60] provide a methodology to use the extensive ADP dataset to set upper
limits of Froude. Velocity for any given pixel was then increased in the GIS modeling
approach according to Equations (4) and (5) below, generated from the depth–velocity
relationships measured in the ADP surveys. Equation (4) was used to simulate velocity for
water depths > 0.8 m and Equation (5) was used for water depths < 0.8 m, where x is the
water depth at a given stage.

y = 0.7754 ln(x) + 1.5088 (4)

y = 1.789(x) − 0.2042 (5)

After velocity was estimated for each stage, we set an upper limit on water velocity
for each depth based on the threshold established by the ADP data for Froude given
any depth [60]. For example, a depth of 1.5 m could not exceed a Froude number of 0.8.
If the Froude number was greater than 0.8, the velocity was adjusted by recalculating
velocity based on Froude and depth. Using 10 cm stage increments, we modeled depths
and velocities to represent discharge regimes from 46 m3/s to 467 m3/s (i.e., base flow to
bankfull). To check the accuracy of the estimated stage velocities and depths, the ADP
surveys were done at two high discharges of 254 and 326 m3/s and used as reference
data. We estimated the 254 m3/s discharge to correspond to a stage increase of 0.9 m from
near baseflow conditions from the stage-discharge relationships. Using the depths and
velocities that were estimated at the 0.9 m stage increase, error matrices were generated
from the appropriate ADP survey (i.e., the 254 m3/s survey) to validate the depth and
velocity results. The overall accuracy of depth was 70 and 72% for the discharges of 254
and 326 m3/s, respectively.

5.3. Aquatic Habitat Classification

Despite the various potential sources of pixel-by-pixel error, we found the relationships
between the field measures of flow velocity and depth to classified spectral reflectance
of flow velocity and depth to be remarkably accurate. Slight differences between field
measurements and GIS classification results were primarily associated with isolated pixels
that were negligible at the scale of river channel hydraulics or at the scale that fish use the
river. Using the spatial, pixel-by-pixel classifications of depth and velocity, we classified
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Froude number values to produce what we refer to as a “Froude space” distribution across
all surfaces of the river channel (Figure 4). We then used the distribution of Froude, water
depth, and channel position to aggregate pixels into patches and apply specific aquatic
habitat designations (e.g., shallow shoreline, low turbulent runs, medium turbulent run,
high turbulent run, riffles, off-channel deep pools, off channel shallow pools) at each of the
two modeled discharges (Figure 5 left panel, right panel).

5.4. Ground Water–Surface Water Interaction, Water Temperature, and Periphyton

The radon tracer data showed high variation across the Nyack floodplain (Figure 6).
Near-zero radon concentrations were only observed in surface water collected at the up-
stream end of the floodplain before it entered the alluvial reach. This indicates that there
was little groundwater discharge into the main channel at the head of the floodplain, as
waters passed through confined river reaches upstream of the geomorphic knickpoint at
the head of the floodplain. Further, radon that may have been added above the floodplain
had experienced out-gassing insufficient to remove the radon from channel waters. ADP
discharge measurements in the river along the length of the floodplain revealed losses
and gains of up to 30% of the total discharge rate (see [7]). Radon measurements con-
firm these patterns, particularly at the downstream ends of gravel bars where large-scale
groundwater discharge from the alluvial aquifer appearing as upwelling could be visibly
observed and sampled, and radon concentrations measured. A springbrook that occurs
along the southwest side of the main channel occupying a paleochannel is continually fed
by upwelling groundwater. Water sampled from piezometers inserted at the upstream
(downwelling) ends of gravel bars generally had lower radon concentrations, particularly
within the parafluvial zone of the floodplain, thus showing high subsurface flow rates of as
much as 300 m per day and residence times of as little as a few hours hundreds of meters
from the river (Figure 6). These values for groundwater flow velocity are extraordinarily
high and illustrate high surface water–groundwater exchange rates and extremely high
hydraulic conductivity in the Nyack floodplain.

Radon tracer data has inherent variation. Thus, the “age” of near-surface groundwater
can only be estimated because recently infiltrated surface waters that are recent ground-
waters with a low concentration of radon may mix with waters of longer residence times
with the maximum concentration of radon. Groundwaters may also experience outgassing
of radon as they approach the surface. Finally, radon concentration reaches a steady state
after about 3–4 weeks due to radon’s short radioactive half-life. These sources of variation
nonetheless provide a clear indication of the degree of connectivity to the groundwater and
a better understanding of the physico-chemical characteristics, such as nutrient availability
or temperature regimes, associated with habitats receiving groundwater discharge.

Our radon data corresponded well with the airborne thermal imaging data, which
illustrate a high variation in channel and off-channel habitats warmed by solar radiation,
but simultaneously cooled by groundwater discharging into surface waters including the
main channel, gravel bar springs, springbrooks, and both parafluvial and orthofluvial
ponds. In the thermal imagery (Figure 7), we observe shorelines and main channel habitats
being significantly cooled by groundwater discharge at the downstream end of a large
gravel bar. These data can be extended to explain why ponds with little or no groundwater
connectivity will become very warm in summer and freeze completely top to bottom in
winter, while ponds with a high flow-through of groundwater stay cool in summer and
remain open and “steamy” in winter [11,61]. The high variation in water temperature is
extremely important in the support of floodplain biodiversity of aquatic, semi-aquatic,
avian, and mammalian species [3].
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Figure 6. Quickbird satellite panchromatic background image with location and results of radon
data from surface waters and the groundwater aquifer. Data are presented as radon concentration
(Becquerel/liter—bq/L) and as approximate alluvial aquifer residence time (days). The radon data
expressed as approximate residence times the groundwater has resided in the subsurface alluvial
aquifer assuming plug flow conditions of the sampled groundwater. Age attributions are subject to
error as a result of water mixing or radon out-gassing during sampling. The illustrated data points
shown in this figure of the Nyack floodplain consisted of surface water and groundwater samples.
Pure surface water (dark blue) taken from the river channel at the top of the floodplain (lower right
corner of the panchromatic image) represents waters least affected by groundwater discharge.
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Surface water recharge (i.e., downwelling river water) carries organic matter from the
surface into the alluvial aquifer. Subsurface decomposition of this organic matter affects
oxygen concentrations [62] and the release of plant growth nutrients (e.g., phosphates,
nitrates), which can be taken up by the epiphytic algae [11,63] and create localized “hot
spots” of primary productivity in an otherwise nutrient-poor environment. We measured
enhanced primary productivity and co-registered these data with the airborne hyperspectral
imagery (Figure 8). These data show a high coherence between the georeferenced radon
data, airborne thermal imaging data, and the sites of intensive algal growth. Thus, radon
signals and thermal imagery data demonstrate that a rich and complex array of hydrological
exchange and mixing processes occur all across the Nyack floodplain, resulting in a diverse
mosaic of aquatic habitats with differing physico-chemical and productivity characteristics.
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5.5. Classification of Vegetation and Riparian Patches

We used a combination of the Quickbird satellite multispectral imagery, airborne
hyperspectral imagery, and the LIDAR data to produce a detailed vegetation and land
cover map for the Nyack floodplain. An unsupervised classification employing ERDAS was
generated from the satellite Quickbird image using the four multispectral bands and NDVI
(Normalized Differential Vegetation Index) to identify six general cover types; water, cobble,
coniferous trees, deciduous trees, grasslands, and agricultural pasture. The hyperspectral
image data were used to differentiate reflectance characteristics within the deciduous
vegetation classification. Using ENVI 3.5 (RSI 2005), spectral signatures were generated
from known ground truth plots among the dominant deciduous community types. Using
the mean spectral signature for the deciduous cover types, the mixture-tuned matched
filtering (MTMF) was used to classify the deciduous vegetation into its major constituents
of cottonwood, willow, or alder. Image classification accuracy evaluation corresponded
with field species identification >95%.
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The LIDAR data were used to further differentiate age categories of the cottonwood.
Among the pixels classified as cottonwood, we determined canopy height as the difference
between the bare earth DEM and the first return DEM. Pixels classified as cottonwood
with a bare earth DEM to first return DEM differential of >10 m were classified as mature
cottonwoods, between 1.5 and 10 m were identified as pole stand cottonwood, and patches
less than 1.5 m in height were classified as regeneration cottonwood patches. Taking this
approach, we were able to classify the vegetation across the entire floodplain at a 1 × 1 m
pixel resolution and differentiate not only between major species (e.g., spruce, cottonwood,
willow, alder), but also within species age stands of cottonwood, the dominant gallery
forest species (Figure 9).
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Tree species succession on the Nyack floodplain begins as a mix of cottonwood, willow,
and alder. As the patch matures, cottonwood eventually captures the canopy; thus, willow
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is rarely found on orthofluvial cottonwood patches and alder becomes restricted to edges
of paleochannels intersecting the older mature cottonwood stands. We were unable to
remotely sense early size or age classes of spruce, larch, or Douglas fir, because these
species almost exclusively appear as understory species in 30–50-year-old cottonwood
stands and thus are generally obscured from aerial view by the mature cottonwood gallery.
However, these species, especially spruce, enter the upper mature forest canopy and
eventually (>80 years) can be distinguished from the cottonwood. As the floodplain forest
matures, spruce eventually replaces cottonwood on very old (>200 years) surfaces in the
orthofluvial zone.

The species level classification of the remotely sensed hyperspectral data, when geospa-
tially linked with the bare earth DEM and the three-dimensional LIDAR canopy height data
(shown above in Figure 2D), permitted a more detailed analysis of the floodplain vegetation
and processes (Figure 10). For example, the coupling of LIDAR and hyperspectral data
allowed us to create virtual transects through the floodplain for the analysis of tree canopy
height coupled with specific species and floodplain elevations (Figure 10B).

6. Conclusions

Remote sensing has broad application in river ecology, hydrology, fish biology, and
the conservation and management of large rivers and floodplains. In this paper, we have
shown how these remote sensing tools, coupled with detailed field measures, provide great
detail of critical within-channel and off-channel floodplain attributes among even the most
highly complex anastomosing and braided gravel-bed river floodplains.

• We have shown that linking of Quickbird satellite imagery (multispectral at a 2.4 m
spatial resolution and panchromatic at a 0.6 m spatial resolution) with airborne LIDAR
(to be employed for measuring river depth and velocity) and the detailed determina-
tion and quantification of aquatic habitats results in an extremely high resolution of
river hydraulics.

• The coupling of remote sensing data permits high resolution classification and mod-
eling based on the direct relationship of spectral reflectance to measured depth and
velocity. Because this approach is not dependent upon resolving complex flow algo-
rithms that poorly resemble the true complexity of river hydraulics, this approach
provides the researcher with subtle habitat characteristics at scales used by aquatic
organisms, especially migratory fish.

• Hyperspectral imaging, focusing on channel shorelines, coupled with thermal imaging
and detailed temperature and naturally occurring radon tracer data provides impor-
tant insight into groundwater–surface water interactions. When integrated, these
data illustrate sites of potential nutrient upwelling from groundwater discharging
into shallow channel shorelines and springs, including diverse and complex aquatic
habitats. These data reveal the spatial complexity of aquatic temperature regimes
across these habitats and locations where “hot-spots” of epiphytic algal growth affect
river primary and secondary productivity and support of floodplain biodiversity.

• The coupling of satellite multispectral imaging, airborne hyperspectral imaging, and
LIDAR bare earth and vegetation DEMs permits the identification of floodplain vege-
tation across serial stages from regeneration through old growth. These data allow
the resolution of floodplain forest species and measure the topography, forest canopy
height, and complex structure of the vegetation (e.g., differentiation of dominant tree
species by canopy height and age class). This also facilitates answers to more complex
questions related to spatial patterns of vegetation development, the incorporation of
large wood into the river channel, and the distribution and abundance of main channel
and off-channel linkages of aquatic and terrestrial habitats.

River floodplains are among the most globally threatened ecosystems [4,64]. The
threats to ecosystem integrity are due to river regulation downstream of dams, inundation
upstream of dams, disruption in connectivity along stream corridors, modification of
hydrologic regimes, and geomorphic processes. Other human activities such as agricultural
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and urban encroachment, transportation corridors, and stabilizing river banks with levees
and hardening structures to attempt control of flooding events all disrupt natural river
processes. Remote sensing tools, as we have described herein, can be used to determine
the spatial and temporal linkages within large, alluvial river systems, including natural
characteristics of the exchange of water and materials along with longitudinal connections
from streams to rivers, lateral connections between river and floodplain systems, and
vertical surface and subsurface water exchanges. Remote sensing imagery coupled with
georeferenced supporting data can illustrate hydrogeomorphic processes, driven by river
power and cut and fill alluviation, the extent of dynamics in floodplain landscapes, and the
characteristics of river structure and function that foster ecosystem complexity, resulting in
a high diversity of habitats and a high biodiversity at local and regional scales.

Author Contributions: Conceptualization, F.R.H., M.S.L., and T.G.; methodology, F.R.H., M.S.L.,
and T.G.; image validation, F.R.H., M.S.L., and T.G.; analysis, F.R.H., M.S.L., and T.G.; data curation,
F.R.H., M.S.L., and T.G.; writing—original draft preparation, F.R.H., M.S.L., and T.G.; writing—review
and editing, F.R.H., M.S.L., and T.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research, including the method development, approach, data acquisition and process-
ing, instrumentation, and remote sensing, was funded by a variety of sources, including the National
Science Foundation, US Bureau of Reclamation, US Park Service, and private foundations.

Institutional Review Board Statement: Not Application.

Informed Consent Statement: Not Application.

Data Availability Statement: Not Application.

Acknowledgments: We thank D.C. Whited and P.L. Matson for both field and laboratory assistance
and data processing.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Naiman, R.J.; Decamps, H.; Pollock, M. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 1993, 3,

209–212. [CrossRef] [PubMed]
2. Ward, J.V. An expansive perspective of riverine landscapes: Pattern and process across scales. GAIA-Ecol. Perspect. Sci. Soc. 1997,

6, 52–60. [CrossRef]
3. Hauer, F.R.; Locke, H.; Dreitz, V.J.; Hebblewhite, M.; Lowe, W.H.; Muhlfeld, C.C.; Nelson, C.R.; Proctor, M.F.; Rood, S.B.

Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Sci. Adv. 2016, 2, e1600026. [CrossRef]
[PubMed]

4. Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [CrossRef]
5. Tockner, K.; Pusch, M.; Borchardt, D.; Lorang, M.S. Multiple stressors in coupled river-floodplain ecosystems. Freshw. Biol. 2010,

55, 135–151. [CrossRef]
6. Likens, G.E.; Bormann, F.H. Linkages between terrestrial and aquatic ecosystems. BioScience 1974, 24, 447–456. [CrossRef]
7. Stanford, J.A.; Lorang, M.S.; Hauer, F.R. The Shifting Habitat Mosaic of River Ecosystems. Verh. Int. Ver. Theor. Angew. Limnol.

2005, 29, 123–136. [CrossRef]
8. Lorang, M.S.; Hauer, F.R. Fluvial Geomorphic Processes. In Methods in Stream Ecology—Volume 1: Ecosystem Structure, 3rd ed.;

Hauer, F.R., Lamberti, G.A., Eds.; Academic Press/Elsevier: New York, NY, USA, 2017; pp. 89–107.
9. Stanford, J.A.; Ward, J.V. An ecosystem perspective of alluvial rivers: Connectivity and the hyporheic corridor. J. N. Am. Benthol.

Soc. 1993, 12, 48–60. [CrossRef]
10. Woessner, W.W. Hyporheic Zones. In Methods in Stream Ecology—Volume 1: Ecosystem Structure, 3rd ed.; Hauer, F.R., Lamberti,

G.A., Eds.; Academic Press/Elsevier: New York, NY, USA, 2017; pp. 129–157.
11. Brunke, M.; Gonser, T. The ecological significance of exchange processes between rivers and groundwater. Freshw. Biol. 1997, 37,

1–33. [CrossRef]
12. Mahoney, J.M.; Rood, S.B. Streamflow requirements for cottonwood seedling recruitment—An integrative model. Wetlands 1998,

18, 634–645. [CrossRef]
13. Kleindl, W.J.; Rains, M.C.; Marshall, L.A.; Hauer, F.R. Fire and flood expand the floodplain shifting habitat mosaic concept. Freshw.

Sci. 2015, 34, 1366–1382. [CrossRef]

http://doi.org/10.2307/1941822
http://www.ncbi.nlm.nih.gov/pubmed/27759328
http://doi.org/10.14512/gaia.6.1.6
http://doi.org/10.1126/sciadv.1600026
http://www.ncbi.nlm.nih.gov/pubmed/27386570
http://doi.org/10.1017/S037689290200022X
http://doi.org/10.1111/j.1365-2427.2009.02371.x
http://doi.org/10.2307/1296852
http://doi.org/10.1080/03680770.2005.11901979
http://doi.org/10.2307/1467685
http://doi.org/10.1046/j.1365-2427.1997.00143.x
http://doi.org/10.1007/BF03161678
http://doi.org/10.1086/684016


Remote Sens. 2022, 14, 1132 21 of 22

14. Peipoch, M.; Brauns, M.; Hauer, F.R.; Weitere, M.; Valett, H.M. Ecological simplification: Influences on riverscape complexity.
BioScience 2015, 65, 1057–1065. [CrossRef]

15. Durand, M.; Gleason, C.; Garambois, P.A.; Bjerklie, D.; Smith, L.; Roux, H.; Rodriguez, E.; Bates, P.D.; Pavelsky, T.M.; Monnier, J.
An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and
slope. Water Resour. Res. 2016, 52, 4527–4549. [CrossRef]

16. Hubbart, J.A.; Kellner, E.; Kinder, P.; Stephan, K. Challenges in aquatic physical habitat assessment: Improving conservation and
restoration decisions for contemporary watersheds. Challenges 2017, 8, 31. [CrossRef]

17. Frechette, D.M.; Dugdale, S.; Dodson, J.; Bergeron, N. Understanding summertime thermal refuge 1033 use by adult Atlantic
salmon using remote sensing, river temperature monitoring, and acoustic telemetry. Can. J. Fish. Aquat. Sci. 2018, 75, 1999–2010.
[CrossRef]

18. Kasvi, E.; Salmela, J.; Lotsari, E.; Kumpula, T.; Lane, S. Comparison of remote sensing based approaches for mapping bathymetry
of shallow, clear water rivers. Geomorphology 2019, 333, 180–197. [CrossRef]

19. Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep learning habitat modeling for moving organisms
in rapidly changing estuarine environments: A case of two fishes. Estuar. Coast. Shelf Sci. 2020, 238, 106713. [CrossRef]

20. Piégay, H.; Arnaud, F.; Belletti, B.; Bertrand, M.; Bizzi, S.; Carbonneau, P.; Dufour, S.; Liébault, F.; Ruiz-Villanueva, V.; Slater,
L. Remotely sensed rivers in the Anthropocene: State of the art and prospects. Earth Surf. Processes Landf. 2020, 45, 157–188.
[CrossRef]

21. Hankin, D.G.; Reeves, G.H. Estimating total fish abundance and total habitat area in small streams based on visual estimation
methods. Can. J. Fish. Aquat. Sci. 1988, 45, 834–844. [CrossRef]

22. Roper, B.B.; Scarnecchia, D.L. Observer variability in classifying habitat types in stream surveys. N. Am. J. Fish. Manag. 1995, 15,
49–53. [CrossRef]

23. Thompson, W.L. Hankin and Reeves’ Approach to Estimating Fish Abundance in Small Streams: Limitations and Alternatives.
Trans. Am. Fish. Soc. 2003, 132, 69–75. [CrossRef]

24. Gore, J.A.; Judy, R.D., Jr. Predictive models of benthic macroinvertebrate density for use in instream flow studies and regulated
flow management. Can. J. Fish. Aquat. Sci. 1981, 38, 1363–1370. [CrossRef]

25. Gallagher, S.P.; Gard, M.F. Relationship between chinook salmon (Oncorhynchus tshawytscha) redd densities and PHABSIM-
predicted habitat in the Merced and Lower American rivers, California. Can. J. Fish. Aquat. Sci. 1999, 56, 570–577. [CrossRef]

26. Spence, R.; Hickley, P. The use of PHABSIM in the management of water resources and fisheries in England and Wales. Ecol. Eng.
2000, 16, 153–158. [CrossRef]

27. Shirvell, C.S. Ability of PHABSIM to predict chinook salmon spawning habitat. Regul. Rivers Res. Manag. 1989, 3, 277–289.
[CrossRef]

28. Bourgeois, G.; Cunjak, R.A.; Caissie, D. A spatial and temporal evaluation of PHABSIM in relation to measured density of juvenile
Atlantic salmon in a small stream. N. Am. J. Fish. Manag. 1998, 16, 154–166. [CrossRef]

29. Put, W.; Pasture, P. Don’t throw out the baby (PHABSIM) with the bathwater: Bringing scientific credibility to use of hydraulic
habitat models, specifically PHABSIM. Future of Salmon in the Face of Change. Fisheries 2017, 146, 493–560.

30. Leclerc, M.; Boudreault, A.; Bechara, J.A.; Corfa, G. Two-dimensional hydrodynamic modeling: A neglected tool in the instream
flow incremental methodology. Trans. Am. Fish. Soc. 1995, 124, 645–662. [CrossRef]

31. Ghanem, A.; Steffler, P.; Hicks, F.; Katopodis, C. 2-D hydraulic simulation of physical conditions in flowing streams. Regul. Rivers
Res. Manag. 1996, 12, 185–200. [CrossRef]

32. Kondolf, G.M.; Larsen, E.W.; Williams, J.G. Measuring and modeling the hydraulic environment for assessing instream flows. N.
Am. J. Fish. Manag. 2000, 20, 1016–1028. [CrossRef]

33. Lorang, M.S.; Tonolla, D. Combining active and passive hydroacoustic techniques during flood events for rapid spatial mapping
of bedload transport patterns in gravel-bed rivers. Fundam. Appl. Limnol. 2014, 184, 231–246. [CrossRef]

34. Marotz, B.; Lorang, M.S. Pallid sturgeon larvae: The drift dispersion hypothesis. J. Appl. Ichthyol. 2018, 34, 373–381. [CrossRef]
35. Mejia, F.H.; Torgersen, C.E.; Berntsen, E.K.; Maroney, J.R.; Connor, J.M.; Fullerton, A.H.; Ebersole, J.L.; Lorang, M.S. Longitudinal,

Lateral, Vertical, and Temporal Thermal Heterogeneity in a Large Impounded River: Implications for Cold-Water Refuges. Remote
Sens. 2020, 12, 1386. [CrossRef] [PubMed]

36. Goodchild, M.F. Integrating GIS and remote sensing for vegetation analysis and modeling: Methodological issues. J. Veg. Sci.
1994, 5, 615–626. [CrossRef]

37. Wulder, M.A.; Franklin, S.E.; White, J.C.; Linke, J.; Magnussen, S. An accuracy assessment framework for large-area land cover
classification products derived from medium-resolution satellite data. Int. J. Remote Sens. 2006, 27, 663–683. [CrossRef]

38. Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for
estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000, 76, 156–172. [CrossRef]

39. Cochrane, M.A. Using vegetation reflectance variability for species level classification of hyperspectral data. Int. J. Remote Sens.
2000, 21, 2075–2087. [CrossRef]

40. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for
predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ.
2004, 90, 337–352. [CrossRef]

http://doi.org/10.1093/biosci/biv120
http://doi.org/10.1002/2015WR018434
http://doi.org/10.3390/challe8020031
http://doi.org/10.1139/cjfas-2017-0422
http://doi.org/10.1016/j.geomorph.2019.02.017
http://doi.org/10.1016/j.ecss.2020.106713
http://doi.org/10.1002/esp.4787
http://doi.org/10.1139/f88-101
http://doi.org/10.1577/1548-8675(1995)015&lt;0049:OVICHT&gt;2.3.CO;2
http://doi.org/10.1577/1548-8659(2003)132&lt;0069:HARATE&gt;2.0.CO;2
http://doi.org/10.1139/f81-183
http://doi.org/10.1139/f98-198
http://doi.org/10.1016/S0925-8574(00)00099-9
http://doi.org/10.1002/rrr.3450030127
http://doi.org/10.1577/1548-8675(1996)016&lt;0154:ASATEO&gt;2.3.CO;2
http://doi.org/10.1577/1548-8659(1995)124&lt;0645:TDHMAN&gt;2.3.CO;2
http://doi.org/10.1002/(SICI)1099-1646(199603)12:2/3&lt;185::AID-RRR389&gt;3.0.CO;2-4
http://doi.org/10.1577/1548-8675(2000)020&lt;1016:MAMTHE&gt;2.0.CO;2
http://doi.org/10.1127/1863-9135/2014/0552
http://doi.org/10.1111/jai.13569
http://doi.org/10.3390/rs12091386
http://www.ncbi.nlm.nih.gov/pubmed/32850136
http://doi.org/10.2307/3235878
http://doi.org/10.1080/01431160500185284
http://doi.org/10.1016/S0034-4257(00)00197-8
http://doi.org/10.1080/01431160050021303
http://doi.org/10.1016/j.rse.2003.12.013


Remote Sens. 2022, 14, 1132 22 of 22

41. Underwood, E.; Ustin, S.; DiPietro, D. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ. 2003, 86,
150–161. [CrossRef]

42. Hirano, A.; Madden, M.; Welch, R. Hyperspectral image data for mapping wetland vegetation. Wetlands 2003, 23, 436–448.
[CrossRef]

43. Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and
conservation. Trends Ecol. Evol. 2003, 18, 306–314. [CrossRef]

44. Rugenski, A.T.; Minshall, G.W.; Hauer, F.R. Riparian Processes and Interactions. In Methods in Stream Ecology—Volume 2: Ecosystem
Function, 3rd ed.; Lamberti, G.A., Hauer, F.R., Eds.; Academic Press/Elsevier: New York, NY, USA, 2017; pp. 83–111.

45. Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar remote sensing for ecosystem studies. BioScience 2002, 52, 19–30.
[CrossRef]

46. McKean, J.; Nagel, D.; Tonina, D.; Bailey, P.; Wright, C.W.; Bohn, C.; Nayegandhi, A. Remote sensing of channels and riparian
zones with a narrow-beam aquatic-terrestrial LIDAR. Remote Sens. 2009, 1, 1065–1096. [CrossRef]

47. Tockner, K.; Lorang, M.S.; Stanford, J.A. River flood plains are model ecosystems to test general hydrogeomorphic and ecological
concepts. River Res. Appl. 2010, 26, 76–86. [CrossRef]

48. Whited, D.C.; Lorang, M.S.; Harner, M.J.; Stanford, J.A.; Hauer, F.R.; Kimball, J.S. Climate, hydrologic disturbance, and succession:
Drivers of floodplain pattern. Ecology 2007, 88, 940–953. [CrossRef]

49. Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating plot-level tree heights with LIDAR: Local filtering with a canopy-height
based variable window size. Comput. Electron. Agric. 2002, 37, 71–95. [CrossRef]

50. Lyzenga, D.R. Passive remote-sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383.
[CrossRef]

51. Winterbottom, S.J.; Gilvear, D.J. Quantification of channel bed morphology in gravel-bed rivers using airborne multispectral
imagert and aerial photography. Regul. Rivers Res. Manag. 1997, 13, 489–499. [CrossRef]

52. Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley: Reading, MA, USA, 1977.
53. Whited, D.C.; Stanford, J.A.; Kimball, J.S. Application of airborne multi-spectral digital imagery to characterize riverine habitats

at different base flows. River Res. Appl. 2002, 18, 583–594. [CrossRef]
54. Whited, D.C.; Stanford, J.A.; Kimball, J.S. Application of airborne multi-spectral digital imagery to characterize the riverine

habitat. Verh. Int. Ver. Theor. Angew. Limnol. 2003, 28, 1373–1380. [CrossRef]
55. Lorang, M.S.; Whited, D.C.; Hauer, F.R.; Kimball, J.S.; Stanford, J.A. Using airborne multispectral imagery to evaluate geomorphic

work across floodplains of gravel-bed rivers. Ecol. Appl. 2005, 15, 1209–1222. [CrossRef]
56. Andrews, J.N.; Wood, D.F. Mechanism of Radon Release in Rock Matrices and Entry into Groundwaters; Bath University of Technology:

Bath, UK, 1972.
57. Moore, W.S. Mechanism of transport of U-Th series radioisotopes from solids into ground water. Geochim. Cosmochim. Acta 1984,

48, 395–399.
58. Hoehn, E.; von Gunten, H.R. Radon in groundwater—A tool to assess infiltration from surface waters to aquifers. Water Resour.

Res. 1989, 25, 1795–1803. [CrossRef]
59. Burnett, W.C.; Kim, G.; Lane-Smith, D. Use of a continuous radon monitor for assessment of radon in coastal ocean waters. J.

Radioanal. Nucl. Chem. 2001, 249, 167–172.
60. Lorang, M.S.; Hauer, F.R.; Whited, D.C.; Matson, P.L. Using airborne remote-sensing imagery to assess flow releases from a dam

in order to maximize re-naturalization of a regulated gravel-bed river. In The Challenges of Dam Removal and River Restoration.
Geological Society of America Reviews in Engineering Geology; De Graff, J.V., Evans, J.E., Eds.; The Geological Society of America, Inc.:
Boulder, CO, USA, 2013; Volume 21, pp. 117–132.

61. Baxter, C.V.; Hauer, F.R. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus
confluentus). Can. J. Fish. Aquat. Sci. 2000, 57, 1470–1481. [CrossRef]

62. Valett, H.M.; Hauer, F.R.; Stanford, J.A. Landscape influences on ecosystem function: Local and routing control of oxygen
dynamics in a floodplain aquifer. Ecosystems 2014, 17, 195–211. [CrossRef]

63. Wyatt, K.H.; Hauer, F.R.; Pessoney, G.F. Benthic algal response to hyporheic-surface water exchange in an alluvial river.
Hydrobiologia 2008, 607, 151–161. [CrossRef]

64. Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; Van de Bund, W.; Aarestrup, K.;
Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [CrossRef]

http://doi.org/10.1016/S0034-4257(03)00096-8
http://doi.org/10.1672/18-20
http://doi.org/10.1016/S0169-5347(03)00070-3
http://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
http://doi.org/10.3390/rs1041065
http://doi.org/10.1002/rra.1328
http://doi.org/10.1890/05-1149
http://doi.org/10.1016/S0168-1699(02)00121-7
http://doi.org/10.1364/AO.17.000379
http://doi.org/10.1002/(SICI)1099-1646(199711/12)13:6&lt;489::AID-RRR471&gt;3.0.CO;2-X
http://doi.org/10.1002/rra.695
http://doi.org/10.1080/03680770.2001.11902681
http://doi.org/10.1890/03-5290
http://doi.org/10.1029/WR025i008p01795
http://doi.org/10.1139/f00-056
http://doi.org/10.1007/s10021-013-9717-5
http://doi.org/10.1007/s10750-008-9385-1
http://doi.org/10.1038/s41586-020-3005-2

	Introduction 
	Study Area 
	Remote Sensing Acquisition 
	Airborne Light Detection and Ranging 
	Satellite Multispectral Imagery 
	Airborne Hyperspectral Imagery 
	Airborne Ultra-High Resolution Multispectral Imagery 
	Airborne Thermanl Imagery 

	Field Measures and Data Classification 
	River Hydraulics—Depth and Flow Velocity 
	Surface Water–Ground Water Exchange and Groundwater Residence 
	Water Temperatures 
	Periphyton and Chlorophyll 
	Riparian Vegetation 

	Results and Discussion 
	LIDAR Bare Earth Model 
	Aquatic Habitat Defined by Flow Velocity and Water Depth 
	Aquatic Habitat Classification 
	Ground Water–Surface Water Interaction, Water Temperature, and Periphyton 
	Classification of Vegetation and Riparian Patches 

	Conclusions 
	References

