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Abstract: Urbanization inevitably poses a threat to urban ecology by altering its external structure
and internal attributes. Nighttime light (NTL) has become increasingly extensive and practical,
offering a special perspective on the world in revealing urbanization. In this study, we applied the
Normalized Impervious Surface Index (NISI) constructed by NTL and MODIS NDVI to examine
the urbanization process in the Yangtze River Delta (YRD). Geographical detectors combined with
factors involving human and natural influences were utilized to investigate the drive mechanism.
Urban ecology stress was evaluated based on changes in urban morphological patterns and fractional
vegetation cover (FVC). The results showed that the NISI can largely overcome the obstacle of directly
coupling NTL data in performing urbanization and has efficient applicability in the long-term pixel
scale. Built-up areas in the YRD increased by 2.83 times during the past two decades, from 2053.5 to
7872.5 km2. Urbanization intensity has saturated the city center and is spilling over into the suburbs,
which show a “cold to hot” spatial clustering distribution. Economic factors are the primary forces
driving urbanization, and road network density is becoming essential as factor that reflects urban
infrastructure. Urban geometry pattern changes in fractal dimension (FD) and compactness revealed
the ecological stress from changing urban external structure, and internal ecological stress was clear
from the negative effect on 63.4% FVC. This impact gradually increased in urban expanded area and
synchronously decreased when urbanization saturated the core area. An analysis of ecological stress
caused by urbanization from changing physical structure and social attributes can provide evidence
for urban management and coordinated development.

Keywords: urbanization; NTL; MODIS data; geographical detector; FVC

1. Introduction

China’s rapid urbanization has driven unprecedented changes in land use and land-
cover change (LUCC) over the past few decades [1], accompanied by shifts in urban scale,
urban environment, urban energy, and various urban socioeconomic indicators [2]; while
the external spatial structure, i.e., physical attributes, is changing, the internal economic
characteristics with social attributes are also changing [3,4]. Obtaining accurate and timely
information about the dynamics of urban development is crucial to clarify the driving forces
of urbanization [5,6]. Previous studies have demonstrated that remote-sensing data have
advanced capabilities in urban extent delineation and urban impervious-surface mapping,
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especially medium-to-high resolution data, such as satellite images from Landsat’s The-
matic Mapper [7], Sentinel [8], SPOT [9], etc. However, due to increasing urban complexity,
the ability to analyze the spatial structure of large-scale urban systems and estimate urban
socioeconomic characteristics needs to be improved [10].

From 1978, NTL data have been found to be closely related to human activities.
Since then, many relevant studies have gradually been published, including studies on
urban dynamics [11], population analysis [12], GDP research [13], electricity consumption
research [14], and carbon emission indicator simulation [15]. They have successively
proved that NTL data can be efficiently utilized to reflect socioeconomic activities related
to urban development [16]. Currently, NTL data from the Defense Meteorological Satellite
Program’s Operational Linescan System (DMSP-OLS) [17] and the National Polar-Orbiting
Partnership’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) [18] are the most
commonly used. Longer-term urban analysis of the application of NTL data can be fully
facilitated by connecting different sensors [19], but implementing the urban development
dynamics by linking lies in how to continuously integrate the NTL data [20]. Since long-
term observations are extremely important for revealing urbanization, methods for mutual
calibration and assimilation of the two types of NTL data have also been developed in
recent years. Nonetheless, discontinuities remain in the data of a sensor boundary’s time
period. Applying DMSP-OLS data to simulate NPP-VIIRS data with a wide range of
brightness values, the efficient object is basically located in the city center. For values in
the suburbs around the city, the brightness value will be overestimated after correction,
thus making the sum of light (SOL) higher than it really is and causing a deviation of
data discontinuity. Numerous studies on the construction of an impervious surface (ISA)
index by integrating NTL data and vegetation index have proved highly dependent on
urban analysis, such as the Human Settlement Index (HSI) [21], Large-Scale Impervious
Surface Index (LISI) [22], Enhanced Vegetation Index Adjust NTL Index (EANTLI) [23],
NISI [24], and LST and EVI Regulated NTL City Index (LERNCI) [25]. These have proved
to be welcome in presenting urbanization and can vigorously cut back the light saturation.

Identifying the driving forces of urbanization is essential for understanding attri-
butions and trends of development, and for supporting related decision-making [26].
Influenced by geophysical; socioeconomic factors; physical factors, such as proximity fac-
tors, neighborhood factors, land-use policy, and urban planning [27], the causes, processes,
patterns, and consequences of urbanization remain largely unknown [28,29]. Factors that
contribute to urban development present spatiotemporal changes. Driving mechanisms
vary regionally due to distinct geophysical conditions, natural environments, and socioe-
conomic development levels. Mathematical models have been developed to examine the
relationship between factors and urban development, mostly a regression approach [30].
However, ignoring spatial effects in some cases, spatial autocorrelation in the dependent
variable or spatial autocorrelation of model residuals, due to omitted independent variable
models may lead to biased results [31]. Traditional methods are not effective in detecting
the strength of the driving factors and the magnitude of their interactions. The geographical
detector method was originally proposed to detect and assess diseases [32]. It can effec-
tively test the relationship between geographical phenomena and their potential drivers, as
well as the relationship between each influencing factor [33].

Rapid urbanization not only promotes socioeconomic development but also weakens
the vital ecological services provided by the natural ecosystem for the city [34]. Urban-
ization driven by comprehensive factors directly and indirectly threatens the ecological
system [35]. Direct stress mostly manifests in the external physical structure by altering the
size, shape, and interconnectivity of the natural landscapes [36]. Fractal geometry provides
a new way of looking at urban shape and is a powerful tool for analyzing urban agglom-
eration. FD [37] and compactness [38] are forms of fractal geometry used to characterize
the external texture of urban expansion [39] and can reflect changes in the shape of the
urban landscape. Indirect stress mainly stems from the modification of surface albedo and
permeability, evapotranspiration, and increased aerosols and anthropogenic heat sources,
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thereby leading to changes in vegetation growth status and the regional climate [40]. FVC
refers to the ratio of the vertical projection area of vegetation on the ground and is not only
an important parameter reflecting the growth and distribution characteristics of surface
vegetation but also important basic data describing the condition of the ecosystem [41].
With the intelligent development of a green city, the relationship between urban develop-
ment and vegetation becomes increasingly complicated. Urbanization can significantly
decrease vegetation cover by transforming land-cover types from vegetated areas to built-
up areas [42]. However, vegetation degradation caused by short-term urban expansion
cannot ultimately show simple negative influences. For some metropolises, FVC of urban
forests has gradually increased in recent years, and the coordinated green development of
cities has become an established development route. Understanding changes in vegetation
during long-term urban development can be used for comprehensive evaluation and also
provides a reference for changes in ecological functions [43].

The YRD is a typical region in China featuring rapid urbanization in terms of de-
mographics and economy. To explore urbanization patterns in the YRD, the integrated
NISI was used to construct a time-series analysis. Economic, geographical, and climatic
factors are input to the geographical detectors to diagnose the drive effect on urbanization.
Geometrical structure of urban patches measured by FD and compactness represented
external ecological stress during the urban outward expansion, and the internal ecological
stress was conducted by analyzing the correlation between NISI and FVC. Analysis of the
patterns, driving forces, and impact of urbanization can provide theoretical and practical
reference for continuous detection of urban and ecology development.

2. Materials
2.1. Study Area

The YRD is located at 32◦34′ to 29◦20′ north latitude and 115◦46′ to 123◦25′ east
longitude (Figure 1), the lower reaches of the Yangtze River, at the intersection of the river
and the sea. YRD has a northern subtropical climate, and its annual average temperature
is 14–18 ◦C. It has the highest density of river networks in China, with an average river
network length of 4.8 to 6.7 kilometers per square kilometer. In this study, the YRD refers
to 26 cities in Shanghai, Jiangsu, Zhejiang, and Anhui, with a total area of 213,033 km2.
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2.2. Datasets and Processing
2.2.1. NTL Data Calibration

NTL data were derived from DMSP-OLS and NPP-VIIRS with spatial resolution at
30 arc-seconds and 15 arc-seconds. Version 4 DMSP-OLS data from the National Oceanic
and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC)
were the annual cloud-free composites from four satellites (F14, 2000–2003; F15, 2003–2005;
F16, 2005–2009; and F18, 2010–2013). Day/Night Band (DNB) of NPP-VIIRS were the
annual average light data (2013–2020) from NOAA/NGDC. In addition to basic back-
ground noise (i.e., fire, gas, burning, and volcanoes; NPP VIIRS > 0.3 × 10−9 W·cm−2·sr−1)
elimination [44], data calibration was conducted in sequential analysis by combining the
datasets interlinkage.

Data calibration involved the inner-calibration of DMSP-OLS with different satellites
and data assimilation between DMSP-OLS and NPP-VIIRS. In the inter-calibration, a
vicarious site was selected to provide calibration samples [20]. NTL data in 2007 were set as
the reference, and then a power function [45] was applied to calibrate the DMSP-OLS data
of the remaining years. In data assimilation, by calculating the coefficient of variation (CV)
for the all the pixels in the data of DMSP-OLS and NPP-VIIRS from 2000 to 2020, a vicarious
site was selected with a CV value lower than 0.2. Then an intersection operation was made
between the radiation-stable areas of DMSP-OLS and NPP-VIIRS to obtain the stable pixels
both spatially and temporally. Pixels in the intersection constituted the vicarious site. A
logarithmic transformation was performed to adjust the range of the NPP-VIIRS data to be
comparable with the DMSP-OLS data [19]. Finally, a sigmoid function was chosen as the
logistic regression method for conducting data assimilation.

Data calibration of DMSP-OLS from different satellites can make the SOL values
of the same year propinquities (Figure 2a). Original DMSP OLS data showed basically
no relationship with NPP-VIIRS data (Figure 2b), but logarithmically transforming the
NPP-VIIRS data presented a significant S-shaped distribution, performing a high R2 at 0.95
with DMSP-OLS (Figure 2c), which allows for constructing a mathematical expression to
achieve the assimilation. Thus, the sigmoid model constructed in 2013 was applied to the
remaining calibrated DMSP-OLS data and NPP-VIIRS data.
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transformed NPP−VIIRS pixels and DMSP−OLS pixels in 2013.

2.2.2. MODIS Data and Preprocessing

The MODIS surface reflectance data from 2000 to 2020 were all derived from the Terra
satellite in the Earth Observation System (EOS) of the United States, with a time resolution
of 8 days and a spatial resolution of 500 m. MODIS Reprojection Tool (MRT) software was
used to process the original MOD09A1 data products by performing functions such as
batch splicing, projection conversion, and data-format conversion. NDVI calculated by the
near-infrared band (Band2) and visible-light band (Band1) of the processed MODIS surface
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reflectance was then filtered by the Savitzky–Golay (S–G) method to smooth the NDVI time
series data. To further eliminate cloud cover, atmosphere, sun elevation, and phenology
factors, this study used the maximum value composites (MVC) [46] to synthesize the NDVI
at 46 time points per year. Based on the year’s maximum value of MODIS NDVI, the
dimidiate pixel model was applied to calculate the MODIS FVC of the study area [47].

2.2.3. Auxiliary Data of Driving Factors

Factors in this study represented the influence of economic and physical aspects,
proximity, and meteorology. Details of auxiliary data are shown in Table 1. GDP and
population were derived from the NASA Socioeconomic Data and Applications Center
(SEDAC) (https://sedac.ciesin.columbia.edu/, accessed on 24 December 2021). GDP
in 2019 was derived from county-level statistics from the statistical yearbooks of Zhe-
jiang, Shanghai, Jiangsu, and Anhui and was converted to raster data with spatial reso-
lution the same as data in SEDAC. Slope (SLP) and elevation (ELV) were extracted from
SRTM3 DEM data from CGIAR Consortium for Spatial Information (CGIAR-CSI) (https:
//srtm.csi.cgiar.org/srtmdata/, accessed on 24 December 2021). DSR is the Euclidean
distance to the main road (including motorway and primary and secondary roads) of the
OpenStreetMap (OSM) data downloaded from GEOFABRIK (http://www.geofabrik.de/,
accessed on 24 December 2021). Road network density (RND) was calculated by using
the sum length of the road within the county scale of the study area. Meteorological data,
including daily maximum temperature, daily minimum temperature, and daily precipita-
tion, were obtained from the National Meteorological Center of the China Meteorological
Administration (NMCCMA) (http://www.cma.gov.cn/en2014/, accessed on 24 December
2021). Annual average temperature (TEM) was calculated based on the daily maximum
temperature and daily minimum temperature. PRE is the cumulative calculation of the
daily precipitation in a year. Images used in this study were all resampled to 500 m for
unified processing.

Table 1. Details of auxiliary data used in this study.

Type Datasets Year Resolution Data Sources Abbreviation

Economic
Factors

GDP 2000, 2005, 2010,
2015, 2019 (2020) 1 km SEDAC

GDP
Population GPW

Physical
Factors

Slope
2000 90 m CGIAR-CSI

SLP
Elevation ELV

Proximity
Factors

Distance to Road
2020

500 m
GEOFABRIK

DSR
Road Network

Density County RND

Meteorological
Factors

Precipitation 2000, 2005, 2010,
2015, 2020 1 km NMCCMA

PRE
Temperature TEM

3. Methods
3.1. Change Analysis of Urbanization Patterns
3.1.1. NISI and Built-Up Area Mapping

The NISI, proposed to integrate the DMSP-OLS data and MODIS NDVI for mapping
ISA distribution [48], has proved to be effective in reflecting urban development. In this
study, the NISI was tested to conduct urban dynamics by evaluating the intensity tendency
and identifying built-up area distribution. Formulas were calculated as follows:

NISI =
NTLnor ∗ (1− NDVImax)

2 ∗ (1− 0.5 ∗ NTLnor)(1 + NDVImax)
(1)

NDVImax = MAX[NDVI1, NDVI2, . . . , NDVIn] (2)

where NDVI1, NDVI2, . . . , and NDVIn are the multitemporal MODIS NDVI images
acquired from 2000 to 2020. NDVImax is obtained based on the preprocessed MODIS

https://sedac.ciesin.columbia.edu/
https://srtm.csi.cgiar.org/srtmdata/
https://srtm.csi.cgiar.org/srtmdata/
http://www.geofabrik.de/
http://www.cma.gov.cn/en2014/
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NDVI by using the Maximum Value Composite (MVC) method. NTLnor represents the
normalized data of annual synthesized NTL data.

A few methods are available to directly extract built-up area information from NTL
images, including an empirical thresholding technique, a thresholding technique based
on mutation detection, clustering thresholding segmentation, and a statistics method with
ancillary data [49]. Single threshold definition for built-up area extraction on a large scale
is difficult due to the regional variation in physical environment and socioeconomic devel-
opment. In this study, a K-means clustering algorithm based on the NISI was applied to
extract the built-up area distribution. Statistical data (2013–2019) derived from the Ministry
of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD)
were set as the referenced data to validate the extracted area. The determination coefficient
(R2) [50] and RMSE [51] were used to evaluate the accuracy of area extraction.

3.1.2. Urbanization Intensity Tendency

Rather than classifying images into discrete land-cover types based on limited tempo-
ral snapshots, utilizing the entire time series allows urban changes over time to be easily
assessed [52]. This study applied a linear regression model to calculate the NISI intensity
tendency by minimizing the sum-of-squares errors [47]. The intensity tendency was the
slope of the fit line after the least-squares regression of the pixel’s multiyear value, mean-
ing the NISI interannual variability. F test was used to test the significance of variability.
Formulas are as follows:

slope =
n ∗∑n

i=1 i ∗Vi −∑n
i=1 i ∑n

i=1 Vi

n ∗∑n
i=1 i2 − (∑n

i=1 i)2 (3)

F =
U ∗ (n− 2)

Q
(4)

In Formula (3), the slope indicates the intensity tendency, n denotes the total number
of years, i represents the ith year, and Vi represents the value in the ith year. A posi-
tive variability represents an increasing trend or a decrease. In Formula (4), the sum

of the squared errors is U = ∑n
i=1

(
N̂ISIl − NISI

)2
, the explained sum of squares is

Q = ∑n
i=1

(
N̂ISIl i −

̂̂NISIl l

)2

, N̂ISIl and ̂̂NISIl are the average value and regression

value of NISI, respectively, and i is the year (i = 1, 2, . . . , n).
Hotspot analysis was performed to delineate the spatial cluster of urbanization level

in the YRD based on the Getis–Ord Gi* statistic, using a fixed distance band [53]. The
Getis–Ord Gi* statistic has been widely adopted to analyze biological habitat [54], epi-
demic disease [55], and crime [56] to identify the significant spatial clusters of high values
(hotspots) and low values (cold spots). It compares the value of a variable in a given pixel
and its neighboring pixel to all pixels within the analysis field in order to measure the
intensity of clustering. To generate a Gi* score for a given pixel, the sum of a pixel and
its neighbors is then compared proportionally to the sum of all pixels. The formula is
as follows:

G∗i (Z) =
∑n

j=1 Wi,jxj − X ∑n
j=1 Wi,j

S

√
n ∑n

j=1 W2
i,j−(∑

n
j=1 Wi,j)

2

n−1

(5)

and X = ∑n
j=1 xj/n, S =

√
∑n

j=1 x2
j /n−

(
X
)2

where xj is the magnitude of the NISI intensity tendency at location j, and X is the averaged
magnitude over all the pixels n. Wi,j is the spatial weight value between the administrative
pixel i and j, whose value equals either 1 or 0 defined by the distance between i and j [44].
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3.2. Geographical Detectors

The geographical detector is a spatial statistical method used to test the relationships
between geographical phenomena and their potential driving factors [30]. The basic idea
of the model is to test the association between the explanatory variables and the dependent
variable through the consistency of their spatial distribution [57]. The geographical detector
includes four detectors: the factor detector, risk detector, ecology detector, and interaction
detector. This study used the factor detector and the interaction detector to explore the
driving mechanism.

The factor detector is used to detect the explanatory power of the factor for the
dependent variable by calculating the relationship between the variances within sum of
squares and the total sum of squares. The formula [58,59] is calculated as follows:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (6)

where L is the number of strata of the potential factors; Nh and N are the number of grid
element of stratum h and the whole region, respectively; and σ2

h and σ2 are the variances of
the urban area in the stratum h and the whole region, respectively. The greater the value of
q, the greater the influence of the factor is.

The interaction detector aims to identify the interaction impact between two different
factors by measuring the q-value of variables working together. For example, the interaction
between factors M and N has five interactive results [60]:

(1) Nonlinear-weaken: q(M∩N) < Min(q(M), q(N));
(2) Uni-enhance/weaken: Min(q(M), q(N)) < q(M∩N) < Max(q(M), q(N));
(3) Bi-enhance: Max (q(M), q(N)) < q(M∩N) < (q(M) + q(N));
(4) Independent: q(M∩N) = q(M) + q(N);
(5) Nonlinear-enhance: q(M∩N) > (q(M) +q(N));

where ∩ denotes the interaction between factors M and N.

3.3. Evaluation of Ecological Stress

Understanding the dynamics and spatial structure of object shape is a first step toward
finding solutions to environmental problems [61]. In this study, the stress of urbanization
on urban ecology mainly manifests itself in two ways: internal pressure and external
pressure. External pressure was measured by using the morphological pattern changes of
built-up areas during the process of occupation on other types of land resources. Internal
pressure refers to the synchronous dynamic response of FVC to NISI.

FD and compactness can reflect the spatial concentration and diffusion of the struc-
ture, and scale-free problems will be readily resolved. For an object, only the index with
non-integer value can accurately reflect its irregularity and complexity. FD is a represen-
tation of the dependence of the local features on the whole system. It is an important
index for measuring the complexity and irregularity of an object or fractal, and it is a
parameter to describe the degree of self-similarity of fractals quantitatively. Compactness
in space with the same projected area has different plane shapes, reflecting the different
degree of compactness of its spatial distribution, which can be used as an indicator of
the compactness and fullness of urban forms [62]. In this study, a method based on the
circumference was chosen to calculate the compactness of the geometrical shape of built-up
areas. Indexes [63,64] are defined as follows:

FDit = 2 ∗ ln(0.25 ∗ Pit)/ ln Ait (7)

Cit = 2 ∗
√

πAit/ Pit (8)

where FDit, Cit, Pit, and Ait represent the FD, compactness, perimeter, and size of the
built-up area patches, respectively, of the ith patch in year t. FD has a value range of
1–2. Generally, the complexity of the urban form is positively correlated with FD, and the
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compactness of the circle is used as the metric. The greater the compactness value, the more
compact the shape; conversely, the lower the value, the worse the shape compactness.

4. Results
4.1. Spatiotemporal Evolution of Urbanization
4.1.1. Evaluation of the Integrated NISI

NISI was calculated by integrating the assimilated NTL data and the processed MODIS
NDVI. Image pixels of 2013 in three different directions in Hangzhou were selected to
verify the spectral changes before and after data conversion. There was a great discrepancy
between the original data of DMSP-OLS and those of NPP-VIIRS, due to the drawbacks
of blooming effects from the near-infrared band in different sensors (Figure 3). After data
assimilation, these two types showed data-distribution changes in three directions. The
curve distribution shows that assimilation was better in the center of the city, and the value
of some assimilated pixels in the city’s fringe area was overestimated, resulting in the SOL
of NPP-VIIRS being magnified. Assimilated NTL data enhance the continuity of the time
series but simultaneously cause data “saturation” of the city center compared to the original
NPP-VIIRS. NISI combines the characteristics of lightness and vegetation indexes, allowing
data distribution to become gradually synchronized with the original NPP-VIIRS. On the
basis of almost unchanged data structure, NISI reduced light saturation and enhanced the
ability in urban analysis, as with the original NPP-VIIRS data.
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The mean value of the original NTL and the assimilated NTL shows that data assim-
ilation can largely decrease the discontinuity of DMSP-OLS and NPP-VIIRS (Figure 4).
NISI could nearly eliminate the impact of different sensors and combined the datasets
interlinkage. With a high degree of pixel discrimination from the inside to the outside,
NISI ingeniously reduces the light “saturation” effect to make data comparable on the pixel
scale. Results of the reclassified built-up area showed a high R2 at 0.85 with the referenced
area from 2013 to 2019, and low RMSE at 177.84 km2. From 2053.5 to 7872.5 km2, the
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built-up area in the YRD during the past two decades had an annual growth of 277.1 km2.
The steady growth trend and extraction accuracy of built-up areas show that NISI can be
applied to urban mapping accurately while enhancing the data continuity, which can be
considered a feasible method for long-term urban detection.
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4.1.2. Intensity Tendency and Hotspot Analysis

The mean NISI (Figure 5a) revealed the distribution of urbanization intensity from
2000 to 2020. The even enhancement of divergence in the city center and its marginal
boundaries reflects a decreasing trend from the core to the periphery. The NISI slope of
interannual change obviously revealed the spatial variation patterns, as shown in Figure 5b.
Intensity variation in the built-up area’s periphery and part of the city’s core area remained
relatively stable or even showed a slight decrease. Extremely and substantially increasing
behaviors of the NISI slope were mainly concentrated in the middle region between the city
core and the fringe area. Significant reduction and increase accounted for 10.6% and 34.2%
in the slope of 62.5% decrease and 37.5% increase, respectively (Figure 5c). Considering the
NISI slope, areas with drastic changes are more significant than areas with a small NISI slope
appearing basically stable. Significant reduction is the case for most first-tier city centers,
such as Shanghai, Suzhou, Nanjing, Hangzhou, and Hefei, while the significant increase
is manifested in the periphery of these areas. Regional development is first associated
with a rapid increasing intensity in the city center, until urbanization intensity saturation.
Then, the rapidly increasing intensity spills over, thus accelerating the development of
the surrounding suburbs and countryside in terms of both built-up area and urbanization
intensity. This is roughly consistent with the research of Yu et al. [44]. Hotspot analysis
with 90% confidence based on the NISI slope showed the significant spatial clusters of high
values (hotspots) and low values (cold spots) (Figure 5d). Heterogeneity of a “cold to hot”
and a “hot to cold” distribution could be diagnosed.

In view of the trend of economic development, the intensity of urbanization should
also increase with the gradual increase of economic strength. During the study period,
urbanization intensity of all 26 administrative regions increased, but not all pixels within the
region were positive. Statistics showed that the built-up area of some cities has been almost
stable in recent years, which means that outward expansion is inevitably accompanied by
an internal decrease. Results revealed that the more densely populated areas are the first to
reach the peak of urbanization in the core area, while for the expansion area, the opposite
is the case.
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4.2. Driving Mechanism of Urbanization

Biophysical factors and human activities affect urbanization, with drivers varying
across regions over time [30]. Due to comprehensive influences, the sensitivity of factors to
urbanization is constantly changing over time and space. In this study, NISI and driving
factors from 2000 to 2020 were set as the independent and dependent variables applied to
analyze the driving mechanism. Results are presented in Figure 6.
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From the perspective of different periods (2000–2005, 2005–2010, 2010–2015, and
2015–2020) (Figure 6a), factors are ordered by mean q-values: RND (0.1603) > GDP (0.1555)
> PRE (0.1505) > GPW (0.1260) > TEM (0.1070) > ELV (0.0263) > SLP (0.0252) > DSR
(0.0242). In particular, the influence of RND is more prominent than economic factors
in this study. The distribution and density of roads are determined by human activity,
which is understandably one of the main vital factors of urbanization. Economic factors are
primary for urban development, making it reasonable that GDP and GPW were identified
as the main driving factors. Compared with other factors, the sensitivity of urbanization
to GPW varies most in different periods. Meteorological factor PRE and TEM with high
q-values, but not significant as economic factors, were more significant than proximity
factor DSR and physical factors ELV and SLP. Their interpretation as a direct impact on
urbanization is yet to be understood, while it is acceptable for meteorological data to
influence urbanization development by imaging vegetation conditions or other land use.
From a regional perspective of areas with different population levels (A, B, C, and D)
(Figure 6b), factors were ranked with mean q-values: GDP (0.1293) > GPW (0.1201) >
PRE (0.094)> RND (0.092) > TEM (0.076) > ELV (0.026) > SLP (0.024) > DSR (0.011). GDP,
GPW, PRE, and RND have no obvious differences or variability in regions with different
population levels. They all have significant effects on urbanization. Compared with GDP,
the variation of GPW is greater; that is, the role of population in urbanization is more
volatile in different regions. Population is important in driving economic development and
urbanization, but not always the most important factor on a total regional scale. Results
showed that the role of GDP is weaker than that of GPW only in the most populated
regions. As the same proximity factor, the sensitivity of urbanization to DSR is much lower
than RND. In fact, the higher the density of road network in areas with faster economic
development, the smaller the distance to roads. For pixels with lower DSR, the intensity of
urbanization is greater. At the same time, this study also confirmed that physical factors
have a weak influence on urbanization.

Interaction detector can quantify the influence of factors’ superposition on driving
urbanization (Figure 7). The value on the diagonal line represents the original factors’
q-values, and the others are interaction results with factors superimposing.
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Socioeconomic driving factors were continuously the main contributors to urbaniza-
tion in different periods over the study area. The interactive effect showed the pairwise
factors with two situations, bi-enhance effect and nonlinear-enhance effect, having en-
hanced the explanatory power of urbanization. In the first period, except for the bi-enhance
effect produced by the proximity factors superimposed on other factors, superposition
of remaining factors produced a nonlinear-enhance effect, explaining the relative inde-
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pendence. Socioeconomic and proximity factors presented a bi-enhance effect when they
were superposed with the socioeconomic and meteorological factors during the second
time period. While superposition of physical factors with other factors will not produce
collinear effects, SLP and ELV are also not sensitive to supplementing urbanization intensity
changes.

4.3. Stress on Urban Ecology
4.3.1. Urban External Structure Change

NISI dynamics revealed the urbanization intensity on the pixel scale, but the charac-
teristics of spatiotemporal changes on the regional scale are still an unsolved problem. It is
difficult to capture the spatial evolution of built-up area expansion in a short time interval,
both in the inner and outer area. In order to quantify the variation effect of expansion,
built-up regions of unchanged area and enlarged area were defined as the core area and
expanded area, respectively. Built-up area expansion presents a spatial distribution of
urbanization (Figure 8).
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With the rapid development of smart cities, improving citizens’ sense of happiness is
regarded as the fundamental purpose of city governance. Due to socioeconomic factors and
people’s continuously developing housing demands, the spatial distribution and shape
of built-up areas tend to be complicated. From 2000 to 2020, there were discrepancies
in the distribution of FD and compactness in the 26 districts (Figure 9). The mean value
from 1.16 to 1.18 and 0.21 to 0.17 of FD and compactness showed increment and decline,
respectively, illustrating that the shape of patches is becoming more complicated and less
compact. It is an indirect description of the increasing fragmentation of spatial structure
with rapid urban development. With the increasing complexity, the threat to ecology
gradually becomes worse and more complicated. Variation of the two indictors in the
26 districts exhibits spatiotemporal heterogeneity. The difference of the 26 districts’ value in
the two indicators, which gradually shrank, especially compactness, revealed that built-up
areas in different regions are becoming integrated and coordinated. Increments in FD
are often accompanied by a decrease in compactness, showing a counter state, which is
consistent with the conclusion that compactness proved to be the exponential function of
the reciprocal of the boundary dimension [39].
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4.3.2. Dynamic Response of FVC to NISI

Urbanization is essentially a type of land use. Cultivated land and some urban
greening spaces are the principal source of expansion in rapid development regions. This
study applied the FVC derived from MODIS reflectance as the vegetation index to evaluate
the impact of urbanization on urban greenness.

The slope of FVC from 2000 to 2020 was measured to reveal its variation (Figure 10a).
The relationship between NISI and FVC was measured by Pearson correlation analysis
(Figure 10b,c). Interannual variability of FVC in the past two decades showed a significant
decrease in the periphery of expanded built-up area. As for the relatively stable core area,
urbanization changed with a significant increase. This is in accordance with expansion
density “saturation” and apparent tending declination. The Pearson correlation coefficient
of NISI and FVC in the pixel scale can explicitly indicate the severe distribution of occupied
vegetation by urbanization. The negative coefficient accounted for 63.4% of the total
area, and the most seriously affected, with a value from −1 to −0.5, had a proportion of
16.7%. This negative function results from the occupation by urbanization of green land.
Urbanization can supervise the green coverage rate in some areas. On the one hand, these
areas have been gradually developed into built-up areas and green land from the initial bare
land or other land use. On the other hand, more attention is paid to the importance of green
land in the burgeoning process, which slows down the speed of urbanization and improves
the status of urban greenness. This can be seen from the decrease of urbanization intensity
and the slight negative impact on FVC in the city center. At the national level (Figure 10c),
influence on urbanization in Shanghai, Jiaxing, Suzhou, and Hefei was the most grievous.
In this study, more than half of the negative effects (63.4%) can be attributed to the fact that
green land is the main resource for expansion. Therefore, at the national level, all negative
correlations can be understood as a phenomenon of rapid urbanization. That is, the amount
of vegetation decreases, and cities expand. Moreover, the stronger this negative effect is,
the more serious the urbanization will be. The mean FVC and mean NISI from 2000 to 2020
in the core and expanded area showed an increasing tendency (Figure 10d). NISI increase
was simultaneously with the FVC declination. The FVC decrement in the expanded area
was mostly due to the occupation of built-up area, while the FVC increment in the core area
had a great influence on green development policies. As the urbanization of the central
city becomes saturated, urban greenness cover is enhanced. FVC in the city center is less
vulnerable to urbanization than the expanded area (Figure 10e).
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5. Discussion

NTL data can effectively reflect the latest situation of human activities and economic
development. Compared with general remote-sensing data, the prominent merit of NTL
lies in its data availability and wide application at a regional scale. The cross-sensor
of NTL causes data discontinuity in long-term detection. Logarithmic transformation
effectively suppresses the sharp NPP-VIIRS radiance fluctuations within city centers and
strengthens the NPP-VIIRS radiance variance, enhancing the data continuity of DMSP-OLS
and NPP-VIIRS. Urban indexes based on NTL data have been studied, but few are directly
used to detect the long-term urbanization process. In this study, NISI was confirmed to
further improve the potentiality of understanding urbanization. Results revealed that
urbanization in the YRD occurred simultaneously inside and outside. NISI slope can nearly
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capture the change in urbanization intensity in the city center with a slight increment that is
accompanied with area decrease. The National Forest City Development Plan (2018–2025)
indicated that an agglomeration of six state-level forest cities would be constructed in China
by 2020, including the YRD. As a region of rapid economic development, the built-up area
in Shanghai showed an obvious increment in the initial stage and gradually became stable
in recent years, with obvious growth in its urban forest cover rate. This phenomenon can
also be traced in Hangzhou, Hefei, Nanjing, and some other new first-tier cities. At the
same time, NISI can enhance the edge contrast of ISA and other land types, which increased
the credibility of built-up area mapping.

The driving effect of factors on urbanization fluctuates more strongly in time periods
than that of different population regions in space. The driving mechanism in this study
demonstrated that GDP and population are critical factors in driving urbanization. Eco-
nomic development promoted the migration process from rural settlements to cities. Then,
population growth in cities gradually increased housing demand, which resulted in the
expansion of built-up areas and complexity in the shape and structure. At the same time,
it was found that road network density became a more prominent factor for urban con-
struction. As the infrastructure of urbanization development, the road network is of great
significance in a practical sense. However, studies on the influence of urban development
on climate mostly focuses on the urban microclimate. The relationship between large-scale
urbanization and climate change is unclear. Elevation and slope showed little effect on
expansion. Urbanization-intensity variation is seemingly mostly dependent on human
interference. Furthermore, high-altitude and steep areas are less likely to be developed,
because more money is needed to construct built-up areas in these regions compared to
flat areas. The interaction factor can effectively identify the influence of factor superposi-
tion. The bidirectional enhancement of interactions between economic factors rather than
nonlinear enhancement also indicated the possibility of collinearity between factors.

Urbanization is the comprehensive result of human interference. Impervious infras-
tructure was assumed not to exist in initial natural states; thus, some researchers regard
urban analysis as a way to evaluate the pressure of urbanization on the ecosystem [35].
Especially since the reform and opening-up in 1978, China’s urbanization has been through
several stages [65]. The increment of built-up area is the most direct embodiment of the
linear increase of ecological pressure. Changes of built-up area geometric shapes reflect the
gradual complication of geometrical boundary structure. While the built-up area continues
to expand outward, the gradual increase and decrease of FD and compactness not only
means an increment in ecological pressure on ecology but also a complication of urban
development. Complexity and inconsistency increased the difficulty of management and
put forward higher requirements for the development of intelligent cities [66]. As the
light brightness decreases in the city core and increases on the periphery, the direction of
urbanization is shifting from the city center to the edge. It has gradually complicated the
morphology and structure of built-up areas, especially for some slow-developing cities,
and their urbanization development structure needs to be further adjusted. The negative
correlation between urbanization and FVC indicates that vegetation loss has an intricate
relationship with urban development. Green plants play an indispensable role in achieving
the country’s carbon peak and carbon neutrality goals, especially in built-up areas; patterns
and persistence of urban greening are particularly important. Alleviating urbanization in
city centers is a strategic adjustment that can transform development. In this study, the
intensity of urbanization in the city center shows a decline, which is a form of strategic
adjustment and a manifestation of the fact that urban vegetation is increasingly valued. The
decline in green coverage caused by urban expansion (mainly forests and cultivated land)
leads to a decrease in ecological value. This study analyzed the ecological pressure caused
by the change of urban shape and urban greenness in the process of urbanization from a
qualitative point of view, but the specific number should also be given in future quantitative
studies, as it is of great significance to the sustainable development of green cities.
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With the constant renewal of society, rapid development will impose stricter require-
ments on urban monitoring. Long-term analysis of urbanization based on NTL data
can only stay at a middle and low resolution, which is still a great challenge for urban
spatiotemporal monitoring with large-scale refinement. Furthermore, one of the major
problems faced by the integrated application of multisource data is the spatial consistency.
The combination of datasets from different platforms will inevitably produce geometric
errors. Currently, methods of geometric correction for cross-sensor data are available for
some kinds of datasets, and their application scope is still limited. Moreover, it is difficult
to realize the precise geometric correction for large-scale and multidimensional datasets.
Furthermore, we are committed to combining some more effective ecological indicators to
accurately quantify the effect of urban development on urban ecological pressure, which
can help managers make more specific and reasonable plans for urban development.

6. Conclusions

By calibrating the data of DMSP-OLS and NPP-VIIRS, long-time-series-processed NTL
data integrated with MODIS data were used to conduct the NISI for analysis of urbanization
intensity change and impact on urban ecological stress. This study proved that the corrected
NTL data combined with MODIS NDVI can improve the data continuity and reliability
of long-term urban monitoring, which provides a new reference for time series urban
monitoring. Urbanization dynamics in the YRD show that, accompanied by reaching
saturation in the city center, urban-development gravity gradually moves to the periphery.
In addition to economic factors, road network density, as an important factor reflecting
urban infrastructure, needs to be considered in driving urban development. Urbanization
has had a significant influence on the city’s internal social attributes and external physical
structure. In the process of physical structural changes caused by urban expansion, changes
in FD and compactness can eventually complicate the urban landscape structure and
increase urban ecological stress. Meanwhile, variation of urbanization intensity has a great
impact on urban FVC. The spatiotemporal negative correlation between urban development
and urban greenness in a sizeable area and, over a long time, shows that urban development
is an important factor in urban greenness disturbance. This effect in the city center is
smaller than that in the expansion area, which is not only a phenomenon of the short-term
degradation of vegetation caused by the occupation of land resources in the early stage
but also a strategic manifestation of urban coordinated development. Urban planning and
ecology protection are factors that development always pay attention to. Quantifying their
patterns and mechanisms is of great significance for society sustainable development.
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